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Abstract

The paper describes a scheme for detecting vehicles in
images. The proposed method approximately models
the unknown distribution of the images of vehicles by
learning higher order statistics (HOS) information of
the `vehicle class' from sample images. Given a test
image, statistical information about the background is
learnt `on the y'. An HOS-based decision measure
then classi�es test patterns as vehicles or otherwise.
When tested on real images of aerial views of vehicular
activity, the method gives good results even on compli-
cated scenes. It does not require any a priori informa-
tion about the site. However, it is amenable to aug-
mentation with contextual information. The method
can serve as an important step towards building an au-
tomated roadway monitoring system.

1. Introduction

Detection of vehicles in images represents an impor-
tant step towards achieving automated roadway mon-
itoring capabilities. It can also be used for monitoring
activities in parking lots. The challenge lies in being
able to reliably and quickly detect multiple small ob-
jects of interest against a cluttered background which
usually consists of trees and buildings. In recent works,
the concept of site-model-based image exploitation has
been used for the detection of prespeci�ed vehicles in
designated areas as well as the detection of global ve-
hicle con�gurations in aerial imagery [1, 2]. The ap-
proach consists of maintaining a geometric functional
model of the site of interest. Before an acquired image
can be processed, it needs to be registered with respect
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to the site. In [3], an attentional mechanism based on
the characterization and analysis of spectral signatures
using context information is described. Moon et al.
[4] use a simple geometric edge model in conjunction
with contextual information for detecting vehicles from
aerial images of parking areas. However, the method
is sensitive to low illumination and/or acquisition an-
gles. There is an increasing interest in the vision com-
munity to detect and track vehicles from video data.
These approaches usually extract foreground objects
from the background using frame di�erencing or back-
ground subtraction. The foreground objects are then
classi�ed as vehicles or otherwise using some matching
criterion such as the Hausdor� measure [5] or trained
neural networks [6, 7]. Although the work described in
this paper deals with static images, it can be extended
to video data.

The vehicle detection scheme presented in this pa-
per uses higher order statistics (HOS) of the images
of vehicles to get a better approximation to their un-
known distribution. Training data samples of vehicles
are �rst clustered and the statistical parameters cor-
responding to each cluster are estimated. Clustering
is based on an HOS-based decision measure which is
obtained by deriving a series expansion for the mul-
tivariate probability density function in terms of the
Gaussian function and the Hermite polynomial. Given
a test image, the background information is learnt `on
the y'. Detection is then performed by searching the
test image for patches of vehicles at all points in the
image and across di�erent scales. A vector of di�erence
measurements of the test pattern with respect to each
of the clusters is computed using the HOS-based close-
ness measure. A simple thresholding scheme then de-
termines whether the test pattern belongs to the class
of vehicles or not. The HOS-based measure has good
discriminating capability and the results are quite en-
couraging. No pre-processing operations are carried
out on the vehicle patterns.



2. HOS-Based Decision Measure

In this section, we derive a series expansion for
a multivariate probability density function (p.d.f) in
terms of the Gaussian function and the Hermite poly-
nomial. An HOS-based decision measure is then de-
rived from this expansion.

Let the random vector X = [X1 X2 : : :XN ]
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Expanding this equation in Taylor series, we obtain
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and Iqnqm = Iqn for n = m, where Oqnqm is the zero
matrix with qn rows and qm columns while Iqn is the
identity matrix of dimension qn. The vector Hn(x) is
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and Hm(x) are given by qn and qm, respectively. By
equating the coe�cients of t and s on both sides, we
obtain the important orthogonality relation
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Let Y = R�
1

2 (X � �) and y = R�
1

2 (x � �). If X has
mean � and covariance R, then using the above or-
thogonality relation, the multivariate probability den-
sity function f(x) can be written as

f(x) = N (�;R)
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We de�ne the HOS-based closeness measure as
� log f(x). It is interesting to note here that when
f(x) is Gaussian, the HOS-based decision measure
neatly reduces to the normalizedMahalanobis distance.

3. Vehicle Detection

In this section, we propose an HOS-based vehicle
detection scheme that �nds vehicles by searching an
image for square patches of di�erent views of the vehi-
cle at all points of the image and across di�erent scales.

