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Abstract

This paper presents the synthesis and the experimental implementation of robust higher order sliding
mode controllers for an electropneumatic actuator. These controllers are based on a recent approach and
are designed in monovariable (position control) and multivariable (position and pressure control) contexts.
The controllers’ robustness is analyzed with respect to parameters uncertainties and load disturbances.

Keywords. Higher order sliding mode, L@ approach, robust SISO/MIMO control, electropneumatic
actuator, experimental results.

Nomenclature
u input voltage (V) y Load position (m)
v Load velocity (m/s) p Pressure (Pa)
V' Chamber volume (m?) F,,; External force (N)
F Dry friction forces (IV) b Viscous friction coefficient (N/m/s)
M Load mass (kg) k Polytropic constant
T Chamber temperature (K) r Perfect gas constant related to unit mass (J/kg/K)
S Area of the cylinder piston on a chamber side (m?) g, Mass flow rate provided by the servo-distributor
~ (resp. p) Relative to N (resp. P) chamber to cylinder chamber (kg/s)

1 Introduction

Pneumatic actuators are widely used in industrial fields because of low maintenance cost, lightweight, compliance
and good force/weight ratio. But, the position control of pneumatic actuators keeps a problem since due the
nonlinearity of its model and behaviour. A number of characteristics, such as friction, variation of the actuators
dynamics due to large change of load and piston position along the cylinder stroke evolves the development of
high-performance closed-loop controllers [9,11,14,15,23].

Several works have proposed linear and nonlinear controllers in order to get high performances behavior, in
single input-single output (SISO) and multi input-multi output (MIMO) contexts. The main advantages of
MIMO control (position and pressure are controlled) versus SISO one (only the position is controlled) are the
energy economy, viewed that it is possible to make the same displacement (with same velocity and acceleration)
with less energy consumption [7,8], and the lack of zero dynamics while, in SISO context, zeros dynamics is
one-dimensional and its stability is difficult to formally prove [5]. In [6], a comparison between two positioning
linear control laws (a fixed gains control law and a control law with scheduling gains) of an electropneumatic
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dissymmetrical cylinder is made in point to point displacement aim in SISO context. This work has been
extended to nonlinear control in [5,26] and [8], in which a linearizing controller has been implemented on an
experimental set-up in single and multi variable context. Due to uncertainties on the model, robust controllers
are necessary to ensure position tracking with high precision. Then, sliding mode SISO controllers have been
used for electropneumatic actuators [4,24,35]. Their advantages are that they are simply implemented and
robust versus parameters variations and exhibit good dynamic response. However, since the sampling frequency
of the controller is limited, chattering will be produced (dangerous high-frequency vibrations of the controlled
system). In order to reduce the chattering, the control can be modified to a so-called boundary layer control [30].
This type of control implies a small deterioration in accuracy and robustness'. Higher order sliding mode
control [1,12,16,17,19,20] is a recent approach which allows to remove all the standard sliding mode restrictions,
while preserving the main sliding-mode features and improving its accuracy. In [18], a second order sliding
mode SISO controller has been successfully implemented on an experimental pneumatic actuator set-up. The
controller guarantees a second order sliding mode etablishment with respect to the constraint A dy + dv = 0
where )\ is positive constant and dy and dv are the position and velocity error respectively. However, only an
asymptotically 2-sliding mode with respect to the constraint dy = 0 is guaranteed. To ensure a finite time
convergence to zero of the position error, the sliding variable has to be dy. Then, a 3"¢ order sliding mode
controller is at least necessary.

In the first part of the current paper, a 3"¢ order sliding mode SISO controller is designed and checked on the
same experimental set-up. This controller uses standard sliding mode control with linear quadratic (LQ) one
over a finite time interval with a fixed final state [17] and ensures the etablishment of a real third order sliding
mode. The real third order sliding mode means that, o being the sliding variable, o, and & converge in finite
time in arbitrarily small vicinity of zero. Good performance, robustness against parameters uncertainties and
perturbation and simple implementation (desired dynamic can be easily tuned through two parameters and
convergence time can be fixed a priori) are the main features of the proposed method. This latter approach can
be used for control of MIMO systems and is applied to the under interest electropneumatic actuator, in order
to control both its position and the pressure in one of its two chambers. The originality of the current paper
lays in the algorithm chosen for the controller design, the comparison between the performances of SISO and
MIMO controllers, and the experimental validation.

The paper is organized as follows: Section 2 describes the model of the electropneumatic actuator and states
the problem under interest in SISO and MIMO contexts. Section 3 theorically displays the control approach.
Sections 4 and 5 discuss respectively the application and implementation of the proposed control schemes on
an experimental set-up.

