
Higher-order term indexing using substitution trees

BRIGITTE PIENTKA

McGill University

We present a higher-order term indexing strategy based on substitution trees for simply typed
lambda-terms. There are mainly two problems in adapting first-order indexing techniques. First
many operations used in building an efficient term index and retrieving a set of candidate terms
from a large collection are undecidable in general for higher-order terms. Second, the scoping of
variables and binders in the higher-order case presents challenges.

The approach taken in this paper is to reduce the problem to indexing linear higher-order
patterns, a decidable fragment of higher-order terms, and delay solving terms outside of this
fragment. We present insertion of terms into the index based on computing the most specific
linear generalization of two linear higher-order patterns, and retrieval based on matching two
linear higher-order patterns. Our theoretical framework maintains that terms are in βη-normal
form, thereby eliminating the need to re-normalize and raise terms during insertion and retrieval.
Finally, we prove correctness of our presented algorithms. This indexing structure is implemented
as part of the Twelf system to speed up the execution of the tabled higher-logic programming
interpreter.

Categories and Subject Descriptors: F.4.1 [Theory of Computation]: Mathematical Logic and
Formal Languages; D.3.3 [Software]: Language Constructs and Features—Frameworks

General Terms: Design, Theory

Additional Key Words and Phrases: Indexing, type theory, logical frameworks

1. INTRODUCTION

First-order logic programming and theorem proving systems have developed into
highly sophisticated automated reasoning systems with remarkable performance
over the last decades [Ramakrishnan et al. 2001]. This success is to a large extent
due to term indexing techniques, which support these systems to manage and use
redundancy elimination techniques. In general, term indexing is concerned with
compactly storing a large collection of terms and rapidly retrieving a set of candi-
date terms satisfying some property (e.g. unifiability, instance, variant, etc.) from
a large collection of terms.

There are many examples where term indexing is used. In logic programming, for
example, we need to select all clauses from the program whose head unifies with the
current goal [Ramesh et al. 1990; Chen et al. 1994; Dawson et al. 1995; Dawson et al.
1995]. In tabled logic programming we memoize intermediate goals in a table and
reuse their results later in order to eliminate redundant and infinite computation.
Here we need to find all entries in the table such that the current goal is a variant
or an instance of a table entry and re-use the associated answers [Ramakrishnan
et al. 1999; 1995]. Similarly, in theorem proving we keep track of previously derived
formulas to eliminate redundancy and detect loops [McCune 1992; Graf 1995b; Ri-
azanov and Voronkov 2002; Hillenbrand 2003]. Since rapid retrieval and efficient
storage of large collections of terms plays a central role in logic programming and
in proof search in general, a variety of indexing techniques have been proposed for

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008, Pages 1–38.

2 · Brigitte Pientka

first-order terms (see [Ramakrishnan et al. 2001] for a survey). However, indexing
techniques for higher-order terms, i.e. terms that contain lambda-abstractions, are
largely missing thereby severely hampering the performance of higher-order sys-
tems and limiting their potential applications. There are mainly two problems in
adapting first-order indexing techniques. First, many operations used in building
an efficient term index and retrieving a set of candidate terms from a large collec-
tion are undecidable in general in the higher-order setting. Second, the scoping of
variables and binders in the higher-order case presents challenges.

In this paper, we present a higher-order term indexing technique based on sub-
stitution trees. Substitution tree indexing [Graf 1995a] is a highly successful first-
order term indexing strategy which allows the sharing of common sub-expressions
via substitutions. We extend this idea to the higher-order setting and present an
indexing technique for higher-order terms.

The challenge in the higher-order setting is that many common operations on
higher-order terms which are necessary to build and maintain substitution trees or
retrieve elements from the index are undecidable in general. For example, to build
a substitution tree, we compute the most specific common generalization between
two terms. However, in general the most specific generalization of two terms does
not exist in the higher-order setting. Similarly, retrieving all terms, which unify
or match, needs to be efficient – but higher-order unification is undecidable in
general. Fortunately, there exists a fragment called higher-order patterns for which
checking unifiability of two terms and computing the most specific generalization
between two terms is decidable [Miller 1991b; Pfenning 1991]. However, even for
this fragment algorithms may not be efficient in practice [Pientka and Pfenning
2003] and are sufficiently complex that it is not obvious that they are a suitable
basis for higher-order term indexing techniques.

In this paper we propose a general strategy for indexing higher-order terms where
we first translate higher-order terms to linear higher-order patterns together with
constraints, and second we store linear higher-order patterns together with their
constraints in a substitution tree. Linear higher-order patterns refine the notion of
higher-order patterns further and factor out computationally expensive parts into
constraints. As we have shown in [Pientka and Pfenning 2003] many terms en-
countered in practice fall into this fragment. Moreover, linear higher-order pattern
unification performs well in practice. In this paper, we demonstrate that linear
higher-order patterns are well suited to elegantly describe term indexing operations
such as computing the most specific linear generalization or checking unifiability
of two terms. Moreover, we give algorithms for inserting linear higher-order pat-
terns into an index and for retrieving a set of terms from the index such that the
query is an instance of the term in the index and prove the correctness of these
operations. We concentrate on simply typed terms in this paper. However, the pre-
sented techniques can be generalized to the dependently typed setting (see [Pientka
2003b]) and are in fact implemented as part of the logical framework Twelf system
[Pfenning and Schürmann 1999]. We have used higher-order substitution trees to
speed-up the execution of the tabled logic programming interpreter [Pientka 2002;
2005] and to facilitate the generation of small proof witnesses [Sarkar et al. 2005].
Preliminary results have been published in [Pientka 2003a], and this paper expands

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 3

the theoretical results. The theoretical framework we present can directly serve as
a general foundation for higher-order term indexing in many higher-order logic pro-
gramming systems such as λProlog [Nadathur and Mitchell 1999], and higher-order
theorem provers such as Bedwyr [Baelde et al. 2007], Isabelle [Paulson 1986], or
Leo-II [Benzmüller et al. 2008].

The paper is organized as follows: In Section 2, we present the general idea of
higher-order substitution trees. In Section 3, we give the theoretical background and
in Section 4 we describe higher-order substitution trees more formally. In Section
5, we give algorithms for computing the most specific linear generalization of two
terms and inserting terms into the index and retrieval is discussed in Section 6.
This is followed by a discussion on extending the framework to dependently-typed
terms in Section 7. We conclude with a discussion of experimental results within
the tabled higher-order logic programming engine in the Twelf system (Section 8)
and related work (Section 9).

2. HIGHER-ORDER SUBSTITUTION TREES

We illustrate the general idea of substitution tree indexing using a first-order ex-
ample and then focus on indexing of higher-order terms. In particular, we highlight
some of the subtle issues concerning the interplay of bound variables and meta-
variables. We will consider several examples in the logical framework Twelf [Pfen-
ning and Schürmann 1999], which provides a higher-order logic programming engine
to execute specifications to make the examples more concrete. However, the issues
arising are similar in other higher-order systems which deal with lambda-terms.

Example 1. To illustrate the basic idea consider the example of equality trans-
formations for propositional logic, described by A ⇔ B. In the logical framework
Twelf [Pfenning and Schürmann 1999], we first declare a data-type prop for proposi-
tions, together with constructors for propositions such as conjunction, implication,
disjunction and negation as follows.

prop: type.

and: prop -> prop -> prop. or: prop -> prop -> prop.

imp: prop -> prop -> prop. neg: prop -> prop.

Next, we present some equivalence preserving transformations on propositions
together with their encoding in Twelf using the predicate eq .

A ⇔ B

e1 : ¬(A ∧ B) ⇔ (¬A) ∨ (¬B).
e2 : (A ⊃ B) ⇔ (¬A) ∨ B.
e3 : A ⊃ ¬B ⇔ (¬A) ∨ (¬B).

eq : prop → prop → type.

e1 : eq (not (and A B)) (or (not A) (not B)).
e2 : eq (imp A B) (or (not A) B).
e3 : eq (imp A (not B)) (or (not A) (not B)).

First, we define predicate eq which represents the judgment for equivalence pre-
serving transformation between two propositions. Next, we represent each equiva-
lence transformation as a clause in a logic program. To efficiently find the clause
head which unifies with a given goal, we would like to store these clauses in an
index, i.e. a data-structure which supports sharing of structure among these clause
heads. As we see, the three transformations share quite a lot of structure, and in
fact the last one is an instance of the previous one. We will use it to illustrate some

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

4 · Brigitte Pientka

specific issues when inserting these clauses one by one into a substitution tree.
Our intention is to share common structure of terms in order to share common

operations. For example, when checking whether a term U unifies with any of the
given clauses, we only want to perform the comparison against the constructor or
and the sub-term (not A) once. To achieve this, we compute the most specific
generalization between the given terms. For example, the most specific general-
ization of the first and second clause stated is, eq i1 (or (not A) i2) where we
can obtain the clause e1 by instantiating i1 with (not (and A B)) and i2 with
(not B). Similarly, we can obtain the clause e2 by instantiating i1 with (imp A B)
and i2 with B. i0,i1, i2, . . . denote meta-variables which represent holes in terms.
A term can be represented as a sequence of substitutions. For example, the clause
e1 can be described as [[(not (and A B))/i1, (not B)/i2]](eq i1 (or (not A) i2)).
A substitution tree is a tree where each node contains a set of substitutions. The
tree containing the clause e1 and e2 is given next. The original clauses can be
obtained by composing all the substitutions along one branch. To easily identify,
which branch corresponds to which clause, we labelled the leafs with the name of
the clause.

(eq i1 (or (not A) i2))/i0

(not (and A B))/i1,
(not B)/i2
e1

(imp A B)/i1,
B/i2

e2

Let us now consider what happens, when we insert e3. The clause is an instance
of the root of the tree, and we obtain the substitution (imp A (not B))/i1 and
(not B)/i2. Hence we call the clause head and the substitution at the root of the
tree fully compatible, and we now continue to insert this substitution into one of
the children. However, the substitution (imp A (not B))/i1 and (not B)/i2 is not
fully compatible with any of the substitutions in the children; hence we need to
split one of the children. There are in fact two possible splits, and therefore the
two possible substitution trees are shown in Figure 1.

Inserting e3 to the left: (eq i1 (or (not A) i2))/i0

(not B)/i2

(not (and A B))/i1

e1

(imp A (not B))/i1

e3

(imp A B)/i1,
B/i2

e2

Inserting e3 to the right: (eq i1 (or (not A) i2))/i0

(not (and A B))/i1,
(not B)/i2
e1

(imp A i3)/i1

B/i3

B/i2

e2

(not B)/i3
(not B)/i2

e3

Fig. 1. Substitution tree after inserting e3

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 5

The choice on how to split nodes when inserting new elements in a tree must be
resolved in practice. Typically, we can make more informed choices if the full set
of terms we want to index is known in advance. This is for example the case when
indexing clauses in a logic program, and we can employ techniques such as unifica-
tion factoring [Dawson et al. 1995] to obtain an optimal tree. In theorem proving
or tabled logic programming on the other hand we store intermediate sub-goals and
formulas which are encountered during proof search. Consequently, elements are
inserted into the index incrementally, and less information is available to make in-
formed splitting choices. While resolving these choices in practice is important, we
focus in this paper on extending substitution trees to indexing higher-order terms.
This means we will concentrate on the essential operation of computing the most
specific generalization of terms and substitutions in the higher-order setting.

Example 2. To illustrate the higher-order issues, we consider some well-known
equivalence preserving transformation in first-order logic.

e5 : (∀x.A(x)) ∨B ⇔ ∀x.A(x) ∨B
e6 : A ∨ (∀x.B(x)) ⇔ ∀x.A ∨B(x)
e7 : (∀x.A(x)) ⊃ B ⇔ ∀x.A(x) ⊃ B

Of course these stated equality preserving transformations are only valid, if cer-
tain bound variable conditions are satisfied. For example, the first translation
requires that the bound variable x does not occur in B. These conditions are nat-
urally enforced using higher-order abstract syntax where bound variables in the
object language are represented by bound variables in the meta-language. We first
define the constructor forall with type (i → prop) → prop. The universal quanti-
fier ∀x.A(x) is then encoded as forall λx.A x and bound variables are represented
by the λ-binder. The representation of the equivalence preserving transformations
is given below.

e5 : eq (or (forall λx.A x) B) (forall λx.(or (A x) B)).
e6 : eq (or A (forall λx.B x)) (forall λx.(or A (B x))).
e7 : eq (imp (forall λx.A x) B) (forall λx.(imp (A x) B)).

In the higher-order setting, meta-variables denote a closed instance of terms. The
meta-variable A in the first translation denotes a function which is applied to x, B
however denotes an atomic proposition, and hence cannot depend on the bound vari-
able x. As this example illustrates, bound variable dependencies are naturally and
elegantly encoded in this higher-order setting, and higher-order unification must
enforce these variable dependencies. To highlight the common structure between
the three transformation, we have inserted appropriate spaces.

Inspecting the three given clauses closely, we observe that they share a lot of
structure. For example clause e5 and e6 “almost” agree on the second argument.
Our goal is to share common structure of terms in order to share common operations
even below a binder. This means for example that we would like to share the term
forall λx.2 where 2 is instantiated with or (A x) B to obtain the terms e5, and we
instantiate 2 with or A (B x) to obtain e6. Finally, to obtain e7, we instantiate 2

with with (imp (A x) B). Note that in all these cases 2 is instantiated with an open

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

6 · Brigitte Pientka

term which is allowed to refer to the bound variable x. Our indexing structure
supports such sharing of expressions even in the presence of binders and allows
instantiations with open terms, i.e. terms which may contain bound variables. This
is unlike the first-order case where holes were always instantiated with closed terms.
To achieve this, we characterize holes as a closure of a meta-variable i together with
a delayed substitution. This substitution precisely characterizes the dependencies
we allow when instantiating the meta-variable with an open term. For example,
(forall λx.2) is denoted by (forall λx.i[x/y]) where i is a meta-variable and
[x/y] is a postponed substitution. When we instantiate the meta-variable i with
(or (A y) B) we will apply the substitution [x/y] which essentially renames the
variable y to x, and yields as a final result (forall λx.or (A x) B). In the term
or 2 A, the hole denoted by 2 can be instantiated with a closed term. In this
case we write i[.] for 2. Since there are no bound variables involved the postponed
substitution we associate with the meta-variable i is the empty.

Associating meta-variables with a postponed substitution is a known technique
from explicit substitution calculus. However instead of using the explicit substi-
tution calculus based in de Bruijn indices [Abadi et al. 1990; Dowek et al. 1995],
we use the contextual modal type theory [Nanevski et al. 2008] as a foundation
which provides a high-level explanation of meta-variables. Characterizing holes in
terms as a closure of meta-variable and a postponed substitution will allow us to
instantiate holes using first-order replacement.

This has two key advantages: First, the term representation is more compact
than other representations. Traditionally, we would represent the hole in the term
forall λx.2 with the application I x where I represent the meta-variable which
is subject to instantiation. This means in general, if we have n bound variables
x1, . . . , xn, the meta-variable I which is inserted must be applied to all of these
variables. Second, to obtain the original term, we must instantiate I in the term
forall λx.I x with the lambda-abstraction λy.or (A y) B. To compare the result
of this instantiation with the original term, we must now re-normalize the term,
β-reducing the created redex (λy.or (A y) B) x to [x/y](or (A y) B) = or (A x) B.
The goal of treating meta-variables as closures consisting of the meta-variable itself
and a postponed substitution avoids this re-normalization step, but allows direct
replacement of the meta-variable with the appropriate instantiation. In an im-
plementation with de Bruijn indices and explicit substitutions [Abadi et al. 1990;
Dowek et al. 1995], the postponed renaming substitution can in fact be omitted1.
As a consequence, we not only obtain direct in-place update of meta-variables, but
also a compact representation of the term with the hole. This has important con-
sequences for the theoretical development as well as implementations. The formal
description of the operations and their correctness proofs will be substantially sim-
pler since we do not need to consider re-normalization. Instead, we will maintain
that all terms are in canonical forms. It has also important practical implica-
tions. Because we treat meta-variables as closures our formal description can be
directly implemented using de Bruijn indices and explicit substitutions following
similar ideas already employed for implementing higher-order unification [Abadi
et al. 1990; Dowek et al. 1995].

1More precisely, this corresponds to shifting de Bruijn indices by zero.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 7

To insert these three clauses into a substitution tree, we need to compute the
most specific common generalization. As mentioned earlier, this problem is in
general undecidable in the higher-order setting. To do this in a simple manner, we
first translate terms into linear higher-order patterns [Pientka and Pfenning 2003]
together with constraints. Linear higher-order patterns refine the notion of higher-
order patterns [Miller 1991b; Pfenning 1991] where every meta-variable must be
applied to some distinct bound variables in two ways: First, linear higher-order
patterns require that every meta-variable occurs only once and in addition every
meta-variable is applied to all distinct bound variables in its context.

Maintaining these two conditions yield a simple algorithm and allows us to delay
the occurs check during retrieval and any other complicated conditions involving
bound variable occurrences. For example, the term (forall λx.(imp p(x) q(x)))
should not unify with (forall λx.(imp (A x) B)), because we must instantiate the
meta-variable B with a closed term. Hence, it is invalid to replace B with q(x).
Checking for bound variable dependencies in the higher-order setting is as expensive
as the occurs check, and requires a traversal of a term; hence it is beneficial to delay
any necessary bound variable checks.

As we observe, meta-variables A and B occur more than once in all of the above
clauses, and moreover the occurrence of B is not fully applied. For example, in
eq (or (forall λx.A x) B) (forall λx.(or (A x) B) the meta-variable B does not
depend on the bound variable x in (forall λx.(imp (A x) B)) although it occurs
within the scope of the binder x. Hence, B is not a linear higher-order pattern,
since it is not applied to all bound variables in whose scope it occurs. In addition,
the meta-variable A occurs twice. Before inserting the clauses into a substitution
tree, we therefore first linearize terms by eliminating any duplicate occurrences of
meta-variables, and replacing any meta-variable which is not fully applied with one
which is. This linearization step takes as input a clause, and produces a clause
which only contains linear higher-order patterns together with some constraints
described by

.
=. The program after linearization is shown next:

e5 : eq (or (forall λx.A x) B) (forall λx.or (A′ x) (B′ x)).
∀x.(A′ x)

.
= (A x) ∧ ∀x.B′ x

.
= B

e6 : eq (or A (forall λx.B x)) (forall λx.or (A′ x) (B′x)).
∀x.(A′ x)

.
= A ∧ ∀x.B′ x

.
= (B x)

e7 : eq (imp (forall λx.A x) B) (forall λx.(imp (A′ x) (B′ x))).
∀x.(A′ x)

.
= (A x) ∧ ∀x.B′ x

.
= B

We view linearization as a standardization step, which is also in a simpler form
present in first-order indexing techniques. In the first-order setting, terms are
linearized and duplicate occurrences of meta-variables are factored out in order to
postpone the occurs check. Our notion of linear higher-order patterns establishes a
criteria with the same intentions of factoring out expensive operations in the higher-
order setting. Together with the linear term, we simply store variable definitions,
which establish the equality between these two meta-variables.

When inspecting the translated clauses e5, e6, and e7, even more sharing be-
comes apparent. For example, the clauses e5 and e6 agree upon the last argument.
We now compute the most specific generalization between these clauses, and can

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

8 · Brigitte Pientka

build up a substitution tree. Each node in the substitution tree contains a set
of substitutions, and variable definitions which resulted from linearizing terms are
found at the leafs.

