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Abstract—This paper addresses the trajectory tracking prob-
lem for a wheeled mobile robot (WMR), considering the pres-
ence of sliding effects that violate the nonholonomic constraints.
Using the singular perturbation approach, the unicycle robot
is modelled as a dynamic system which is referenced to the
trajectory to be tracked. Indeed, due to the transgression of
the nonholonomic constraints, the dynamic model becomes
time varying and highly non linear which impose the use
of a robust stabilizing control. For this purpose, we propose
a solution based on a second order sliding mode control,
ensuring the asymptotic convergence of the unicycle about the
reference trajectory. Simulation results are reported showing
the efficiency of the proposed control with respect to the non
ideal constraints and to the nonlinearities.

I. INTRODUCTION
Most of research works addressing the trajectory tracking

problem are based on WMR that satisfy the ideal nonholo-
nomic constraints during the motion, namely the pure rolling
and the non slipping condition and this, even in presence of
disturbances or parameter variations [1], [12]. However, in
practical situations, owing to the sliding of the wheels, the
ideal constraints are never strictly satisfied. So various con-
trol approaches that perform well in the presence of sliding
effects have been developed. In [3], a singular perturbation
formulation is derived, representing as fast dynamics the
slipping effects, and leads to robustness results for linearizing
feedback laws ensuring trajectory tracking in presence of
sufficiently small sliding effects. Using the slow manifold
method [10], a new control law achieving convergent output
tracking for robots not satisfying kinematic constraints is
derived. A time varying stabilizing control law based on the
linear quadratic theory is proposed in [8]. This feedback
control law ensures the asymptotic convergence of error
dynamics of the unicycle but only under some conditions on
the reference trajectory (accelerations should be sufficiently
small). As an approach for robust control, a discrete-time
sliding mode control has been proposed for trajectory track-
ing of a wheeled mobile robot in the presence of skidding
effects [2]. A robust control law against decoupled skidding
and slipping effects has been proposed for solving a velocity
tracking problem [4].
In this paper, the robust trajectory tracking problem for

a dynamic wheeled mobile robot in the presence of sliding
effects is solved by means of a higher order sliding mode
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control law. Using the singular perturbation approach [3],
the dynamic tracking error model of the unicycle type
robot is derived. Then, a second order sliding mode control
law is used. The proposed control law is based on two
nonlinear sliding manifolds ensuring the asymptotic tracking
of the output variables in spite of the transgression of the
nonholonomic constraints during the motion.
The paper is organized as follow. The problem statement

and the dynamic tracking model of the unicycle are reported
in Section 2. The second order sliding mode control law is
presented in Section 3, while Section 4 shows simulation
results.

II. PROBLEM STATEMENT AND MODEL OF THE UNICYCLE

Let us first consider a wheeled mobile robot whose config-
uration is described by the vector of generalized coordinates
q IR n. In the ideal case, when the nonholonomic con-
straints of pure rolling and non slipping are satisfied along
the motion, the wheeled mobile robot satisfies a set of m
independent velocity constraints of the form:

AT (q)q̇ = 0 (1)

where AT (q) IRm×n is a full-rank matrix.
Let S(q) IR n×(n m) be a full-rank matrix such that

AT (q)S(q) = 0, q IR n. (2)

The constraints are equivalent to the fact that at each instant
the vector q̇ belongs to the space generated by the columns
of S(q). Thus, the kinematic model of the WMR can be
given by:

q̇ = S(q) . (3)

where IR n m is a velocity vector.
However, in the realistic case the constraints are not satis-

fied, due to the various effects such as sliding, deformability
or flexibility of the wheels. So, the interaction forces and
slipping effects have to be modelled. Since the constraints
(1) are not satisfied, q̇ does not belong to the space generated
by the columns of S(q). Thus, the kinematic model can be
expressed as:

q̇ = S(q) +A(q)²µ (4)

where µ IR n×(n m) is the vector reflecting the violation
of the constraints and ² is a small scaling factor, which is
the inverse of the largest stiffness coefficient.
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In this paper, the considered unicycle robot (see Figure
1) is made of two independent fixed driving wheels and
one off-centered wheel. Let q = (x, y, l , r 1, r 2)

T be the
generalized position vector.
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Fig. 1. The unicycle WMR.

x and y are the coordinates of the center gravity of the
robot (point M ), is the orientation of the car with respect
to the x-axis, and 1, 2 are the orientation angles of the two
fixed wheels. l is the length between the two fixed wheels,
and r is the radius of the wheels. d is the distance between
the center of gravity and the middle point of the common
axle of the fixed wheels (point N). The matrix A and S are
given by:

A =

cos( ) sin( ) sin( )
sin( ) cos( ) cos( )
0 1 1
0 1 0
0 0 1

,

and

S =

sin( ) 0
cos( ) 0
0 1
1 1
1 1

.