2 Model of the pneumatic system and control objectives

2.1 Description of the experimental set-up

The electropneumatic system under interest is a double acting actuator (Figure 1) composed by two chambers,
denoted P (as positive) and N (as negative). The air mass flow rates entering the two chambers are modulated by
two three-way servodistributors controlled by a micro-controller with two electrical inputs of opposite signs. The
pneumatic jack horizontally moves a load carriage of mass M, has a stroke of 500 mm and is very unsymmetrical
since it has an internal diameter of 32 mm with a simple rod of 20 mm diameter. The position sensor of the load
cariage is a potentiometer. Velocity is obtained by analog derivation from the position signal and a numerical
derivation of the velocity signal gives the acceleration information used by the control law. Two pressure sensors
are also implemented in each chamber and used for control synthesis.

2.2 Model

Assumptions [22,29] used to obtain a model of the pneumatic part of the electropneumatic system are:
e The supply and exhaust pressures are constant,
e The air is a perfect gas and its kinetic energy is negligible in both chambers,

e The pressure and the temperature are homogeneous in each chamber,

INote that this solution is not enough in pneumatic field [3]: indeed, a good compromise between static position error and
chattering cannot be found. So, the spool of the valve is exited which induced noise due to the air going from source to exhaust
and an undesirable deterioration of the servodistributor.
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Figure 1: Electropneumatic system

e The thermodynamic evolution of the air in the cylinder chambers is polytropic and characterized by a
coefficient k,

e The temperature variations in each chamber are negligible with regards to the mean temperature 7',
e There is no mass flow leakage between the two cylinder chambers and outside the actuator,
e The dynamics of the servo-distributor are neglected.

Then, a nonlinear dynamic model of the electropneumatic system reads as:

krT

. _ P
bro= Ty [@m (up, pP) = —pPY]
. krT SN

= ——|qm(un, + —pnNv
PN ZN(y) [gm (un,pN) erN ] (1)
v = M[SPPP — Snpy — bv — Ff - Fezt]

y = v

with y the load carriage position, v its velocity and pp and py the pressures of P and N chambers. The
model of mass flow rate delivered by each servodistributor can be reduced to a static function described by
two relationships ¢, (up,pp) and ¢, (un,pn). The two first equations of (1) concern the pneumatic part of
the system and are obtained from the equation of perfect gases, the mass conservation law and the polytropic
law under the assumptions given above. The two last equations describe the mechanical dynamics and are
derived from the fundamental mechanical equation applied to the moving part. In the current study, the term
F represents all the dry friction forces which act on the moving part in presence of viscous friction (b.v) and
an external force only due to atmospheric pressure (Fg.:). In order to get an affine nonlinear state model, the
mass flow rate static characteristic issued from measurements [28] is written as a function of control input up
and uy and polynomial functions (fifth order) of pp and py [2] (with * = P or N)

O (W, D) = @(Px) + P (Ps, sign(us)) - v (2)

2.3 Uncertainties

Two kinds of uncertainties are taken into account: uncertainties due to the identification of physical parameters,
and variations of environment (see Table 1). The knowledge of the viscous friction coefficient has been identified
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Table 1: Uncertainties or variations of system parameters

Viscous friction coefficient || £ 20%
Dry friction coefficient + 90%
Function ¢(+) + 20%
Function 9 (-, ) + 15%
Load mass variation + 50%

and the variation of this coefficient around the nominal value has been experimentally evaluated at £20%. The
dry friction coefficient is more difficult to identify: the track surface quality (thus the piston position), the seal
wear, the working conditions (temperature, pressure, quality of air) act on its value. By some experimental
tests, dry friction variation around the nominal value is evaluated to £90%. Futhermore, the dry friction
variations are supposed to be not instantaneous: the dry friction dynamics are then bounded. The mass flow
rate delivered by each servodistributor has been approximated by polynomial functions (2). The uncertainties
on ¢(-) and 9 (-) are evaluated to £20% and +£15% respectively. Finally, the total mass in displacement can
evolve from 17 kg to 47 kg. The nominal mass being 32 kg, the variation is £50%.

2.4 State model with uncertainties

The formalization of the variations is stated as

krTo(pp) = ki = ko1 + 0kq, krTvy(pp,sign(up)) ko = ko2 + 0ks,

—kSp = kg = kos + 0ks, kTT(p(pN) = ky = ko + 0ky,
krTiy(pn,sign(un)) = ks = kos + 6ks, kSN = kg = ko + Ik, (3)
SP/M = ky = koy + Okr, —SN/M ks = kog + Oks,

—b/M = ky = kop + Oko.

where ko; (1 < i < 9) is the nominal value of the concerned parameter, dk; the uncertainty on the concerned
parameter such that |[0k;| < dko;, with dko; a known positive bound. Note that, viewed the previous hypotheses,
0ks = 6kg = 0. The term —% =: ko is viewed as a perturbation which is bounded, as its first time
derivative. Let x denote the state x = [z1 2o 23 24]7 := [pp py v y]? and v := [up un]? the input. Then, a
state space model of the pneumatic actuator is