(eq i2[.] (forall λx.i1[x/y]))/i0

(or (A′ y) (B′ y))/i1
(or (i3[.]) (i4[.]))/i2

(forall λx.A x)/i3,
B/i4

∀x.A′ x
.
= A x ∧

∀x.B′ x
.
= B

e5

A/i3,
(forall λx.(B x))/i4

∀x.A′ x
.
= A ∧

∀x.B′ x
.
= B x

e6

(imp (A′ y) (B′ y))/i1
(imp (forall λx.A x) B)/i2

∀x.A′ x
.
= A x ∧

∀x.B′ x
.
= B

e7

Summary. To insert a term R in a substitution tree, we first translate it into
a linear higher-order pattern R′, together with constraints C. Insertion of a term
R′, into the index can then be viewed as insertion of the substitution R′/i0. To
insert this substitution, we compute the most specific linear generalization between
the given substitution and the one in the tree. This will require us to split nodes
which are not fully compatible. In the remainder of the paper, we introduce the
theoretical framework for simply typed lambda-terms with first-class meta-variables
and formalize key operations such as computing the most-specific generalization of
two terms and two substitutions. Based on this development, we define precisely
criteria when two terms (or two substitutions) are compatible, and how to insert
and retrieve a substitution from a given substitution tree.

3. BACKGROUND

3.1 Contextual modal type theory

In this section we introduce a simply typed lambda-calculus with first-class meta-
variables which allows the instantiation of meta-variables with open terms [Nanevski
et al. 2008]. Previously, we have used the contextual modal type theory as a foun-
dation for describing linear higher-order pattern unification [Pientka and Pfenning
2003; Pientka 2003b].

Types A,B,C ::= P | A→ B
Normal Objects M,N ::= λx.M | R
Atomic Objects R ::= H · S | u[σ]

Head H ::= x | c
Spines S ::= nil |M ;S

Contexts Γ,Ψ ::= · | Γ, x:A
Substitutions σ, τ ::= . | σ,N/x | σ,H//x

Modal Contexts ∆ ::= · | ∆, u::P [Ψ]

We write P for base types, and function types are denoted by A → B. We
enforce terms to be in normal form by exploiting a presentation technique due to

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 9

Watkins et al. [Watkins et al. 2002] and described in detail in [Nanevski et al. 2008].
While the syntax only guarantees that terms N are normal (that is, contain no β-
redices), the typing rules will in addition guarantee that all well-typed terms are
fully η-expanded. We will use the spine notation [Cervesato and Pfenning 2003]
to describe atomic terms. The term ((c M1) M2) is for example represented in
spine form as c · (M1;M2; nil). This is convenient when we compare, analyze and
manipulate terms because we have direct access to the head c of the term. It is
also close to our implementation where we represent terms using spines.

As we mentioned, we concentrate on objects in normal form. This has two
reasons: First, these are the only meaningful objects in the logical framework, but
in addition equality between two terms in normal form is easily decided by simply
checking whether the two terms are syntactically equal up to α-renaming. Working
only with normal forms in our theoretical development significantly simplifies our
presentation and proofs. Moreover, it is also close to our actual implementation
which maintains normal forms when inserting and retrieving terms from an index.
This means we avoid re-normalization of terms in the implementation.

We follow a bi-directional type checking approach which characterizes objects in
canonical form. In order to achieve this we divide the term calculus into atomic

objects R and normal objects M . Contexts Γ and Ψ contain only declarations x:A
where A is normal and all terms occurring in substitutions σ are either normal (in
N/x) or replace x by a head (in H//x). The modal context ∆ contains declarations
of meta-variables u::P [Ψ]. We enforce that all meta-variables occurring in well-
typed terms must be of base type, i.e. they are lowered. Because any occurrence of
a meta-variable u[σ] M where u is of function type (A→ B)[Ψ] and M has type A
can be replaced by a new meta-variable v[σ,M/x] where v has type B[Ψ, x:A] (see
also [Dowek et al. 1995; Pientka and Pfenning 2003]), this is not a restriction.

We assume global constants are declared in a signatures Σ and never change in
the course of a typing derivation. We therefore suppress the signatures throughout.
Moreover, we only consider well-formed types. Typing at the level of objects is
divided into four judgments:

∆; Γ ⊢M ⇐ A Check normal object M against A
∆; Γ ⊢ R ⇒ P Synthesize base type P for atomic object R
∆; Γ ⊢ S > A⇒ P Synthesize base type P for spine S and A
∆; Γ ⊢ σ ⇐ Ψ Check σ against Ψ

We always assume that ∆ and Γ and the subject (M , R, or σ) are given, and
that the contexts ∆ and Γ are well-formed. For synthesis R ⇒ P we assume R is
given and we generate an base type P . Similarly, for S > A⇒ P we assume S and
A to be given, but infer the type P . The typing rules are given in Figure 2.

In general, introduction forms for a type constructor break down a type when
read from the conclusion to the premise until it is atomic. In our case we only have
two types, base types and functions. Lambda-abstractions are checked against
their type. When checking a normal object that happens to be atomic (that is,
has the form R) against a type P we synthesize the type P for R. Technically,
we synthesize a type P ′ which must be equal to P . We will leave this comparison
implicit to simplify the development.

In the case where R has base type, it is either a meta-variable u[σ] or it is of the

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

10 · Brigitte Pientka

Normal objects

∆; Γ, x:A ⊢ M ⇐ B

∆; Γ ⊢ λx.M ⇐ A → B
Lam

∆;Γ ⊢ R ⇒ P

∆;Γ ⊢ R ⇐ P
⇒⇐

Atomic objects

∆; Γ, x:A,Γ′ ⊢ S > A ⇒ P

∆; Γ, x:A, Γ′ ⊢ x · S ⇒ P
var

c:A ∈ Σ ∆;Γ ⊢ S > A ⇒ P

∆;Γ ⊢ c · S ⇒ P
con

∆, u::P [Ψ],∆′; Γ ⊢ σ ⇐ Ψ

∆, u::P [Ψ],∆′; Γ ⊢ u[σ] ⇒ P
mvar

Spines

∆;Γ ⊢ S > B ⇒ P ∆;Γ ⊢ M ⇐ A

∆;Γ ⊢ M ; S > A → B ⇒ P
Scons

∆;Γ ⊢ nil > P ⇒ P
Snil

Substitutions

∆; Γ ⊢ σ ⇐ Ψ ∆;Γ ⊢ M ⇐ A

∆; Γ ⊢ (σ, M/x) ⇐ (Ψ, x:A)
sNorm

∆;Γ ⊢ (·) ⇐ (·)
sEmpty

∆; Γ ⊢ σ ⇐ Ψ Γ(y) = A

∆;Γ ⊢ (σ, y//x) ⇐ (Ψ, x:A)
sAtom−v

∆; Γ ⊢ σ ⇐ Ψ Σ(c) = A

∆; Γ ⊢ (σ, c//x) ⇐ (Ψ, x:A)
sAtom−c

Fig. 2. Bi-directional typing rules for simply-typed lambda-calculus

form c · S or x · S. We first concentrate on the case where R = c · S or x · S where
S = N1; . . . ;Nn; nil. In either case we are able to synthesize its type as follows. We
first look up the type A1 → . . . An → P ′ for c and x resp. Then we can synthesize
a type P ′ for c · S (and x · S resp.), if for all i, Ni checks against Ai.

Because meta-variables are lowered, i.e. they must be of base type P , we can
easily synthesize its type by looking up the type for u in the meta-variable context
∆. While u[σ] synthesizes a type, we need the type of u, namely P [Ψ] so we can
check σ against Ψ. Some renaming is left implicit here, as the variables in the
domain of σ should match the variables declared in Ψ.

Substitutions are constructed in two possible ways: either by M/x which replaces
the variable x with a normal term M , or by H//x which replaces the variable x
directly with a head. Substitutions H//x are necessary so that we can extend a given
substitution with x//x when traversing a binding operator. We could not extend
substitutions with x/x, since x is not a canonical term. The identity substitutions
can now have the form x1//x1, . . . , xn//xn.

Theorem 3.1 Decidability of type checking. All judgments in the simply

typed contextual modal type theory are decidable.

Proof. The typing judgments are syntax-directed and therefore decidable.

Since our description of substitution trees relies on a concise notion of substitu-
tion, we carefully define ordinary substitution for ordinary variables and contextual
substitutions for meta-variables.

3.2 Substitution on Terms

In this section we start with defining the operations of substitution on terms. The
substitution function we need must construct canonical terms, since those are the

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 11

only ones that are well-formed and the only ones of interest. Hence, in places
where the ordinary substitution operation would create a redex, in particular when
applying the substitution [M/x] to a term x · S, we must apply the substitution
[M/x] to the spine S, but we also must reduce the redex (M · [M/x]S) which would
be created. Since when applying [M/x] to the spine S, we again may encounter
situations which require us to contract a redex, the substitution [M/x] must be
hereditary. We therefore call this operation hereditary substitution.

This technique was first described for logical frameworks in [Watkins et al. 2002],
and it only allows for objects which are in canonical form since only these are mean-
ingful for representing object-languages in logical frameworks. Here we use this
technique in the simply typed setting to ensure that terms are in βη-normal form
thereby eliminating the need to explicitly consider βη-normalization when analyz-
ing, manipulating and comparing terms. The main difficulty in defining hereditary
substitutions is that this operation could easily fail to terminate. Consider for ex-
ample the term which arises when computing the normal form of (λy.y y) (λx.x x).
Clearly, on well-typed terms this does not occur.

We define hereditary substitutions as a primitive recursive functional where we
pass in the type of the variable we substitute for. This will be crucial in determin-
ing termination of the overall substitution operation. If we hereditarily substitute
[λy.M/x](x · S), then if everything is well-typed and x : A1 → A2, then we will
write [λy.M/x]A1→A2

(x · S) indexing the substitution with the type for x. The
substitution operation will be total since any side condition can be satisfied by
α-conversion. First, we present the ordinary capture-avoiding substitution for a
single variable, [M/x]AN , [M/x]AS, and[M/x]Aσ.

[M/x]A(λy.N) = λy.N ′ where N ′ = [M/x]AN
choosing y 6∈ FV(M) and y 6= x

[M/x]A(u[σ]) = u[σ′] where σ′ = [M/x]Aσ
[M/x]A(c · S) = c · S′ where S′ = [M/x]AS
[M/x]A(x · S) = reduce(M : A,S′) where S′ = [M/x]AS
[M/x]A(y · S) = y · S′ where y 6= x and S′ = [M/x]AS

[M/x]A(nil) = nil

[M/x]A(N ;S) = N ′;S′ where N ′ = [M/x]AN and S′ = [M/x]AS

[M/x]A(·) = ·
[M/x]A(σ,N/y) = (σ′, N ′/y) where σ′ = [M/x]Aσ and N ′ = [M/x]AN
[M/x]A(σ, c//y) = (σ′, c//y) where σ′ = [M/x]Aσ
[M/x]A(σ, y′//y) = (σ′, y′//y) where σ′ = [M/x]Aσ and x 6= y′

[M/x]A(σ, x//y) = (σ′,M/y) where σ′ = [M/x]Aσ

Next, we concentrate on eliminating possible redices which may have been created
in the case [M/x]A(x · S) using the definition of reduce(M : A,S).

reduce(λy.M : A1 → A2, (N ;S)) = M ′′ where [N/y]A1
M = M ′

and reduce(M ′ : A2, S) = M ′′

reduce(R : P, nil) = R
reduce(M : A,S) fails otherwise

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

12 · Brigitte Pientka

We first compute the result of applying the substitution [M/x] to the spine S
which yields the spine S′. Second, we reduce any possible redices which are created
using the following definition.

Substitution may fail to be defined only if substitutions into the subterms are
undefined. The side conditions y 6∈ FV(M) and y 6= x do not cause failure, because
they can always be satisfied by appropriately renaming y. However, substitution
may be undefined if we try for example to substitute an atomic term R for x in
the term x · S where the spine S is non-empty. The substitution operation is well-
founded since recursive appeals to the substitution operation take place on smaller
terms with equal type A, or the substitution operates on smaller types (see the case
for reduce(λy.M : A1 → A2, (N ;S))).

The first property states that the hereditary substitution operations terminate,
independently of whether the terms involved are well-typed or not. The operation
may fail if we have ill-typed terms, or yield a canonical term as a result.

Theorem 3.2 Termination.
[M/x]A(N), [M/x]AR, [M/x]Aσ, reduce(M : A,S) terminates, either by return-

ing a result or failing after a finite number of steps.

Proof. This can be verified by a nested induction, first on the structure of A,
and second on the structure of the term we apply hereditary substitution to or the
term S we apply to M : A in the case for reduce. See [Watkins et al. 2002] or
[Nanevski et al. 2008] for similar proofs in related calculi.

Theorem 3.3 Substitution on Terms.

(1) If ∆; Γ ⊢M ⇐ A and ∆; Γ, x:A,Γ′ ⊢ N ⇐ C and [M/x]AN = N ′

then ∆; Γ,Γ′ ⊢ N ′ ⇐ C.

(2) If ∆; Γ ⊢M ⇐ A and ∆; Γ, x:A,Γ′ ⊢ R ⇒ P and R′ = [M/x]AR
then ∆; Γ,Γ′ ⊢ R′ ⇒ P .

(3) If ∆; Γ ⊢M ⇐ A and ∆; Γ, x:A,Γ′ ⊢ S > B ⇒ P and S′ = [M/x]AS
then ∆; Γ,Γ′ ⊢ S′ > B ⇒ P .

(4) If ∆; Γ ⊢M ⇐ A and ∆; Γ ⊢ S > A⇒ P
then reduce(M : A,S) = R and ∆; Γ ⊢ R ⇒ P .

(5) If ∆; Γ ⊢M ⇐ A and ∆; Γ, x:A,Γ′ ⊢ σ ⇐ Ψ and σ′ = [M/x]Aσ
then ∆; Γ,Γ′ ⊢ σ′ ⇐ Ψ.

Proof. By simultaneous induction on the definition of substitution, structure
of the type A occurring in the type annotation of the substitution [M/x]A or
reduce(M : A,S) and the second derivation. Either we apply the substitution to a
smaller term, or the type A is decreasing or the second derivation is decreasing.

3.3 Simultaneous Substitutions

Next we define simultaneous substitution [σ]M and [σ]τ by extending the ideas
presented in the previous section. The substitution is again hereditary. The si-
multaneous substitution is only total when the substitution σ is defined on all free
variables in M and τ , respectively. This will be satisfied, because simultaneous
substitution is only applied when the assumptions of the theorem following this

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 13

definition are satisfied. Simultaneous substitutions commute with the term con-
structors, as one would expect. Just as we annotated the substitution [M/x]A with
the type of the variable x to ensure termination of the hereditary substitution oper-
ation, we will annotate the simultaneous substitution σ with its domain. However,
simultaneous substitution may contain substitutions such as x//x and the type of
x may not always be available to extend the context annotation (see the case for
[σ]ψ(λy.M)). Fortunately, it suffices to carry an approximation ψ of its domain
Ψ where in fact the type for variables which will be replaced by atomic terms can
be omitted. For example, given the simultaneous substitution [x//x, λy.y/y] with
domain x:Q → Q, y:P → P a valid approximation is x: , y:P → P . Allowing for
approximations of contexts simply allows us here to directly extend a context with
a declaration x: where we do not know the type of x. We only need the type for
y, because only when we replace it with λy.y a redex may be created, and we must
rely on the reduce-operation to ensure that we return a canonical form. We would
like to stress that in practice when we implement substitution, we do not need to
carry this annotation ψ and it does not need to be calculated explicitely.

[σ]ψ(λy.N) = λy.N ′ where N ′ = [σ, y//y]ψ,y: (N)
choosing y 6∈ FV(σ), dom(σ)

[σ]ψ(c · S) = c · S′ where [σ]ψ(S) = S′

[σ]ψ(x · S) = R′ where [σ]ψ(S) = S′, M/x ∈ σ and x:A ∈ ψ,
and R′ = reduce(M : A,S′)

[σ]ψ(x · S) = H · S′ where H//x ∈ σ and [σ]ψ(S) = S′

[σ]ψ(v[τ]) = v[τ ′] where τ ′ = [σ]ψ(τ)

[σ]ψ(nil) = nil

[σ]ψ(N ;S) = N ′;S′ where N ′ = [σ]ψ(N) and S′ = [σ]ψ(S)

[σ]ψ(·) = ·
[σ]ψ(τ,N/y) = (τ ′, N ′/y) where τ ′ = [σ]ψ(τ) and N ′ = [σ]ψ(N)
[σ]ψ(τ, c//y) = (τ ′, c//y) where τ ′ = [σ]ψ(τ)
[σ]ψ(τ, x//y) = (τ ′, H//y) where τ ′ = [σ]ψ(τ) and (H//x) ∈ σ
[σ]ψ(τ, x//y) = (τ ′,M/y) where τ ′ = [σ]ψ(τ) and (M/x) ∈ σ

The definition of simultaneous substitutions is a straightforward extension of
the ordinary substitution described earlier. Simultaneous substitutions satisfy the
simultaneous substitution principle.

Theorem 3.4 Simultaneous Substitution on Terms.

(1) If ∆; Γ ⊢ σ ⇐ Ψ and ∆; Ψ ⊢ N ⇐ C and [σ]ψN = N ′ then ∆; Γ ⊢ N ′ ⇐ C.

(2) If ∆; Γ ⊢ σ ⇐ Ψ and ∆; Ψ ⊢ R ⇒ P and [σ]ψR = R′ then ∆; Γ ⊢ R ⇒ P .

(3) If ∆; Γ ⊢ σ ⇐ Ψ and ∆; Ψ ⊢ S > A⇒ P and [σ]ψS = S′ then

∆; Γ ⊢ S′ > A⇒ P .

(4) If ∆; Γ ⊢ σ ⇐ Ψ and ∆; Ψ ⊢ τ ⇐ Θ then ∆; Γ ⊢ [σ]ψτ ⇐ Θ.

Proof. By induction on the structure of the second given derivation and theo-
rem 3.3 (4).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

14 · Brigitte Pientka

Finally, we remark that composition of hereditary substitution is written as
[σ]ψτ , and the standard composition principles hold (see [Nanevski et al. 2008]).
We emphasize that substitutions σ are defined only on ordinary variables x and
not modal variables u. Subsequently, we write idΓ for the identity substitution
(x1//x1, . . . , xn//xn) for a context Γ = (·, x1:A1, . . . , xn:An).

3.4 Contextual substitution

Meta-variables u[σ] give rise to new contextual substitutions, which are only slightly
more difficult than ordinary substitutions. To understand contextual substitutions,
we take a closer look at the closure u[σ] which describes the meta-variable. Recall
that the substitution σ which is associated with every meta-variable u stands for
a postponed substitution. As a consequence, we can apply σ as soon as we know
which term u should stand for. Moreover, we require that meta-variables have base
type P and hence, we will only substitute atomic objects for meta-variables.

Finally because of α-conversion, the variables that are substituted at different
occurrences of u may be different. As a result, substitution for a meta-variable
must carry a context, written as [[Ψ̂.R/u]]N and [[Ψ̂.R/u]]σ where Ψ̂ binds all free
variables in R. This complication can be eliminated in an implementation of our
calculus based on de Bruijn indexes. In general, we must again ensure that the
result is a canonical term, and we will define contextual substitution hereditarily
following the ideas for hereditary ordinary substitutions. Just as we annotated
the substitution [M/x]A with the type of the variable x, we will annotate the
contextual substitution [[Ψ.R/u]]P [Ψ] with the type of the meta-variable P [Ψ]. We

will abbreviate P [Ψ] with α for better readability.

