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Abstract. Higher-order differential power analysis attacks are a seri-
ous threat for cryptographic hardware implementations. In particular,
glitches in the circuit make it hard to protect the implementation with
masking. The existing higher-order masking countermeasures that guar-
antee security in the presence of glitches use multi-party computation
techniques and require a lot of resources in terms of circuit area and
randomness. The Threshold Implementation method is also based on
multi-party computation but it is more area and randomness efficient.
Moreover, it typically requires less clock-cycles since all parties can op-
erate simultaneously. However, so far it is only provable secure against
1st-order DPA. We address this gap and extend the Threshold Implemen-
tation technique to higher orders. We define generic constructions and
prove their security. To illustrate the approach, we provide 1st, 2nd and
3rd-order DPA-resistant implementations of the block cipher KATAN-
32. Our analysis of 300 million power traces measured from an FPGA
implementation supports the security proofs.

1 Introduction

Differential power analysis (DPA) attacks as introduced by Kocher et al. [19] ex-
ploit unintentional information leakage of a device’s internal processing through
its power consumption. Over the years, many types of countermeasures against
DPA attacks have been proposed. One family of countermeasures is called mask-
ing and consists in computing the algorithm on a randomized representation of
the data. For this purpose, the data is split in several shares that are processed
sequentially or in parallel. A DPA attack that exploits the information leakage
of several shares jointly, be it by combining the leakage from several points in
time or by analyzing higher-order statistical moments of the leakage at one point
in time, is a higher-order DPA (HO-DPA) attack [6,24].

It is preferable to protect the implementation of a cryptographic algorithm
with a higher-order masking countermeasure, where d > 1 random masks are
used to generate d+ 1 shares of a variable, since 2nd-order DPA attacks can be
relatively inexpensive to mount. It is well known that the number of measure-
ments required for a HO-DPA attack to succeed scales exponentially in the noise
standard deviation, the exponent being d+ 1 [6,33].
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In a secure masking, all d + 1 shares are necessary to re-construct the vari-
able. Such a secure masking is called dth-order masking and leads to a dth-
order secure implementation in software. An implementation of the same secure
masking in CMOS-like glitchy hardware, on the other hand, will typically be
insecure [22,23,27].

Related Work. Several masking schemes that are secure against HO-DPA
have been proposed so far, e.g. [8,9,14,17,18,34,35]. However the scheme in [17]
is shown to be insecure in [10] and [9] discovers and proposes a fix to a leak
in [35]. Only one scheme claims to be secure against HO-DPA even in the pres-
ence of glitches [34], based on separation of the operations in the time domain.
Nevertheless, implementing this scheme within the defined models is a challeng-
ing task. Moradi and Mischke [26] provided practical evidence that a simple
separation of the operations in the time domain alone is not sufficient when the
shares of a sensitive variable are processed in consecutive clock cycles.

Threshold Implementation (TI) is a masking scheme based on secret sharing
and multi-party computation [29,30,31]. It provides provable security against
1st-order DPA even in the presence of glitches. The only requirement is that the
shares leak independently, but this requirement holds for all masking schemes.

So far, several S-boxes and symmetric-key algorithms have been implemented
with this method and the security claim has been confirmed in practical exper-
iments [2,28,32]. However, it has also been confirmed that a TI is vulnerable to
HO-DPA [2,25].

Contribution. So far, the theory of TI and its practical security is limited
to counteract 1st-order DPA. In this work, we define Higher-Order Threshold
Implementation (HO-TI) to thwart HO-DPA. We define generic constructions
and use results from Ches 2010, Eurocrypt 2010 and 2014 to prove their
security. We provide a relation between 1st-order DPA secure implementations
of 4 × 4 S-boxes in the alternating group with 5-shares provided in [4] and
2nd-order DPA secure implementations of these S-boxes. To illustrate the HO-
TI approach in a comprehensible example, we provide 1st, 2nd and 3rd-order
DPA-resistant implementations of the block cipher KATAN-32. Our analysis of
300 million power traces measured from an FPGA implementation supports the
security proofs.

2 Theory of HO-TI

We use lower case characters to refer to elements of a finite field and upper
case characters to describe vectors and vector functions. Stochastic variables
are described by the superscript $. The probability that x$ takes the value x is
Pr(x$ = x). In order to implement a function f(x) = y from Fn to Fm with TI,
we first split each variable x into s shares xi where i ∈ {1, 2, . . . , s} by means of
Boolean masking, such that the XOR sum of these shares is equal to the variable
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itself (x =
∑

i xi). For all values x with Pr(x$ = x) > 0, let Sh(x) denote the
set of valid share vectors X for x:

Sh(x) = {X ∈ Fns | x1 ⊕ x2 ⊕ · · · ⊕ xs = x}.