T VP(JJ4) [ 1+ K- o -'L'B] Vp%au) k2 0
. 1 1
D) _ - [k?4 + k6 - Ty ~x3] + 0 Vi (z2) k?5 . up
Vi (1) 0 0 uN 4)
P k7 -x1 + kg - xo+ kg -3 + k19 0 0 S
4 u
R_/—/ | T3 | ~ ~~ -
¢ S 9(z) =1 gn(x) + Ag

f(z) = fn(z) + Af

withz € X andu € U suchthat X = {z € R*|,0 < Zpin < 7 < Tarax, 1 <0 <2, Timin < |2 < Tiprax, 3 <
i <4} and U = {u € R? | |up| < umax, lun| < urprax}, Tmin and Ty 4x the minimum/maximum values of
the P and N chambers pressures, Zsmi, and T3pax (resp. Tamin and 4p4x) the minimum/maximum values
of the load velocity (resp. position) and uprax the maximum value of the voltage input. fx(z) (resp. gn(x))
is the nominal (known) value of f(z) (resp. g(z)), and Af (resp. Ag) contains all the uncertain components.

2.5 Control objectives

2.5.1 MIMO problem

The aim of the MIMO control is to ensure a displacement of the load mass with controlled level of pressure
by respecting a good accuracy in term of position/pressure tracking for desired trajectories (Figure 2). The
amplitude of displacement is equal to 50% of the total stroke around the central position, the maximum desired
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velocity equals 0.60 m/s and the maximum desired acceleration is 2.2 m/s?. The outputs of (4) read as

ref
o1 = wmy—x," (t)
5
oy = I —x{ef(t) (5)

The relative degree of (4) versus o := [o1 02]" are respectively 3 and 1. Then, it is necessary to design at least
a 3-1 order sliding mode controller.
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Figure 2: Desired position 2}/ (£) (mm) and desired pressure 2%/ (t) (bar) trajectories versus time (s).

2.5.2 SISO problem

The aim of the control law is to respect a good accuracy in term of only position tracking of the desired
trajectory (Top of Figure 2). As the output is the actuator position

o = z4—z(1), (6)

the two three-way servodistributors are supposed to be the same and their electrical variable inputs are of
inverse signs, i.e. up = —un. The relative degree of (4) versus o equals 3. Then, it is necessary to design at
least a 3" order sliding mode controller.

3 Higher order sliding mode controller

3.1 Statement

In a sake of clarity, the approach is introduced only in monovariable context. Consider a single-input nonlinear
system

Po= f(@) + gl
= In(@) +Af(2) +[gn(2) + Ag(z)]u (7)
h = o(x,t)

with € X C IR™ the state variable and u € & C IR the input, such that X = {& € R" | |z;| < zimax, 1 <
i<n}tand U ={ue R | |ul <upax} o(z,t)is the output function, called sliding variable. f, g and o are
smooth uncertain functions, f and g being composed by a nominal “well-known” part (fn, gn) and a term
containing all the uncertain components (Af and Ag). Suppose that the control objective is to force o(z,t) to
zero (or to a arbitrary small vicinity of zero for higher order real sliding mode) in finite time. Assume that

H1. The relative degree p of (7) with respect to o is known and the associated zero dynamics are asymp-
totically stable.
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Definition 1 [12] Given the sliding variable o(z,t), the “rth order sliding manifold” associated to (7) is defined
as
S = {reX|o=6=---=0""D =0} (8)

Definition 2 [12] Consider the not-empty r'* order sliding set (8), and assume that it is locally an integral
set in the Filippov sense, i.e. it consists of Filippov’s trajectories of the discontinuous dynamics system. The
corresponding behavior of system (7) satisfying (8) is called “rt" order sliding mode” with respect to the sliding
variable o(x,t). -

Definition 2 means that system (7) satisfies a 7" order sliding mode with respect to o(z, t) if its state trajecto-
ries lie on the intersection of the r manifolds ¢ =0, 6 =0, ---, and 0"~ = 0 in the state space. The 7" order
sliding mode control approach allows the finite time stabilization to zero of the sliding variable ¢ and its r — 1
first time derivatives by defining a suitable discontinuous control function which is either the actual control if
p=r,orits (r—p)t* time derivative if r > p. In a sake of clarity, consider only the case? The output o satisfies
0" = B(x,t) + y(x)u, where vy = Lo +do/dt and 8 = LyL}o. Assume that

H2. v e U = {u € R | |u| < upm} where ups is a real constant; u(t) is a bounded discontinuous function
of time and the solution of the differential equation with discontinuous right-hand side (7) admits a solution in
Filippov sense on S for all ¢.