[[Ψ̂.R/u]]α(λy.N) = λy.N ′ where N ′ = [[Ψ̂.R/u]]αN

[[Ψ̂.R/u]]α(c · S) = c · S′ where S′ = [[Ψ̂.R/u]]αS

[[Ψ̂.R/u]]α(x · S) = x · S′ where S′ = [[Ψ̂.R/u]]αS

[[Ψ̂.R/u]]α(u[τ]) = R′ where τ ′ = [[Ψ̂.R/u]]ατ and R′ = [τ ′/Ψ]ψR

[[Ψ̂.R/u]]α(v[τ]) = v[τ ′] where τ ′ = [[Ψ̂.R/u]]ατ and provided v 6= u

[[Ψ̂.R/u]]α(nil) = nil

[[Ψ̂.R/u]]α(N ;S) = N ′;S′ where N ′ = [[Ψ̂.R/u]]αN and S′ = [[Ψ̂.R/u]]αS

[[Ψ̂.R/u]]α(·) = ·

[[Ψ̂.R/u]]α(τ,N/y) = τ ′, N ′/y where τ ′ = [[Ψ̂.R/u]]ατ and N ′ = [[Ψ̂.R/u]]αN

[[Ψ̂.R/u]]α(τ,H//y)α = τ ′, H//y where τ ′ = [[Ψ̂.R/u]]ατ

Applying [[Ψ̂.R/u]] to the closure u[τ] first obtains the simultaneous substitution
τ ′ = [[Ψ.R/u]]τ , but instead of returning R[τ ′], it proceeds to eagerly apply τ ′ to
R. Before τ ′ can be carried out, however, its domain must be renamed to match
the variables in Ψ, denoted by τ ′/Ψ. For example, when τ ′ = (M1/x1, . . . ,Mn/xn)
and Ψ = (y1:A1, . . . , yn:An) then we will rename the domain of the substitution τ ′

by writing τ ′/Ψ = (M1/y1, . . . ,Mn/yn).
We note that maintaining canonical forms is easy since we enforce that every

occurrence of a meta-variable must have base type. While the definition of the dis-
cussed case may seem circular at first, it is actually well-founded. The computation

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 15

of τ ′ recursively invokes [[Ψ̂.R/u]] on τ , a constituent of u[τ]. Then τ ′/Ψ is applied
to R, but applying simultaneous substitutions has already been defined without
appeal to meta-variable substitution.

Substitution of a meta-variable satisfies the following contextual substitution
property.

Theorem 3.5 Contextual Substitution on Terms.

(1) If ∆; Ψ ⊢ R ⇐ P and (∆, u::P [Ψ],∆′); Γ ⊢ N ⇐ C and α = P [Ψ]
and [[Ψ̂.R/u]]αN = N ′ then (∆,∆′); Γ ⊢ N ′ ⇐ C.

(2) If ∆; Ψ ⊢ R ⇐ P and (∆, u::P [Ψ],∆′); Γ ⊢ R′ ⇒ P ′ and α = P [Ψ]
and [[Ψ̂.R/u]]αR

′ = R′′ then (∆,∆′); Γ ⊢ R′′ ⇒ P ′.

(3) If ∆; Ψ ⊢ R ⇐ P and (∆, u::P [Ψ],∆′); Γ ⊢ S > A⇒ P ′ and α = P [Ψ]
and [[Ψ̂.R/u]]αS = S′ then (∆,∆′); Γ ⊢ S′ > A⇒ P ′.

(4) If ∆; Ψ ⊢ R ⇐ P and (∆, u::P [Ψ],∆′); Γ ⊢ τ ⇐ Θ and α = P [Ψ]
and τ ′ = [[Ψ̂.R/u]]ατ then (∆,∆′); Γ ⊢ τ ′ ⇐ Θ.

Proof. By simple inductions on the second given derivation, appealing to The-
orem 3.4 in the case for meta-variables.

3.5 Simultaneous contextual substitution

Just as we extended ordinary substitutions to simultaneous substitutions, we extend
contextual substitution to a simultaneous contextual substitution.

Simultaneous contextual substitutions θ ::= · | θ, Ψ̂.R/u

We write θ for a simultaneous substitution [[Ψ̂1.R1/u1, . . . , Ψ̂n.Rn/un]]. We first
define typing rules for simultaneous contextual substitutions.

∆ ⊢ (·) ⇐ (·)

∆; Ψ ⊢ R⇐ P ∆ ⊢ θ ⇐ ∆′

∆ ⊢ (θ, Ψ̂.R/u) ⇐ (∆′, u::P [Ψ])

The new operation of substitution is compositional, but two interesting situations
arise: when a variable u is encountered, and when we substitute into a lambda-
abstraction. We again annotate the simultaneous contextual substitution [[θ]]∆ with
its domain.

[[θ]]∆(λy.N) = λy.N ′ where N ′ = [[θ]]∆N

[[θ]]∆(c · S) = c · S′ where S′ = [[θ]]∆S
[[θ]]∆(x · S) = x · S′ where S′ = [[θ]]∆S

[[θ]]∆(u[σ]) = R′ where θ = (θ1, Ψ̂.R/u, θ2) and σ′ = [[θ]]∆(σ)
and R′ = [σ′]ψR where u::P [Ψ] ∈ ∆

[[θ]]∆(nil) = nil

[[θ]]∆(N ;S) = (N ′;S′) where N ′ = [[θ]]∆N and S′ = [[θ]]∆S

[[θ]]∆(·) = ·
[[θ]]∆(σ,N/y) = (σ′, N ′/y) where σ′ = [[θ]]∆σ and N ′ = [[θ]]∆N
[[θ]]∆(σ,H//y) = (σ′, H//y) where σ′ = [[θ]]∆σ

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

16 · Brigitte Pientka

We remark that the rule for substitution into a lambda-abstraction does not need
to extend the substitution θ nor does it need any other restrictions. This is because
the object R is defined in a different context, which is accounted for by the explicit
substitution stored at occurrences of u. Finally, consider the case of substituting
into a closure, which is the critical case of this definition.

[[θ]]∆(u[σ]) = R′ where θ = (θ1, Ψ̂.R/u, θ2) and σ′ = [[θ]]∆(σ)
and R′ = [σ′]ψR where u::P [Ψ] ∈ ∆

This is clearly well-founded, because σ is a subexpression (so [[Ψ̂.R/u]]σ will ter-
minate) and the application of an ordinary substitution has been defined previously
without reference to the new form of substitution. Similar to composition of or-
dinary substitution, composition for contextual substitutions holds (see [Nanevski
et al. 2008]).

3.6 Pattern substitutions

An important fragment of higher-order terms, is the pattern fragment. While in
general many algorithms such as unification are undecidable in the general higher-
order case, these operations become decidable with suitable restrictions to patterns
[Miller 1991a]. Higher-order patterns are terms where meta-variables must be ap-
plied to some distinct bound variables. In our setting, this means that substitution
σ which is associated with the meta-variable u[σ] must be a pattern substitution of
the form [xφ(1)//x1, . . . , xφ(n)//xn]. In other words the pattern substitution is just
a renaming of some variables.

When we consider only closures of meta-variables together with pattern substi-
tutions then applying the contextual substitution θ to a term M will directly yield
a canonical term and it is unnecessary to annotate [[θ]]M with the domain of θ. In
the subsequent development, we therefore omit this annotation.

Finally, we note that applying a contextual substitution θ to a pattern substitu-
tion σ does not change σ itself, since the range of σ refers only to bound variables,
while θ refers to meta-variables.

Lemma 3.6.
If ∆′ ⊢ θ ⇐ ∆ and σ is a pattern substitution, s.t. ∆; Γ ⊢ σ ⇐ Ψ then [[θ]]∆(σ) = σ

Proof. Induction on the structure of σ.

To keep the algorithms for insertion and retrieval similar to the first-order setting
and achieve efficient implementations, we will subsequently concentrate on linear
higher-order patterns. Linear higher-order patterns enforce two conditions: First,
they not only guarantee that every meta-variable is associated with some distinct

bound variables, but with all bound variables in whose scope the meta-variable occurs

in. If the meta-variable u[σ] occurs in the context Ψ, then σ is a substitution with
domain and range Ψ. This restriction ensures that we can avoid expensive bound
variable checks when computing instantiations for the meta-variable u. We will
write πΓ for a pattern substitution. Second, we ensure that every meta-variable
occurs only once in a given term. This criteria ensures that we can avoid the occurs
check when we retrieve unifiable terms, and leads in general to simpler algorithms.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 17

4. FORMALIZING HIGHER-ORDER SUBSTITUTION TREES

Higher-order substitution trees are designed for linear higher-order patterns and
are built with contextual substitutions. Recall the example given earlier, where
we described equality preserving transformations on logical propositions. One such
transformation was the following:

eq (or (forall λx.A x) B) (forall λx.(or (A x) B)).

In this example, A and B denote meta-variables which are present in the original
query, while x denotes an ordinary bound variable. In our contextual modal type
theory, this term would be represented as follows:

eq · ((or · ((forall · ((λx.u[x//y]) ; nil)) ; v[·] ; nil)) ;
(forall · ((λx.(or · (u[x//y] ; v[·] ; nil))) ; nil))
nil)

The meta-variables u[x//y] and v[·] directly encode the dependencies which must
be obeyed. The type of u is prop[x : i] while the type of v is prop[.]. As we can see,
the meta-variable v[·] is not fully applied in the term (λx.(or ·(u[x//y] ; v[·] ; nil)))
because the substitution associated with the meta-variable v is empty although v[·]
occurs within the scope of a lambda-binder. Moreover, the meta-variable u[x//y]
occurs twice in this term. Hence we translate this term into a linear higher-order
pattern:

eq · ((or · ((forall · ((λx.u[x//y]) ; nil)) ; v[·] ; nil)) ;
(forall · ((λx.(or · (w1[x//y] ; w2[x//y] ; nil))) ; nil)) ;
nil)

where ∀x . w1[x//y]
.
= u[x//y] ∧ ∀x . w2[x//y]

.
= v[·]

When computing the most specific generalization between two terms to build
the substitution tree, we will create internal meta-variables. For example, i3[·] and
i4[·] are internal meta-variables in

eq · ((or · (i3[·] ; i4[·] ; nil)) ;
(forall · ((λx.(or · (w1[x//y] ; w2[x//y] ; nil))) ; nil)) ;
nil)

In the definition of higher-order substitution trees we will distinguish between a
modal context ∆ which denotes the original meta-variables such as u, v, and w, a
modal context Ω for the internal meta-variables i3 and i4, and a context Γ denoting
ordinary variables. A higher-order substitution tree is an ordered n-ary tree.

(1) A node with a contextual substitution ρ such that ∆ ⊢ ρ⇐ Ω and no children
is called a leaf and is a tree.

(2) If N1, . . . , Nn are trees such that for every i, Ni has a substitution ρi, such that
(∆,Ωi) ⊢ ρi ⇐ Ω, and a list of children Ci,

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

18 · Brigitte Pientka

then a node with a contextual substitution ρ, such that (∆,Ω) ⊢ ρ ⇐ Ω′, and
children N1, . . . , Nn is a tree.

For every path from the top node ρ0 where (∆,Ω1) ⊢ ρ0 ⇐ Ω0 to the leaf node
ρn, we have ∆ ⊢ [[ρn]]([[ρn−1]] . . . ρ0) ⇐ Ω0. In other words, there are no internal
meta-variables left after we compose all the substitutions ρn up to ρ0. We assume
that all meta-variables occurring in one path are unique, and are fully applied, i.e.
every meta-variable u::P [Ψ] where Ψ = x1:A1, . . . , xn:An is applied to all the bound
variables in Ψ. More formally we can define substitution trees as follows:

Node N ::= (Ω⊢ρ ։ C)
Children C ::= [N,C] | nil

A tree is a node N with a contextual substitution ρ and a list of children C.
If the list of children is empty, we have reached a leaf. In general, we will write
∆ ⊢ N : Ω′ where N = (Ω⊢ρ ։ C) which means that (∆,Ω) ⊢ ρ ⇐ Ω′ and all the
children Ni in C, ∆ ⊢ Ni : Ω. To characterize, well-formed substitution trees we
employ the following judgments:

∆ ⊢ N : Ω Node N is a valid substitution tree with domain Ω
∆ ⊢ C : Ω The children C are valid substitution trees with domain Ω

We can now formalize the invariants about the domains and range of substitutions
occurring in the nodes of the substitution trees. The rule Leaf is a special, but
important, case of the rule Node.

N = ·⊢ρ ։ nil ∆ ⊢ ρ ⇐ Ω

∆ ⊢ N : Ω
Leaf

N = Ω0⊢ρ ։ C C 6= nil ∆, Ω0 ⊢ ρ ⇐ Ω ∆ ⊢ C : Ω0

∆ ⊢ N : Ω
Node

∆ ⊢ nil : Ω
Empty

∆ ⊢ N : Ω ∆ ⊢ C : Ω
∆ ⊢ [N ; C] : Ω

Children

Note that there are no typing dependencies among the variables in Ω and they
can be arbitrarily re-ordered. Moreover, we point out that while it is convenient to
consider the simultaneous contextual substitution ρi in the theory, in practice we
only carry the mappings which are not the identity.

The algorithms for insertion and retrieval in substitution trees are based on the
most specific linear generalization (mslg) and matching. Types themselves do not
play a role when computing the mslg and matcher. However, we assume the term is
well-typed before it is inserted into the substitution tree, and we will show that the
term can be decomposed into contextual substitutions such that their composition
results in the original term.

5. INSERTION

Insertion of a term R into the index is viewed as insertion of the substitution
Ψ̂.R/i0. Assuming that R has type P in a modal context ∆ and a bound variable

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 19

context Ψ. Ψ̂.R/i0 is a contextual substitution such that ∆ ⊢ Ψ̂.R/i0 ⇐ i0::P [Ψ].
This will simplify the following theoretical development. The insertion process
works by following down a path in the tree that is compatible with the contextual
substitution ρ. To formally define insertion, we first describe the most specific linear
generalization of two objects, and then show how to compute the most specific linear
generalization (mslg) of two contextual substitutions.

5.1 Most specific generalization of two linear objects

Computing the most specific linear generalization of two contextual substitutions
relies on finding the most specific linear generalization of two objects. Recall that
we require that all objects are linear higher-order patterns and are in canonical
forms. Moreover, we assume that all meta-variables are lowered and have base
type. We define the computation of the most specific linear generalization of two
terms next.

(∆,Ω); Γ ⊢ M1 ⊔M2 : A =⇒M/(Ω′, θ1, θ2) M is the mslg of M1 and M2

(∆,Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, θ1, θ2) R is the mslg of R1 and R2

(∆,Ω); Γ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, θ1, θ2) S is the mslg of S1 and S2

If the canonical terms M1 and M2 have type A in modal context (∆,Ω) and
bound variable context Γ, then M is the most specific linear generalization of M1

and M2 such that [[θ1]]M is equal to M1 and [[θ2]]M is equal to M2. Moreover, θ1
and θ2 are contextual substitutions which map meta-variables from Ω′ to the modal
context (∆,Ω). Finally, (∆,Ω′); Γ ⊢ M ⇐ A. Similar invariants hold for atomic
terms and spines.

We think of M1 (R1, or S1) as an object which is already in the index and M2

(R2, or S2) is the object to be inserted. As a consequence, only M1 (R1, and S1)
may refer to the internal variables in Ω, while M2 (R2, and S2) only depends on
∆. In defining the most specific linear generalization, we distinguish between the
internal meta-variables i and the global meta-variables u in the rules, because they
play different roles. The inference rules for computing the mslg are given in Figure
3.

In the rule for lambda, we do not need to worry about capture, since meta-
variables and bound variables are defined in different context. Hence, we can just
traverse the body of the lambda-term. Rule a-mvar-same treats the case where
both terms are meta-variables. Note that we require that both meta-variables
must be the same and their associated substitutions must also be equal. In the
rule a-mvar-diff-1 and a-mvar-diff-2, we just create the substitution Ψ̂.u[πΨ]/i. In

general, we would need to create [idΨ]
−1

(u[πΨ]), but since we know that π is a

permutation substitution, we know that [idΨ]
−1

(π) always exists. In addition, the
inverse substitution of the identity is the identity.

The different roles of meta-variables u and internal meta-variables i becomes
clear in the given rules. In a-mvar-diff-1 and a-mvar-diff-2 we pick a new internal
meta-variable i while we re-use the internal meta-variable i in rule a-ivar. If we
encounter a meta-variable u and another object R then we generalize and generate
a new internal meta-variable i. However, when we encounter an internal meta-
variable i and another object R, we do not generate a new internal meta-variable,

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

20 · Brigitte Pientka

Normal linear objects

(∆, Ω); Γ, x:A1 ⊢ M1 ⊔ M2 : A2 =⇒ M/(Ω′, θ1, θ2)

(∆, Ω); Γ ⊢ λx.M1 ⊔ λx.M2 : A1 → A2 =⇒ λx.M/(Ω′, θ1, θ2)
a-lam

(∆, Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, θ1, θ2)

(∆,Ω); Γ ⊢ R1 ⊔ R2 : P =⇒ R/(Ω′, θ1, θ2)
a-coe

Atomic linear objects
u::P [Ψ]) ∈ ∆

(∆, Ω); Ψ ⊢ u[πΨ]⊔u[πΨ] : P =⇒ u[πΨ]/(·, ·, ·)
a-mvar-same

u::P [Ψ] ∈ ∆ i must be new R 6= u[πΨ]

(∆, Ω); Ψ ⊢ u[πΨ]⊔R : P =⇒ i[idΨ]/(i::P [Ψ], Ψ̂.u[πΨ]/i, Ψ̂.R/i)
a-mvar-diff-1

u::P [Ψ] ∈ ∆ R 6= i0[idΨ] for some i0 R 6= u[π] i must be new

(∆, Ω); Ψ ⊢ R⊔u[πΨ] : P =⇒ i[idΨ]/(i::P [Ψ], Ψ̂.R/i, Ψ̂.u[π]/i)
a-mvar-diff-2

i::P [Ψ] ∈ Ω

(∆, Ω); Ψ ⊢ i[idΨ]⊔R : P =⇒ i[idΨ]/(i::P [Ψ], Ψ̂.i[idΨ]/i, Ψ̂.R/i)
a-ivar

(∆, Ω);Ψ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, θ1, θ2) x:A ∈ Ψ

(∆, Ω); Ψ ⊢ x · S1 ⊔ x · S2 : P =⇒ x · S/(Ω′, θ1, θ2)
a-var

(∆, Ω); Ψ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, θ1, θ2) c:A ∈ Σ

(∆,Ω); Ψ ⊢ c · S1 ⊔ c · S2 : P =⇒ c · S/(Ω′, θ1, θ2)
a-con

H1 · S1 = R1 R2 = H2 · S2 H1 6= H2 i must be new

(∆,Ω); Ψ ⊢ R1 ⊔R2 : P =⇒ i[idΨ]/((i::P [Ψ]), Ψ̂.R1/i, Ψ̂.R2/i))
a-diff

Normal linear spines

(∆, Ω); Ψ ⊢ nil⊔ nil : P > P =⇒ nil/(·, ·, ·)
a-nil

(∆, Ω); Ψ ⊢ M1 ⊔ M2 : A1 =⇒ M/(Ω1, θ1, θ2)
(∆, Ω); Ψ ⊢ S1 ⊔ S2 : A2 > P =⇒ S/(Ω2, θ′1, θ′2)
and Ω′ = (Ω1,Ω2) θ = (θ1, θ′1) θ′ = (θ2, θ′2)

(∆, Ω);Ψ ⊢ (M1; S1)⊔ (M2; S2) : A1 → A2 > P =⇒ (M ; S)/(Ω′, θ, θ′)
a-cons

Fig. 3. Linear most specific generalization

because i will be defined later on in the branch of the substitution tree, and we
will need to continue to insert R into the tree. This is important for maintaining
the invariant that any child of (∆,Ω2) ⊢ ρ ⇐ Ω1 has the form (∆,Ω3) ⊢ ρ′ ⇐ Ω2

during insertion (see the insertion algorithm later on).
In rule a-var, a-con, and a-diff, we distinguish on the head symbol H and compute

the most specific linear generalization of two objects H1 ·S1 and H2 ·S2. If H1 and
H2 are not equal, then we generate a new internal meta-variable i[idΨ] together with
the substitutions Ψ̂.(H1 · S1)/i and Ψ̂.(H2 · S2)/i (see a-diff rule). Otherwise, we
traverse the spines S1 and S2 and compute the most specific linear generalization
of them (see rules a-var and a-con). Finally, the rules for computing the most
specific generalization of two spines are straightforward. We compute the mslg of
all the sub-expressions, and just combine the substitution θ1 and θ′1 and θ2 and
θ′2 respectively. As we require that all meta-variables occur uniquely, there are no

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 21

dependencies among Ω1 and Ω2.