We use the terms sharing or masking interchangeably for a valid share vector X
and use the term s-sharing of x to emphasize the number of shares. Pr(X$ =
X |x$ = x) denotes the probability that X$ = X when the unmasked value
equals x, taken over all auxiliary inputs of the masking.

In a TI, f is implemented as a vector of functions F that takes X as input.
Each function in this vector is called a component function and represented by
fi where i ∈ {1, . . . , s}. From now on, we use the term sharing of the function to
describe F and s-sharing of f to emphasize the number of component functions
of F . F must satisfy the following property for a correct implementation.

Property 1 (Correctness). ∀y ∈ Fm, ∀X ∈ Sh(x) and ∀Y ∈ Sh(y); F (X) =
Y ⇐⇒ f(x) = y.

We call each share of X an input share and each share of Y an output share.

2.1 HO-TI of an Arbitrary Function

Like for other masking schemes, the masking of the input of a shared func-
tion F must be uniform. We call a masking X of a variable x uniform if and
only if Pr(X$ = X |x$ = x) is equal to the same constant p for each X and∑

X Pr(X$ = X |x$ = x) = Pr(x$ = x). If the input is a uniform masking, then
the shared function F must satisfy the following property in order to achieve
security against dth-order DPA.

Property 2 (dth-order non-completeness). Any combination of up to d compo-
nent functions fi of F must be independent of at least one input share.

One can see that this dth-order non-completeness property is equivalent to
the non-completeness property defined in [31] for 1st-order DPA resistance when
d = 1. We define a TI that satisfies Property 1 and Property 2 as dth-order TI.

In 2010, two different works at Eurocrypt and Ches [13,35] show a corre-
spondence between the HO-DPA attack model and the so-called “probing model”
where the d probing model considers an adversary that is allowed to observe the
value of up to d intermediate wires of the circuit during the computation. More-
over, at Eurocrypt 2014, this probing model is used by [12] to prove security
against HO-DPA, and a relation between the probing model and the noisy leak-
age model is provided in [8]. We make use of the following results.

Lemma 1. The attack order in a higher-order DPA corresponds to the number
of wires that are probed in the circuit (per unmasked bit).
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This lemma implies that if a circuit is perfectly secure against d probes, then
combining d power consumption points as in a dth-order DPA will reveal no
information. Since TI operates on the component functions in parallel and does
not separate these operations in the time domain, this is equivalent to security
against DPA exploiting the dth-order statistical moment. However, it should be
noted that the models considered in the mentioned papers do not take glitches
into account. Thanks to the TI separation of the component functions we are
able to use their models and results, and prove stronger security in the presence
of glitches.

Theorem 1. If the input masking X of the shared function F is a uniform
masking and F is a dth-order TI then the dth statistical moment of the power
consumption of a circuit implementing F is independent of the unmasked input
value x even if the inputs are delayed or glitches occur in the circuit.

Proof. By Lemma 1, it is sufficient to prove that an adversary who can probe
d wires does not get any information about x. By construction, if F satisfies
Property 1 and Property 2, an adversary who probes d or less wires will get
information from all but at least one input share, which is independent of the
input. ��

2.2 On the Number of Shares

The storage of the state of a symmetric key algorithm and hence the storage of
the sharing of the state is typically the most expensive part in terms of area in a
hardware implementation. In all masking schemes, the number of shares required
increases with the order of DPA to protect against. Considering that DPA is a
powerful attack especially against constrained devices, defining a higher-order
masking that has a small area footprint, therefore with the minimum number of
shares, becomes important.

An affine function f(x) = y can be implemented with s ≥ d + 1 component
functions to thwart dth-order DPA. One possible way to generate F is to define
the first component function to be f1(x1) = y1 = f(x1) and the rest of the
component functions to be fi(xi) = yi where fi is equal to f without constant
terms and 2 ≤ i ≤ s. To give an example f(x) = 1+ x can be implemented with
the following component functions:

f1(x1) = 1 + x1 and fi(xi) = xi, where i ∈ {2, . . . , s}.
However, the minimum number of shares required increases together with the

nonlinearity. When the whole cryptographic algorithm is considered, one way
to construct a TI is to adapt the number of shares to be minimum for each
component of the algorithm, and to decrease or increase the number of shares
as required. This approach is partially applied in [2]. Even though this method
may lead to a relatively small circuit, it raises the problem to generate fresh
randomness to be able to increase the number of shares. Another method is to
keep the number of shares constant as much as possible as in [29,32] to avoid
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using fresh randomness. We adopt the second idea and try to keep the number
of input shares that are used by a sharing of a nonlinear operation as small as
possible. It is also possible to have different numbers of input and output shares
to a nonlinear operation. This idea was already mentioned for 1st-order TI in [3].
Unlike that particular case where the number of input shares sin is greater than
the number of output shares sout, we require sout ≥ sin to avoid using fresh
randomness for increasing the number of shares back to sin. A way to decrease
the number of shares without using extra randomness will be discussed in the
following subsection.