H3. Functions B(z,t) and y(z) read as
Ba,t) = Po(x,t) + Balz),  7(x) =) +7a(2) 9)

with fo(z,t) = L}, o +do/dt and yo(z) = Ly, L} 0.

Denoting A = Sa + yau a term containing all the uncertainties/perturbations, it can be shown [17] that
the r** order sliding mode control problem of (7) is equivalent to the finite time stabilization of system

Z:1 = AuZi+AnZ (10)
Z2 = BO +’70U+A
where Z; = [0 --- o=, Zy = 0"~V Ay;, A;5 are defined by
ro 1 ... 0 ...]7
A= | 0 o s A =00 - 0 iy (11)
o . . ...01
L0 o e 0] (r=1)x(r—1)
H4. Functions 79 and A are such that, with C € IRT*,
0<7, [AlLC. (12)

The first part of the next section is proposed in the context of the ideal higher order sliding mode, as previously
presented in order to present with a sake of clarity the philosophy of the higher order sliding mode controller
design. But, the establishment of an ideal sliding mode needs an infinite frequency of the control switching, which
is not possible for practical applications. Then, the real higher order sliding mode needs to be introduced. Note
that, as this chapter concerns real applications of higher order sliding mode control, the main results (Theorem
1 and Algorithm) are given in the context of real higher order sliding mode [34].

Definition 3 Given the sliding variable o(z,t) and a parameter € , the “real " order sliding manifold” asso-
ciated to (7) is defined as

S = {zex|lloll <Cole), lloll < Cale),-++, lle V|l < Croa(e)} (13)

with C; = 0 whene -0 (1 <i<r—1). -

2The general case © > p is studied in [17] and appears as a trivial extension of the case r = p.
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Definition 4 Consider the not-empty real r'" order sliding set (13), and assume that it is locally an integral
set in the Filippov sense, i.e. it consists of Filippov’s trajectories of the discontinuous dynamics system. The
corresponding behavior of system (7) satisfying (13) is called “real rt" order sliding mode” with respect to the
sliding variable o(x,t). -

3.2 A L@ control-based approach

Under Assumption H4, the system (10) can be viewed as a chain of integrators with uncertain bounded terms.
The problem is stated as the finite time stabilization of (10) in a linear uncertain context, while considering the
nonlinear functions  and ¢ as bounded non structured parametric uncertainties. Let 7 define as 7 := ¢ — tg
with ¢ € [to,to + tr]. A solution consists in stabilizing (10) towards the origin in a finite time ¢ty < 400 while
minimizing the linear quadratic cost (with 7 € [0, tF])

1 [t
J = —/ Z'Q Z dr (14)
2 Jo
with Z = [Z] Z5]' and under the fixed final state constraint Z(tr) = 0. The positive definite symmetric matrix
@ is defined as
Qu Q12 ]
= 15
s (1)

where @11, @12 and Qa2 are ((r — 1) x (r — 1)), ((r — 1) x (1)) and (1 x 1) dimensional matrices respectively.
Criterion (14) becomes

1 [ir
J = B / (Z1Q11Z1 + 2Z1Q12Z> + Z5Q 2225 ) dT. (16)
0

The idea is to determine a switching manifold resulting in the minimum of the criterion (14), on which a higher
order sliding mode occurs. 7 =0 (t = to) is the instant for which the sliding mode begins and is viewed as the
initial point in (14). In the first equation of (10), consider Z; as the state variable, and Z> as a fictive control
input. Then, the problem leads back to the resolution of the L@ problem (14) for the dynamics of Z;, under
the constraint Z(tp) = 0. The fictive control Zs, stabilizing Z; to Z(tF) = 0 in finite time and minimizing the
quadratic cost function (14), is given by [21]

Zy = —[QnALP(1) + Q5 Qly — Qn ALV(NH(N) TV ()] 24 (17)
where P(r) € R("Y*("=1) is the unique solution to the differential Riccati equation
—P = P(An = A12Q355 Q1) — PA1Q35 AP + (A — 41205, Q1) P + (Qu — Q12035 Q1) (18)

with P(tp) =: Pp stated by the user. V € R""D*0=1 and H € RU"~Y>*("=1) are the solutions of two linear
differential equations such V(tg) = I(;_1)x(r—1), H(tr) = 0(p—1)x(r—1) and

-V = (A - AnQy Qs — AnQyy A P)'V (19)
H = V'A;pQyy AlLV.
From (17), let S(Z, 1) defined by
S(Z,r) = Zx+ [Q2_21A112P+Q2_21 12— 2_21A112VH71V’] Z1. (20)

Equation S(Z,7) = 0 describes dynamics which satisfy the finite time stabilization of vector Z to zero and
minimize the quadratic cost function (14). Then, the optimal switching manifold is defined as

S ={Z|5(Z71)=0, 7 €[0,tp]}

on which system (7) is forced to slide on via the discontinuous control u. Then, an ideal higher order sliding
mode occurs.