Definition 5.1 Compatibility of atomic objects.
If (∆,Ω); Ψ ⊢ R1 ⊔R2 : P =⇒ i[idΨ]/(i::P [Ψ], Ψ̂.R1/i, Ψ̂.R2/i), then two atomic
objects R1 and R2 are called incompatible. Otherwise, we call R1 and R2 compat-
ible.

In other words, we call two terms compatible, if they share at least the head
symbol or a lambda-prefix. We are now ready to prove correctness of the algorithm
for computing the most specific linear generalization of linear higher-order patterns.

Theorem 5.2 Soundness of mslg for objects.

(1) If (∆,Ω); Γ ⊢M1 ⊔M2 : A =⇒M/(Ω′, θ1, θ2) and

(∆,Ω); Γ ⊢M1 ⇐ A and (∆,Ω); Γ ⊢M2 ⇐ A
then (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and

M1 = [[θ1]]M and M2 = [[θ2]]M and (∆,Ω′); Γ ⊢M ⇐ A.

(2) If (∆,Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, θ1, θ2) and

(∆,Ω); Γ ⊢ R1 ⇒ P and (∆,Ω); Γ ⊢ R2 ⇒ P
then (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and

R1 = [[θ1]]R and R2 = [[θ2]]R and (∆,Ω′); Γ ⊢ R ⇒ P .

(3) If (∆,Ω); Γ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, θ1, θ2) and

(∆,Ω); Γ ⊢ S1 > A⇒ P and (∆,Ω); Γ ⊢ S2 > A⇒ P
then (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and

(∆,Ω′); Γ ⊢ S > A⇒ P and S1 = [[θ1]]S and S2 = [[θ2]]S.

Proof. Simultaneous induction on the structure of the first derivation.

Next, we prove completeness.

Theorem 5.3 Completeness of mslg of terms.

(1) If ∆,Ω ⊢ θ1 ⇐ Ω′ and ∆,Ω ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible and

∆,Ω; Γ ⊢M1 ⇐ A, ∆; Γ ⊢M2 ⇐ A, and ∆,Ω′; Γ ⊢M ⇐ A and

M1 = [[θ1]]M and M2 = [[θ2]]M
then there exists a contextual substitution θ∗1, θ

∗

2 , and a modal context Ω∗, such

that (∆,Ω); Γ ⊢ M1 ⊔M2 : A =⇒ M/(Ω∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Ω∗ ⊆ Ω′.

(2) If ∆,Ω ⊢ θ1 ⇐ Ω′ and ∆,Ω ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible and

∆,Ω; Γ ⊢ R1 ⇒ P , ∆; Γ ⊢ R2 ⇒ P , and Ω′,∆; Γ ⊢ R ⇒ P and

R1 = [[θ1]]R and R2 = [[θ2]]R
then there exists a contextual substitution θ∗1, θ

∗

2 , and a modal context Ω∗, such

that (∆,Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω∗, θ∗1 , θ
∗
2) and θ∗1 ⊆ θ1, θ

∗
2 ⊆ θ2 and

Ω∗ ⊆ Ω′.

(3) If ∆,Ω ⊢ θ1 ⇐ Ω′ and ∆,Ω ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible and

(∆,Ω); Γ ⊢ S1 > A⇒ P , (∆,Ω); Γ ⊢ S2 > A⇒ P , and

(∆,Ω′); Γ ⊢ S > A⇒ P and S1 = [[θ1]]S and S2 = [[θ2]]S
then there exists a contextual substitution θ∗1, θ

∗
2 , and a modal context Ω∗, such

that (∆,Ω); Γ ⊢ S1 ⊔S2 : A =⇒ S/(Ω∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Ω∗ ⊆ Ω′.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

22 · Brigitte Pientka

Proof. Simultaneous induction on the structure of M , R, and S.

In the next section, we extend the soundness and completeness property to sub-
stitutions.

5.2 Most specific generalization of two contextual substitutions

Building on the previous algorithm for computing the most specific generalization
of two linear higher-order patterns, we extend the algorithm to contextual substi-
tutions. We begin by giving the judgments for computing the most specific linear
generalization of two contextual substitutions.

∆,Ω1 ⊢ ρ1 ⊔ ρ2 : Ω2 =⇒ ρ/(Ω, θ1, θ2) ρ is the mslg of ρ1 and ρ2

Intuitively, we will be able to obtain ρ1 by composing θ1 with ρ, and we yield ρ2

by composing θ2 with ρ. We assume ρ1 and ρ2 are well-typed, and have the domain
Ω2 and range (Ω1,∆).

We think of ρ1 as the contextual substitution which is already in the index, while
the contextual substitution ρ2 is to be inserted. As a consequence, only ρ1 will refer
to the internal meta-variables in Ω1, while ρ2 only depends on the meta-variables
in ∆. The result of the mslg are the contextual substitution θ1 and θ2, where
∆,Ω1 ⊢ θ1 ⇐ Ω and ∆,Ω1 ⊢ θ2 ⇐ Ω. In other words, θ1 (resp. θ2) only replaces
internal meta-variables in Ω.

First, we give the rules for computing the most specific linear generalization of
two contextual substitutions.

(∆, Ω) ⊢ · ⊔ · : · =⇒ ·/(·, ·, ·)

(∆, Ω1) ⊢ ρ1 ⊔ ρ2 : Ω2 =⇒ ρ / (Ω′

1, θ1, θ2)
(∆, Ω1);Ψ ⊢ R1 ⊔R2 : P =⇒ R / (Ω′

2, θ
′

1, θ
′

2)
Ω = (Ω′

1, Ω
′

2) θ = (θ1, θ
′

1) θ′ = (θ2, θ
′

2)

(∆, Ω1) ⊢ (ρ1, Ψ̂.R1/i) ⊔ (ρ2, Ψ̂.R2/i) : (Ω2, i::P [Ψ]) =⇒ (ρ, Ψ̂.R/i) / (Ω, θ, θ′))

Note, that we are allowed to just combine the contextual substitutions θ1 (θ2
resp.) and θ′1 (θ′2 resp.) since we require that they refer to distinct meta-variables
and all the meta-variables occur uniquely.

Similar to the compatibility of two terms, we can define the compatibility of two
substitutions.

Definition 5.4 Compatibility of contextual substitutions.
If (∆,Ω1) ⊢ ρ1 ⊔ ρ2 : Ω2 =⇒ idΩ1

/(Ω, ρ1, ρ2), then two contextual substitutions ρ1

and ρ2 are incompatible. Otherwise, we call ρ1 and ρ2 compatible.

As a consequence, if ρ1 and ρ2 are incompatible, then for any Ψ̂.R/i ∈ ρ1 and
Ψ̂.R′/i ∈ ρ2, we know that R and R′ are incompatible. Next, we prove soundness
and completeness of this algorithm.

Theorem 5.5 Soundness for mslg of substitutions.
If (∆,Ω1) ⊢ ρ1 ⊔ ρ2 : Ω2 =⇒ ρ/(Ω, θ1, θ2) and

(∆,Ω1) ⊢ ρ1 ⇐ Ω2 and (∆,Ω1) ⊢ ρ2 ⇐ Ω2

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 23

then (∆,Ω) ⊢ ρ⇐ Ω2, (∆,Ω1) ⊢ θ1 ⇐ Ω, (∆,Ω1) ⊢ θ2 ⇐ Ω, and

[[θ1]]ρ = ρ1 and [[θ2]]ρ = ρ2

Proof. Induction on the first derivation.

Theorem 5.6 Completeness for mslg of contextual substitutions.
If (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible and

ρ1 = [[θ1]]ρ and ρ2 = [[θ2]]ρ then (∆,Ω) ⊢ ρ1 ⊔ ρ2 : Ω1 =⇒ ρ/(Ω∗, θ∗1 , θ
∗
2) such that

Ω∗ ⊆ Ω′, θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2.

Proof. Induction on the structure of ρ.

5.3 Insertion into substitution tree

In this section we describe the final layer, namely the traversal of the substitu-
tion tree to insert a substitution δ. To insert the contextual substitution δ into
a substitution tree, we need to traverse the index tree and compute at each node
N with substitution ρ the mslg between ρ and δ. Recall the formal definition of
substitution trees given earlier on page 18.

Node N ::= (Ω⊢ρ ։ C)
Children C ::= [N,C] | nil

A tree is a node N with a contextual substitution ρ and a list of children C.
If the list of children is empty, we have reached a leaf. In general, we will write
∆ ⊢ N : Ω′ where N = (Ω⊢ρ ։ C) which means that (∆,Ω) ⊢ ρ ⇐ Ω′ and all the
children Ni in C, ∆ ⊢ Ni : Ω.

To insert a new substitution δ into the substitution tree N , we proceed in two
steps. First, we inspect all the children Ni of a parent node N , where Ni = Ωi⊢ρi ։

Ci and check if ρi is compatible with δ. This compatibility check has three possible
results:

(1) (∆,Ωi) ⊢ ρi ⊔ δ : Ω =⇒ idΩ/(Ω
′, ρi, δ) :

This means ρi and δ are not compatible

(2) (∆,Ωi) ⊢ ρi ⊔ δ : Ω =⇒ ρi/(Ωi, idΩi
, θ2)

This means δ is an instance of ρi and we continue to insert θ2 into the children
Ci. In this case [[θ2]]δ is equivalent to ρi and we call δ fully compatible with ρi.

(3) (∆,Ωi) ⊢ ρi ⊔ δ : Ω =⇒ ρ′/(Ω′′, θ1, θ2)
ρi and δ are compatible, but we need to replace node Ni with a new node
Ω′′

⊢ρ′ ։ C′ where C′ contains two children, the child node Ωi⊢θ1 ։ Ci and
the child node ·⊢θ2 ։ nil. In this case we call δ partially compatible with ρi.

The idea is to iterate through the list of children and collect all nodes which
are fully compatible or at least partially compatible. If there is a fully compatible
child N , we continue the insertion by considering node N . If there are no fully
compatible children but a partially compatible node N we need to split N .

In general, there may be more than one fully compatible node and also more
than one partially compatible node. In an implementation we need to resolve these
choices. We employ a simple heuristic which orders the sets of fully and partially
compatible nodes according to the number of elements the substitution contains

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

24 · Brigitte Pientka

only counting those elements which are not mapped to themselves. A node which
contains a n such elements has size n and is preferred over a node of size m if n is
greater than n.

If no node is compatible, we simply create a new node with the substitution
we intended to insert. To simplify the algorithms we only consider trees with at
least one entry and a default identity substitution at the root. The substitution
tree which contains as the only entry the term Ψ̂.R for example, is a tree with
the default identity substitution Ψ̂.i0[idΨ]/i0 at the root and one child with the
substitution Ψ̂.R/i0.

The filtering process to collect all nodes which are fully and partially compatible
can be formalized by using the following judgment. We will distinguish between
the fully compatible children, which we collect in V , and the partially compatible
children, which we collect in S.

Fully compatible children V ::= · | V, (N, θ)
Partially compatible children S ::= · | S, (N,Ω⊢ρ, θ1, θ2)

Note that it is not quite enough to just identify the children nodes N which are
fully compatible or partially compatible. Instead, we need to track more informa-
tion. For example, if we identify a child node N where N = Ω′ ⊢ ρi ։ Ci is fully
compatible with δ, then this means that δ is an instance of ρi and there exists
a contextual substitution θ such that [[θ]]ρi = δ. Similarly, if we identify a child
node N where N = Ω′ ⊢ ρi ։ Ci is partially compatible with δ, then this means
that mslg between ρi and δ is the contextual substitution ρ, and ρi = [[θ1]]ρ and
δ = [[θ2]]ρ. Now we can define the following judgment:

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S)

Given some children C and a contextual substitution δ, where the domain of
each child in C and of the contextual substitution δ is Ω, we can compute fully
compatible children V and the partially compatible children S.
δ is a contextual substitution such that ∆ ⊢ δ ⇐ Ω, and for all the children

Ci = (Ωi⊢ρi ։ C′) in C, we have ∆,Ωi ⊢ ρi ⇐ Ω. Then V and S describe all the
children from C which are compatible with δ. We distinguish three cases.

∆ ⊢ nil ⊔ δ : Ω =⇒ (·, ·)

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S) ∆, Ω1 ⊢ ρ1 ⊔ δ : Ω =⇒ idΩ/(Ω, ρ1, δ)

∆ ⊢ [(Ω1⊢ρ1 ։ C1), C] ⊔ δ : Ω =⇒ (V, S)
NC

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S) ∆, Ω1 ⊢ ρ1 ⊔ δ : Ω =⇒ ρ1/(Ω1, idΩ1
, θ2) ρ1 6= idΩ1

∆ ⊢ [(Ω1⊢ρ1 ։ C1), C] ⊔ δ : Ω =⇒ ((V, ((Ω1⊢ρ1 ։ C1), θ2)), S)
FC

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S) ∆, Ω1 ⊢ ρ1 ⊔ δ : Ω =⇒ ρ/(Ω2, θ1, θ2) ρ 6= ρ1 6= idΩ2

∆ ⊢ [(Ω1⊢ρ1 ։ C1), C] ⊔ δ : Ω =⇒ (V, (S , ((Ω1⊢ρ1 ։ C1), Ω2⊢ρ, θ1, θ2))
PC

The NC rule describes the case where the child Ci is not compatible with δ.
Rule FC describes the case where δ is fully compatible with the child Ci and
the rule PC describes the case where δ is partially compatible with Ci. Before

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 25

we describe the traversal of the substitution tree, we prove some straightforward
soundness properties about these rules. The first lemma essentially states that
δ is an instance of all nodes collected in V . Moreover, for every node Ni with
substitution ρi in S, there exists a ρ′ which is the most specific generalization of ρi
and δ.

Lemma 5.7 Insertion of substitution into tree.
If ∆ ⊢ C ⊔ δ : Ω =⇒ (V, S) and ∆ ⊢ δ ⇐ Ω and for any (Ωi⊢ρi ։ C′) ∈ C with

∆,Ωi ⊢ ρi ⇐ Ω then

(1) for any (Ni, θ2) ∈ V where Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ2]]ρi = δ.

(2) for any (Ni,Ω
′ ⊢ ρ′, θ1, θ2) ∈ S where Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ2]]ρ

′ = δ
and [[θ1]]ρ

′ = ρi.

Proof. By structural induction on the first derivation and by using the previous
soundness theorem for mslg of substitutions (theorem 5.5).

Next, we show insertion of a substitution δ into a substitution tree N . The main
judgment is the following:

∆ ⊢ N ⊔ δ : Ω =⇒ N ′ Insert δ into the substitution tree N

If N is a substitution tree and δ is not already in the tree, then N ′ will be the
new substitution tree after inserting δ into N . We write [N ′

i/Ni]C to indicate that
the i-th node Ni in the children C is replaced by the new node N ′

i . Recall that
the substitution δ which is inserted into the substitution tree N does only refer to
meta-variables in ∆ and does not contain any internal meta-variables. Therefore,
a new leaf with substitution δ must have the following form: ·⊢δ ։ nil. Similarly,
if we split the current node and create a new leaf ·⊢θ2 ։ nil (see rule “Split current
node”).

Create new leaf

∆ ⊢ C ⊔ δ : Ω =⇒ (·, ·)

∆ ⊢ (Ω′
⊢ρ ։ C) ⊔ δ : Ω =⇒ (Ω′

⊢ρ ։ (C, (·⊢δ ։ nil))

Recurse

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S) Ni ∈ C (Ni, θ2) ∈ V ∆ ⊢ Ni ⊔ θ2 =⇒ N ′

∆ ⊢ (Ω′
⊢ρ ։ C) ⊔ δ : Ω =⇒ (Ω′

⊢ρ ։ [N ′/Ni]C

Split current node

∆ ⊢ C ⊔ δ : Ω =⇒ (·, S) Ni ∈ C Ni = (Ωi⊢ρi ։ Ci) (Ni, Ω
∗
⊢ρ, θ1, θ2) ∈ S

∆ ⊢ (Ω′
⊢ρ ։ C) ⊔ δ : Ω =⇒ (Ω′

⊢ρ ։ [(Ω∗
⊢ρ ։ ((Ωi⊢θ1 ։ Ci), (·⊢θ2 ։ nil)))/Ni]C)

The above rules always insert a substitution δ into the children C of a node
Ω⊢ρ ։ C. We start inserting a substitution Ψ̂.R/i0 into the empty substitution
tree which contains the identity substitution Ψ̂.i0[id]/i0 and has an empty list of
children. This allows us to treat insertion of a substitution δ into a substitution
tree uniformly. After the first insertion, we obtain the substitution tree which
contains the identity substitution Ψ̂.i0[id]/i0 and the child of this node contains the
substitution Ψ̂.R/i0.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

26 · Brigitte Pientka

As we mentioned in the beginning, there may not be a unique substitution tree,
and the order in which elements are inserted matters. More importantly, there
are in fact two choices which need to be resolved when inserting a given element
into a tree. The first one arises when we recursively insert a substitution into the
substitution tree using the rule Recurse. This involves first computing a list of
fully compatible children V . However, there may be in fact more than one fully
compatible child, and hence we must choose one to recurse on. The second one
arises in the split rule because there maybe be more than one partially compatible
child in the set S. As mentioned earlier, these two choices must be resolved in an
implementation. These choices are already present in the first-order setting, we can
employ similar heuristics to resolve them. The higher-order framework we describe
does not add any additional choices.

When inserting the contextual substitution θ2 into the tree Ni, we possibly obtain
a new tree N ′, and we must replace the old tree Ni with the new one. In practice,
these updates are done destructively, and there is no need to explicitly return a
tree N ′ and explicitly perform this replacement.

Next, we prove soundness of the insertion algorithm – we prove that in fact no
matter what choice we make, we obtain a correct substitution tree. This leads us
to the following soundness statement where we show that if we insert a substitution
δ into the children C, then there exists a child Ci = Ωi⊢ρi ։ C′

i in C and a path
from ρi to ρn, where ρn is at a leaf such that [[ρn]][[ρn−1]] . . . ρi = δ.

Theorem 5.8 Soundness of insertion.
If ∆ ⊢ (Ω′

⊢ρ′ ։ C) ⊔ δ : Ω =⇒ (Ω′
⊢ρ′ ։ C′)

then there exists a child Ci = (Ωi⊢ρi ։ C′) and a path from ρi to ρn such that

[[ρn]][[ρn−1]] . . . ρi = δ.

Proof. By induction on the first derivation using the previous lemma 5.7.

6. RETRIEVAL

In general, we can retrieve all terms from the index which satisfy a given property.
This property may be finding all terms from the index which unify with a given term
M or finding all terms N from the index, such that a given term M is an instance
or variant of N . One advantage of substitution trees is that all these retrieval
operations can be implemented with only small changes. A key challenge in the
higher-order setting is to design efficient retrieval algorithms which will perform
well in practice. We will show how to retrieve terms which are an instance of a
given term in the index, and discuss how to modify this algorithm to retrieve all
elements which are unifiable with a given term, and check for variant.

