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Abstract

Using an iterative construction of the first order intertwining technique, we find k-
parametric families of exactly solvable anharmonic oscillators whose spectra consist of
a part isospectral to the oscillator plus k additional levels at arbitrary positions below
E0 = 1

2
. It is seen that the ‘natural’ ladder operators for these systems give place to

polynomial non-linear algebras, and it is shown that these algebras can be linearized.
The coherent states construction is performed in the non-linear and linearized cases.
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Résumé

Nous trouvons, grâce à une construction itérative utilisant la technique d’intertwining
du premier ordre, des familles k-paramétriques d’oscillateurs anharmoniques exactement
résolubles dont le spectre consiste en une partie isospectrale à l’oscillateur harmonique et
k niveaux additionnels à des positions arbitraires en dessous de E0 = 1

2
. On montre aussi

que les opérateurs d’échelles naturels de ces systèmes donnent lieu à des algèbres poly-
nômiales non linéaires qui peuvent être linéarisées. La construction des états cohérents
est réalisée dans les cas non linéaires et linéarisés.





1 Introduction

The generation of exactly solvable potentials using the well known factorization method, supersym-
metric quantum mechanics (SUSY QM) and related subjects is becoming a paradigm in Schrödinger
quantum mechanics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Nowadays
it is realized that the majority of these procedures arise from a general setting in which a first
order differential operator intertwines two Hamiltonians [5, 6, 21, 22, 23]. This so called first order
intertwining technique (FOIT) suggests further generalizations, the most obvious one involving a
k-th order differential intertwining operator. By expressing this operator as a sum of k + 1 terms
fi(x)d

i/dxi, i = 0, . . . , k, introducing it in the intertwining relationship and solving the resulting sys-
tem of equations for the fi(x)’s, assuming that one of the Hamiltonians is solvable, a new solvable
Hamiltonian and its eigenstates are generated [24, 25, 26].

There is an alternative to deal with the above problem: instead of looking for directly the k-th
order operator one can make the construction by iterating k first order transformations. This last
procedure can be implemented either by means of the well known determinant formulas (see e.g. [25]
and references therein) or by the simple iterative construction that we have recently introduced [23].
From the side of explicit examples, it has been shown that our procedure works very well to generate
k-parametric families of potentials almost isospectral to the harmonic oscillator, the radial hydrogen-
like potentials, and in the free particle case [20, 23, 27].

A parallel development concerning coherent states (CS) for potentials derived by means of the
intertwining technique is on the way [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Thus, Fukui and
Aizawa were able to derive those states for the Infeld and Hull potentials [28], i.e., for particular
cases of the general families of potentials which can be derived by means of the FOIT. The first
work involving CS for the simplest non-trivial family of potentials strictly isospectral to the oscillator
(Abraham-Moses-Mielnik (AMM) [2, 3]) was done by us in 1994 [29]. Later on various developments
going deep inside the subject have appeared [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Thus, Bagrov and
Samsonov constructed the CS for a class of anharmonic oscillators with quasi-equidistant spectra
composed by a part isospectral to the oscillator plus one level below the first excited state at a
multiple of the spacing between the oscillator levels [34]. Almost simultaneously Aizawa and Sato
have found some CS for the most general family of potentials almost isospectral to the oscillator
that one is able to derive using the FOIT [37]. Those potentials arise if a new level, at any place
below the ground state energy of the oscillator, is used for the generation process [6, 18, 23].

Of particular interest for this work is the realization that the ladder operator used to derive our
CS in [29] and its adjoint give place to the so called non-linear algebras [18, 37, 40, 41, 42]. Notice
that the non-linear algebra generated by the ‘natural’ ladder operators for the AMM potentials can
be partially linearized [30]. This means that through appropriate modifications on those ladder
operators one can reconstruct the Heisenberg-Weyl algebra restricted to the subspace spanned by
the eigenstates intertwined directly to the oscillator eigenstates (see also [38]).

The goals of this paper are as diverse as the subjects mentioned above. In the first place, we
want to illustrate how the iteration of k FOIT’s works in order to generate k-parametric families of
anharmonic oscillators almost isospectral to the oscillator (see section 2). We will follow [23] with
slight modifications in notation in order to guarantee the most general results. In section 3 we will
show that the ‘natural’ ladder operators for the k-th Hamiltonian, introduced by Mielnik in 1984
for k = 1 [3], lead to polynomial non-linear algebras of order 2k, as Dubov, Eleonsky and Kulagin
realized for the first time for k = 1 [40]. In section 4 we will discuss the linearization process for
arbitrary k and its relationship with the distorted Heisenberg algebra introduced in [30]. In section
5 we will construct two sets of CS as eigenstates of the non-linear and linearized ‘annihilation’
operators with a discussion about advantages and disadvantages of both sets. We will finish in
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section 6 with our conclusions and some comments on the literature.

2 k-th Order Intertwining Technique (k-SUSY)

Let us consider two Hamiltonians

H0 = −1

2

d2

dx2
+ V0(x), H1 = −1

2

d2

dx2
+ V1(x), (2.1)

and suppose that there exist a first order differential operator A†
1 intertwining them

H1A
†
1 = A†

1H0, (2.2)

where

A†
1 =

1√
2

(
− d

dx
+ α1(x, ε)

)
. (2.3)

Thus, interelations between α1, V0, V1 and a factorization energy ε arise:

α′1(x, ε) + α2
1(x, ε) = 2(V0(x)− ε), (2.4)

V1(x) = V0(x)− α′1(x, ε). (2.5)

Let us notice that (2.4)–(2.5) guarantee that H0 and H1 become factorized:

H0 = A1A
†
1 + ε, H1 = A†

1A1 + ε, (2.6)

where

A1 =
1√
2

(
d

dx
+ α1(x, ε)

)
(2.7)

is the operator adjoint to A†
1.