H5. At 7 =0, 5(Z,0) =0.
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The function S(Z,7) is a switching variable with time-varying coefficients depending on P(7), V(7) and H (7).
These coefficients do not depend on state variables and then, can be computed off-line and stored from resolution
of (18)-(19) for each time between 7 = 0 and 7 = tp. Then, when the controller is implemented, these coefficients
are fully known. However, at 7 = tp, the function S can not be evaluated because it is undetermined. As a
matter of fact, it depends on the inverse of H(7) (with H(tr) = 0) which is multiplied by Z; (with Z;(tp) = 0).
From [27], it is known that H ! exists for 7 € [0,tp — €], with € an arbitrarily small constant. Then, via a
discontinuous control u, the final control objective consists in forcing, the trajectories of (7) to slide on

St =1{7|8(Z,7)=0, T€[0,tr —¢], 0 <e<< tp}

in finite time. For 7 € [0,tF — €], equation S(Z,7) = 0 describes the desired dynamics which satisfy the
finite time convergence of vector Z to an arbitrary small vinicity of the origin (fixed by parameter €), i.e.
llo|| < Cole), ||o]] < Cile),---, [|o" V|| < Cr_1(€). Then, a real higher order sliding mode occurs.

The design of a switching control function u, which allows the sliding on S°P*, follows the conventional path [34];
the variable structure control u can be selected to satisfy the sliding mode condition

S-S <-nls|, (21)
where n > 0 is a positive real number.

Theorem 1 Consider the nonlinear system (7) with a relative degree p with respect to o(x, 7). Suppose that it
is minimum phase and that hypotheses H,, Ho, Hs, Hy and Hs are fulfilled. Consider 0 < e << tp. Let S € IR
a function defined as (with 0 <7 <tp —€)

S(Z,1) = Zo+ [Qu AP + Q5 Q1y — Qo AL,VH V'] Z (22)
with r = p the sliding order, Z, = [0 ¢ --- o' 2], Zy = 0"V, the matriz A5 defined by (11), P the

unique non-negative definite solution of the differential matriz Riccati equation (18) (with a given Pr), V and
H the solutions of equations (19), and Q defined by (15). Then, the control input u defined by

u = 7' [—asign(S(Z,7)) - Bol (23)
with
a>n+06+C,
o o
o o
© > Max v - . +3X- . ) (24)
o.(r;l) U(r;2)
where
U o= QuALP— QR ALVH WV + Q5 Qs o5
Y o= QA [P ~VH V' - V(H Y - VH*l(V’)] (25)

with 1 > 0 a positive real number and C, P, V and H defined respectively by Hj-(18)-(19), leads in finite time
to the establishment of r*" order real sliding mode with respect to o by attracting each trajectory in finite time.

[
Proof. The finite time convergence of vector Z to an arbitrary small vinicity of the origin (fixed by parameter
€), i.e. ||o|| < Co(e), ||o]| < Ci(e), -+, |lo" V|| < Cr_1(€), via the minimization of (14) is realized by sliding
on the optimal switching manifold (for 0 < 7 <tp —¢€)

St = Qe eX | ol +(Qy AL P(1) — Q) ALV (NH(1) V(1) + Q% Qi) - : =0

o(r=2)
(26)
The design of a switching control function follows the conventional path [34]: the variable structure control u
takes the form

u = 7 [-a sign(S) - fo (27)
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with the gain a tuned such condition (21) holds. One gets

5 = BO+70U+A+X (28)
= —asign(S(Z,7)) + A+ x
with x given by (with ¥, ¥ defined by (25))
o o
o o
x = ¥ +X (29)
or=1) 5(r=2)
The inequality
a>n+A+x
implies SS < —7|S| in finite time. A sufficient condition reads as
a > 1+ Max(|A]) + Max(|x|)- (30)
Since the vector [o & --- o("=2) ¢("=V])" P(7), V() and H(7) are bounded functions, and viewed that H(r)~"

exists for 7 € [0,tp — €] [27], then function x can be bounded by a positive real number ©. From (30), one
deduces that gain « has to be tuned so that a > 1+ © + C to ensure (21). -
Implementation in practice. The following Steps and algorithm describe the practical implementation
of the control law (23).

Step 1. t € [0, to[. The goal of this Step is to set system (7) to reach the optimal switching surface
So = Za(t) + MoZ1(t) = 0, with A issued from the off-line computations/resolutions of (18)-(19) at 7 = 0
(t = to), i.€.