We use a statistical distribution-based model for de-
tection. It is to be expected that the joint density
function for the class of vehicles is unlikely to be well-
modeled by a strict/simple Gaussian �t N (�;R). Since
only a �nite number of moments would be computable
in practice, the unknown p.d.f. is approximated up to
its mth order joint moment using (2) as
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higher order statistics are used to get a better approx-
imation to f(x). The corresponding HOS-based �nite
order decision measure is given by
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3.1. Clustering using HOS

We model the distribution of vehicles by �tting the
data samples of vehicles with multi-dimensional clus-
ters. The idea of using multi-dimensional clusters to
model the p.d.f may be traced back to the works in
[8, 9]. Traditional k-means clustering algorithms based
on the Euclidean or the Mahalanobis distances [10, 11]
work satisfactorily under Gaussian assumptions. How-
ever, if the actual distribution of the data is non-
Gaussian, then traditional k-means may fail to yield



satisfactory results. Hence, we propose a clustering
algorithm that uses higher order (> 2) statistics for
improved clustering. The closeness measure that we
use for clustering is given by (4).

The Clustering Algorithm

1. Obtain k initial pattern centers from the image
database of vehicles. Divide the data set into k

clusters by assigning each data sample to the near-
est pattern center in Euclidean space.

2. Initialize the joint moments (second and onwards
up to order m) of all k clusters.

3. Recompute pattern centers to be the centroids of
the current data partitions.

4. Using the current set of k pattern centers and their
higher order moments, recompute data partitions
by re-assigning each data sample to the nearest
cluster using the HOS-based decision measure de-
�ned in (4). If the data partitions remain un-
changed or if the maximum number of inner-loop
(i.e steps 3 and 4) iterations have been exceeded,
proceed to step 5. Otherwise, return to step 3.

5. Re-compute the moments (second and onwards up
to order m) of all k clusters from their respective
data partitions.

6. Using the current set of k pattern centers and their
cluster moments, recompute data partitions by re-
assigning each data sample to the nearest cluster
using the HOS-based measure. If the data parti-
tions remain unchanged or if the maximum num-
ber of outer loop (i.e steps 3 to 6) iterations have
been exceeded, proceed to step 7. Otherwise, re-
turn to step 3.

7. Return the current set of k pattern centers and
their joint moments (up to order m), for each clus-
ter.

It was found, after some experimentation, that six clus-
ters were adequate for our purpose.

3.2. Classification

We describe two methods for classifying vehicles.
Both the methods use the HOS-based decision mea-
sure for classi�cation. However, the �rst method does
not use the background information in the test image
while the second method incorporates dynamic back-
ground learning while testing. The two methods are
compared to demonstrate the advantages of learning
the background scene. As would be shown, the sec-
ond method yields better overall detection rate while
simultaneously reducing the number of false matches.
Method 1: (No Background Learning)
In this method, given a test image, vehicle detection is
performed by searching the image for square patches

of vehicles at all points in the image and across di�er-
ent scales. A vector of di�erence measurements of the
test pattern with respect to each of the vehicle clusters
is computed using the HOS-based closeness measure.
The minimum di�erence value is then determined and
simple thresholding is used to decide whether the test
pattern belongs to the class of vehicles or not.
Method 2: (Dynamic Background Learning)
The background information can be used to improve
the performance of the vehicle detector algorithm. This
can be done by �rst learning the background dynami-
cally as follows. Initially, the test image is scanned at
its highest resolution for square patches that are not
vehicles. As non-vehicles usually far outnumber the
vehicles in a given test image, we use a loose threshold
to classify non-vehicles based on the already available
statistical knowledge of the vehicles. Since the back-
ground usually constitutes a major portion of the test
image, one can obtain a su�cient number of samples
that are not vehicles. The non-vehicle patterns are
next distributed into six clusters using the HOS-based
closeness measure and the statistical parameters corre-
sponding to each of the six clusters are estimated.