Suppose now that V0(x) is a known solvable potential with eigenfunctions ψ
(0)
n (x) and eigenvalues

En, n = 0, 1, 2, . . . Furthermore, let us assume that we have found a solution α1(x, ε1) to the Riccati
equation (2.4) for a given value of the factorization energy ε = ε1 < E0, where E0 is the ground state
energy of H0. Thus, the V1(x) of (2.5) is a completely specified solvable potential with normalized
eigenfunctions:

ψ(1)
ε1

(x) ∝ exp

(
−
∫ x

0

α1(y, ε1)dy

)
, ψ(1)

n (x) =
A†

1ψ
(0)
n (x)√

En − ε1
, (2.8)

and eigenvalues {ε1, En, n = 0, 1, 2, . . .}. Let us remark that the restriction above, ε1 < E0, is

imposed in order to avoid the non-normalizability of the ψ
(1)
n (x) of Eq. (2.8). This is also related

with the possibility of avoiding the arising of singularities in α1(x, ε1) which would enter into the
new potential V1(x) of (2.5) and the eigenfunctions (2.8). For a detailed discussion of this point
the reader can seek, e.g., the work of Sukumar [6]. By simplicity, here and throughout the paper
we shall assume that the ground state energy of any new Hamiltonian generated by means of the
FOIT is below the ground state energy of the initial Hamiltonian. We shall suppose as well that
the arbitrary parameter of a general solution of an equation of the kind (2.4) for a fixed ε has been
successfully adjusted in order to avoid the singularities in the α’s.

We would like to iterate the previous technique, taking now V1(x) as the known solvable potential
and trying to generate a new one V2(x) using an intertwining operatorA†

2 and a different factorization
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energy ε2, with ε2 < ε1. The corresponding intertwining relationship, H2A
†
2 = A†

2H1, leads to
equations similar to (2.4)–(2.5):

α′2(x, ε2) + α2
2(x, ε2) = 2(V1(x)− ε2), (2.9)

V2(x) = V1(x)− α′2(x, ε2). (2.10)

It is the matter of a substitution to show that we have a solution to (2.9) in form of a finite
difference formula if we know the solutions α1(x, ε1), α1(x, ε2) to the Riccati equation (2.4) for two
factorization energies ε1, ε2 and V1(x) = V0(x)− α′1(x, ε1) (see [23]):

α2(x, ε2) = −α1(x, ε1)− 2
(ε1 − ε2)

α1(x, ε1)− α1(x, ε2)
. (2.11)

Notice that a similar formula has been used by Adler in order to discuss the Backlund transforma-
tions of the Painlevé equations [43]. The eigenfunctions associated to V2(x) are given by:

ψ(2)
ε2

(x) ∝ exp

(
−
∫ x

0

α2(y, ε2)dy

)
, ψ(2)

ε1
(x) =

A†
2ψ

(1)
ε1 (x)√

ε1 − ε2
, (2.12)

ψ(2)
n (x) =

A†
2ψ

(1)
n (x)√

En − ε2
=

A†
2A

†
1ψ

(0)
n (x)√

(En − ε1)(En − ε2)
. (2.13)

The corresponding eigenvalues are {ε2, ε1, En, n = 0, 1, 2, . . .}.
It is clear that we can continue the iteration of the FOIT as many times as solutions for different

values εi to the initial Riccati equation (2.4) we can get. If we know k of these, {α1(x, εi), i =
1, 2, . . . , k, εi+1 < εi}, we can iterate the process k times, and a new solvable Hamiltonian Hk will
be gotten whose potential reads:

Vk(x) = Vk−1(x)− α′k(x, εk) = V0(x)−
k∑

i=1

α′i(x, εi), (2.14)

where αi(x, εi) is given by a recursive finite difference formula generalizing (2.11):

αi+1(x, εi+1) = −αi(x, εi)− 2
(εi − εi+1)

αi(x, εi)− αi(x, εi+1)
, i = 1, . . . , k − 1. (2.15)

The eigenfunctions are given by:

ψ(k)
εk

(x) ∝ exp

(
−
∫ x

0

αk(y, εk)dy

)
, (2.16)

ψ(k)
εk−1

(x) =
A†

kψ
(k−1)
εk−1 (x)√

εk−1 − εk
, (2.17)

...

ψ(k)
ε1

(x) =
A†

k . . . A
†
2ψ

(1)
ε1 (x)√

(ε1 − ε2) . . . (ε1 − εk)
, (2.18)

ψ(k)
n (x) =

A†
k . . . A

†
1ψ

(0)
n (x)√

(En − ε1) . . . (En − εk)
. (2.19)
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The corresponding eigenvalues are {εi, En, i = k, . . . , 1, n = 0, 1, 2, . . .}.
In order to have the scheme complete, let us remember how the Hi’s are intertwined:

HiA
†
i = A†

iHi−1, i = 1, . . . , k. (2.20)

Thus, departing from H0 we have generated a chain of factorized Hamiltonians:

Hi = A†
iAi + εi = Ai+1A

†
i+1 + εi+1, i = 1, . . . , k − 1, (2.21)

Hk = A†
kAk + εk, (2.22)

where the end potential Vk(x) can be recursively determined by means of (2.14)–(2.15) if we will be
able to find k solutions α1(x, εi), i = 1, . . . , k to the Riccati equation (2.4), which means to have k
non-equivalent factorizations of the initial Hamiltonian H0:

H0 =
1

2

(
d

dx
+ α1(x, εi)

)(
− d

dx
+ α1(x, εi)

)
+ εi, i = 1, . . . , k. (2.23)

Let us notice that there is a k-th order differential operator, B†
k = A†

k . . . A
†
1, intertwining the

initial H0 and final Hamiltonians Hk:

HkB
†
k = B†

kH0. (2.24)

From equation (2.19) we get:

B†
kψ

(0)
n (x) =

√
(En − ε1) . . . (En − εk)ψ

(k)
n (x), (2.25)

while from the adjoint to (2.24) it turns out that:

Bkψ
(k)
n (x) =

√
(En − ε1) . . . (En − εk)ψ

(0)
n (x). (2.26)