Theorem 2. There always exist a dth-order TI of a function of degree t that
requires sin ≥ t× d+ 1 input and sout ≥

(
sin
t

)
output shares.

Proof. Consider, without loss of generality, the product x1x2x3 . . . xt of first t
variables where Fn � x = (x1, x2, . . . xn) and xj ∈ F . We represent the sharing

of each variable xj as xj
i where i ∈ {1, . . . , sin}. Then,

x1x2x3 . . . xt = (x1
1 + x1

2 + · · ·+ x1
sin) . . . (x

t
1 + xt

2 + · · ·+ xt
sin)

= (x1
1x

2
1 . . . x

t
1) + (x1

1x
2
1 . . . x

t
2) + . . .+ (x1

sin
x2
sin

. . . xt
sin

).

To satisfy the correctness each term in the above sum should exist in (or belong
to) at least one component function. This can be done in the following way. Let
each component function use only t different shares such that any t combination
of sin shares is used by only one component function. Hence any combination of
up to d component functions carries information from at most t × d shares. To
achieve the non-completeness property, sin > t × d which implies the equation
sin ≥ t × d + 1 for the number of input shares. With the given sharing, there
exist

(
sin
t

)
different ways of choosing t combinations of sin shares and placing

them in component functions. Hence, this sharing needs sout ≥
(
sin
t

)
component

functions. The proof can be extended to all degree t terms. ��
Theorem 2 shows that the number of input shares of a function depends

linearly on the order of security for a TI. Moreover, the required number of input
and output shares given in Theorem 2 corresponds to the number of shares for
d = 1 in [31].

We point out that a TI using the number of shares defined in the previous
theorem is not the only possible construction. Moreover, the theorem does not
imply that the number of output shares or the total number of input and output
shares (sin + sout) are minimized. As an example, consider y = f(a, b, b) =
1 + a + bc where y, a, b, c ∈ F . For a 2nd-order TI of f , by Theorem 2, one
requires sin = 5 input shares which implies sout = 10 output shares. One of the
many alternatives for constructing the component functions for that scenario is

y1 = 1 + a2 + b2c2 + b1c2 + b2c1

y3 = a4 + b4c4 + b1c4 + b4c1

y5 = b2c3 + b3c2

y7 = a5 + b5c5 + b2c5 + b5c2

y9 = b3c5 + b5c3

y2 = a3 + b3c3 + b1c3 + b3c1

y4 = a1 + b1c1 + b1c5 + b5c1

y6 = b2c4 + b4c2

y8 = b3c4 + b4c3

y10 = b4c5 + b5c4 .

(1)
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If we do not fix sin = 5, we can also construct a 2nd-order TI with sin = 6
input and sout = 7 output shares as described in Appendix A.2. It is still an
open question to find a lower bound for sin + sout.

The component functions provided in Equation (1) for a 2nd-order TI of a
degree two function are constructed in a systematic way following the proof of
Theorem 2. Namely, they are constructed with sin = 2× 2 + 1 = 5 input shares
and each component function uses one of the

(
5
2

)
= 10 possible combinations of

t = 2 shares exactly. When this construction is reduced to achieve 1st-order DPA
security, one gets the equation given in [29] which is repeated in Appendix A.1
for completeness.

Component functions for functions of higher degrees and/or other security
levels can be derived with the same construction. We provide an example of a
3rd-order TI of f in Appendix A.3.

2.3 Decreasing the Number of Shares

With the construction described in the previous section, we see that the number
of output shares becomes greater than the number of input shares when d > 1.
To avoid further increase in shares and hence in area, we need to decrease the
number of shares. This decrease can be done by combining different shares with
an affine function as described in the following theorem.

Theorem 3. Given sin ≥ d+r input shares where r ≥ 1 that are not necessarily
uniform masking but secure against (d+ r− 1)st-order DPA, any sharing G that
combines any r of the input shares linearly in one component function and keeps
the rest of the input shares unchanged, is secure against dth-order DPA.