Ao = Q2721A112P(7' =0) - Q2721A112V(7' =0)H(r = 0)71‘/(7' = 0)’ + Q;21Q32;

by applying the control law v = —a sign (Z2(t) + AoZ1(t)). Of course, during all this step, the coefficients
vector Ag is constant. Obviously, the time ¢ = tg is finite and defined such that Sy = Z>(to) + Mo Z1(to) = 0.

Step 2. t € [to, to +tr — €]. The control law v = —a sign (S) = —a sign (Z>(t) + AZ1(t)) with A issued from
the off-line computations/resolutions of (18)-(19) for t € [to, to +tr — €] (T € [0, tr —€]), i.e.

A= Q2721A32P(7') - nglAizv(T)H(T)_IV(T)I + Q2721Q327

maintains S = 0. Consequently, the equality (17) minimizing (14) under the constraint Z(¢tr) = 0, holds. Then,
at t =ty +tr — €, the trajectories reach an arbitrary small vicinity of the origin: real higher order sliding mode
occurs.

Step 3. t €]tg +tr — €, oo[. The control task consists in maintaining the system trajectories in the vicinity of
the origin. This objective is fulfilled by the control law v = —« sign (Sp.) = —a sign (Z2(t) + Ap, Z1(t)) with
Ap. issued from the off-line computations/resolutions of (18)-(19) at 7 =tp —€ (t = to + tr — €), i.e.

A, = QuALP(T=tpr—¢)—QuALV(r=tr—e)H(r=tr —€) !
V(r=tr—e) + Q521Q12-
An upper bound for the convergence time to the origin vicinity is defined as tg +tp — € < SOT(O) +tp —e. Then,

the proposed algorithm can be expressed through the following sequence of steps.

Algorithm. From optimal switching manifold defined in Theorem 1, the control is given by
(1) Att=0,if So = Z2(0) + Ao Z1(0) # 0, then for t > 0, apply u = —a sign(Z»(t) + Ao Z1(t))
(i) If So =0, then t = tg. For t € [to, to +tr — €], u = —a sign (Z2(t) + A(t) Z1(t))

(iii) If ¢ € [to + tr — €, o[, apply u = —a sign (Z2(t) + Mg, Z1(t)) -
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Remark 1 As mentioned previously, equations (18) and (19) are three differential equations which do not
depend on the state trajectories. Since only their final conditions are available, these equations have to be
integrated backward from a a priori final time tp over a time interval T € [tp,0] in order to find the initial
conditions of P, V and H at 7 = 0. Practically, a possible method is to discretize these equations and to run
the resulting difference equations backward. From the knowledge of the initial conditions P(0), V(0) and H(0),
two ways are possible. First, the values of P, V and H are computed off-line and stored in computer memory
before the use of the controller: of course, a sufficient space of memory is necessary. The second way consists
in computing on-line the equations (18)-(19) from the initial conditions: in this case, the computer has to be
sufficiently fast. -

Remark 2 The control law (23) is composed by a linearizing controller (“equivalent control” in the sliding
mode context) coupled to a high order sliding mode one: as a matter of fact, it has been shown in [10] that,
for the class of uncertainties considered here, the use of a linearizing controller leads a lower effort in terms of
discontinuous part of the controller (lower gain), which is interesting in terms of chattering and energy. -

4 Position control

4.1 Controller design

In order to track the desired load position x4, (t) (Top of Figure 2), the sliding variable is defined from the

position error o = x4 — x4,,,(t). The relative degree of (4) versus o equals 3. Consider 0®) = f(x,t) + v(z)a

ref

(recall that, in SISO context, up = —un := @) where
Bz, t) = L[k +kxx]+£[k + kezaws] + ko [krx1 + ksxa + koxs + k1] + k1 — 33
; V() U1 H Famis) 4 e L o Ro o s 9 [K7T1 + KgT2 + Ko + K10 10 = Typey
= fo+6p
krk ksk
Y@ = s o =0+ 6y

Vp (JJ4) VN (JJ4)
(31)
As previously mentioned, Sy and vy are the known nominal expressions whereas the expressions §5 and vy
contain all the uncertainties due to parameters variations and term k1o. From (23), the third order sliding mode
controller reads as

i = 7 '[-Bo— a-sign(9)], (32)
with

S = 8+ QA LR - O ALV OOV + Q5 | ] |
with

Q> Q2
The gain « is tuned such that sliding mode condition (21) is satisfied. Matrices @), Pp, tF and € are tuned to
get the desired dynamics, and by taking into account the physical limitations of the system.