6.1 Instance checking for linear higher-order patterns

First, we present an instance checking algorithm for linear higher-order patterns.
Instance checking or matching for higher-order terms was only recently proven to
be decidable [Sterling 2007], but efficient algorithms do not exist for the general
fragment. We therefore concentrate on linear higher-order patterns. The advantage
will be that instance checking is similar to the first-order case, and easily can be
modified to allow checking for unifiability of two terms.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 27

We treat again internal meta-variables differently than global meta-variables.
The principal judgment are as follows:

∆2; (∆1,Ω); Γ ⊢M1
.
= M2 : A/(θ, ρ) M2 is an instance of M1

∆2; (∆1,Ω); Γ ⊢ R1 + R2 : P/(θ, ρ) R2 is an instance of R1

∆2; (∆1,Ω); Γ ⊢ S1 + S2 : A > P/(θ, ρ) S2 is an instance of S2

Again we assume that M1 (R1, S1 resp.) must be well-typed in the modal context
∆,Ω and the bound variable context Γ. M2 (R2, S2 resp.) are well-typed in the
modal context ∆2 and the bound variable context Γ. In other words M1 only
contains internal meta-variables and is stored in the index, while M2 is given,
and that the meta-variables occurring in M1 are distinct from the meta-variables
occurring in M2. More formally this is stated as (∆1,Ω); Γ ⊢M1 ⇐ A and ∆2; Γ ⊢
M2 ⇐ A and ∆ = (∆2,∆1). ρ is the substitution for the internal meta-variables in
Ω while θ is the substitution for some meta-variables in ∆1. Moreover, we maintain
that [[θ, ρ]]M1 is syntactically equal to M2. We will treat Ω as a linear context in the
formal description given below. This will make it easier to prove the relationship
between insertion and retrieval later on.

Normal terms

∆2; (∆1, Ω); Γ, x:A1 ⊢ M1
.
= M2 : A2 / (θ, ρ)

∆2; (∆1, Ω); Γ ⊢ λx.M1
.
= λx.M2 : A1 → A2 / (θ, ρ)

lam

∆2; (∆1, Ω); Γ ⊢ R1 + R2 : P / (θ, ρ)

∆2; (∆1, Ω); Γ ⊢ R1
.
= R2 : P / (θ, ρ)

coe

Atomic terms

∆2; (∆1, i::P [Γ]); Γ ⊢ i[idΓ] + R : P / (·, (Γ̂.R/i))
meta-1

u::P [Γ] ∈ ∆1

∆2; (∆1, ·); Γ ⊢ u[πΓ] + R : P / (Γ̂.([π]−1 R/u), ·)
meta-2

∆2; (∆1, Ω); Γ S1 + S2 : A > P / (θ, ρ) where Σ(H) = A or Γ(H) = A

∆2; (∆1, Ω); Γ ⊢ H · S1 + H · S2 : P / (θ, ρ)
head

Spines

∆2; (∆1, ·); Γ nil + nil : P > P / (·, ·)
Snil

∆2; (∆1, Ω1); Γ ⊢ M1 + M2 : A1 / (θ1, ρ1)
∆2; (∆1, Ω2); Γ S1 + S2 : A2 > P / (θ2, ρ2)

∆2; (∆1, Ω1, Ω2); Γ (M1; S1) + (M2; S2) : A1 → A2 > P / ((θ1, θ2), (ρ1, ρ2))
Scons

Note that we need not worry about capture in the rule for lambda expressions
since meta-variables and bound variables are defined in different contexts. In the
rule Scons, we are allowed to union the two substitutions θ1 and θ2, as the linearity
requirement ensures that the domains of both substitutions are disjoint. Note that
the case for matching a meta-variable u[π] with another term R is simpler and more
efficient than in the general higher-order pattern case. In particular, it does not

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

28 · Brigitte Pientka

require a traversal of R (see rules meta-1 and meta-2).
Since the inverse of the substitution π can be computed directly and will be total,

we know [π]
−1
R exists and can simply generate a substitution Γ̂.[π]

−1
R/u. The

algorithm can be easily specialized to retrieve variants by requiring in the meta-2

rule that R must be u[π]. To check unifiability we need to add the dual rule to
meta-2 where we unify R with an meta-variable u[π]. The only complication is
that R may contain internal meta-variables which are defined later on the path in
the substitution tree. Now we show soundness and completeness of the retrieval
algorithm. We first show soundness and completeness of the instance algorithm for
terms.

Theorem 6.1 Soundness of instance algorithm for terms.

(1) If ∆2; (∆1,Ω); Γ ⊢M1
.
= M2 : A/(θ, ρ)

where (∆1,Ω); Γ ⊢M1 ⇐ A and ∆2; Γ ⊢M2 ⇐ A then [[θ, ρ]]M1 = M2.

(2) If ∆2; (∆1,Ω); Γ ⊢ R1 + R2 : P/(θ, ρ)
where (∆1,Ω); Γ ⊢ R1 ⇒ P and ∆2; Γ ⊢ R2 ⇒ P then [[θ, ρ]]R1 = R2.

(3) If ∆2; (∆1,Ω); Γ ⊢ S1 + S2 > A⇒ P/(θ, ρ)
where (∆1,Ω); Γ ⊢ S1 > A⇒ P and ∆2; Γ ⊢ S2 > A⇒ P then [[θ, ρ]]S1 = S2.

Proof. Simultaneous structural induction on the first derivation.

For completeness we show that if the term M2 is an instance of a linear term
M then the given algorithm will succeed and return substitution θ∗ for the meta-
variables and a substitution ρ∗ for the internal meta-variables occurring in M . This
establishes a form of local completeness of the given retrieval algorithm. We will
show later a global completeness theorem, which states that any time we compute
the msgl of a term M1 and M2 to be M , then we can show that M2 is in fact an
instance of M . More generally, we show that any time we insert a substitution
Γ̂.M2/i0 we can also retrieve it.

Theorem 6.2 Completeness of instance algorithm for terms.

(1) If (∆1,Ω); Γ ⊢M1 ⇐ A and ∆2; Γ ⊢M2 ⇐ A and

∆2 ⊢ θ ⇐ ∆1 and ∆2 ⊢ ρ⇐ Ω and [[θ, ρ]]M1 = M2 then

∆2; (∆1,Ω); Γ ⊢M1
.
= M2 : A/(θ∗, ρ) where θ∗ ⊆ θ.

(2) If (∆1,Ω); Γ ⊢ R1 ⇒ P and ∆2; Γ ⊢ R2 ⇒ P and

∆2 ⊢ θ ⇐ ∆1 and ∆2 ⊢ ρ⇐ Ω and [[θ, ρ]]R1 = R2 then

∆2; (∆1,Ω); Γ ⊢ R1 + R2 : P/(θ∗, ρ) where θ∗ ⊆ θ.

(3) If (∆1,Ω); Γ ⊢ S1 > A⇒ P and ∆2; Γ ⊢ S2 > A⇒ P and

∆2 ⊢ θ ⇐ ∆1 and ∆2 ⊢ ρ⇐ Ω and [[θ, ρ]]S1 = S2 then

∆2; (∆1,Ω); Γ ⊢ S1
.
= S2 : A > P/(θ∗, ρ) where θ∗ ⊆ θ.

Proof. Simultaneous structural induction on the first typing derivation.

6.2 Instance checking for contextual substitutions

The instance algorithm for terms can be straightforwardly extended to instances of
substitutions. We define the following judgment for it:

∆2; (∆1,Ω) ⊢ ρ1
.
= ρ2 : Ω′/(θ, ρ) ρ2 is an instance of ρ1

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 29

We assume that ρ1 is a contextual substitution from a modal context Ω′ to a
modal context ∆,Ω, and and ρ2 is a contextual substitution from Ω′ to the modal
context ∆2. Our goal is to check whether ρ2 is an instance of ρ1. The result of
this is the contextual substitution ρ for the meta-variables in Ω and the contextual
substitution θ for the meta-variables in ∆ such that [[θ, σ]]ρ1 is syntactically equal
to ρ2. Again we enforce the linearity criteria for internal meta-variables in Ω but
leave it implicit for the meta-variables in ∆1.

∆2; (∆1, ·) ⊢ ·
.
= · : ·/(·, ·)

∆2; (∆1, Ω
′′

1) ⊢ ρ1
.
= ρ2 : Ω2/(θ, ρ) ∆2; (∆1, Ω

′

1); Γ ⊢ R1
.
= R2 : P/(θ′, ρ′)

∆2; (∆1, Ω
′

1, Ω
′′

2) ⊢ (ρ1, Ψ̂.R1/i)
.
= (ρ2, Ψ̂.R2/i) : (Ω2, i::P [Γ]))/((θ, θ′), (ρ, ρ′)

Next, we show soundness of retrieval for substitutions.

Theorem 6.3 Soundness of retrieval for substitutions.
If ∆2; (∆1,Ω) ⊢ ρ1

.
= ρ2 : Ω′/(θ, ρ) and (∆1,Ω) ⊢ ρ1 ⇐ Ω′ and ∆2 ⊢ ρ2 ⇐ Ω′ and

(∆1,∆2) = ∆ and all the variables in Ω, ∆1 and ∆2 are distinct then [[θ, ρ]]ρ1 = ρ2.

Proof. Structural induction on the first derivation and using previous theorem
6.1.

Finally, we show the global completeness of the mslg and instance algorithm
which relates insertion and retrieval. We show that if the mslg of object M1 and
M2 returns the contextual substitutions θ1 and θ2 together with the mslg M , then
in fact the retrieval algorithm shows that M1 is an instance of M under θ1 and M2

is an instance of M under θ2. This guarantees that any time we insert a term M2

we can in fact retrieve it. We assume here that the set of meta-variables in M1 is
distinct from the set of meta-variables in M2 which simplifies this proof slightly,
since this guarantees that the mslg M only refers to meta-variables in Ω′.

Theorem 6.4 Interaction between mslg and instance algorithm.

(1) If (∆1,Ω); Γ ⊢M1 ⇐ A and ∆2; Γ ⊢M2 ⇐ A and

(∆2,∆1),Ω; Γ ⊢M1 ⊔M2 : A =⇒M/(Ω′, ρ1, ρ2) then

(∆1; Ω
′; Γ ⊢M

.
= M1 : A/(·, ρ1) and ∆2; Ω

′; Γ ⊢M
.
= M2 : A/(·, ρ2).

(2) If (∆1,Ω); Γ ⊢ R1 ⇒ P and ∆2; Γ ⊢ R2 ⇒ P and

(∆2,∆1),Ω; Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, ρ1, ρ2) then

∆1; Ω
′; Γ ⊢ R + R1 : P/(·, ρ1) and ∆2; Ω

′; Γ ⊢ R + R2 : P/(·, ρ2).

(3) If (∆1,Ω); Γ ⊢ S1 > A⇒ P and ∆2; Γ ⊢ S2 > A⇒ P and

(∆2,∆1),Ω; Γ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, ρ1, ρ2) then

∆1; Ω
′; Γ ⊢ S

.
= S1 : A > P/(·, ρ1) and ∆2; Ω

′; Γ ⊢ S
.
= S2 : A > P/(·, ρ2).

Proof. Simultaneous structural induction on the first derivation.

Theorem 6.5 Insertion and retrieval for substitutions.
If ∆2,∆1,Ω ⊢ ρ1 ⊔ ρ2 : Ω′ =⇒ ρ/(Ω′′, θ1, θ2) and

(∆1,Ω) ⊢ ρ1 ⇐ Ω′ and ∆2 ⊢ ρ2 ⇐ Ω′ and (∆1,∆2) = ∆ then

∆1; Ω
′′ ⊢ ρ

.
= ρ1 : Ω′/(·, θ1) and ∆2; Ω

′′ ⊢ ρ
.
= ρ2 : Ω′/(·, θ2)

Proof. Structural induction on the first derivation and use of lemma 6.4.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

30 · Brigitte Pientka

Next, we show how to traverse the tree, to find a path [[ρn]][[ρn−1]] . . . ρ1 such
that ρ2 is an instance of it and return a contextual substitution θ such that
[[θ]][[ρn]][[ρn−1]] . . . ρ1 = ρ2. Traversal of the tree is straightforward.

∆, Ω ⊢ ρ
.
= ρ2 : Ω′/(θ′, ρ′) ∆ ⊢ C

.
= ρ′ : Ω/θ

∆ ⊢ [(Ω⊢ρ ։ C), C′]
.
= ρ2 : Ω′/(θ′, θ)

there is no derivation such that∆, Ω ⊢ ρ
.
= ρ2 : Ω′/(θ′, ρ′)
∆ ⊢ C′ .

= ρ : Ω/θ

∆ ⊢ [(Ω⊢ρ ։ C), C′]
.
= ρ2 : Ω′/θ

Theorem 6.6 Soundness of retrieval.
If ∆ ⊢ C

.
= ρ′ : Ω′/θ then there exists a child Ci with substitution ρi in C such that

the path [[θ]][[ρn]][[ρn−1]] . . . [[ρi]] = ρ′.

Proof. By structural induction on the first derivation and use of lemma 6.3.

Finally, we show that if we insert ρ into a substitution tree and obtain a new
tree, then we are able to retrieve ρ from it.

Theorem 6.7 Interaction between insertion and retrieval.
If ∆ ⊢ (Ω ⊢ ρ ։ C) ⊔ ρ2 : Ω =⇒ (Ω ⊢ ρ ։ C′) then ∆ ⊢ C′ .= ρ2/id∆.

Proof. Structural induction on the derivation using theorem 6.5.

7. EXTENSION TO DEPENDENTLY TYPED TERMS

Substitution trees are especially suited for indexing dependently typed terms, since
they provide more flexibility than indexing techniques such as discrimination tries
or path indexing techniques which only allow us to share common prefixes. To
illustrate this point, we define a data-structure for lists consisting of characters and
we keep track of the size of the list by using dependent types.

char : type. list : int → type.
a : char . nil : list 0.
b : char . cons : Πn:int .char → list n→ list (n+ 1).
test : Πn:int .list n→ type.

The size of lists is an explicit argument to the predicate test. Hence test takes in
two arguments, the first one is the size of the list and the second one is the actual
list. The list constructor cons takes in three arguments. The first one denotes the
size of the list, the second argument denotes the head and the third one denotes
the tail. To illustrate, we give a few examples. We use gray color for the index
arguments.

test 4 (cons 3 a (cons 2 a (cons 1 a (cons 0 b nil))))
test 5 (cons 4 a (cons 3 a (cons 2 a (cons 1 a (cons 0 b nil)))))
test 6 (cons 5 a (cons 4 a (cons 3 a (cons 2 b (cons 1 a (cons 0 b nil))))))

If we use non-adaptive indexing techniques such as discrimination tries, we pro-
cess the term from left to right and we will be able to share common prefixes. In

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 31

the given example, such a technique discriminates on the first argument, which de-
notes the size of the list and leads to no sharing between the second argument. The
substitution tree on the other hand allows us to share the structure of the second
argument. The most specific linear generalization in this example is

test i1[id] (cons i2[id] a (cons i3[id] a (cons i4[id] a (cons i5[id] i6[id] nil)))).

This allows us to skip over the first argument denoting the size and indexing
on the second argument, the actual list. It has been sometimes argued that it is
possible to retain the flexibility in non-adaptive indexing techniques by reordering
the arguments to test. However, this only works easily in an untyped setting and it
is not clear how to maintain typing invariants in a dependently typed setting if we
allow arbitrary reordering of arguments. Hence higher-order substitution trees offer
an adaptive compact indexing data-structure while maintaining typing invariants.

However, there are unique challenges of designing and implementing higher-order
substitution trees for dependently typed terms. For example, transforming depen-
dently typed terms into linear higher-order patterns may result in ill-typed terms
– or better linear higher-order patterns are only well-typed modulo variable defini-
tions. Fortunately, linear higher-order patterns are still approximately well-typed.
It were these complex issues which lead us to carefully formalize substitution trees
in the simply typed setting.

We may think of linear terms as a representation which is only used internally,
and all linear terms are well-typed modulo variable definitions. Then we can show
that simple types (e.g. types where dependencies have been erased) are preserved in
substitution trees, and all intermediate variables introduced are only used within
this data-structure, but do not leak outside. As a consequence, we will always
obtain a dependently typed term after composing the contextual substitutions in
one branch of the substitution tree and solving the variable definitions.

8. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented substitution trees to manage the table in the tabled higher-
order logic programming engine [Pientka 2005] to permit lookup and possible in-
sertion of terms to be performed in a single pass as part of the Twelf system
[Pfenning and Schürmann 1999]. The Twelf system is an implementation of the
logical framework LF together with a logic programming engine using the typed
functional language SML of New Jersey 110.0.3.

In the tabled higher-order logic programming engine we store intermediate sub-
goals in a memoization table which is implemented as a substitution tree. Each
tabled predicate has its own substitution tree. Our implementation is a high-level
implementation which relies on the existing data-structure for terms and types to
smoothly integrate it into the existing framework. In our implementation, de Bruijn
indices are used to implement bound variables and meta-variables, and terms are
implemented using spine notation as described in this paper.

The substitution tree itself is implemented as a linked tree, where a node contains
as data a substitution together with the context of meta-variables occurring in the
range of this substitution and a list of pointers to other substitution trees which
constitute its children. The substitution at each node is implemented as a set using

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

32 · Brigitte Pientka

C. Okasaki’s implementation of red-black trees. This allows for destructive updates
within the tree.

In the implementation we use two different de Bruijn indices – one for bound
variables and global meta-variables (from ∆), and one for internal meta-variables
(from Ω). To distinguish between bound variables and global meta-variables we in
addition carry a marker. Internal existential variables i will be instantiated at a
later point as we traverse the tree. Global meta-variables on the other hand are
only subject to instantiation if we check whether the current subgoal is an instance
of one in the table.

At the leafs of the substitution tree, we store linear residual equations, context
Γ, the meta-variables occurring in the residual equations and in Γ, as well as a
pointer to the answer list. We maintain that terms are kept in βη-normal form, as
also described in this paper. Before inserting a term in the index we normalize and
linearize it to obtain a standard form. In the subsequent discussion, we compare
the performance of the tabled engine with and without indexing.

8.1 Experimental results

In this section, we discuss examples from three different applications which use the
tabled logic programming engine in Twelf. Here we focus on an evaluation of the
indexing technique. For a more in-depth discussion of tabling we refer the reader
to [Pientka 2002; 2005]. All experiments were done on a machine with the following
specifications: 1.60GHz Intel Pentium Processor, 256 MB RAM. We are using SML
of New Jersey 110.0.3 under Linux Red Hat 7.1. Times are measured in seconds.
All the examples use variant checking as a retrieval mechanism. Although we have
implemented instance checking, which allows us to check if a table entry subsumes
the given goal, we did not observe substantial performance improvements. This is
mostly due to the fact that the surrounding tabling engine can maintain stronger
invariants if we support only variant checking and eliminates the need to perform
a lookup on the table to retrieve answers. A similar observation has been made for
tabling in the first-order logic programming engine XSB [Ramakrishnan et al. 1999].
Potentially instance checking becomes more important in theorem proving, as the
experience in the first-order setting shows. We compare our tabling engine without
term indexing and without linearization to the one which supports substitution tree
indexing.