Proof. We represent the variable a with sin ≥ d+r shares for a given d, that are
not necessarily a uniform masking. Assume that this initial masking of a is secure
against (d+r−1)st-order DPA. That implies that combining any d+r−1 shares
does not reveal the unmasked value a. Consider sin−1 component functions: the
first component function combines the first two input shares linearly, without
loss of generality, the other component functions each take one share as input
and output it unchanged, i.e. g1 = a1 + a2 and gi−1 = ai for 3 ≤ i ≤ sin. This
construction satisfies both Property 1 and Property 2 for (d + r − 2)nd-order
security and one needs sin−1 ≥ d+r−1 shares to reveal the unmasked variable.
Moreover, the component function g1 only uses a balanced gate. Namely, a 2× 1
XOR gate whose output changes with probability 1 for any input bit change,
independent of the input value. Hence, even though the input is not uniform, this
sharing of g will not leak information. A mere r− 1 repetition of this procedure
gives a sharing with d + 1 shares that satisfies Property 1 and Property 2 and
that is hence dth-order DPA secure. Moreover, since there are only balanced
gates involved, one can combine this repetitive construction in one step. ��
Remark 1. To satisfy Property 2, the nonlinear operation generating the sharing
for a mentioned in the proof of Theorem 3 and the operation to decrease the
number of shares should be separated by registers.
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Given Theorem 3, one can decrease the number of shares from sout to sin as
follows. Let the nonlinear function we want to share be f(x) = y with dth-order
TI sharing F (X) = Y such that X is an sin-sharing and Y is an sout-sharing.
Consider another sharing G(Y ) = Z of a function g as defined in Theorem 3
where Z is again an sin-sharing, and G is a dth-order TI. It is not necessarily
required that the input sharing of G is uniform. As an example, for Equation (1)
which represents a 2nd-order TI of a quadratic function, one possible way to
decrease the shares such that X and Z are represented with the same number
of shares is given below.

zi = yi, where i < 5 and z5 = y5 + y6 + y7 + y8 + y9 + y10. (2)

With this TI, it is important to make sure that Remark 1 is applied by using
registers after the nonlinear operation F .

2.4 On Uniformity

We have proved that a function f can be implemented in a way that is secure
against dth-order DPA if Property 1 and Property 2 are satisfied and the masking
of the input is uniform (Theorem 1). Hence, we need to make sure that the input
to a shared function K of a nonlinear function k which follows H = G ◦ F is
also a uniform masking unless it is equal to the exceptional linear case defined
in Theorem 3. This is equivalent to saying that H should be a uniform sharing
of the function h as defined by the following property.

Property 3 (Uniform sharing of functions). The sharing H of h is uniform if
and only if ∀z ∈ Fm, ∀(z1, z2, . . . , zsoutz

) ∈ Sh(z), ∀x ∈ Fn with h(x) = z and
soutz ≥ d+ 1:

|{(x1, x2, . . . , xsin) ∈ Sh(x)|H(x1, x2, . . . , xsin) = (z1, z2, . . . , zsoutz
)}| = Fn(sin−1)

Fm(soutz −1)
.

We call a dth-order TI that is a uniform sharing, a uniform dth-order TI.
Unfortunately, we do not know a straight forward way to generate the component
functions with smin input and sout output shares provided in Theorem 2 so that
this property holds (unlike the other two properties) for any Boolean function.
Hence, a sharing should be explicitly checked to satisfy Property 3. In this paper,
we recall a uniform sharing of an AND and an XOR gate that is secure against
1st-order DPA in Equation (6) which is equal to the formula derived in [31].
Moreover, we provide uniform sharings that are secure against 2nd and 3rd-
order DPA by the sharings of H = G ◦ F generated from Equation (1) and
Equation (8) together with Equation (2). Note that Equations (1) and (8) alone
are not uniform. We found these sharings with a guided computer search. In the
following section, we will also provide a way to construct uniform 2nd-order TI
of 4× 4 S-boxes in the alternating group with 5 input and 10 output shares.
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2.5 Constructing 2nd-Order TI of Some 4 × 4 S-Boxes

The majority of the S-boxes used in lightweight implementations are 4 × 4 S-
boxes, therefore it is important to provide hardware implementations of these
S-boxes secure against HO-DPA.