Note that robots of type ( m, s) with a degree of mobility
m = 2 and a degree of steerability s = 0 present only
three independent constraints, the non skidding constraint
being the same for both driving wheels.
Let vx and vy be the lateral and the longitudinal velocities

of point N (see Figure 1), respectively, and v the angular
velocity of the platform. Let us also denote the following
reference trajectory:

(xr(t), yr(t), r(t), vxr(t), vyr(t), v r(t)) ,

and the tracking error vector:

ex(t)ey(t)e(t)evx(t)evy(t)ev (t)
=

x(t) xr(t)
y(t) yr(t)
(t) r(t)

vx(t) vxr(t)
vy(t) vyr(t)
v (t) v r(t)

The problem addressed in this paper is to find a state-
feedback controller that solves the tracking problem of
the unicycle robot when the nonholonomic constraints are
violated, i.e.:

lim
t

ex(t) = 0, lim
t

ey(t) = 0, lim
t

e(t) = 0
In [8], the authors derived a partially linearized dynamical
model based on a singular perturbation formalism for the
unicycle robot when slipping effects are considered:

dex
dt
= p1(t)ey + p2(t,e)e+ evx + ey d

l
ev

dey
dt
= p1(t)ex+ p3(t,e)e+ evy ex

l
ev

l d
e
dt
= ev

devx
dt
= 2Gx

²mv
vx +

vyv

l
devxr
dt

d2evy
dt2

= ew1
d2ev
dt2

= ew2
(5)

where

v =

q
ẋ2 + y2 + l2 ˙

2

p1(t,e) = v r

l

p2(t,e) = (1 cos(e))e
µ
vxr

d

l
v r

¶
sin(e)e vyr

p3(t,e) = sin(e)e
µ
vxr

d

l
v r

¶
+
(1 cos(e))e vyr

and where ew = [ ew1, ew2]T is an auxiliary control vector
obtained after application of a non stationary linear state
feedback.
Remark 1: It has be shown in [8] that, for solving the

tracking trajectory problem, the reference trajectory must
satisfy a constraint on the lateral velocity vxr, given by the
skidding dynamic equation:

v̇x,r =
2Gx
²mvr

vx,r +
vy,rv ,r

l
, t 0 (6)

where vr =
q
v2x,r + v

2
y,r + v

2
,r, and Gx is the normalized

cornering stiffness coefficient.
The trajectory tracking problem becomes a stabilization

problem which consists in stabilizing system (5) about the
origin. For this, a robust nonlinear control law based on
second order sliding mode is derived.
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III. SECOND ORDER SLIDING MODE CONTROLLER
Sliding mode control laws for nonlinear systems have been

widely studied since they were introduced in [11]. The objec-
tive of this method is, by means of a discontinuous control,
to constrain the system to evolve and stay, after a finite time,
on a sliding manifold where the resulting behavior has some
prescribed dynamics. Sliding mode control exhibits relative
simplicity of design and some robustness properties with
respect to matching perturbations.
Emel’yanov et al. [5] generalized the basic sliding mode

idea to higher order sliding modes (HOSM). They are char-
acterized by a discontinuous control acting on the higher time
derivatives of the sliding constraint (instead of the first time
derivative in classical sliding mode). Preserving the main
advantages of the former approach (robustness properties,
relative simplicity of design), they can reduce the chattering
phenomenon (for the same sliding variable) and guarantee
better convergence accuracy (see [6], [9] for a survey).
Consider a system whose dynamics is given by:

ẋ = f(t, x) + g(t, x)u

where x IR n is the state system, u IR is the control
and f, g are sufficiently smooth functions. The sliding
manifold Sr is defined by the vanishing of a corresponding
sliding variable S : IR + × IR n IR , and its successive time
derivatives up to a certain order

Sr =
n
(t, x) IR + × IR n : S = Ṡ = ..... = S(r 1) = 0

o
.

The resulting behavior is called r-th order ideal sliding mode
with respect to S.
Here, we are interested by the case when the system has

relative degree two with respect to S. Then, the second time
derivative S̈ can be written as:

S̈ = (t, x) + (t, x)u

Assume that there exist positive constants S0, km, KM ,
C0 such that inside the domain |S(t, x)| < S0, the system
satisfies the following relation:

0 < km · | (t, x)| · KM

| (t, x)| < C0

Then, it is then possible to generate different kinds of
algorithms (ideal twisting, sampled twisting, super twisting,
sub-optimal...) such that the system evolve featuring a second
order sliding mode, after a finite time, i.e. the trajectories lie
in the second order sliding set defined by:

S2 =
n
(t, x) IR + × IR n : S = Ṡ = 0

o
.