8.2 Parsing of first-order formulae

Parsing and recognition algorithms for grammars are excellent examples for tabled
evaluation, since we often want to mix right and left recursion (see also [Warren
1999]). In this example, we adapted ideas from [Warren 1999] to implement a
parser for first-order formulas using higher-order abstract syntax. The simplest
way to implement left and right associativity properties of implications, conjunc-
tion and disjunction is to mix right and left recursive program clauses. Clauses for
conjunction and disjunction are left recursive, while the program clause for implica-
tion is right recursive. Such an implementation of the grammar is straightforward
mirroring the defined properties such as left and right associativity and precedence
ordering.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 33

#tok noindex index reduction improvement
in time factor

20 0.13 0.07 46% 1.85
58 2.61 1.25 52% 2.08

117 10.44 5.12 51% 2.03
178 32.20 13.56 58% 2.37
235 75.57 26.08 66% 2.90

The first column denotes the number of tokens which are parsed. This example
illustrates that indexing can lead to improvements by over a factor of 2.90. In fact,
the more tokens need to be parsed and the longer the tabled logic programming
engine runs, the larger the benefits of indexing. The table grows up to over 4000
elements in this example. This indicates that indexing prevents to some extent
program degradation due to large tables and longer run-times.

8.3 Refinement type-checker

In this section, we discuss experiments with a bi-directional type-checking algorithm
for a small functional language with intersection types which has been developed
by Davies and Pfenning [Davies and Pfenning 2000]. We use an implementation
of the bi-directional type-checker in Twelf by F. Pfenning. The type-checker is
executable with the original logic programming interpreter, which performs a depth-
first search. However, redundant computation may severely hamper its performance
as there are several derivations for proving that a program has a specified type.

We give several examples which are grouped in three categories. In the first
category, we are interested in finding the first answer to a type checking problem
and once we have found the answer execution stops. The second category contains
example programs which are not well-typed and the implemented type-checker re-
jects these programs as not well-typed. The third category are examples where we
are interested in finding all answer to the type-checking problem.

First answer

example noindex index reduction improvement
time factor

sub1 3.19 0.46 86% 6.93
sub2 4.22 0.55 87% 7.63
sub3 5.87 0.63 89% 9.32
mult 7.78 0.89 89% 8.74
square1 9.08 0.99 89% 9.17
square2 9.02 0.98 89% 9.20

Not provable

example noindex index reduction improvement
time factor

multNP1 2.38 0.38 84% 6.26
multNP2 2.66 0.51 81% 5.22
plusNP1 1.02 0.24 76% 4.25
plusNP2 6.48 0.85 87% 7.62
squareNP1 9.29 1.09 88% 8.52
squareNP2 9.26 1.18 87% 7.85

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

34 · Brigitte Pientka

All answers
example noindex index reduction improvement

time factor

sub1 6.88 0.71 90% 9.69
sub2 3.72 0.48 87% 7.75
sub3 4.99 0.59 88% 8.46
mult 9.06 0.98 89% 9.24
square1 10.37 1.11 89% 9.34
square2 10.30 1.08 90% 9.54

As the results demonstrate indexing leads to substantial improvements by over
a factor of 9. Table sizes are around 500 entries.

8.4 Evaluating Mini-ML expression via reduction

In the third experiment we use an implementation which evaluates expressions of
a small functional language via reduction. The reduction rules are highly non-
deterministic containing reflexivity and transitivity rules.

example noindex index reduction improvement
time factor

mult1 10.86 6.26 57% 1.73
mult2 39.13 18.31 47% 2.14
addminus1 54.31 14.42 73% 3.77
addminus2 57.34 15.66 73% 3.66
addminus3 55.23 25.45 54% 2.17
addminus4 144.73 56.63 61% 2.55
minusadd1 1339.16 462.83 65% 2.89

As the results demonstrate, performance is improved by up to 3.77. Table size
was around 500 entries in the table. The limiting factor in this example is not
necessarily the table size but the large number of suspended goals which is over
6000. This may be the reason why the speed-up is not as large as in the refinement
type-checking example.

9. RELATED WORK

We have presented a higher-order term indexing technique, called higher-order sub-
stitution trees. We only know of two other prior attempts to design and implement
a higher-order term indexing technique. L. Klein [Klein 1997] developed in his mas-
ter’s thesis a higher-order term indexing technique for simply typed terms where
algorithms are based on a fragment of Huet’s higher-order unification algorithm,
the simplification rules. Since the most specific linear generalization of two higher-
order terms does not exist in general, he suggests to maximally decompose a term
into its atomic subterms. This approach results in larger substitution trees and
stores redundant substitutions. In addition, he does not use explicit substitutions
leading to further redundancy in the representation of terms. As no linearity cri-
teria is exploited, the consistency checks need to be performed eagerly, potentially
degrading the performance.

Necula and Rahul briefly discuss the use of automata driven indexing for higher-
order terms in [Necula and Rahul 2001]. Their approach is to ignore all higher-order

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 35

features when maintaining the index, and return an imperfect set of candidates.
Then full higher-order unification on the original terms is used to filter out the
ones which are in fact unifiable in a post-processing step. They also implemented
Huet’s unification algorithm, which is highly nondeterministic. Although they have
achieved substantial speed-up for their application in proof-carrying code, it is
not as general as the technique we have presented here. The presented indexing
technique is designed as a perfect filter for linear higher-order patterns. For objects
which are not linear higher-order patterns, we solve variable definitions via higher-
order unification, but avoid calling higher-order unification on the original term.

More recently, Theiss and Benzmüller explore higher-order term indexing in
their implementation of Leo-II, a higher-order resolution theorem prover [Theiss
and Benzmüller 2006]. Their approach is based on coordinate and path indexing
[Stickel 1989]. The work mostly focuses on efficient data-structure of lambda-terms
based on de Bruijn indices together with a path-indexing structure. Terms are not
represented using spines, which means that there is no easy access to the head of
a lambda-term. Moreover, there is no notion of meta-variables as closures. To
implement path-indexing for lambda-terms, the authors keep track of the scope of
lambda-binders using a scope number. Their indexing structure is partly designed
to speed-up β-reduction, and the impact on theorem proving is not yet fully known.

Higher-order substitution trees provide a very flexible term indexing structure.
As mentioned earlier, they are particular suited for dependently-typed systems,
since there is no sharing of prefixes. However, in general there may be multiple
ways to insert a term and no optimal substitution trees exist, and these choices
must be resolved in an implementation. One may consider obtaining an even
more compact tree by computing the generalization of (and (not A) (not B)) and
(or (not A) (not B)) as i[not A/x, not B/y] where we can obtain the first term by
instantiating i with (and x y) and the second one by instantiating i with (or x y). A
similar idea is employed in the first-order setting in context trees [Ganzinger et al.
2004]. In the higher-order setting however to allow this extension is non-trivial
since the term i[not A/x, not B/y] is outside the decidable pattern fragment. For
example, if we match (imp (not A)(not B)) against i[not A/x, not B/y], then there
are four possible instantiations for i: (imp x y), (imp (not A) y), (imp x (not B)),
(imp (not A) (not B)). This nondeterminism would significantly complicate inser-
tion and retrieval.

10. CONCLUSION

We have presented the theoretical foundation for higher-order substitution trees
based on linear higher-order patterns, developed algorithms for computing most
specific generalizations of two linear higher-order patterns, and proved the correct-
ness of inserting and retrieving elements from a substitution tree. The presented
framework can serve as a general foundation for higher-order term indexing in many
higher-order logic programming systems such as λProlog [Nadathur and Mitchell
1999], and higher-order theorem provers such as Bedwyr [Baelde et al. 2007], Is-
abelle [Paulson 1986], or Leo-II [Benzmüller et al. 2008].

We have implemented substitution trees within the Twelf system [Pfenning and
Schürmann 1999] as part of the higher-order tabled logic programming engine. As

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

36 · Brigitte Pientka

our experimental result show, this lead to an improvement of up to a factor of 10
for the tabling engine. In the tabling engine, the table is a dynamically built index,
i.e. when evaluating a query we store intermediate goals encountered during proof
search. We have also used our substitution tree implementation to index higher-
order logic programs (see [Sarkar et al. 2005]). The use of indexing in this setting
was motivated by the need to easily retrieve all clauses which unify with a current
goal. This was difficult to incorporate in the existing previous implementation, and
substitution trees provided a flexible way to deal with this issue. For this we build
the index statically, observing the order of the clauses from the program.

Our experimental results and implementation demonstrate that indexing in the
higher-order setting is feasible and beneficial in practice. However, much work re-
mains to be done on the implementations of higher-order logic programming systems
and higher-order theorem provers to explore the full impact of these techniques. In
the setting of substitution tree indexing for example, we can compute an optimal
substitution tree via unification factoring [Dawson et al. 1995] for a static set of
terms to get the best sharing among clause heads. Hence an important question is
how these results carry over to higher-order case. Another important observation is
that clause heads typically do not use deeply nested terms, but are fairly shallow.
This results in shallow substitution trees which are wide but not very deep. In
the future, we plan to explore and optimize substitution tree indexing for indexing
higher-order logic programming clauses.

Acknowledgments

I would like to thank the reviewers for their thorough and extensive comments
which helped improve this work substantially.

REFERENCES

Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J. 1990. Explicit substitutions. In 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’90).
ACM Press, 31–46.

Baelde, D., Gacek, A., Miller, D., Nadathur, G., and Tiu, A. 2007. The Bedwyr system
for model checking over syntactic expressions. In 21st Conference on Automated Deduction,
F. Pfenning, Ed. Lecture Notes in Artificial Intelligence (LNAI 4603). Springer, 391–397.

Benzmüller, C., Theiss, F., Paulson, L., and Fietzke, A. 2008. Leo-II - A Cooperative
Automatic Theorem Prover for Higher-Order Logic (System Description). In 4th International
Joint Conference on Automated Reasoning (IJCAR’08). Lecture Notes in Artificial Intelligence
(LNAI 5195). Springer, 162–170.

Cervesato, I. and Pfenning, F. 2003. A linear spine calculus. Journal of Logic and Computa-
tion 13, 5, 639–688.

Chen, T., Ramakrishnan, I. V., and Ramesh, R. 1994. Multistage indexing for speeding prolog
executions. Software – Practice and Experience 24, 12, 1097–1119.

Davies, R. and Pfenning, F. 2000. Intersection types and computational effects. In 5th Inter-
national Conference on Functional Programming (ICFP’00). ACM Press, 198–208.

Dawson, S., Ramakrishnan, C. R., Ramakrishnan, I. V., and Swift, T. 1995. Optimizing
clause resolution: Beyond unification factoring. In International Logic Programming Sympo-
sium, MIT Press. 194–208.

Dawson, S., Ramakrishnan, C. R., Skiena, S., and Swift, T. 1995. Principles and practice
of unification factoring. ACM Transactions on Programming Languages and Systems 18, 6,
528–563.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · 37

Dawson, S., Ramakrishnan, C. R., and V.Ramakrishnan, I. 1995. Design and implementation

of jump tables for fast indexing of logic programs. In International Symposium on Programming
Language Implementation and Logic Programming (PLILP’95). Lecture Notes in Computer
Science (LNCS 982). Springer, 133–150.

Dowek, G., Hardin, T., and Kirchner, C. 1995. Higher-order unification via explicit sub-
stitutions. In 10th Annual Symposium on Logic in Computer Science, D. Kozen, Ed. IEEE
Computer Society Press, 366–374.

Ganzinger, H., Nieuwenhuis, R., and Nivela, P. 2004. Fast term indexing with coded context
trees. Journal of Automated Reasoning 32, 2, 103–120.

Graf, P. 1995a. Substitution tree indexing. In 6th International Conference on Rewriting
Techniques and Applications, Kaiserslautern, Germany. Lecture Notes in Computer Science
(LNCS 914). Springer-Verlag, 117–131.

Graf, P. 1995b. Term Indexing. Lecture Notes in Artificial Intelligence (LNAI 1053). Springer-
Verlag.

Hillenbrand, T. 2003. Citius altius fortius: lessons learned from the theorem prover Wald-
meister (invited paper). In Proceedings of the 4th International Workshop on First-Order
Theorem Proving, I. Dahn and L. Vigneron, Eds. Electronic Notes in Theoretical Computer
Science, vol. 86.1. Elsevier Science.

Klein, L. 1997. Indexing für Terme höherer Stufe. Diplomarbeit, FB 14, Universität des Saar-
landes, Saarbrücken, Germany.

McCune, W. 1992. Experiments with discrimination-tree indexing and path indexing for term
retrieval. Journal of Automated Reasoning 9, 2, 147–167.

Miller, D. 1991a. A logic programming language with lambda-abstraction, function variables,
and simple unification. Journal of Logic and Computation 1, 4, 497–536.

Miller, D. 1991b. Unification of simply typed lambda-terms as logic programming. In 8th
International Logic Programming Conference. MIT Press, 255–269.

Nadathur, G. and Mitchell, D. J. 1999. System description: Teyjus – a compiler and abstract
machine based implementation of Lambda Prolog. In 16th International Conference on Auto-
mated Deduction (CADE’99), H. Ganzinger, Ed. Lecture Notes in Computer Science (LNCS
1632). Springer, 287–291.

Nanevski, A., Pfenning, F., and Pientka, B. 2008. Contextual modal type theory. ACM
Transactions on Computational Logic 9, 3.

Necula, G. and Rahul, S. 2001. Oracle-based checking of untrusted software. In 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’01). ACM
Press, 142–154.

Paulson, L. C. 1986. Natural deduction as higher-order resolution. Journal of Logic Program-
ming 3, 237–258.

Pfenning, F. 1991. Unification and anti-unification in the Calculus of Constructions. In 6th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, 74–
85.

Pfenning, F. and Schürmann, C. 1999. System description: Twelf — a meta-logical framework
for deductive systems. In 16th International Conference on Automated Deduction (CADE’99,
H. Ganzinger, Ed. Lecture Notes in Artificial Intelligence (LNAI 1632). Springer, 202–206.

Pientka, B. 2002. A proof-theoretic foundation for tabled higher-order logic programming. In
18th International Conference on Logic Programming, P. Stuckey, Ed. Lecture Notes in Com-
puter Science (LNCS 2401). Springer, 271 –286.

Pientka, B. 2003a. Higher-order substitution tree indexing. In 19th International Conference
on Logic Programming, C. Palamidessi, Ed. Lecture Notes in Computer Science (LNCS 2916).

Springer, 377–391.

Pientka, B. 2003b. Tabled higher-order logic programming. Ph.D. thesis, Department of Com-
puter Science, Carnegie Mellon University. CMU-CS-03-185.

Pientka, B. 2005. Tabling for higher-order logic programming. In 20th International Conference
on Automated Deduction (CADE’05), R. Nieuwenhuis, Ed. Lecture Notes in Computer Science,
(LNCS 3632). Springer, 54–68.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

38 · Brigitte Pientka

Pientka, B. and Pfenning, F. 2003. Optimizing higher-order pattern unification. In 19th

International Conference on Automated Deduction (CADE’03), Miami, USA, F. Baader, Ed.
Lecture Notes in Artificial Intelligence (LNAI 2741). Springer, 473–487.

Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., and Warren, D. 1995. Efficient tabling
mechanisms for logic programs. In 12th International Conference on Logic Programming,
L. .Sterling, Ed. MIT Press, 697–711.

Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift, T., and Warren, D. 1999. Efficient access
mechanisms for tabled logic programs. Journal of Logic Programming 38, 1 (Jan), 31–54.

Ramakrishnan, I. V., Sekar, R., and Voronkov, A. 2001. Term indexing. In Handbook of
Automated Reasoning, A. Robinson and A. Voronkov, Eds. Vol. 2. Elsevier Science Publishers
B.V., 1853–1962.

Ramesh, R., Ramakrishnan, I. V., and Warren, D. S. 1990. Automata-driven indexing of
Prolog clauses. In 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’90). ACM Press, 281–291.

Riazanov, A. and Voronkov, A. 2002. The design and implementation of Vampire. AI Com-
munications 15, 2, 91–110.

Sarkar, S., Pientka, B., and Crary, K. 2005. Small proof witnesses for LF. In 21st Interna-
tional Conference on Logic Programming, M. Gabbrielli and G. Gupta, Eds. Lecture Notes in
Computer Science (LNCS 3668). Springer-Verlag, 387–401.

Sterling, C. 2007. Higher-order matching, games and automata. In 22nd Annual IEEE Sym-
posium on Logic in Computer Science (LICS’07). IEEE Computer Society Press, 326–335.

Stickel, M. E. 1989. The path-indexing method for indexing terms. Tech. Rep. 473, AI Center,
SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025. Oct.

Theiss, F. and Benzmüller, C. 2006. Term Indexing for the LEO-II Prover. In 6th International
Workshop on the Implementation of Logics.

Warren, D. S. 1999. Programming in tabled logic programming. draft available from
http://www.cs.sunysb.edu/w̃arren/xsbbook/book.html.

Watkins, K., Cervesato, I., Pfenning, F., and Walker, D. 2002. A concurrent logical frame-
work I: Judgments and properties. Tech. Rep. CMU-CS-02-101, Department of Computer
Science, Carnegie Mellon University.

Received June 2007 ; revised June 2008; accepted Oct 2008;

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · App–1

This document is the online-only appendix to:

Higher-order term indexing using substitution trees
BRIGITTE PIENTKA

McGill University

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008, Pages 1–38.

A. DETAILLED PROOFS OF PREVIOUS THEOREMS

Theorem A.1 Soundness of mslg for objects.
(previous Thm. 5.2 on page 21)

(1) If (∆,Ω); Γ ⊢M1 ⊔M2 : A =⇒M/(Ω′, θ1, θ2) and

(∆,Ω); Γ ⊢M1 ⇐ A and (∆,Ω); Γ ⊢M2 ⇐ A
then (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and

M1 = [[θ1]]M and M2 = [[θ2]]M and (∆,Ω′); Γ ⊢M ⇐ A .

(2) If (∆,Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, θ1, θ2) and

(∆,Ω); Γ ⊢ R1 ⇒ P and (∆,Ω); Γ ⊢ R2 ⇒ P
then (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and

R1 = [[θ1]]R and R2 = [[θ2]]R and (∆,Ω′); Γ ⊢ R ⇒ P .

(3) If (∆,Ω); Γ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, θ1, θ2) and

(∆,Ω); Γ ⊢ S1 > A⇒ P and (∆,Ω); Γ ⊢ S2 > A⇒ P
then (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and

(∆,Ω′); Γ ⊢ S > A⇒ P and S1 = [[θ1]]S and S2 = [[θ2]]S.

Proof. Simultaneous induction on the structure of the first derivation.
We give here a few cases.