In [4], it is shown that all 4 × 4 S-boxes that are in the alternating group
(S-boxes that can be represented as an even number of transpositions, e.g.
PRESENT [5], KLEIN [15] and Noekeon S-boxes and half of the Optimal S-
boxes [21]) can be decomposed into quadratic S-boxes. Moreover, these S-boxes
(represented as s(x) or one of their affine equivalents s′(x) = a(s(b(x))) s.t. a and
b are affine permutations) have a uniform 1st-order TI with 5 input and output
shares with direct sharing. To be more precise, if the sharing in Equation (3)
(given for f(a, b, c) = 1+ a+ bc) is applied to each term of the vectorial Boolean
functions, the resulting TI is 1st-order DPA-resistant and uniform.

y1 = 1 + a2 + b2c2 + b2c3 + b3c2 + b2c4 + b4c2

y2 = a3 + b3c3 + b3c4 + b4c3 + b3c5 + b5c3

y3 = a4 + b4c4 + b4c5 + b5c4 + b4c1 + b1c4 (3)

y4 = a5 + b5c5 + b5c1 + b1c5 + b5c2 + b2c5

y5 = a1 + b1c1 + b1c2 + b2c1 + b1c3 + b3c1 .

Generating the component functions as in Equation (4) for any of the men-
tioned S-boxes would lead to 2nd-order TI with sin = 5 and sout = 10.

y1 = 1 + a2 + b2c2 + b2c3 + b3c2

y3 = a3 + b3c3 + b3c4 + b4c3

y5 = a4 + b4c4 + b4c5 + b5c4

y7 = a5 + b5c5 + b5c1 + b1c5

y9 = a1 + b1c1 + b1c2 + b2c1

y2 = b2c4 + b4c2

y4 = b3c5 + b5c3

y6 = b4c1 + b1c4

y8 = b5c2 + b2c5

y10 = b1c3 + b3c1 .

(4)

If the sharing G of g(y) = z described in Section 2.3 is generated as gi =
y2i−1 + y2i for i ≤ 5, the overall sharing H(X) = G(F (X)) of the S-box (or
one of its affine equivalent) is uniform since the sharing H is equivalent to the
sharing given in Equation (3). Hence, we can construct uniform 2nd-order TI of
all 4× 4 S-boxes in the alternating group.

3 Implementation

We recall the block cipher KATAN and propose HO-TIs of it. We provide the
area requirements of these implementations in the Faraday Standard Cell Library
FSA0A C Generic Core which is based on UMC 0.18μm GenericII Logic Pro-
cess with 1.8V voltage. We verify the functionality of the implementations with
ModelSim and synthesize using Synopsys Design Vision D-201-.03-SP4 without
any optimization.
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3.1 KATAN

KATAN [11] is a family of block ciphers that is designed to be efficient in hard-
ware. The family has three variants with 32, 48 or 64-bit state size. All these
variants use an 80-bit key, hence have the same security level. A plaintext block,
of the same size as the state, is loaded into the state to start an encryption.
After 254 rounds, the content of the state is taken as the ciphertext. The round
operation is very similar for all variants and has only a few AND and XOR gates.

Our main consideration is to show how to instantiate a higher-order TI of
a simple algorithm and to analyze its side channel leakage. For this reason, we
implement the smallest variant of KATAN with 32-bit state size and focus on
encryption. A description of one round of KATAN-32 is provided in Appendix B.

3.2 TI of KATAN

We describe a general TI that has sin input shares, the same number of shares
in the state and sout output shares for nonlinear operations. An example of a
2nd-order TI of one round KATAN-32 where sin = 5 and sout = 10 is depicted
in Figure 1 (z coordinate refers to sin different shares of the state). In all these
versions, we use the same unshared key schedule for simplicity.

Fig. 1. Description of 2nd-order TI of one round of KATAN-32

We assume that the plaintext has a uniform masking with sin shares that is
provided as input. Each share will be split into two chunks of 13 and 19 bits that
will be written to the registers L1j and L2j respectively where j ≤ sin. Since we
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already know how to implement an AND and an XOR gate with a uniform TI,
we split the operations of the round update accordingly. For all the AND/XOR
blocks except the one that receives IR, we use the TI in Equation (1) (resp.
Eqn. (6) and Eqn.(8) for 1st and 3rd-order TI) which takes sin input shares. For
the AND/XOR block that receives IR we use the sharing

yi = ai + IR× bi where i ≤ sin (5)

because we do not share the round counter (and hence IR).
The XOR of two AND/XOR blocks is applied over sout shares or over the

first sin shares if the output of the AND/XOR block that receives IR is in-
volved. Similarly, the key is introduced only in the first of the sout shares. This
sout-sharing is written to the first bit of the L1 and L2 registers respectively
which have sout shares only for the first bits. One can think of it as having an
extension of sout − sin shares for those bits in addition to the sin shares of the
state. In the next clock cycle, the sout shares in the first bits of the L1 and L2
registers are reduced to sin shares as described in Section 2.3 and written as the
second bits. This implementation does not increase the number of clock cycles
compared to the unprotected KATAN-32 implementation. In Table 1, we show
the area requirements of these implementations in NAND gate equivalents. The
gate counts for the round function include the decrease of the number of shares
by means of Equation (2). The key register is included in the gate count of the
key schedule together with the LFSR update.