These equations are the key towards the k-th order supersymmetric quantum mechanics, k-SUSY
by short [24, 25, 26]. In this formalism, a representation of the standard SUSY algebra [7] with two
generators

[Qi, Hss] = 0, {Qi, Qj} = δijHss, i, j = 1, 2, (2.27)

is constructed with the aid of Bk and B†
k:

Q =

(
0 0
Bk 0

)
, Q† =

(
0 B†

k

0 0

)
, (2.28)

Hss = {Q,Q†} =

(
B†

kBk 0

0 BkB
†
k

)
=

(
H+ 0
0 H−

)
, (2.29)

where Q1 = (Q† +Q)/
√

2, Q2 = (Q† −Q)/i
√

2. The SUSY quasi-Hamiltonian Hss is a k-th order
polynomial

Hss = (Hp
s − ε1) . . . (H

p
s − εk), (2.30)

of the physical Hamiltonian Hp
s involving the k-intertwined Hamiltonians H0 and Hk:

Hp
s =

(
Hk 0
0 H0

)
. (2.31)
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If k = 1 we will get the standard representation of the SUSY algebra (2.27), closely related with the
factorization method [5, 6, 7, 8, 9, 10, 11, 12, 13]. If k = 2 we will get the quadratic superalgebra,
or SUSUSY QM [26], which has proved useful to show that the Witten index criterion not always
characterizes spontaneous SUSY breaking [24].

The previous technique can be applied to the harmonic oscillator potential V0(x) = x2/2 if we will
find solutions to equation (2.4) for some values of ε < 1/2. The first work for which a general solution
to (2.4) was successfully used in order to generate a 1-parametric family of potentials isospectral
to the oscillator was done by Mielnik for ε1 = −1/2 [3]. That family had been derived previously
by Abraham and Moses using the techniques of inverse scattering [2]. That is the reason because
we have been referring to those potentials as the Abraham-Moses-Mielnik (AMM) family [2, 3].
Later on, Sukumar was able to find the most general solution to (2.4) with V0(x) = x2/2 and
an arbitrary ε < 1/2 [6], and he generated new 1-parametric families of potentials having spectra
{ε, En = n + 1/2, n = 0, 1, 2, . . .}. After that work, rediscoveries of either some particular cases or
the full Sukumar results have been elaborated [18, 23]. Of our special interest is the reformulation
of Sukumar results made by Junker and Roy, who have expressed the most general solution to (2.4)
with V0(x) = x2/2 and an arbitrary ε < 1/2 in terms of confluent hypergeometric functions [18]:

α1(x, ε) = −x+
d

dx

{
ln

[
1F1

(
1− 2ε

4
,
1

2
;x2

)
+ 2ν

Γ(3−2ε
4

)

Γ(1−2ε
4

)
x 1F1

(
3− 2ε

4
,
3

2
;x2

)]}
= x+

d

dx

{
ln

[
1F1

(
1 + 2ε

4
,
1

2
;−x2

)
+ 2ν

Γ(3−2ε
4

)

Γ(1−2ε
4

)
x 1F1

(
3 + 2ε

4
,
3

2
;−x2

)]}
,

(2.32)

where, in order to avoid singularities in α1(x, ε), the domain of ν ∈ R has to be restricted to |ν| < 1.
Suppose now that we choose k of these general solutions (2.32), associated to k fixed values of

the factorization energies {εi, i = 1, . . . , k, εi+1 < εi} and characterized by the k arbitrary constants
{νi, i = 1, . . . , k}. After the iteration of k FOIT’s we will have generated a k-parametric family of
solvable anharmonic potentials, labeled by the k parameters {νi, i = 1, . . . , k}:

Vk(x) =
x2

2
−

k∑
i=1

α′i(x, εi). (2.33)

The spectrum of the end Hamiltonian Hk, intertwined to the harmonic oscillator Hamiltonian by
means of the operator B†

k, will be {εi, En = n + 1/2, i = k, . . . , 1, n = 0, 1, . . .}, i.e., it consists of
a part isospectral to the oscillator plus k additional levels εi, i = 1, . . . , k below E0 = 1/2.

3 Non Linear Algebra of Hk

We are going to analyze the algebraic structure inherent to the Hamiltonians Hk and their corre-
sponding potentials (2.33). As the spectrum of Hk has a part formed by equally spaced energies, it
emerges the idea of looking for some ladder operators that would connect the eigenstates associated
to those levels. There is a natural construction for a pair of these operators [3, 29, 30], which is
guessed from equation (2.24), its adjoint and the standard intertwining relationship involving the
oscillator Hamiltonian H0 and its creation a† and annihilation operator a:

(H0 − 1)a† = a†H0, (H0 + 1)a = aH0. (3.1)

The construction is composed of three stages (see figure 1): i) first we ‘move’ the eigenvectors |ψk
n〉

of Hk, represented in the previous section by the wavefunctions ψ
(k)
n (x), to the eigenvectors |ψ0

n〉
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Figure 1: Schematic representation of the k-th order intertwining operators Bk, B
†
k and the ladder

operators a, a†, Dk, D
†
k for the Hamiltonians H0 and Hk.

of the oscillator Hamiltonian H0 by means of the intertwining operator Bk. ii) Then, we move up
(|ψ0

n+1〉) or down (|ψ0
n−1〉) on the ladder of H0 by using a† or a respectively, which will cause the

effective ‘motion’ up or down on the ladder of Hk. iii) Finally, we come back to the ladder of Hk

by acting B†
k on |ψ0

n+1〉 or |ψ0
n−1〉. Thus, the ‘natural’ ladder operators for Hk can be chosen:

Dk = B†
kaBk, D†

k = B†
ka

†Bk, k = 0, 1, 2, . . . (3.2)

where, by completeness, we have extended the intertwining relationship (2.24) in order to include
the case with k = 0 by assuming that B†

0 = B0 = I, I is the identity operator. The action of Dk

and D†
k is drawn just onto the points associated to En = n+1/2, n = 0, 1, . . . because the k isolated

eigenstates {|ψk
εi
〉, i = 1, . . . , k} are annihilated by both Dk and D†

k due to the fact that they are
annihilated by Bk.