A122[2:|7Q:|:Q11 Q12:|

4.2 Practical implementation results

The proposed algorithm has been implemented on a dSpace DS1104 controller board with a dedicated digital
signal processor with a 1 ms sampling time. Two pressure sensors are fixed in each chamber. The pressures py
and pp are such that 1 »,,,, = 1 bar and z1 2,,,, = 7 bar absolute. The maximum/minimum value of the load
position equals Zyyin/anrax = £250 mm. The control input is such that uprax = 10V. The objective consists
in tracking with high accuracy the desired position z4,.f(t) (see Top of Figure 2) in spite of model uncertainties
and load variations. tp is fixed at 0.1s, € = 5 ms, Pr = 0342 and

10 0
Q:|:Qlll 812]:: 0 1 0
12 | 22 0 0|7e—3

The gain « has been tuned such that condition (21) is satisfied : « = 520 . These values ensure good static and
dynamic performances. Some experimental results are provided here to demonstrate the good performance and

10
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robustness of the 3" order sliding mode controller. Firstly, the total load mass equals 32 kg (nominal case), and
the viscous friction coefficient b equals 140 N/m/s. Figure 3 displays the tracking position error with desired
position described. The maximum position tracking error is about 1.38 mm which is better? than with classical
nonlinear control [8] and second order sliding mode controller (the maximum value of tracking error in nominal
case equals 2.12 mm in [18]). This error equals about 0.5% of the total displacement magnitude. In steady
state, the average position error is about 60 um. Figure 4 displays the control input. Even if the signal exited

15

POSITION ERROR (mm)
o

o o

T

i i

|

°

o
T
i

15 | i i i | |
3 4
TIME (SEC.)

Figure 3: Nominal mass = 32 kg. Tracking position error (mm) versus time (s).

the spool valve during the dynamic stage, no audible noise can be heard*, which was not the case with first
order sliding mode [4]. From these experiment results, good tracking responses are obtained for the position
owing to the robust control characteristics of the controller. In order to illustrate the controller robustness, the

10
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Figure 4: Nominal mass = 32 kg. Control input (V') versus time (s).

total load mass is decreased to 17 kg keeping the same controller computed for nominal case. The robustness
of the controller versus the load mass variation can be observed in Figure 5. The maximum position tracking
error is about 2.7 mm. In steady state, the maximum position error is about 106 pum.

5 Position and pressure control

5.1 Controller design

In order to track the desired load position x4, ,(t) and pressure x1,, () given by Figure 2, the sliding variable
is defined from the position and pressure errors

oo { o1 ] _ { m-x%:(t) } (33)

(op) zy —x; " (¢)

3The control laws in [8] and [18] have been implemented on the same experimental set-up, in the same conditions.
4The noise is due to a very high frequency displacement of the servodistributor mobile part, which can induce a faster wear.

11



Submitted to International Journal of Control - June 2005

POSITION ERROR (mm)

STIME (SEC.)4
Figure 5: Modified mass = 17 kg. Tracking position error (mm) versus time (s).

In this case, the relative degrees of (4) versus o are p; = 3 and p» = 1. Given these values, it is necessary to
ensure at least sliding mode with orders versus each sliding variable as 1y = 3 and 72 = 1. One gets

[B]- () [28 ) 2]

—~

z,1) Yor(z) 0 un (34)
8 ¥ v
with
—_ 7 re (3)
= VPIC(L) (k1 + ksz123] + % [ky + kezoms] + ko [kray + ksza + koms + kio] + k1o — 257 (¢)
= Pio+A
p2 = VP%M) k1 + ks - @1 - @3] — 2] () =: Bao + 66
krk
Y1 = VP7($24) =: 7110 + 0711
ksks
2 = =: 1 01
Y12 Vi (1) Y120 + 0712
1
Y1 = ka =: 7210 + 0721

(35)
where .o (resp. 7«x0) is the known nominal value of 8. (resp. 7Vix), and §8. (resp. d7.«) is the term which
contains all the uncertainties. Viewed the form of matrix ~, it is clear that the input up must be used in order
to control the pressure pp, and that the outputs are coupled. Consider the feedback, which linearizes system
(34) without uncertainties,

71 - -
710 Y120 —bio U1
_ n 36
“ {7210 0 ] ([ —520] _U2_> (36)
where v := [v; v2]” is the new control. One gets
(3) : S T
01 _ B Y11 Y12 U1
= > + ! 37
- LRl ] &

12
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with 5 5
B = 6B — e Bio — %1[320 + 110 0712820
Y210 1207210
A 8~
B = 88— LBy
Y210
N o 0712
o= 1+ — (38)
Y120
N _ I 0712
Y2 = —— — ————7110
Y210 Y1207210
0-
A2 = 1+ 221
Y120

Then, one gets
(3) 1 0)[w A
0q _ 1 1
KRR @

with A; and A, containing all the uncertainties components and given by

0712 0711 110 0712 0711 0712
A = 6B — 7 Bio — 7 B20 + i 57125204‘—7 v1 + oMz 10 | U2
Y120 Y210 Y1207210 Y120 Y210 V1207210 (40)
0
Ay = o
Y120