Case. D = (∆,Ω); Γ ⊢ λx.M1 ⊔ λx.M2 : A1 → A2 =⇒ λx.M/(Ω′, θ1, θ2)

(∆,Ω); Γ, x:A1 ⊢M1 ⊔M2 : A2 =⇒M/(Ω′, θ1, θ2) by premise
(∆,Ω); Γ ⊢ λx.M1 ⇐ A1 → A2 by assumption
(∆,Ω); Γ, x:A1 ⊢M1 ⇐ A2 by inversion
(∆,Ω); Γ ⊢ λx.M2 ⇐ A1 → A2 by assumption
(∆,Ω); Γ, x:A1 ⊢M2 ⇐ A2 by inversion
(∆,Ω) ⊢ θ1 ⇐ Ω′ by i.h.
(∆,Ω) ⊢ θ2 ⇐ Ω′ by i.h.
M1 = [[θ1]]M by i.h.
λx.M1 = λx.[[θ1]]M by rule
λx.M1 = [[θ1]](λx.M) by contextual substitution definition

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 1529-3785/2008/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

App–2 · Brigitte Pientka

M2 = [[θ2]]M by i.h.
λx.M2 = λx.[[θ2]]M by rule
λx.M2 = [[θ2]](λx.M) by contextual substitution definition
(∆,Ω′); Γ, x:A1 ⊢M ⇐ A2 by i.h.
(∆,Ω′); Γ ⊢ λx.M ⇐ A1 → A2 by rule

Case. D = (∆; Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, θ1, θ2)

(∆,Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, θ1, θ2) by premise
(∆,Ω); Γ ⊢ R1 ⇐ P by ass
(∆,Ω); Γ ⊢ R1 ⇒ P by rule
(∆,Ω); Γ ⊢ R2 ⇐ P by ass
(∆,Ω); Γ ⊢ R2 ⇒ P by rule
(∆,Ω) ⊢ θ1 ⇐ Ω′ by i.h.
(∆,Ω) ⊢ θ2 ⇐ Ω′ and
R1 = [[θ1]]R and R2 = [[θ2]]R and (Ω′,∆); Γ ⊢ R⇒ P
(∆,Ω′); Γ ⊢ R⇐ P by rule

Case. D = (∆,Ω); Γ ⊢ u[πΓ]⊔u[πΓ] : P =⇒ u[πΓ]/(·, ·, ·)

u::P [Ψ] ∈ ∆ and ∆; Γ ⊢ π ⇐ Ψ by premise
(∆,Ω); Γ ⊢ u[πΓ] ⇒ P by assumption
u[πΓ] = u[πΓ] by reflexivity
(∆,Ω) ⊢ · ⇐ · by rule
∆; Γ ⊢ u[πΓ] ⇒ P by rule

Case. D = (∆,Ω); Γ ⊢ u[πΓ]⊔R : P =⇒ i[idΓ]/(i::P [Γ], Γ̂.u[πΓ]/i, Γ̂.R/i)

u::P [Ψ] ∈ ∆ and ∆; Γ ⊢ π ⇐ Ψ by premise
(∆,Ω); Γ ⊢ u[πΓ] ⇒ P by assumption
(∆,Ω); Γ ⊢ R ⇒ P by assumption
(∆,Ω); Γ ⊢ R ⇐ P by rule
(∆,Ω); Γ ⊢ u[πΓ] ⇐ P by rule
u[πΓ] = [[Γ̂.u[πΓ]/i]]i[idΓ]
u[πΓ] = u[πΓ] by reflexivity
R = [[Γ̂.R/i]]i[idΓ]
R = R by reflexivity
(∆,Ω) ⊢ Γ̂.R/i⇐ i::P [Γ] by rule using assumption
(∆,Ω) ⊢ u[πΓ]/i⇐ i::P [Γ] by rule using assumption
(∆, i::P [Γ]); Γ ⊢ idΓ ⇐ Γ by definition
(∆, i::P [Γ]); Γ ⊢ i[idΓ] ⇒ P by rule

Case. D = (∆,Ω); Γ ⊢ c · S1 ⊔ c · S2 : P =⇒ c · S/(Ω′, θ1, θ2)

(∆,Ω); Γ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, θ1, θ2) by premise
(∆,Ω); Γ ⊢ c · S1 ⇒ P by assumption
(∆,Ω); Γ ⊢ S1 > A⇒ P by inversion
(∆,Ω); Γ ⊢ c · S2 ⇒ P by assumption
(∆,Ω); Γ ⊢ S2 > A⇒ P by inversion

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · App–3

S1 = [[θ1]]S by i.h.
S2 = [[θ2]]S by i.h.
(∆,Ω) ⊢ θ1 ⇐ Ω′ by i.h.
(∆,Ω) ⊢ θ2 ⇐ Ω′ by i.h.
c · S1 = c · [[θ1]]S by rule
c · S1 = [[θ1]](c · S) by contextual substitution definition
c · S2 = c · [[θ2]]S by rule
c · S2 = [[θ2]](c · S) by contextual substitution definition
(∆,Ω′); Γ ⊢ S > A⇒ P by i.h.
(∆,Ω′); Γ ⊢ c · S ⇒ P by rule

Case. D = (∆,Ω); Γ ⊢ R1 ⊔R2 : P =⇒ i[idΓ]/(i::P [Γ], Γ̂.R1/i, Γ̂.R2/i)

R1 = H1 · S1 and R2 = H2 · S2 and H1 6= H2 by premise
(∆,Ω); Γ ⊢ H1 · S1 ⇒ P by assumption
(∆,Ω); Γ ⊢ H1 · S1 ⇐ P by rule
(∆,Ω); Γ ⊢ H2 · S2 ⇒ P by assumption
(∆,Ω); Γ ⊢ H2 · S2 ⇐ P by rule
H1 · S1 = [[Γ̂.(H1 · S1)/i]](i[idΓ]) by contextual substitution definition
H1 · S1 = H1 · S1 by reflexivity
H2 · S2 = [[Γ̂.(H2 · S2)/i]](i[idΓ]) by contextual substitution definition
H2 · S2 = H2 · S2 by reflexivity
(∆, i::P [Γ]); Γ ⊢ idΓ ⇐ Γ by definition
(∆, i::P [Γ]); Γ ⊢ i[idΓ] ⇒ P by rule

Case. D = (∆,Ω); Γ ⊢ (M1;S1)⊔ (M2;S2) : (A1 → A2) > P
=⇒ (M ;S)/(Ω′, θ, θ′)

(∆,Ω); Γ ⊢M1 ⊔M2 : A1 =⇒M/(Ω1, θ1, θ2) by premise
(∆,Ω); Γ ⊢ S1 ⊔S2 : A2 > P =⇒ S/(Ω2, θ

′

1, θ
′

2)
Ω′ = (Ω1,Ω2), θ = (θ1, θ

′

1), θ
′ = (θ2, θ

′

2)
(∆,Ω); Γ ⊢ (M1;S1) > A1 → A2 ⇒ P by assumption
(∆,Ω); Γ ⊢M1 ⇐ A1 by inversion
(∆,Ω); Γ ⊢ S1 > A2 ⇒ P
(∆,Ω); Γ ⊢ (M2;S2) > A1 → A2 ⇒ P by assumption
(∆,Ω); Γ ⊢M2 ⇐ A1 by inversion
(∆,Ω); Γ ⊢ S2 > A2 ⇒ P
M1 = [[θ1]]M by i.h.
M2 = [[θ2]]M by i.h.
(∆,Ω1); Γ ⊢M ⇐ A1 by i.h.
(∆,Ω) ⊢ θ1 ⇐ Ω1 by i.h.
(∆,Ω) ⊢ θ2 ⇐ Ω1 by i.h.
(∆,Ω′); Γ ⊢M ⇐ A1 by weakening
S1 = [[θ′1]]S by i.h.
S2 = [[θ′2]]S by i.h.
(∆,Ω2); Γ ⊢ S > A2 ⇒ P by i.h.
(∆,Ω) ⊢ θ′1 ⇐ Ω2 by i.h.
(∆,Ω) ⊢ θ′2 ⇐ Ω2 by i.h.
(∆,Ω′,); Γ ⊢ S > A2 ⇒ P by weakening

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

App–4 · Brigitte Pientka

(∆,Ω) ⊢ (θ1, θ
′

1) ⇐ Ω′ θ1 and θ′1 refer to distinct meta-variables
by typing rules for contextual substitutions

(∆,Ω) ⊢ (θ2, θ
′
2) ⇐ Ω′ θ2 and θ′2 refer to distinct meta-variables

by typing rules for contextual substitutions
M1 = [[θ1, θ

′

1]]M by lemma weakening
M2 = [[θ2, θ

′

2]]M by lemma weakening
S1 = [[θ1, θ

′

1]]S by lemma weakening
S2 = [[θ2, θ

′
2]]S by lemma weakening

(M1;S1) = ([[θ1, θ
′

1]]M ; [[θ1, θ
′

1]]S) by rule
(M1;S1) = [[θ1, θ

′

1]](M ;S) by contextual substitution definition
(M2;S2) = ([[θ2, θ

′
2]]M ; [[θ2, θ

′
2]]S) by rule

(M2;S2) = [[θ2, θ
′

2]](M ;S) by contextual substitution definition
(∆,Ω′); Γ ⊢ (M ; S) > A1 → A2 ⇒ P by rule

Theorem A.2 Completeness of mslg of terms.
(previous Thm. 5.3 on page 21)

(1) If ∆,Ω ⊢ θ1 ⇐ Ω′ and ∆,Ω ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible

and ∆,Ω; Γ ⊢M1 ⇐ A, ∆; Γ ⊢M2 ⇐ A, and ∆,Ω′; Γ ⊢M ⇐ A and

M1 = [[θ1]]M and M2 = [[θ2]]M
then there exists a contextual substitution θ∗1, θ

∗
2 , and a modal context Ω∗, such

that (∆,Ω); Γ ⊢ M1 ⊔M2 : A =⇒ M/(Ω∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Ω∗ ⊆ Ω′

(2) If ∆,Ω ⊢ θ1 ⇐ Ω′ and ∆,Ω ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible

and ∆,Ω; Γ ⊢ R1 ⇒ P , ∆; Γ ⊢ R2 ⇒ P , and Ω′,∆; Γ ⊢ R ⇒ P and

R1 = [[θ1]]R and R2 = [[θ2]]R
then there exists a contextual substitution θ∗1, θ

∗

2 , and a modal context Ω∗, such

that (∆,Ω); Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Ω∗ ⊆ Ω′

(3) If ∆,Ω ⊢ θ1 ⇐ Ω′ and ∆,Ω ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible and

(∆,Ω); Γ ⊢ S1 > A⇒ P , (∆,Ω); Γ ⊢ S2 > A⇒ P , and

(∆,Ω′); Γ ⊢ S > A⇒ P and S1 = [[θ1]]S and S2 = [[θ2]]S
then there exists a contextual substitution θ∗1, θ

∗

2 , and a modal context Ω∗, such

that (∆,Ω); Γ ⊢ S1 ⊔S2 : A =⇒ S/(Ω∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Ω∗ ⊆ Ω′.

Proof. Simultaneous induction on the structure of M , R, and S. We give a few
cases.

Case. R = u[πΓ] and u::P [Γ] ∈ ∆
(∆,Ω); Γ ⊢ u[πΓ] ⇒ P by assumption
R1 = [[θ1]](u[πΓ]) by assumption
R1 = u[πΓ] by contextual substitution definition
R2 = [[θ2]](u[πΓ]) by assumption
R2 = u[πΓ] by contextual substitution definition
(∆,Ω); Γ ⊢ u[πΓ]⊔u[πΓ] : P =⇒ u[πΓ]/(·, ·, ·) by rule
· ⊆ Ω′, · ⊆ θ1, · ⊆ θ2

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · App–5

Case. M = λx.M ′.
M1 = [[θ1]](λx.M

′) by assumption
M1 = λx.[[θ1]]M

′ by contextual substitution definition
M ′

1 = [[θ1]]M
′ and M1 = λx.M ′

1 by inversion
M2 = [[θ2]](λx.M

′) by assumption
M2 = λx.[[θ2]]M

′ by contextual substitution definition
M ′

2 = [[θ2]]M
′ and M2 = λx.M ′

2 by inversion
(∆,Ω′); Γ ⊢ λx.M ′ ⇐ A1 → A2 by assumption
(∆,Ω′); Γ, x:A1 ⊢M ′ ⇐ A2 by inversion
(∆,Ω); Γ ⊢ λx.M ′

1 ⇐ A1 → A2 by assumption
(∆,Ω); Γ, x:A1 ⊢M ′

1 ⇐ A2 by inversion
(∆,Ω); Γ ⊢ λx.M ′

2 ⇐ A1 → A2 by assumption
(∆,Ω); Γ, x:A1 ⊢M ′

2 ⇐ A2 by inversion
(∆,Ω); Γ, x:A1 ⊢M ′

1 ⊔M
′

2 : A2 =⇒M ′/(Ω∗, θ∗1 , θ
∗

2) by i.h.
Ω∗ ⊆ Ω′, θ∗1 ⊆ θ1, θ

∗

2 ⊆ θ2
(∆,Ω); Γ ⊢ λx.M ′

1 ⊔ λx.M
′
2 : A1 → A2 =⇒ λx.M ′/(Ω∗, θ∗1 , θ

∗
2) by rule

Case. R = i[idΓ]
(∆; Ω); Γ ⊢ i[idΓ] ⇒ P by assumption
i::P [Γ] ∈ Ω by inversion
R1 = [[θ1]](i[idΓ]) by assumption
R2 = [[θ2]](i[idΓ]) by assumption
Γ̂.R′/i ∈ θ1 and Γ̂.R′′/i ∈ θ2 by assumption
R′ and R′′ are incompatible by assumption
R1 = R′ by contextual substitution definition
R2 = R′′ by contextual substitution definition

Sub-Case 1. : R1 = u[πΓ] and R2 = R′′

(∆,Ω); Γ ⊢ u[πΓ]⊔R′′ : P =⇒ i[idΓ]/(i::P [Γ], Γ̂.u[πΓ]/i, Γ̂.R′′/i) by rule
i::P [Γ] ⊆ Ω′, (Γ̂.u[πΓ]/i) ⊆ θ1, (Γ̂.R′′/i) ⊆ θ2

Sub-Case 2. : R1 = R′ and R2 = u[πΓ]
(∆,Ω); Γ ⊢ R′ ⊔u[πΓ] : P =⇒ i[idΓ]/(i::P [Γ], Γ̂.R′/i, Γ̂.u[πΓ]/i) by rule
(i::P [Γ] ⊆ Ω′, (Γ̂.u[πΓ]/i) ⊆ θ2, (Γ̂.R′/i) ⊆ θ1

Sub-Case 3. : R1 = H1 · S1 and R2 = H2 · S2

H1 · S1 is incompatible with H2 · S2 and H1 6= H2 by assumption
(∆,Ω); Γ ⊢ H1 · S1 ⊔H2 · S2 : P =⇒ i[idΓ]/(i::P [Γ], Γ̂.(H1 · S1)/i, Γ̂.(H2 · S2)/i)

by rule
(i::P [Γ]) ⊆ Ω′, (Γ̂.H1 · S1/i) ⊆ θ1, (Γ̂.H2 · S2/i) ⊆ θ2

Theorem A.3 Soundness for mslg of substitutions.
(previous Thm. 5.5 on page 22)

If (∆,Ω1) ⊢ ρ1 ⊔ ρ2 : Ω2 =⇒ ρ/(Ω, θ1, θ2) and

(∆,Ω1) ⊢ ρ1 ⇐ Ω2 and (∆,Ω1) ⊢ ρ2 ⇐ Ω2

then (∆,Ω) ⊢ ρ⇐ Ω2, (∆,Ω1) ⊢ θ1 ⇐ Ω, (∆,Ω1) ⊢ θ2 ⇐ Ω, and

[[θ1]]ρ = ρ1 and [[θ2]]ρ = ρ2

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

App–6 · Brigitte Pientka

Proof. Induction on the first derivation.

Case. D = (∆,Ω1) ⊢ · : · =⇒ ·/(·, ·, ·)
· = · by syntactic equality
· = [[·]](·) contextual substitution definition

Case. D = (∆,Ω1) ⊢ (ρ1, Ψ̂.R1/i) ⊔ (ρ2, Ψ̂.R2/i) : (Ω2, i::P [Ψ])
=⇒ (ρ, Ψ̂.R/i)/((Ω,Ω′), (θ1, θ

′

1), (θ2, θ
′

2))
(∆,Ω1) ⊢ ρ1 ⊔ ρ2 : Ω2 =⇒ ρ/(Ω, θ1, θ2) by premise
(∆,Ω1); Ψ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, θ′1, θ

′
2) by premise

(∆,Ω1) ⊢ (ρ1, Ψ̂.R1/i) ⇐ (Ω2, i::P [Ψ]) by assumption
(∆,Ω1) ⊢ ρ1 ⇐ Ω2 by inversion
(∆,Ω1); Ψ ⊢ R1 ⇐ P
(∆,Ω1); Ψ ⊢ R1 ⇒ P by inversion
(∆,Ω1) ⊢ (ρ2, Ψ̂.R2/i) ⇐ (Ω2, i::P [Ψ]) by assumption
(∆,Ω1) ⊢ ρ2 ⇐ Ω2 by inversion
(∆,Ω1); Ψ ⊢ R2 ⇒ P
(∆,Ω′); Ψ ⊢ R ⇒ P by soundness theorem 5.2
(∆,Ω′); Ψ ⊢ R ⇐ P by rule
R1 = [[θ′1]]R, ∆,Ω1 ⊢ θ′1 ⇐ Ω′ by soundness theorem 5.2
R2 = [[θ′2]]R, ∆,Ω1 ⊢ θ′2 ⇐ Ω′ by soundness theorem 5.2
R1 = [[θ1, θ

′

1]]R by weakening
R2 = [[θ2, θ

′

2]]R by weakening
ρ1 = [[θ1]]ρ by i.h.
ρ2 = [[θ2]]ρ by i.h.
ρ1 = [[θ1, θ

′
1]]ρ by weakening lemma

ρ2 = [[θ2, θ
′

2]]ρ by weakening lemma
(ρ1, Ψ̂.R1/i) = ([[θ1, θ

′

1]]ρ, [[θ1, θ
′

1]]Ψ̂.R/i) by rule
(ρ2, Ψ̂.R2/i) = ([[θ2, θ

′
2]]ρ, [[θ2, θ

′
2]]Ψ̂.R/i) by rule

(ρ1, Ψ̂.R1/i) = [[θ1, θ
′

1]](ρ, Ψ̂.R/i) by contextual substitution definition
(ρ2, Ψ̂.R2/i) = [[θ2, θ

′

2]](ρ, Ψ̂.R/i) by contextual substitution definition
(∆,Ω) ⊢ ρ⇐ Ω2 by i.h.
(∆,Ω,Ω′) ⊢ ρ⇐ Ω2 by weakening
(∆,Ω,Ω′); Ψ ⊢ R ⇐ P by weakening
(∆,Ω,Ω′) ⊢ (ρ, Ψ̂.R/i) ⇐ (Ω2, i::P [Ψ]) by rule
∆,Ω1) ⊢ (θ1, θ

′

1) ⇐ (Ω,Ω′) by typing rules
∆,Ω1) ⊢ (θ2, θ

′
2) ⇐ (Ω,Ω′) by typing rules

Theorem A.4 Completeness for mslg of contextual substitutions.
(previous Thm. 5.6 on page 23)
If (∆,Ω) ⊢ θ1 ⇐ Ω′ and (∆,Ω) ⊢ θ2 ⇐ Ω′ and θ1 and θ2 are incompatible and

ρ1 = [[θ1]]ρ and ρ2 = [[θ2]]ρ then (∆,Ω) ⊢ ρ1 ⊔ ρ2 : Ω1 =⇒ ρ/(Ω∗, θ∗1 , θ
∗

2) such that

Ω∗ ⊆ Ω′, θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2.

Proof. Induction on the structure of ρ.