The ladder operators Dk and D†
k are differential operators of order (2k + 1)-th satisfying:

[Hk, Dk] = −Dk, [Hk, D
†
k] = D†

k. (3.3)

Following the works on the non-linear generalization of the Fock method made by researchers at
the Lukin Institute [40, 41, 42] (see also [44, 45, 46]), it is introduced the Hermitian operator
N(Hk) ≡ D†

kDk generalizing the standard number operator N of the harmonic oscillator. It can be
easily shown that N(Hk) is a polynomial in Hk of (2k + 1)-th order:

N(Hk) ≡ D†
kDk =

(
Hk −

1

2

) k∏
i=1

(Hk − εi − 1) (Hk − εi) , (3.4)

and

DkD
†
k = N(Hk + 1) =

(
Hk +

1

2

) k∏
i=1

(Hk − εi) (Hk − εi + 1) . (3.5)
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Thus, the operators Dk, D
†
k and Hk close a polynomial non-linear algebra or order 2k:

[Dk, D
†
k] = N(Hk + 1)−N(Hk) = Pk(Hk)

k∏
i=1

(Hk − εi), (3.6)

where Pk(x) is a polynomial in x of order k of the form:

Pk(x) =(x+
1

2
)

k∏
i=1

(x− εi + 1)− (x− 1

2
)

k∏
i=1

(x− εi − 1)

=
k∑

j=0

(−1)jxk−j

[ j
2
]∑

l=0

2(k − j + l) + 1

2l + 1

(
k − j + 2l

2l

)∑
εi1i2...ij−2l

(3.7)

and we have used the compact notation

∑
εi1i2...ij =


0 if j < 0

1 if j = 0∑k
i1<...<ij
i1,...,ij=1

εi1 . . . εij if j > 0
(3.8)

By completeness, the anticommutator is written below:

{Dk, D
†
k} = N(Hk + 1) +N(Hk) = Qk(Hk)

k∏
i=1

(Hk − εi) , (3.9)

where

Qk(x) = (x+
1

2
)

k∏
i=1

(x− εi + 1) + (x− 1

2
)

k∏
i=1

(x− εi − 1)

= 2xk+1 − 2

(
k∑

i=1

εi

)
xk +

k−1∑
j=1

(−1)j+1xk−j

[
2
∑

εi1...ij+1
+ (k − j + 1)2

∑
εi1...ij−1

+

[ j+1
2

]∑
l=1

k − j + l + 1

l + 1

(
k − j + 2l + 1

2l + 1

)∑
εi1...ij−2l−1

]

+ (−1)k+1

[ k−1
2

]∑
l=0

∑
εi1...ik−2l−1

. (3.10)

By consistency, when k = 0 we should get the standard Heisenberg-Weyl algebra because D0 = a
and D†

0 = a†. This linear case is indeed recovered from our formulae due to the fact that P0(H0) = I
and Q0(H0) = 2H0, which implies that

[H0, D0] = −D0, [H0, D
†
0] = D†

0, [D0, D
†
0] = P0(H0) = I. (3.11)

The corresponding Fock operator becomes the standard linear expression in terms of the oscillator
Hamiltonian H0:

N(H0) = H0 −
1

2
= N. (3.12)
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On the other hand, when k = 1 and ε1 is arbitrary we recover the expression of Aizawa and Sato
for [D1, D

†
1], i.e., it arises a quadratic algebra [37] (see also [40, 41, 42]):

[D1, D
†
1] = (H1 − ε1)(3H1 − ε1). (3.13)

The Fock operator becomes now cubic in H1:

N(H1) =

(
H1 −

1

2

)
(H1 − ε1) (H1 − ε1 − 1) . (3.14)

If k = 2 we will get a polynomial algebra of order 4:

[D2, D
†
2] = (H2 − ε1)(H2 − ε2)

[
5H2

2 − 3(ε1 + ε2)H2 + ε1ε2 + 1
]
, (3.15)

and a polynomial of order 5-th for N(H2):

N(H2) =

(
H2 −

1

2

)
(H2 − ε1) (H2 − ε2) (H2 − ε1 − 1) (H2 − ε2 − 1) . (3.16)

For general k, it arises a polynomial non-linear algebra of order 2k whose properties are characterized
by the (2k + 1)-th order polynomial N(Hk) of (3.4).

Let us notice that the polynomial algebras (3.3)–(3.6) are particular cases of the W2k+1 algebras
[18, 47, 48, 49, 50], and they have been related to the W1+∞ algebras for k = 1 [37]. As already
mentioned, they represent also concrete realizations of the generalized Fock method introduced at
the beginning of the 90’s [40, 41, 42] (some of these ideas can be found in previous works [44, 45]).
In order to clarify some points, let us mention some facts of that method which will be useful for
our treatment.

Suppose that relations (3.3)–(3.4) involve more general ladder operators E+, E− and a Hamil-
tonian H. If it is assumed that E+ and E− are differential operators of order (2k+ 1)-th, we could
obtain thus potentials whose spectra would consist of at most (2k + 1) superposed ladders because
the generalized number operator would be a polynomial of order (2k + 1)-th:

[H,E+] = E+, [H,E−] = −E−, N(H) = E+E− =
2k+1∏
i=1

(H − ri) , (3.17)

where it is assumed that all the roots {ri, i = 1, . . . , 2k + 1} of N(H) are real. The number and
length of the ladders depends on the properties of the Kernel of E−, i.e., of the solutions to the
(2k + 1)-th order linear differential equation:

E−ψ = 0. (3.18)

Suppose that there exist m square integrable linearly independent solutions of (3.18). Due to the
fact that:

E+E−ψ =
2k+1∏
i=1

(H − ri)ψ = 0, (3.19)

we can choose m square integrable linear combinations of such solutions, ψg
i (x), orthogonal to each

other and which are simultaneously eigenfunctions of H with eigenvalues ri, i = 1, . . . ,m. If there
is no any special values for the other k −m roots ri, i = m+ 1, . . . , k, then the spectrum of H will
consists of m infinite ladders with spacing ∆E = 1, each one of them starting from one of the ri’s,
i = 1, . . . ,m. It could happens, however, that after applying l times the operator E+ onto some of
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the ground states, let us say the j-th one, we would have that (E+)lψg
j 6= 0 but (E+)l+1ψg

j = 0. As

H[(E+)lψg
j ] = (rj + l)ψg

j , we will have:

0 = E−(E+)l+1ψg
j =

2k+1∏
i=1

(H − ri + 1) [(E+)lψg
j ] =

2k+1∏
i=1

(rj + l − ri + 1) [(E+)lψg
j ]. (3.20)

This means that one of the ri’s, i = m + 1, . . . , k has to be of the form ri = rj + l + 1, l ≥ 0. If
this happens, instead of having m infinite ladders we will have just m− 1 infinite and a finite one
of lenght l + 1, which will start from rj and will end in rj + l, l ≥ 0.

By comparing this ideas with our k-SUSY treatment it is clear now why the roots of the poly-
nomial (3.4) are precisely {1/2, εi, εi +1, i = 1, . . . , k}: our k-SUSY Hamiltonians Hk have precisely
k+ 1 ground states associated to the k+ 1 roots (eigenvalues) {1/2, εi, i = 1, . . . , k}. As the ladder
starting of 1/2 is infinite, this does not impose any restriction to the other k roots of the (2k+1)-th
order polynomial (3.4). However, as the ladders starting of εi are finite of lenght equal to 1 (they
end at the initial energy εi), the other k roots have to be precisely of the form εi + 1, i = 1, . . . , k,
as in our polynomial (3.4).

An interesting point concerning the non-linear nature of the polynomial algebras (3.3)–(3.6) in
the standard SUSY case (with k = 1) is that they can be linearized [30]. We shall show next that
the same procedure can be implemented for arbitrary k.

4 Linearization of the Non-linear Algebra of Hk

As pointed out at sections 2 and 3, the k isolated eigenstates |ψk
εi
〉, i = 1, . . . , k ofHk are disconnected

between themselves and of the ones associated to the part of the spectrum isospectral to H0. Hence,
it is natural to perform the linearization on the subspace spanned by {|ψk

n〉, n = 0, 1, 2, . . .}. The
essence of this procedure, introduced in [30] for k = 1, is to modify the ladder operators Dk and
D†

k of (3.2) in order to construct an algebraic structure similar to the Heisenberg-Weyl algebra.

As for the sub-basis {|ψk
n〉, n = 0, 1, . . .} the commutator [Dk, D

†
k] is already diagonal (see equation

(3.6)), we should make a modification that would not change [Hk, Dk] = −Dk and [Hk, D
†
k] = D†

k

but would convert most of the diagonal elements of [Dk, D
†
k] to 1. With this aim, we propose two

new ladder operators DL and D†
L in the form:

DL = B†
kf(N)aBk, D†

L = B†
ka

†f(N)Bk, (4.1)

where N = a†a is the standard number operator of equation (3.12), f(x) is a real function to
be determined, and the subscript L indicates linearization. We ask that [DL, D

†
L] = I on the

subspace spanned by {|ψk
n〉, n = 1, 2, . . .}, which will be denoted H≥1. Notice that we leave open

the possibility that [DL, D
†
L]|ψk

0〉 = c|ψk
0〉, c ∈ R, c 6= 1. Recently, Seshadri et.al. have relaxed

further this possibility for k = 1 by asking that [DL, D
†
L] takes arbitrary independent values on

|ψk
n〉, n = 0, 1, 2, . . . when H1 is isospectral to the oscillator [38]. In this paper we will restrict to

the simplest variant of the linearization, which coincides with the assumptions made initially.
Making use of equations (2.25)-(2.26) and (3.1) it is easy to show that

[DL, D
†
L]|ψk

n〉 = [g(n+ 1)− g(n)]|ψk
n〉, (4.2)

where

g(n) =

[
k∏

i=1

(
n− εi −

1

2

)(
n− εi +

1

2

)]
[f(n− 1)]2 n. (4.3)
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As we are asking that [DL, D
†
L] = I on H≥1, we end up with the following finite difference equation:

g(n+ 1)− g(n) = 1, n = 1, 2, . . . (4.4)

whose general solution is given by:
g(n) = n+ w(n), (4.5)

where w(n) is periodic with period 1, w(n+ 1) = w(n), n = 1, 2, . . . Hence:

f(n− 1) =

√
n+ w(n)

n
∏k

i=1(n− εi − 1
2
)(n− εi + 1

2
)
. (4.6)

As w(n) takes the same value for all n = 1, 2, . . . , it is important just w ≡ w(1). Moreover, as
f(n − 1) should be real ⇒ w ≥ −1. Collecting all this information, we arrive finally to the ladder
operators we were looking for:

DL = B†
k

√
N + 1 + w

(N + 1)
∏k

i=1(N − εi + 1
2
)(N − εi + 3

2
)
aBk, (4.7)

D†
L = B†

ka
†

√
N + 1 + w

(N + 1)
∏k

i=1(N − εi + 1
2
)(N − εi + 3

2
)
Bk. (4.8)

Although apparently more complicated than the Dk and D†
k of the non-linear algebra (see (3.2)),

DL and D†
L act simpler than those operators on the energy eigenstates |ψk

n〉, n = 0, 1, . . . (excepting
the case with k = 0 which is discussed at the end of this section):

DL|ψk
n〉 = (1− δn0)

√
n+ w |ψk

n−1〉, (4.9)

D†
L|ψ

k
n〉 =

√
n+ w + 1 |ψk

n+1〉, (4.10)