Given the assumptions of boundness, there exist C; € IRT* and Cy € IRT* such that |A;| < C7 and |Az| < Cs.
Viewed the structure of (39), it follows that the input v, is designed to control o2, and the input v; to control
o1. Then, v; and v, are defined such that

(- —al'Sigl’l(Sl(O'hé'l,b"l,t))

vy = —ay-sign(os) (41)
with
5. = 1+ (Qu AP - QALY ORIV + Q40 | T .
T, (42)
me =[] mae=[Gn Ge ).
Design of vy. The control law ve = —ay - sign(o2) has to ensure the establishment of a sliding mode on

Sy = {z € X | 02 = 0} leading to desired tracking property for pressure pp. The gain as > 0 is tuned such that
the “standard” sliding condition is fulfilled, i.e. 202 < —n2]o2| (92 > 0). From the second equation of (39),
one gets

0209 = 03 (—Ozz . Sigl’l(dg) + Ag) < —’172|0'2|
The previous inequality is fulfilled if ay > 12 + Cs. -

Design of v;. The gain «a; is tuned such that condition 818, < —m|S1| is satisfied, which ensures the
establishment of a real third order sliding mode w.r.t. oy, for stated parameters tp and e. Then, one gets

5151 = 053)+\i’1|:q1:|+‘111|:q1 :|>51
o1 o : (43)
= —Oél'Sigl’l(S1)+A1+\i’1|:gi :|+\I’1|:Zi :|>51 < —’171|S1|
The latter inequality is fulfilled if «; > 71 + Cy + ©1 with
@1:MaX|:‘i/1|:?—1:|+\I’1|:?1:|H.
o1 o1
]

13
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5.2 Practical implementation results

The experimentation conditions are the same than previously. The objective consists in tracking with high
accuracy the desired position and pressure (see Figure 2) in spite of model uncertainties and load variations.
For the pressure control, the gain as has been tuned as as = 4e5. For the position control, tp is fixed at
tp = 0.1s, e = 5 ms, Q11 = Iax2, Q12 = [0 0], @22 = [0.007], and a; = 150. Figure 6 displays the tracking
errors of position and pressure with respect to desired trajectories. The maximum position tracking error is
about 1.84 mm. This error equals about 0.7% of the total displacement magnitude. In steady state, the average
position error is about 60 um. The pressure tracking error is very low: in steady state, its average value equals
0.03bar, and its maximum value about 0.06bar. Figure 7 displays the control input. The dynamic and static

- o N

POSITION TRACKING ERROR (mm)
o
o

3 4
TIME (sec.)

PRESSURE TRACKING ERROR (mm)

3 4
TIME (sec.)

Figure 6: Nominal mass = 32 kg. Tracking position (mm) (Top) and pressure (bar) (Bottom) errors versus
time (s).

performances are satisfying in terms of robustness. Even if the MIMO controller is interesting in terms of
energy [7] and for the absence of zero dynamics, a drawback appears: as a matter of fact, the input signal
intensively excites the spool valve during static stage, which is certainly due to the 1-order sliding mode control
of the pressure. However, viewed the level of the inputs, this phenomena is not really “dangerous” for the
system and could be attenuated by a boundary layer in the discontinuous control part [30]. But, this latter
solution would decrease the performances of the controller.

2

1L

o

u, CONTROL INPUT (V)

3 4
TIME (sec.)

uy, CONTROL INPUT (V)

3 a
TIME (sec.)

Figure 7: Nominal mass = 32 kg. Inputs up (Top) and uyn (Bottom) (V') versus time (s).

6 Conclusion

This paper shows the interest and efficiency of higher order sliding mode control in terms of robustness and
precision for electropneumatic positioning system. In this kind of systems, parameters as frictions, mass flow
rates, ... can evolve in time; other parameters as load mass can be modified by the user. One of the aims of
control laws is to ensure repeatability in terms of position accuracy during tracking and static stage. Two kinds
of control laws have been developed, one in SISO context (control of loas mass position), the second in MIMO

14
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one (control of load mass position and chamber P pressure) . The chattering effect has been decreased in SISO
case with a real third order sliding mode controller of position with respect to classical sliding mode control [4].
This improvement is obtained without performances loss, which was not the case with first order sliding mode
control when boundary layer is used [30]. However, the energy used by this controller can be reduced by
controlling both load mass position and chamber P pressure. The results in MIMO context allow to successfully
control the position by using less energy, but need to be improved in order to decrease the chattering due to
the 1-order sliding mode control of pressure. Then, two research axes are currently in perspective: the first one
consists in designing other control strategies in order to check their robustness, as backstepping [31]; a second
one concerns observers synthesis which allows to decrease the signal measurement noise (which is injected in
controller) [33].
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