Table 1. Synthesis results for plain and TI of KATAN-32

State Round Key
Control Other Total

Array Function Schedule

Plain 170 54 444 64 270 1002
1st-order TI 510 135 444 64 567 1720

2nd-order TI 900 341 444 64 807 2556

3rd-order TI 1330 760 444 64 941 3539

4 Analysis

We implement our 2nd-order TI of Katan-32 on a SASEBO-G board [1] using
Xilinx ISE version 10.1 to evaluate its leakage characteristics in practice. The
board features two Xilinx Virtex-II Pro FPGA devices: we implement the 2nd-
order TI of Katan-32 in the crypto FPGA (xc2vp7) while the control FPGA
(xc2vp30) handles I/O with the measurement PC and other equipment includ-
ingn the random number generation. We use the “keep hierarchy” constraint
when we generate the bitstream for the crypto FPGA to prevent the tools from
optimizing over module boundaries. This is to prevent the tools from merging
component functions and to reduce the chance for crosstalk. The key is hard-
coded in the Katan-32 implementation. The PRNG on the control FPGA is
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implemented as AES-128 in CTR mode. To start an encryption, we share the
plaintext in 5 shares using random numbers from the PRNG and send the shares
to the Katan-32 implementation. When the PRNG is turned off, it outputs zeros.

We measure the power consumption of the crypto FPGA during the first
12 rounds of Katan-32 encryption as the voltage drop over a 1Ω resistor in
the FPGA core GND line. The output of the passive probe is sampled with a
Tektronix DPO 7254C digital oscilloscope at 1GS/s sampling rate and 1mV/div
amplitude resolution. We provide the FPGA with a stable 3 MHz clock signal
and use synchronized clocks to obtain high-quality measurements.

The main goal of our evaluation is not to demonstrate that the implementa-
tion resists state-of-the-art attacks that exploit the 1st or 2nd statistical moment
of the leakage distributions, but beyond that to demonstrate that there is no
evidence of leakage in these moments of the leakage distributions, exploitable
by state-of-the-art attacks or not. Obviously achieving this goal is much more
demanding than resistance to known attacks, but it directly corresponds to our
claims regarding provable security. We narrow the evaluation to univariate at-
tacks because our implementation processes all component functions in parallel.

We use leakage detection to evaluate our implementation. Contrary to the
classical approach of testing whether a given attack is successful, this approach
decouples the detection of leakage from its exploitation. For our purpose we use
the non-specific t-test based fixed versus random leakage detection methodology
of [7,16], see Appendix C for a brief introduction.

For all tests we obtain two sets of measurements. For the first set, we fix the
plaintext to some chosen value. We denote this set S0. For the second set, the
plaintexts are uniformly distributed and random. We denote this set Srandom.
We obtain the measurements for both sets interleaved and in a random order,
i.e. before each measurement we flip a coin, to avoid any deterministic or time-
dependent external and internal influences on the test result.

We compute Welch’s (two-tailed) t-test

t =
μ(S0)− μ(S1)

√
σ2(S0)
|S0| + σ2(S1)

|S1|

(where μ() is the sample mean, σ2() is the sample variance and | · | denotes the
sample size) to determine if the samples in both sets were drawn from popula-
tions with the same mean (or from the same population). The null hypothesis is
that the samples in both sets were drawn from populations with the same mean.
In our context, this means that the TI is effective. The alternative hypothesis is
that the samples in both sets were drawn from populations with different means.
In our context, this means that the TI is not effective.

At each point in time, the test statistic t together with the degrees of free-
dom ν, computed with the Welch-Satterthwaite equation

ν =
(σ2(S0)/|S0|+ σ2(S1)/|S1|)2

(σ2(S0)/|S0|)2/(|S0| − 1) + (σ2(S1)/|S1|)2/(|S1| − 1)
,
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allow to compute a p value to determine if there is sufficient evidence to reject
the null hypothesis at a particular significance level (1−α). The p value expresses
the probability of observing the measured (or a greater) difference by chance if
the null hypothesis was true. In other words, small p values give evidence to
reject the null hypothesis.