[DL, D
†
L]|ψk

n〉 = (1 + wδn0)|ψk
n〉. (4.11)

Contrary to what happens with Dk and D†
k, this action is independent of k, i.e., of the number of

iterations of the FOIT’s needed to go from H0 to Hk. Thus, this kind of linearization gives place to
a universal representation of the algebra characteristic of any solvable Hamiltonian intertwined to
the harmonic oscillator through the iteration of k FOIT’s. As we can see, we have constructed once
again the ‘distorted’ Heisenberg algebra introduced some time ago to linearize the non-linear algebra
of order 2 characteristic of the AMM potentials, where w ≥ −1 is the distortion parameter [30].
Here we have shown that this algebra is also the quasi-linearized version of the non-linear algebras of
order 2k if we restrict ourselves to H≥1 and w is left arbitrary. If we want a ‘complete’ linearization
on H≥0 (the subspace spanned by {|ψk

n〉, n = 0, 1, . . .}), we should take w = 0 in order to get
precisely the Heisenberg-Weyl algebra:

DL|ψk
n〉 =

√
n|ψk

n−1〉, D†
L|ψ

k
n〉 =

√
n+ 1|ψk

n+1〉, [DL, D
†
L]|ψk

n〉 = |ψk
n〉. (4.12)

Let us notice that if w = −1 we will get once again the Heisenberg-Weyl algebra on H≥1, but now
the state |ψk

0〉 will be annihilated by DL and D†
L. In this way we can isolate by hand |ψk

0〉 of the
rest of eigenstates of Hk; this isolation is natural for the other k eigenstates |ψk

εi
〉, i = 1, . . . , k.

The curious case with k = 0 is worth of discussion. The intertwining in this case is trivial:
each eigenstate of the oscillator is mapped into itself without creating any new level because B0 =
B†

0 = I. The quasi-linearization introduced above for w arbitrary can be seen as a distortion of
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the representation of the Heisenberg-Weyl algebra which changes the operators a, a† into DL, D
†
L

by changing the values of the non-null matrix elements of a and a† in the basis |ψ0
n〉 but without

changing the diagonal elements of [a, a†] in the same basis excepting the one associated to |ψ0
0〉,

which becomes equal to w+ 1. This is clear from the explicit expressions of DL and D†
L for k = 0:

DL =

√
N + 1 + w

N + 1
a, D†

L = a†
√
N + 1 + w

N + 1
. (4.13)

Notice once again that when w = 0 we recover the original Heisenberg-Weyl algebra because in this
case DL = a, D†

L = a†. Moreover, when w = −1 we will get a reduced reducible representation
becoming the Heisenberg-Weyl algebra representation on H≥1 and the null representation on the
subspace generated by |ψ0

0〉 because this state is annihilated by DL and D†
L.

5 Coherent States of Hk

The beautiful properties of the coherent states for the harmonic oscillator motivated the interest
in looking for them in other physical situations [51, 52, 53, 54, 55]. It is well known that there
are various definitions, each one of them leading to sets of CS with, in general, different properties.
Concerning the intertwining technique, CS which are eigenstates of certain annihilation operator
for the potentials of the Infeld and Hull classification [1] were derived by Fukui and Aizawa [28]. As
is well known, however, those potentials are particular cases of the general families which can be
generated by means of the intertwining technique. The first set of CS associated to a full family of
potentials generated in this way was derived by ourselves as eigenstates of the annihilation operator
Dk of (3.2) in the case with k = 1 for the AMM family of potentials isospectral to the oscillator [29].
Soon after, the linearization process for the same family of potentials was performed, as presented
in section 4, and the corresponding CS derivation was also elaborated [30]. Since then, a lot of
works have arisen looking for interrelations between CS and quantum groups, pseudodifferential
operators, non-linear algebras, etc [31, 32, 33, 34, 35, 36, 37, 38, 39].

Here, we will look for the CS as eigenstates of the ‘annihilation’ operators Dk and DL of the
previous sections. First, let us determine the CS which are eigenstates of Dk (the non-linear case):

Dk|z〉 = z|z〉, z ∈ C. (5.1)

As usual, we express |z〉 as a linear combination of the subset of eigenstates |ψk
n〉 of Hk associated

to the part of the spectrum isospectral to the oscillator:

|z〉 =
∞∑

n=0

cn|ψk
n〉. (5.2)

After inserting (5.2) in (5.1) we will get a recurrence relationship for the coefficients cn

cn+1 =
z√

(n+ 1)
∏k

i=1(n− εi + 1
2
)(n− εi + 3

2
)
cn, (5.3)

and all of them can be expressed in terms of c0, which is fixed by the normalization condition
〈z|z〉 = 1 and the requirement that c0 ∈ R+. Hence, these CS become:

|z〉 =
∞∑

n=0

√∏k
i=1 Γ(−εi + 1

2
)Γ(−εi + 3

2
) zn|ψk

n〉√
n!0F2k(−ε1 + 1

2
, . . . ,−εk + 1

2
,−ε1 + 3

2
, . . . ,−εk + 3

2
; r2)

∏k
i=1 Γ(n− εi + 1

2
)Γ(n− εi + 3

2
)

(5.4)
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where Γ(x) is the gamma function, r = |z|, and pFq is a generalized hypergeometric function:

pFq(a1, . . . , ap, b1, . . . , bq;x) =
Γ(b1) . . .Γ(bq)

Γ(a1) . . .Γ(ap)

∞∑
n=0

Γ(a1 + n) . . .Γ(ap + n)

Γ(b1 + n) . . .Γ(bq + n)

xn

n!
. (5.5)

Notice that z = 0 is a (k+ 1)-th degenerate eigenvalue of Dk because of (5.4) we see that |z = 0〉 =
|ψk

0〉 while Dk|ψk
εi
〉 = 0, i = 1, . . . , k because the |ψk

εi
〉 are isolated of the other eigenstates. Thus,

the resolution of the identity should be looked for as:

I =
k∑

i=1

|ψk
εi
〉〈ψk

εi
|+
∫
|z〉〈z|dµ(z), (5.6)

where dµ(z) is to be determined. Suppose now that

dµ(z) = 0F2k

(
−ε1 +

1

2
, . . . ,−εk +

1

2
,−ε1 +

3

2
, . . . ,−εk +

3

2
; r2

)
h(r2)rdrdϕ. (5.7)

Inserting this equation in (5.6) and using the fact that {|ψk
εi
〉, |ψk

n〉, i = 1, . . . , k, n = 0, 1, . . .} is
complete, we arrive at the following requirement for h(x):∫ ∞

0

xnh(x)dx =
Γ(n+ 1)

∏k
i=1 Γ(n− εi + 1

2
)Γ(n− εi + 3

2
)

π
∏k

i=1 Γ(−εi + 1
2
)Γ(−εi + 3

2
)

. (5.8)

Hence, h(x) is the inverse Mellin transform of the RHS of (5.8). It turns out that h(x) is proportional
to a Meijer G-function [56]:

h(x) =
G 2k+1 0

0 2k+1 (x|0,−ε1 − 1
2
, . . . ,−εk − 1

2
,−ε1 + 1

2
, . . . ,−εk + 1

2
)

π
∏k

i=1 Γ(−εi + 1
2
)Γ(−εi + 3

2
)

. (5.9)

Let us notice that in the case k = 1 and ε1 = −1/2 it reduces to the result we have derived
in [29], which was expressed in a more compact form recently by Cannata et.al. for an arbitrary
ε1 < 1/2 [39].

Some other properties of the standard coherent states have their analogue for ours. For instance,
any CS of the form (5.4) can be expressed in terms of the others:

|z′〉 =

∫
|z〉〈z|z′〉dµ(z), (5.10)

where the reproducing Kernel 〈z|z′〉 can be easily evaluated:

〈z|z′〉 = 0F2k(−ε1 + 1
2
, . . . ,−εk + 1

2
,−ε1 + 3

2
, . . . ,−εk + 3

2
; z̄z′)

× 0F2k(−ε1 + 1
2
, . . . ,−εk + 1

2
,−ε1 + 3

2
, . . . ,−εk + 3

2
; r2)−1/2

× 0F2k(−ε1 + 1
2
, . . . ,−εk + t

1

2
,−ε1 + 3

2
, . . . ,−εk + 3

2
; r′

2
)−1/2 (5.11)

meaning that any two CS |z〉 and |z′〉 of (5.4) are non-orthogonal. From the resolution of the
identity it is clear that any state vector can be expressed in terms of our CS if we include the
atypical orthogonal CS |ψk

εi
〉, i = 1, . . . , k naturally inherent to this treatment.
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Let us evaluate now the coherent states associated to the linearized annihilation operator DL of
(4.7). Similarly as in the previous case, we look for states |z, w〉 such that:

DL|z, w〉 = z|z, w〉, (5.12)

where we are showing explicitly the CS dependence on the distortion parameter w. Following the
same procedure as before, we arrive at the final expression for |z, w〉:

|z, w〉 =

√
Γ(w + 1)

1F1(1, w + 1; r2)

∞∑
n=0

zn√
Γ(n+ w + 1)

|ψk
n〉. (5.13)

Once again, the resolution of the identity becomes similar to (5.6):

I =
k∑

i=1

|ψk
εi
〉〈ψk

εi
|+
∫
|z, w〉〈z, w|dµL(z), (5.14)

where

dµL(z) = σ(r, w)rdrdϕ, σ(r, w) =
1F1(1, w + 1; r2)

πΓ(w + 1)
e−r2

r2w. (5.15)

The reproducing Kernel is now

〈z, w|z′, w〉 =
1F1(1, w + 1; z̄z′)√

1F1(1, w + 1; r2)1F1(1, w + 1; r′2)
. (5.16)

Let us notice that the CS (5.13) can be gotten from the ones of [30] by making w → w + 1.
In the case w = 0 (the full linearized case) the same formulae as for the standard coherent states
are recovered by noticing that 1F1(1, 1; r2) = er2

. By taking carefully the limit w → −1 (the full
linearized case once again) it can be shown that the standard expression for the CS is also recovered,
but the eigenstate |ψk

0〉 associated to the eigenvalue E0 = 1/2 will be isolated of the other ones, i.e.,
the series (5.13) will start from |ψk

1〉 [30].
A comparison of the ‘annihilation’ operators Dk and DL and of both sets of coherent states

derived in this section shows the following: from the side of their explicit expressions, the non-linear
operator Dk is simpler than the linearized one DL. As can be seen of equations (5.4) and (5.13),
however, the CS associated to DL are much simpler that the ones associated to Dk, which is due to
the simplest algebra generated by DL and D†

L. In order to give more support to this conclusion, let
us compare the uncertainty product (∆x)(∆p) for both sets of CS. As for k = 1 such a comparison
has been already performed for the AMM family of potentials isospectral to the oscillator in the
oscillator limit [29, 30], taking k = 1, ε1 = −1/2 and ν1 = 0 in the potentials (2.32)–(2.33), we shall
stick just to an analogue situation in the case with k = 2. Thus, by taking ε1 = −1/2, ε2 = −3/2 and
labeling as ν1 and ν2 the parameters of the corresponding solutions (2.32), we will get once again,
up to a displacement of the energy origin, the 2-parametric family of potentials (2.33) isospectral
to the oscillator recently derived [26], where in order to avoid singularities we have to make the
restrictions |ν1| < 1 and |ν2| > 1. In order to pick out the oscillator potential, we have to take
ν1 = 0 and ν2 → ∞. Assuming all this, we arrive finally to the two sets of coherent states which
will be compared:

|z〉NL =

√
2

0F4(1, 2, 2, 3; r2)

∞∑
n=0

zn

n!(n+ 1)!
√

(n+ 2)!
|ψ0

n+2〉, (5.17)

|z, w〉L =

√
Γ(w + 1)

2 1F1(1, w + 1; r2)

∞∑
n=0

zn√
Γ(n+ w + 1)

|ψ0
n+2〉. (5.18)
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Figure 2: The uncertainty product (∆x)(∆p) as function of z for the non-linear coherent states
(5.17) associated to the member of the 2-parametric family of potentials isospectral to the oscillator
arising for k = 2, ε1 = −1/2, ε2 = −3/2, ν1 = 0, ν2 →∞.