The design approach of sliding mode control comprises
two steps: the design of a surface in the state space so that
the sliding motion satisfies the designer specifications, and
then the selection of a discontinuous control law so that the
sliding manifold is made (at least locally) attractive to the
system trajectories.

In what follows, a nonlinear sliding manifold is made
attractive by the means of a second order sliding mode
algorithm called the twisting algorithm. Then, the resulting
motion on this manifold is analyzed and it is shown that both
the position and the angular tracking errors of the robot are
asymptotically stabilized in an arbitrarily small neighborhood
of the origin.

A. Design and attractivity of the sliding manifold
Let us define the sliding constraint s = [s1, s2]T as:

s1 = evy + 2ey + p3(t,e)e, (7)

s2 = ev + 1
e l 3

d
ex (8)

where 1, 2, 3 are positive parameters. Note that the
system has a relative degree two with respect to both s1
and s2. The task is to generate a second order sliding mode
on the second order sliding manifold given by the equalities:
s = ṡ = 0. The second time derivatives of s1 and s2 can be
written as:

..
s1 = 1(z, t) + ew1
..
s2 = 2(z, t) + ew2

with

1(z, t) = 2

µ
dp1(t)

dt
ex p1(t)

2ey p1(t)evx¶
2

µ
p1(t)p2(t,e) + p3(t) + 2

d2p3(t)

dt2

¶e
+

µ
2p3(t) + 2

dp3(t)

dt
+ d 2p1(t)

¶ ev
l

+

Ã
2p1(t)p2(t,e)ey p2(t,e) 2

l
e 2

l
evx! ev

l

+ (d y)
2ev2
l2

+

µ
2x̃+ p3(t)

l

¶
dev
dt

+ 2
devy
dt

2(z, t) =
l 3

d

µ
p1(t)

2ex dp1(t)

dt
ey µevy + p2(t)

l
ev ¶¶

+
l 3

d

µ
dp2(t)

dt
+ p1(t)p3(t)

¶e
+

3

d
ev ³2p1(t)x p3(t)e evy´+ 3

dl
exev2

l 3

d

devx
dt

+

µ
1 + l 3

l
3

d
ey¶ dev

dt
.

Assume that the reference velocities (vxr, vyr, v r) and their
first and second time derivatives are bounded and that the
functions i(z, t) are bounded such that

| i(z, t)| · Ki, i = 1, 2

where the Ki are positive constants.
Then, let us apply the following control laws, called the

ideal twisting algorithm:

ew1 = ½ m1 sgn(s1) if s1ṡ1 · 0
M1 sgn(s1) if s1ṡ1 > 0

(9)
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ew2 = ½ m2 sgn(s2) if s2ṡ2 · 0
M2 sgn(s2) if s2ṡ2 > 0

(10)

where mi , Mi are positive constants that satisfy, for i =
1, 2, the following conditions:

0 < mi
< Mi

,

mi
> Ki,

Mi
> mi + 2Ki.

The control laws (9), (10) ensure a finite time convergence
of the trajectories onto the sliding manifold {s = ṡ = 0}. In
particular, this implies that:

evy = p3(t,e)e 2ey (11)

ev = 1
e+ l 3

d
ex (12)

B. Asymptotic stability of the sliding motion

In order to show that, once in sliding mode, the posture
errors of the robot are vanishing asymptotically, let us
introduce the following candidate Lyapunov function:

V =
1

2

³ex2 + ey2 + le2´ .
The time derivative of V along the trajectories of the system
is given by:

dV

dt
= p2(t,e)exe+ exevx d

l
exev + p3(t,e)eye+ eyevy + eev .

(13)

Replacing the expressions (11) and (12) of evy and ev in (13),
one gets:

dV

dt
= 3ex2 2ey2 1

e2
+exµevx +µp2(t,e) + d 1

l
+
l 3

d

¶e¶ .
As p2(t,e) is bounded for all e, one can write:¯̄̄̄µ

p2(t,e) + d 1

l
+
l 3

d

¶¯̄̄̄
· 3

where 3 is a positive constant.
Let us define = min

i=1,3
( i) and suppose that

kevxk · 1 + 2 kXk ,

where 1, 2 are positive constants and X =h ex ey e iT .
Then one can write:
dV

dt
· kXk2 + kXk2

µ
1

kXk
+ 2 + 3

¶
.