While this evaluation methodology relieves us from choosing certain parame-
ters such as targeted intermediate value, power model and distinguisher, it does
not resolve all such issues. As in any evaluation, the tests are limited to the num-
ber of measurements at hand and one has to choose a threshold to decide if an
observed difference is statistically significant or not. Nevertheless, as we demon-
strate below this type of evaluation is very data-efficient, i.e. a small number of
measurements is required to provide evidence of leakage, and a decision threshold
can be motivated with some basic experiments.

To calibrate our threshold value we apply the test methodology to two groups
of 10 000 measurements each for which we know that the null hypothesis is true.
For the first group of measurements we switch off the PRNG and use the same
fixed plaintext for both sets, i.e. all measurements in both sets are samples from
the same population and the only cause of variance is noise. We compute the t
statistic, record its greatest absolute value and repeat the experiment 100 times
on a random split of the measurements in this group. The highest absolute t
value we observed was 4.7944. For the second group we switch on the PRNG
and use random plaintexts for both sets, i.e. the measurements in both sets are
samples from distributions with the same mean and high variance. We repeat
the analysis and the highest absolute t value we observed was 4.8608. Based on
these results and the recommendation in [7] we select the significance threshold
±4.5. For large sample sizes, observing a single t value greater/smaller than ±4.5
roughly corresponds to a 99.999% probability of the null hypothesis being false.

To confirm that our setup works correctly and to get some reference values we
first evaluate the implementation with the PRNG switched off. Figure 2 shows
the t values of fixed versus random tests with two different fixed plaintexts (left
and right) and for the 1st, 2nd and 3rd statistical moment of the distributions
(for the higher-order moments we pre-process the traces to expose the desired
standardized moment before we apply the t-test, e.g. for the 2nd moment we
center and then square the traces). Horizontal lines mark the ±4.5 thresholds.

The plots clearly show that there is sufficient evidence of leakage in all cases,
as there are multiple and systematic crossings of the thresholds. Comparing
the plots on the left hand side with the plots on the right hand side, we see
that the “shape” of the t curve depends on the fixed plaintext value. This is
no longer true when we switch on the PRNG, because all shares of the input
are random. We used 1 000 measurements (500 for fixed and 500 for random
plaintext) to generate these plots, but less than 100 measurements are required
to see evidence of leakage in the 1st statistical moment.

Now we switch on the PRNG and repeat the evaluation with a randomly cho-
sen fixed plaintext using 300 million measurements (150M for fixed, 150M for
random, done in a temperature controlled environment). Figure 3 (top left and
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Fig. 2. Fixed versus random t-test evaluation results with PRNG switched off; left: for
fixed plaintext 0x00000000, right: for a randomly chosen fixed plaintext; from top to
bottom: 1st, 2nd and 3rd-order statistical moment; 1 000 measurements
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Fig. 3. Fixed versus random t-test evaluation results with PRNG switched on for a
randomly chosen fixed plaintext; from top left, top right, to bottom right: 1st, 2nd, 3rd

and 5th statistical moment; 300 million measurements

right) shows plots of the t values for the 1st and 2nd moment. As expected there
is not sufficient evidence of leakage. But as mentioned earlier, one may always
wonder if the number of measurements at hand is sufficient. For completeness,
we also provide evaluation results of the 3rd and 5th moment. The 3rd moment
is the smallest moment for which our implementation does not provide prov-
able security in the combinational logic (Property 2) and the 5th moment is the
smallest moment for which our implementation does not provide provable secu-
rity in the memory elements (the state is shared in at least 5 shares). Therefore
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we may be able to detect leakage in these moments. Figure 3 (bottom left and
right) shows plots of the t values.

While there is not sufficient evidence of leakage also in the 3rd moment, we
can see multiple and systematic crossings of the threshold in the 5th moment.
This result suggests that we use enough measurements, and that we should be
able to detect leakage in the lower-order moments, if there was any. Together,
the results support our claim regarding provable 2nd-order DPA resistance.

One may wonder why we do not detect leakage in the 3rd moment. Several
explanations are possible but their careful investigation is beyond the scope of
this paper.