Above, the subscripts NL and L mean non-linear and linear respectively. A direct calculation leads
to the uncertainties ∆x and ∆p in the non-linear case:

∆x =

√
5

2
− [Re(z)]2ρ(r), (5.19)

∆p =

√
5

2
− [Im(z)]2ρ(r), (5.20)

where Re(z) and Im(z) represent the real and imaginary parts of z respectively and

ρ(r) =
1

2

[
0F4(2, 2, 3, 3; r2)

0F4(1, 2, 2, 3; r2)

]2

− 1

6

[
0F4(2, 3, 3, 4; r2)

0F4(1, 2, 2, 3; r2)

]
. (5.21)

A plot of the uncertainty product (∆x)(∆p) is given in figure (2).
On the other hand, in the linear case with w arbitrary the uncertainties ∆x and ∆p of (5.18)

will have terms involving square roots of rational functions of the summation index. In order to
avoid that, we decided to make w = 2 (this is an interesting value additional to the ones previously
mentioned w = 0 and w = 1 [30]), and in such a case we have:

(∆x)2 = (∆p)2 = (∆x)(∆p) =
1

2
+

2

1F1(1, 3; r2)
. (5.22)

A plot of the product (∆x)(∆p) is given in figure 3.
As we can see, (∆x)(∆p) has more involved behaviour in the non-linear than in the linear

case with w = 2. Notice also that (∆x)(∆p) in the linear case differs of the standard result
(∆x)(∆p) = 1/2 just in a vicinity of z around z = 0, and it quickly approaches the standard
behaviour when |z| → ∞ (see Fig.3). This does not happens for the non-linear CS for which the
asymptotic value of (∆x)(∆p) depends on the direction in which we are moving out of z = 0, and it
is in general different from 1/2. This reinforces the idea that the linear CS are closer to the standard
CS than the non-linear ones.

This discussion lead us to conclude that, from an algebraic point of view, the most appropriate
annihilation and creation operators for the k-parametric families of potentials almost isospectral to
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Figure 3: The uncertainty product (∆x)(∆p) as function of z for the linear coherent states (5.18)
with w = 2 associated to the member of the 2-parametric family of potentials isospectral to the
oscillator arising for k = 2, ε1 = −1/2, ε2 = −3/2, ν1 = 0, ν2 →∞.

the oscillator derived by the k-th order intertwining technique are the linearized ones DL and D†
L.

They mimic the annihilation and creation operators a and a† of the harmonic oscillator and lead
to the standard expression for the CS in the case when the distortion parameter w takes the two
values w = 0 and w = −1 when acting on the subspaces H≥0 and H≥1 respectively. Moreover, DL

and D†
L become exactly equal to a and a† when k = w = 0, and the corresponding CS, generated

by using DL or D0, are precisely the standard CS for the harmonic oscillator.

6 Conclusions and Remarks

We have shown that, for k-SUSY potentials intertwined to the harmonic oscillator potential through
k-th order differential operators, it can be constructed annihilation and creation operators DL and
D†

L obeying the Heisenberg-Weyl algebra (see equation (4.12)) when restricted to the subspace H≥0

spanned by the eigenstates associated to the levels En = n + 1/2, n = 0, 1, . . . Both of those
operators annihilate in a natural way the other k energy eigenstates |ψk

εi
〉, i = 1, . . . k, and the

coherent states associated to DL have the form of the standard CS working on H≥0.
Now, some comments about the terminology used to designate the potentials (2.33) with k = 1

should be done. Some people name the potentials (2.33) conditionally exactly solvable because
the parameters appearing inside (ε1, ν1) have to be restricted in order to get a potential and
eigenfunctions physically relevant (see e.g. [18]), where ν1 denotes the ν-parameter arising in (2.32).
For instance, taking k = 1 and ε1 = −1/2 one will get the AMM family of potentials, which are
physically relevant (and thus conditionally exactly solvable) if |ν1| < 1 because then they are free of
singularities and their eigenfuntions are continuous for all x ∈ R, as for the initial harmonic oscillator
potential. However, this interpretation is narrow because it excludes a physically interesting exactly
solvable case arising when |ν1| → ∞: in such a limit V1(x) has a singularity at x = 0, and thus it is
possible to take instead of the oscillator in the full real line as the initial exactly solvable potential,
the oscillator potential for x > 0 with an infinite barrier at x = 0 [19]. The corresponding SUSY
partner potential will be also exactly solvable. Thus, care should be exercised when using that
terminology.

An additional point concerns the coherent states for the k-SUSY potentials Vk(x). After [29, 30]
had arisen, Kumar and Khare considered as unnecessary our CS construction with k = 1 and
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ε1 = −1/2 because in this case H1 and H0 are (up to a displacement of the energy origin) exactly
isospectral. Thus, H1 and H0 are in principle unitarily equivalent, and the most appropriate CS
for H1 should be gotten from the action of such unitary transformation on the standard CS of the
harmonic oscillator [32]. However, even for the simple case with k = 1 and an arbitrary ε1 < 1/2
the construction of Kumar and Khare can hardly be done, while our technique can be implemented
without any problem (see also [37, 39]). In such a case it turns out more appropriate (although much
more complicated than ours) the Bagrov and Samsonov CS construction [34]. From an algebraic
point of view, the technique presented in this paper is (we hope) clearer, more general, and mainly
more natural than the alternatives developed up to the present by other authors.
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