Taking kXk 2 , this implies that

dV

dt
· kXk2 + kXk2

µ
2 1

²
+ 2 + 3

¶
.

Define the ball B²/2 =
©
X : kXk · ²

2

ª
. It results that

outside the ball B²/2, one has

dV

dt
· e kXk2 = 2eV

with e = µ
2 1

²
+ 2 + 3

¶
.

Thus dV
dt
will be negative definite if the the parameter

is chosen as:

>

µ
2 1

²
+ 2 + 3

¶
.

The solution of the system is given by

kX(t)k · kX(0)k exp
³ et´

and there exists a finite time t1 such that t > t1 : X(t)
B . Thus, ex, ey, e are stabilized in an arbitrarily small
neighborhood of the origin.

IV. SIMULATION RESULTS
The unicycle WMR is described by the dynamical model

(5), with the following values for the physical parameters:

l = 1m

d = 0.2m

r = 0.35m

² = 10 4

In order to illustrate the effectiveness of the proposed control
law, the unicycle was required to track two kinds of reference
trajectories:
• a simple path which consists of a straight-line:

vyr(t) = 1m.s
1, v r(t) = 0rd.s

1, t 0

• a circular path with :

vyr(t) = 1m.s
1, v r(t) = 0.1rd.s

1, t 0.

The speed vxr is given by equation (6) with vxr(0) =
0 m.s 1. In both cases, the initial position and velocity
conditions are:

x(0) = 0.92m, y(0) = 0.4m, (0) = /8rd,

vy(0) = 2m.s 1, vx(0) = 0m.s
1.

The sampling time te is set to be 0.01s and the control gains
are

1 = 1, 2 = 0.35, 3 = 0.6,

m1 = m2 = 1, M1 = 16, M2 = 17.

Simulated tracking responses of the unicycle for sliding
mode control are given in the base frame by Figure 2 and
3. The first line of both of them gives the position and
orientation error time plot (a). The second line provides the
lateral and the longitudinal velocity error time, plot (b), i.e.
the violation of the non skidding and the non pure rolling
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constraints. The input time response is given plot (c) and
plot (d) shows the behavior of the WMR in the phase plane
(x, y).
It can be seen that, although there were forward and

backward fluctuations, all the position and velocity posture
converged to the desired trajectories. Figure 2 and 3 show
that the controller performance is satisfactory for tracking
errors but exhibits a chattering in control inputs. To reduce
the chattering, it is needed to use a third order sliding mode
controller since the relative degree of the system is equal to
2 with respect to the chosen manifold.

0 5 10 15 20
-1

-0.5

0

0.5

t(s)

x(
m

)

0 5 10 15 20
0

0.5

1

t(s)

y(
m

)

0 5 10 15 20
-1

-0.5

0

0.5

t(s)

te
ta

(r
d)

0 5 10 15 20
-0.05

0

0.05

t(s)

vx
(m

/s
)

0 5 10 15 20
-0.5

0

0.5

1

t(s)

vy
(m

/s
)

0 5 10 15 20
-1

0

1

t(s)

vt
et

a(
rd

/s
)

0 5 10 15 20
-20

0

20

t(s)

w
1(

N
.m

)

0 5 10 15 20
-20

0

20

t(s)

w
2(

N
.m

)

-1 -0.5 0 0.5
0

10

20

x(m)

y(
m

)

 (a)

(b) 

(c) 

(d) 

(a) Position and orientation errors,  (b) Constraints violation : velocity errors.
(c) Control inputs,  (d) Position phase.                                          

Fig. 2. Tracking of a straight trajectory.
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Fig. 3. Tracking of a circular trajectory.

V. CONCLUSION
The trajectory tracking problem for the dynamical model

of a unicycle-type robot in presence of sliding effects has
been solved using a second order sliding mode control. The
dynamic tracking error model of the unicycle is derived
from the singular perturbation approach and the proposed
control policy is based on two nonlinear sliding surfaces.
The asymptotic vanishing of both lateral and longitudinal
error dynamics has been theoretically proved. However due
to the nonlinearities, those errors are only stabilized in
an arbitrarily small neighborhood of the origin. Simulation
results are reported, showing the robustness of the proposed
control law against nonlinearities and sliding effects. It will
be interesting to extend this approach to car-like mobile
robots. Further research aims at developing rth order sliding
mode control schemes with r > 2, for instance, the third
order sliding mode control dealing with robust practical
tracking of wheeled mobile robots that are not satisfying
the nonholonomic constraints.
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