Finally, the test image is again searched for square
patches of vehicles but now at all points in the image
and across di�erent scales. A vector of di�erence mea-
surements of the test pattern is computed with respect
to each cluster (six corresponding to vehicles and six
corresponding to the background) using the HOS-based
closeness measure. If the minimumdi�erence value cor-
responds to that of a vehicle cluster and is less than a
speci�ed threshold, the test pattern is declared as a
vehicle, else not. The above modi�ed condition helps
to reduce the false patterns considerably. Knowledge
about the background allows us to relax the threshold
which in turn leads to an improvement in the vehicle
detection rate while simultaneously keeping down the
number of false matches. It must be noted that the
above condition could lead to a few misses when some
of the vehicles look quite like the background.

4. Experimental Results

We present results on the performance of the pro-
posed HOS-based vehicle detection systems with and
without background learning. The training set con-
sisted of about 500 grey-scale patterns of vehicles (cars
here), each of dimension 16� 16 pixels only. The meth-
ods were then tested on real images that were aerial
views of vehicular activity on roadways captured with
a stationary camera. The training set was distinct from
the test set. As a compromise between accuracy of rep-
resentation and computational complexity, we choose



m = 3 (in (3) and (4)) for our experiments.
Figures 1 and 2 show the output results correspond-

ing to these methods for some test images. Multiple
boxes represent detection at di�erent scales. For com-
putational speedup, test patterns were evaluated ev-
ery fourth pixel along the rows as well as the columns.
Hence, the boxes are sometimes not exactly centered
about the target. Although the �gures are self-
explanatory, for the purpose of comparison, a quanti-
tative breakdown of the performance of the methods is
also tabulated. Considering the complexity of the prob-
lem which lies in detecting very small objects against
a cluttered background, we note that both the meth-
ods are able to detect vehicles reasonably well in all
the images. Even those with non-frontal views are de-
tected. However, there are some misses; these include
vehicles that were smaller than the chosen window size
and hence could not be reliably detected. For the calcu-
lations in Table 1, vehicles that were much smaller than
the training image size set were not taken into consid-
eration. We note that the average detection rate for

System Vehicles Detected False Alarms

Method 1 90 56 40
Method 2 90 66 13

Table 1. Performance comparison.

Method 1 is about 62%. However, the method su�ers
from quite a number of false alarms. This is due to the
fact that it completely ignores information about the
background scene. On the other hand, the scheme de-
scribed in Method 2 which incorporates dynamic back-
ground learning clearly outperforms Method 1. It has
a higher average detection rate (about 73%) and only
one-third of the false alarms as compared to Method 1.
Clearly, dynamic background learning enhances perfor-
mance signi�cantly.

5. Conclusions

We have described a scheme for vehicle detection
against a cluttered background. The proposed method
(Method 2 in the paper) uses higher order statistics
of data samples of vehicles to get a better approxima-
tion to the distribution of the image patterns of ve-
hicles. The background is learnt dynamically while
testing. An HOS-based decision measure is used for
classi�cation. The scheme gives good results, even on
fairly complicated scenes. The method can also detect
non-frontal views. It may be possible to improve the

performance further by using contextual information.
We are currently working on extending this scheme

to video. The vehicle detection rate is expected to im-
prove signi�cantly due to the motion information that
is available in video data.
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A: 1/1/1 B: 5/8/1 C: 3/5/1

D: 11/13/5 E: 8/15/5 F: 4/9/5

G: 6/10/3 H: 4/4/5 I: 5/8/6

J: 4/8/5 K: 5/9/3

Figure 1. Results of the HOS-based vehicle detection scheme without any background learning.
Multiple boxes represent detection at different scales. Below each image, three values are given:
they correspond to the number of vehicles detected, the number of vehicles present in the image,
and the number of false alarms, respectively. Vehicles that are much smaller than the training image
are ignored in the calculations.



A: 1/1/0 B: 6/8/1 C: 3/5/1

D: 10/13/1 E: 12/15/0 F: 5/9/2

G: 8/10/0 H: 3/4/2 I: 6/8/5

J: 5/8/0 K: 7/9/1

Figure 2. Results of the HOS-based vehicle detection scheme with dynamic background learning.
Multiple boxes represent detection at different scales. Below each image, three values are given:
they correspond to the number of vehicles detected, the number of vehicles present in the image,
and the number of false matches, respectively. Vehicles that are much smaller than the training
image are ignored in the calculations.