5 Conclusion

Research on HO-DPA attacks shows that these attacks are realistic threats,
and advances in the field can only increase the attack potential. It is therefore
desirable to have masking schemes that can be implemented securely at any
order. In hardware implementations, glitches make this a challenging task. TI
is a masking technique that provides provable security even in the presence of
glitches, but the method is limited to 1st-order DPA resistance. We address this
gap and extend the technique to higher orders. We define generic constructions,
prove their security and provide exemplary 1st, 2nd and 3rd-order DPA-resistant
implementations of the block cipher KATAN-32. Our analysis of 300 million
power traces from a 2nd-order DPA-resistant implementation in an FPGA with a
leakage detection test does not show significant evidence of leakage and supports
the security proofs. We also show that this method can be straightaway applied
to generate 2nd-order TI of 4× 4 S-boxes in the alternating group.
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mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505.
Springer, Heidelberg (2013)

21. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

22. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

23. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

24. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
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A Component Functions of the Sharing F of
f(a, b, c) = 1 + a + bc

A.1 1st-Order TI and sin = 3

y1 = 1 + a2 + b2c2 + b1c2 + b2c1

y2 = a3 + b3c3 + b2c3 + b3c2 (6)

y3 = a1 + b1c1 + b1c3 + b3c1

A.2 2nd-Order TI and sin = 6

y1 = 1 + a2 + b2c2 + b1c2 + b2c1 + b1c3 + b3c1 + b2c3 + b3c2

y2 = a3 + b3c3 + b3c4 + b4c3 + b3c5 + b5c3

y3 = a4 + b4c4 + b2c4 + b4c2 + b2c6 + b6c2

y4 = a5 + b5c5 + b1c4 + b4c1 + b1c5 + b5c1 (7)

y5 = b2c5 + b5c2 + b4c5 + b5c4

y6 = a6 + b6c6 + b3c6 + b6c3 + b4c6 + b6c4

y7 = a1 + b1c1 + b1c6 + b6c1 + b5c6 + b6c5

A.3 3rd-Order TI and sin = 7

y1 = 1+ a2 + b2c2 + b1c2 + b2c1

y3 = a4 + b4c4 + b1c4 + b4c1

y5 = a6 + b6c6 + b1c6 + b6c1

y7 = b2c3 + b3c2

y9 = b2c5 + b5c2

y11 = a7 + b7c7 + b2c7 + b7c2

y13 = b3c5 + b5c3

y15 = b3c7 + b7c3

y17 = b4c6 + b6c4

y19 = b5c6 + b6c5

y21 = b6c7 + b7c6

y2 = a3 + b3c3 + b1c3 + b3c1

y4 = a5 + b5c5 + b1c5 + b5c1

y6 = a1 + b1c1 + b1c7 + b7c1

y8 = b2c4 + b4c2

y10 = b2c6 + b6c2

y12 = b3c4 + b4c3

y14 = b3c6 + b6c3

y16 = b4c5 + b5c4

y18 = b4c7 + b7c4

y20 = b5c7 + b7c5 .

(8)

B Unmasked KATAN-32

The description of one round of KATAN-32 is provided in Fig. 4 where each
block represents one bit. 32-bit plaintext is divided into two chunks of 13 and 19
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bits and written to the registers L1 and L2 respectively. In every round, several
bits are used to update the first bits of the registers together with a one bit shift
to the right for L1 and to the left for L2. The bit depicted by IR is the last bit
of a round counter that decides irregularly if the fourth bit of L1 is used for the
round update or not. k2i and k2i+1 are the 2ith and (2i+ 1)st bits of the 80-bit
key for rounds i ≤ 40. For the rest of the rounds they are generated from the
original key by an LFSR.

Fig. 4. Description of one round of KATAN-32

C T-test Based Fixed versus Random Leakage Detection

The t-test based fixed versus random leakage detection methodology has two
main ingredients: first, chosen inputs allow to generate two sets of measurements
for which intermediate values in the implementation have a certain difference.
Without making an assumption about how the implementation leaks, a safe
choice is to keep the intermediate values fixed for one set of measurements,
while they take random values for the second set. The test is specific, if particular
intermediate values or transitions in the implementation are targeted (e.g. S-box
input, S-box output, Hamming distance in a round register, etc.). This type of
testing requires knowledge of the device key and carefully chosen inputs. On
the other hand, the test is non-specific if all intermediate values and transitions
are targeted at the same time. This type of testing only requires to keep all
inputs to the implementation fixed for one set of measurements, and to choose
them randomly for the second set. Obviously, the non-specific test is extremely
powerful. The second ingredient is a simple, robust and efficiently computable
statistical test to determine if the two sets of measurements are significantly
different. Contrary to the information-theoretic metric of Standaert et al. [36]
and the mutual-information-based leakage detection tests explored in [20] the
t-test based approach evaluates a specific statistical moment of the measured
distributions.
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