Case. ρ = ·

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · App–7

ρ1 = [[θ1]](·) by assumption
ρ1 = · and Ω1 = · by inversion
ρ2 = [[θ2]](·) by assumption
ρ2 = · and Ω1 = · by inversion
(∆,Ω) ⊢ · ⊔ · : · =⇒ ·/(·, ·, ·) by rule
· ⊆ Ω1, · ⊆ θ1, · ⊆ θ2

Case. ρ = (ρ′, Ψ̂.R/i)

ρ′1 = [[θ1]](ρ
′, Ψ̂.R/i) by assumption

ρ′1 = ([[θ1]](ρ
′), Ψ̂.[[θ1]]R/i) by contextual substitution definition

ρ′1 = (ρ1, Ψ̂.R1/i) by equality
ρ1 = [[θ1]]ρ

′

R1 = [[θ1]]R
ρ′2 = [[θ2]](ρ

′, Ψ̂.R/i) by assumption
ρ′2 = ([[θ2]](ρ

′), Ψ̂.[[θ2]]R/i) by contextual substitution definition
ρ′2 = (ρ2, Ψ̂.R2/i) by equality
ρ2 = [[θ2]]ρ

′

R2 = [[θ2]]R
(∆,Ω); Ψ ⊢ R1 ⊔R2 : P =⇒ R/(Ω∗, θ∗1 , θ

∗

2) by completeness lemma 5.3
Ω∗ ⊆ Ω′, θ∗1 ⊆ θ1, θ

∗

2 ⊆ θ2
(∆,Ω) ⊢ ρ1 ⊔ ρ2 : Ω1 =⇒ ρ′/(Ω∗∗, θ∗∗1 , θ∗∗2) by i.h.
Ω∗∗ ⊆ Ω′, θ∗∗1 ⊆ θ1, θ

∗∗

2 ⊆ θ2
(∆,Ω) ⊢ (ρ1, Ψ̂.R1/i) ⊔ (ρ2, Ψ̂.R2/i) : (Ω1, i::P [Ψ])
=⇒ (ρ′, Ψ̂.R/i)/((Ω∗∗,Ω∗), (θ∗∗1 , θ∗1), (θ∗∗2 , θ∗2)) by rule
(Ω∗∗,Ω∗) ⊆ Ω′, (θ∗∗1 , θ∗1) ⊆ θ1, (θ∗∗2 , θ∗2) ⊆ θ2

Lemma A.5 Insertion of substitution into tree.
(previous Lemma 5.7 on page 25)
If ∆ ⊢ C ⊔ δ : Ω =⇒ (V, S) and ∆ ⊢ δ ⇐ Ω and for any (Ωi⊢ρi ։ C′) ∈ C with

∆,Ωi ⊢ ρi ⇐ Ω then

(1) for any (Ni, θ2) ∈ V where Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ2]]ρi = δ.

(2) for any (Ni,Ω
′ ⊢ ρ′, θ1, θ2) ∈ S where Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ2]]ρ

′ = δ
and [[θ1]]ρ

′ = ρi.

Proof. By structural induction on the first derivation and by using the previous
soundness lemma for mslg of substitutions (lemma 5.5).

Case. D =
∆ ⊢ nil ⊔ δ : Ω =⇒ (·, ·)

.

Trivially true.

Case. D =

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S)
∆,Ω1 ⊢ ρ1 ⊔ δ : Ω =⇒ idΩ/(Ω, ρ1, δ)

NC
∆ ⊢ [(Ω1⊢ρ1 ։ C1), C] ⊔ δ : Ω =⇒ (V, S)

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

App–8 · Brigitte Pientka

By i.h., for any (Ni, θ2) ∈ V , Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ2]]ρi = δ and for
any (Ni,Ω

′ ⊢ ρ′, θ′1, θ
′

2) ∈ S where Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ′2]]ρ
′ = δ and

[[θ′1]]ρ
′ = ρi.

Case. D =

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S)
∆,Ω1 ⊢ ρ1 ⊔ δ : Ω =⇒ ρ1/(Ω1, idΩ1

, θ2)
FC

∆ ⊢ [(Ω1⊢ρ1 ։ C1), C] ⊔ δ : Ω =⇒ ((V , (Ω1⊢ρ1 ։ C1)), S)

By i.h., for any (Ni, θ2) ∈ V , Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ2]]ρi = δ and for
any (Ni, (Ω

′ ⊢ ρ′, θ′1, θ
′
2)) ∈ S where Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ′2]]ρ

′ = δ
and [[θ′1]]ρ

′ = ρi. By soundness lemma 5.5, [[θ2]]ρ1 = δ, therefore for any (Ni, θ
′) ∈

(V, ((Ω1⊢ρ1 ։ C1), θ2)), where Ni = (Ωi ⊢ ρi ։ Ci) we have [[θ′]]ρi = δ.

Case.

D =

∆ ⊢ C ⊔ δ : Ω =⇒ (V, S)
∆,Ω1 ⊢ ρ1 ⊔ δ : Ω =⇒ ρ∗/(Ω2, θ1, θ2)

PC
∆ ⊢ [(Ω1⊢ρ1 ։ C1), C] ⊔ δ : Ω =⇒ (V, (S , ((Ω1⊢ρ1 ։ C1),Ω2⊢ρ

∗, θ1, θ2))

By i.h., for any (Ni, θ
′
2) ∈ V , Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ′2]]ρi = δ and for

any (Ni, (Ω
′ ⊢ ρ′, θ′1, θ

′

2)) ∈ S where Ni = (Ωi ⊢ ρi ։ Ci), we have [[θ′2]]ρ
′ = δ and

[[θ′1]]ρ
′ = ρi. By soundness lemma 5.5, [[θ2]]ρ

∗ = δ and [[θ1]]ρ
∗ = ρ1, therefore for any

(Ni,Ω
′ ⊢ ρ′, θ′1, θ

′
2) ∈ (S , ((Ω1⊢ρ1 ։ C1),Ω2⊢ρ

∗, θ1, θ2)), where Ni = (Ωi ⊢ ρi ։

Ci) we have [[θ′1]]ρ
′ = ρi and [[θ′2]]ρ

′ = δ.

Theorem A.6 Soundness of instance algorithm for terms.
(previous Thm. 6.1 on page 28)

(1) If ∆2; (∆1,Ω); Γ ⊢M1
.
= M2 : A/(θ, ρ)

where (∆1,Ω); Γ ⊢M1 ⇐ A and ∆2; Γ ⊢M2 ⇐ A then [[θ, ρ]]M1 = M2.

(2) If ∆2; (∆1,Ω); Γ ⊢ R1 + R2 : P/(θ, ρ)
where (∆1,Ω); Γ ⊢ R1 ⇒ P and ∆2; Γ ⊢ R2 ⇒ P then [[θ, ρ]]R1 = R2.

(3) If ∆2; (∆1,Ω); Γ ⊢ S1
.
= S2 > A⇒ P/(θ, ρ)

where (∆1,Ω); Γ ⊢ S1 > A⇒ P and ∆2; Γ ⊢ S2 > A⇒ P then [[θ, ρ]]S1 = S2.

Proof. Simultaneous structural induction on the first derivation. The proof

Case. D = mvar-1
∆2; (∆1, i::P [Γ]); Γ ⊢ i[idΓ] + R : P / (·, (Γ̂.R/i))

(∆1, i::P [Γ]); Γ ⊢ i[idΓ] ⇒ P by assumption
∆2; Γ ⊢ R ⇒ P by assumption
R = R by reflexivity
[[Ψ̂.R/i]](i[idΓ]) = R by substitution definition

Case. D =
u::P [Γ] ∈ ∆

mvar-2
(∆,Ω); Γ ⊢ u[πΓ] + R : P / (Γ̂.([πΓ]

−1
R/u), ·)

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · App–9

∆1; Γ ⊢ u[πΓ] ⇒ P where u::P [Γ] ∈ ∆1 by assumption
∆2; Γ ⊢ R ⇒ P by assumption
[πΓ]([πΓ]

−1
R) = R by property of inversion

[[Γ̂.[πΓ]
−1
R/u]](u[πΓ]) = R by substitution definition

Case. D =
∆2; (∆1,Ω); Γ, x:A1 ⊢M1

.
= M2 : A2 / (θ, ρ)

lam
∆2; (∆1,Ω); Γ ⊢ λx.M1

.
= λx.M2 : A1 → A2 / (θ, ρ)

(∆1,Ω); Γ ⊢ λx.M1 ⇐ A1 → A2 by assumption
(∆1,Ω); Γ, x:A1 ⊢M1 ⇐ A2 by inversion
∆2; Γ ⊢ λx.M2 ⇐ A1 → A2 by assumption
∆2, ; Γ, x:A1 ⊢M2 ⇐ A2 by inversion
[[θ, ρ]]M1 = M2 by i.h.
[[θ, ρ]]λx.M1 = [[θ, ρ]]λx.M2 by equality and contextual substitution definition

Case. D = ∆2; (∆1,Ω1,Ω2); Γ (M1;S1)
.
= (M2;S2) : A1 → A2 > P

/ ((θ1, θ2), (ρ1, ρ2))
∆2; (∆1,Ω1); Γ ⊢M1

.
= M2 : A1 / (θ1, ρ1)

∆2; (∆1,Ω2); Γ S1
.
= S2 : A2 > P / (θ2, ρ2) by premise

(∆1; Ω1,Ω2); Γ ⊢ (M1;S1) < A1 → A2 ⇒ P by assumption
(∆1; Ω1); Γ ⊢M1 ⇐ A1 by inversion
(∆1; Ω2); Γ ⊢ S1 < A2 ⇒ P
∆2; Γ ⊢ (M2;S2) < A1 → A2 ⇒ P by assumption
∆2; Γ ⊢M2 ⇐ A1 by inversion
∆2; Γ ⊢ S2 < A2 ⇒ P
[[θ1, ρ1]]M1 = M2 by i.h.
[[θ2, ρ2]]S1 = S2 by i.h.
[[θ1, θ2, ρ1, ρ2]]M1 = M2 by weakening (using linearity condition)
[[θ1, θ2, ρ1, ρ2]]S1 = S2 by weakening (using linearity condition)
[[θ1, θ2, ρ1, ρ2]](M1 S1) = [[id∆2

θ1, θ2, ρ1, ρ2]](M2 S2) by rule
and substitution definition

Theorem A.7 Completeness of instance algorithm for terms.
(previous Thm. 6.2 on page 28)

(1) If (∆1,Ω); Γ ⊢M1 ⇐ A and ∆2; Γ ⊢M2 ⇐ A and

∆2 ⊢ θ ⇐ ∆1 and ∆2 ⊢ ρ⇐ Ω and [[θ, ρ]]M1 = M2 then

∆2; (∆1,Ω); Γ ⊢M1
.
= M2 : A/(θ∗, ρ) where θ∗ ⊆ θ.

(2) If (∆1,Ω); Γ ⊢ R1 ⇒ P and ∆2; Γ ⊢ R2 ⇒ P and

∆2 ⊢ θ ⇐ ∆1 and ∆2 ⊢ ρ⇐ Ω and [[θ, ρ]]R1 = R2 then

∆2; (∆1,Ω); Γ ⊢ R1 + R2 : P/(θ∗, ρ) where θ∗ ⊆ θ.

(3) If (∆1,Ω); Γ ⊢ S1 > A⇒ P and ∆2; Γ ⊢ S2 > A⇒ P and

∆2 ⊢ θ ⇐ ∆1 and ∆2 ⊢ ρ⇐ Ω and [[θ, ρ]]S1 = S2 then

∆2; (∆1,Ω); Γ ⊢ S1
.
= S2 : A > P/(θ∗, ρ) where θ∗ ⊆ θ.

Proof. Simultaneous structural induction on the first typing derivation.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

App–10 · Brigitte Pientka

Case. D =
(∆1,Ω); Γ, x:A1 ⊢M1 ⇐ A2

(∆1,Ω); Γ ⊢ λx.M1 ⇐ A1 → A2

∆2; Γ ⊢ λx.M2 ⇐ A1 → A2 by assumption
∆2; Γ, x:A1 ⊢M2 ⇐ A2 by inversion
[[θ, ρ]](λx.M1) = λx.M2 by assumption
λx.[[θ, ρ]](M1) = λx.M2 by substitution definition
[[θ, ρ]](M1) = M2 by syntactic equality
∆2; (∆1,Ω); Γ, x:A1 ⊢M1

.
= M2 : A2/(θ

∗, ρ∗) by i.h.
θ∗ ⊆ θ and ρ∗ ⊆ ρ
∆2; (∆1,Ω); Γ ⊢ λx.M1

.
= λx.M2 : A1 → A2/(θ

∗, ρ∗) by rule

Case. D =
(∆1, i::P [Γ]); Γ ⊢ i[idΓ] ⇒ P

i::P [Γ]; Γ ⊢ i[idΓ] ⇒ P by rule
∆2; Γ ⊢ R2 ⇒ P by assumption
[[θ, ρ]](i[idΓ]) = R2 by assumption
Γ̂.R2/i ∈ ρ by assumption
∆2; (∆1, i::P [Γ]); Γ ⊢ i[idΓ]

.
= R2 : P/(·, Γ̂.R2/i) by rule

· ⊆ id∆ and (Γ̂.R2/i) ⊂ ρ

Case. D =
u::P [Γ] ∈ ∆1

(∆1, ·); Γ ⊢ u[πΓ] ⇒ P

u::P [Γ]; Γ ⊢ u[πΓ] ⇒ P by rule
∆1 = ∆′

1, u::P [Γ],∆′′

1

∆2; Γ ⊢ R2 ⇒ P by assumption
θ = (θ1, Γ̂.R/u, θ2) by assumption
[[θ, ρ]](u[πΓ]) = R2 by assumption
[πΓ]R = R2 by substitution definition

R = [πΓ]
−1
R2 and [πΓ]([πΓ]

−1
R2) = R2 by inverse substitution property

∆2, u::P [Γ]; Γ ⊢ u[πΓ]
.
= R2 : P/(Γ̂.[πΓ]−1R2/u, ·) by rule

(Γ̂.[πΓ]
−1
R2/u) ⊆ θ and · ⊆ ρ

Case. D =
(∆1,Ω); Γ ⊢M1 ⇐ A1 (∆1,Ω); Γ S1 > A⇒ P

(∆1,Ω); Γ (M1;S1) > A1 → A⇒ P

[[θ, ρ]](M1;S1) = S′ by assumption
[[θ, ρ]](M1) ; [[θ, ρ]](S1) = S′ by substitution definition
S′ = (M2;S2) by inversion
[[θ, ρ]](M1) = M2 by inversion
[[θ, ρ]](S1) = S2 by inversion
∆2; Γ ⊢ (M2;S2) > A1 → A⇒ P by assumption
∆2; Γ ⊢M2 ⇐ A1 by inversion
∆2; Γ ⊢ S2 > A⇒ P

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Higher-order term indexing using substitution trees · App–11

∆2; (∆1,Ω1); Γ ⊢M1
.
= M2 : A1/(θ

∗

1 , ρ1) and θ∗1 ⊆ θ by i.h.
∆2; (∆1,Ω2); Γ ⊢ S1

.
= S2 : A > P/(θ∗2 , ρ2) and θ∗2 ⊆ θ by i.h.

(∆,Ω); Γ ⊢ (M1;S1)
.
= (M2;S2) : A1 → A > P/((θ∗1 , θ

∗
2), (ρ1, ρ2)) by rule

(θ∗1 , θ
∗

2) ⊆ θ by subset property

Theorem A.8 Interaction between mslg and instance algorithm.
(previous Thm. 6.4 on page 29)

(1) If (∆1,Ω); Γ ⊢M1 ⇐ A and ∆2; Γ ⊢M2 ⇐ A and

(∆2,∆1),Ω; Γ ⊢M1 ⊔M2 : A =⇒M/(Ω′, ρ1, ρ2) then

(∆1; Ω
′; Γ ⊢M

.
= M1 : A/(·, ρ1) and ∆2; Ω

′; Γ ⊢M
.
= M2 : A/(·, ρ2).

(2) If (∆1,Ω); Γ ⊢ R1 ⇒ P and ∆2; Γ ⊢ R2 ⇒ P and

(∆2,∆1),Ω; Γ ⊢ R1 ⊔R2 : P =⇒ R/(Ω′, ρ1, ρ2) then

∆1; Ω
′; Γ ⊢ R + R1 : P/(·, ρ1) and ∆2; Ω

′; Γ ⊢ R + R2 : P/(·, ρ2).

(3) If (∆1,Ω); Γ ⊢ S1 > A⇒ P and ∆2; Γ ⊢ S2 > A⇒ P and

(∆2,∆1),Ω; Γ ⊢ S1 ⊔S2 : A > P =⇒ S/(Ω′, ρ1, ρ2) then

∆1; Ω
′; Γ ⊢ S

.
= S1 : A > P/(·, ρ1) and ∆2; Ω

′; Γ ⊢ S
.
= S2 : A > P/(·, ρ2).

Proof. Simultaneous structural induction on the first derivation.
Let ∆ = ∆2,∆1.

Case. D =
(∆2,∆1,Ω); Γ, x:A1 ⊢M1 ⊔M2 : A2 =⇒M/(Ω′, ρ1, ρ2)

(∆,Ω); Γ ⊢ λx.M1 ⊔ λx..M2 : A1 → A2 =⇒ λx.M/(Ω′, ρ1, ρ2)

∆1; Ω
′; Γ, x:A1 ⊢M

.
= M1 : A2/(·, ρ1) by i.h.

∆1; Ω
′; Γ ⊢ λx.M

.
= λx.M1 : A1 → A2/(·, ρ1) by rule

∆2; Ω
′; Γ, x:A1 ⊢M

.
= M2 : A2/(·, ρ2) by i.h.

∆2; Ω
′; Γ ⊢ λx.M

.
= λx.M2 : A1 → A2/(·, ρ2) by rule

Case. D =
u::(P [Γ]) ∈ ∆

(∆,Ω); Γ ⊢ u[πΓ]⊔R : P =⇒ i[idΓ]/(i::P [Γ], Γ̂.u[πΓ]/i, Γ̂.R/i)

∆1; i::P [Γ]; Γ ⊢ i[idΓ] + R : P/(·, Γ̂.R/i) by rule meta-1

∆1; i::P [Γ]; Γ ⊢ i[idΓ] + u[πΓ] : P/(·, Γ̂.u[πΓ]/i) by rule meta-1

Case. D = (∆,Ω); Γ ⊢ H1 · S1 ⊔H2 · S2 : P =⇒ i[idΓ]/
((i::P [Γ]), (H1 · S1/i), (H2 · S2/i))

H1 6= H2 and i must be new by inversion
∆1; Ω; Γ ⊢ i[idΓ] + H1 · S1 : P/(·, Γ̂.H1 · S1/i) by meta-1

∆2; Ω; Γ ⊢ i[idΓ] + H2 · S2 : P/(·, Γ̂.H2 · S2/i) by meta-1

Case. D = (∆,Ω); Γ ⊢ (M1;S1)⊔ (M2;S2) : A1 → A2 > P =⇒
(M ;S)/((Ω1,Ω2), (ρ1, ρ2), (ρ

′

1, ρ
′

2))

(∆,Ω); Γ ⊢M1 ⊔M2 : A1 =⇒M/(Ω1, ρ1, ρ
′

1) by inversion

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

App–12 · Brigitte Pientka

(∆,Ω); Γ ⊢ S1 ⊔S2 : A2 > P =⇒ S/(Ω2, ρ2, ρ
′

2)
(∆,Ω); Γ ⊢ (M1;S1) > A1 → A2 ⇒ P by assumption
(∆,Ω); Γ ⊢M1 ⇐ A1

(∆,Ω); Γ ⊢ S1 > A2 ⇒ P by inversion
(∆,Ω); Γ ⊢ (M2;S2) > A1 → A2 ⇒ P by assumption
(∆,Ω); Γ ⊢M2 ⇐ A1

(∆,Ω); Γ ⊢ S2 > A2 ⇒ P by inversion
∆1; Ω1; Γ ⊢M + M1 : A1/(·, ρ1) by i.h.
∆2; Ω1; Γ ⊢M + M2 : A1/(·, ρ

′

1) by i.h.
∆1; Ω2; Γ ⊢ S

.
= S1 : A2 > P/(·, ρ2) by i.h.

∆2,Ω2; Γ ⊢ S
.
= S2 : A2 > P/(·, ρ2) by i.h.

∆1; Ω1,Ω2; Γ ⊢ (M ;S)
.
= (M1;S1) : A1/(·, (ρ1, ρ

′

1)) by rule
∆2,Ω1,Ω2; Γ ⊢ (M ;S)

.
= (M2;S2) : A1/(·, (ρ2, ρ

′

2)) by rule

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

