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Abstract

In thiswork, we investigate the use of higher-order Discontinuous Galerkin (DG) methods for time-domain computations of

nano-photonic systems. We briefly discuss the implementation of such methods and comment on several important extensions such

as Perfectly Matched Layers (PMLs), sources and dispersive materials. In particular, we propose a novel way to accurately

implement delta-like point sources and we present a detailed study on the performance of PMLs within the DG framework. We

demonstrate that the PML-performance may be substantially improved through an appropriate choice of the absorption profile.

Finally, we employ our specific version of the DGmethod to certain plasmonic systems such as silver cylinders and nano-structured

metallic films.
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1. Introduction

Time-domain computations play a very prominent

role in the characterization and design of micro- and

nano-photonic structures. In these structures, strong

multiple scattering and/or near-field effects allow a far

reaching control over the propagation characteristics of

light and its interaction with matter. Important systems

that are currently being investigated include but are not

limited to periodic nano-structures and plasmonic

elements and we would like to refer the reader to a

number recent reviews [1–3].

Among the various methods for time-domain com-

putations of Maxwell’s equations, the Finite-Difference

Time-Domain (FDTD) method [4] stands out for its

efficiency and versatility. In fact, several powerful

packages, commercial and open-source, are available.

In essence, the basic FDTD method represents a

conditionally stable algorithm with second order

accuracy in space and time. Within this approach, the

Maxwell curl-equations are discretized such that electric

and magnetic fields are, respectively, evaluated on a

uniformand staggered spatial grid, the so-calledYeegrid.

Consequently, the time-stepping is realized via an

explicit leapfrog scheme. This apparent simplicity lies

at the heart of the methods’ efficiency but, at the same

time, also represents a serious limitation. In particular,

the accurate treatment of material interfaces that are not

grid-aligned is a serious concern and, for linear optics,

advancedmethodshave beendevelopedvery recently [5–

8]. However, these methods either reduce the efficiency

of the basic algorithm [5,6] or it is presently unclear how
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to extend them to three dimensions [7,8]. None of

these approaches allows to deal with situations that

involve materials with appreciable nonlinear properties.

Furthermore, even for the linear optics of curved

interfaces between metals and dielectrics, notable

problems,mostly associatedwith spurious field enhance-

ments, remain.

On the other hand, accurate representation of

arbitrary interfaces and high-order spatial discretization

are the trademarks of finite-element methods [9].

Despite these apparent advantages, there exists

one essential drawback that has prevented traditional

finite-element methods from becoming mainstream in

large-scale time-domain computations: The resulting

time-stepping algorithms are implicit so that at every

time-step a (typically large) system of equations has to

be solved. In other words, the CPU-times associated

with traditional finite-element time-domain computa-

tions quickly become prohibitively large even for

systems of moderate size.

However, the past years have witnessed dramatic

progress when discontinuous Galerkin (DG) finite-

element techniques have been applied to Maxwell’s

equations [10]. As we will detail below, this approach

combines the attractive features of finite-elements

with explicit time-stepping capabilities. In particular,

the generic treatment of arbitrary interfaces in

combination with high-order discretizations both in

space and time leads to performance characteristics

that are ideally suited for applications in nano-

photonic systems. More precisely, in Section 2, we

sketch the essentials of the DG Time-Domain

(DGTD) approach. We then report on important

add-ons for realistic applications such as the treatment

of open systems, point sources, and dispersive media

in Section 3. In particular, to the best of our

knowledge, this is the first time that an accurate

treatment of point sources within DGTD has been

described. In Section 4, we provide a detailed study of

Perfectly Matched Layers boundary conditions and

obtain DGTD-optimized absorption profiles. This also

allows us to compare the performance of DGTD and

standard FDTD. Finally, we will – in Section 5– apply

our DGTD implementation to the important problem

of extraordinary transmission through subwavelength

apertures in nano-structured metallic films.

2. The discontinuous Galerkin method

For the numerical calculations, we employ a DG

method in the nodal formulation of Hesthaven and

Warburton [10]. To keep the discussion brief, it is

convenient to express Maxwell’s equations in a

conservation form

@tðQð~rÞqð~r; tÞÞ þ r �~FðqÞ ¼ 0; (1)

where the material matrixQð~rÞ, the field vector q and the

flux vector~FðqÞ ¼ ðF1ðqÞ;F2ðqÞ;F3ðqÞÞT are defined as

Qð~rÞ ¼ eð~rÞ 0

0 mð~rÞ

� �

; qð~r; tÞ ¼
~Eð~r; tÞ
~Hð~r; tÞ

� �

;

and FiðqÞ ¼
�êi � ~Hð~r; tÞ
êi �~Eð~r; tÞ

� �

:

In these expressions, êi, i ¼ 1; 2; 3 denote the Cartesian

unit vectors. In order to solve this system, the computa-

tional domain is tessellated into K conforming elements

V
k. Typically, these elements will be triangles in two

dimensions and tetrahedra in three dimensions. On each

element, the fields are then expanded in terms of inter-

polating Lagrange polynomials Lið~rÞ

qkð~r; tÞ�
XN

i¼1

qkð~ri; tÞLið~rÞ ¼
XN

i¼1

q̃ki ðtÞLið~rÞ; (2)

where N denotes the number of coefficients that have

been utilized. For triangles, this number is connected to

the polynomial expansion order n via NTri ¼
ðnþ 1Þðnþ 2Þ=2 while for tetrahedra the correspond-

ing dependence is NTet ¼ ðnþ 1Þðnþ 2Þðnþ 3Þ=6.
The vector q̃kðtÞ contains the unknown field values that

have to be solved for. A suitable set of interpolation

nodes~ri can, for instance, be obtained via the method

proposed in Ref. [11].

The standard Galerkin approach consists in multi-

plying Eq. (1) with Lið~rÞ and integrating over an

element Vk, which yields
Z

V
k

ðQk@tq̃
k þr �~Fðq̃kÞÞLið~rÞ d~r ¼ 0:

To facilitate the coupling with neighboring cells, the

next step is to employ an integration by parts and to

substitute in the resulting contour integral the physical

flux ~Fðq̃kðtÞÞ with a so-called numerical flux ~F
�ðq̃kðtÞÞ.

A second integration by parts then results in the strong

formulation
Z

V
k

ðQk@tq̃
k þr �~Fðq̃kÞÞLið~rÞ d~r

¼
Z

@Vk

n̂ � ð~Fðq̃kÞ �~F
�ðq̃kÞÞLið~rÞ d~r; (3)

where n̂ is the outward-pointing normal vector of the

contour. In Ref. [10], it has been proved that this
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procedure results in a stable and convergent scheme if

the numerical flux ~F
�ðq̃kðtÞÞ is chosen properly. One

suitable choice is the well established upwinding flux

[10] which leads to the expression

n̂ � ð~Fðq̃kÞ �~F
�ðq̃kÞÞ

¼
ðD~E � n̂ � ðn̂ � D~EÞ þ Zþn̂� D~HÞ

Z̄

ðD~H � n̂ � ðn̂ � D~HÞ � Yþn̂� D~EÞ
Ȳ

0

B
B
@

1

C
C
A
: (4)

Here, D~E ¼ ~E
þ �~E

�
and D~H ¼ ~H

þ � ~H
�
denote the

difference of the fields across the cell interface, and the

superscript ‘‘+’’ denotes the neighboring element while

the superscript‘‘�’’ refers to the local cell. Further, we

have introduced cell-impedances Z� ¼
ffiffiffiffiffiffiffi

m�
p

=
ffiffiffiffiffi

e�
p

and

-conductances Y� ¼ 1=Z� together with corresponding

summed values Ȳ ¼ Yþ þ Y� and Z̄ ¼ Zþ þ Z�. Sev-
eral types of relevant boundary conditions can be

applied by setting the material parameters at the outer

cell to Zþ ¼ Z� and by defining D~E and D~H according

to the following table:

Boundary condition D~E D~H

Perfect electric conductor (PEC) �2~E
�

0

Perfect magnetic conductor (PMC) 0 �2~H
�

Silver-Müller (1st order absorbing) �2~E
� �2~H

�

Explicit expressions for the fields are obtained by

inserting the expansions (2) together with the numerical

fluxes from Eq. (4) into Eq. (3). If we assume constant

material parameters ek, mk within each element we find

after certain algebraic transformations

ek
@~E

k

@t
¼ ~D

k � ~H
k

þ ðMkÞ�1F k D~E � n̂ � ðn̂ � D~EÞ þ Zþn̂� D~H

Z̄

 !

;

(5)

mk @
~H

k

@t
¼ �~D

k �~E
k

þ ðMkÞ�1F k D~H � n̂ � ðn̂ � D~HÞ � Yþn̂� D~E

Ȳ

 !

:

(6)

To streamline the notation, we have introduced the

vectors~E
k
and ~H

k
, where each component is a N-vector

of the respective field values in element k. Furthermore,

we have defined a vector of differentiation matrices
~D

k ¼ ðDk
x;Dk

y;Dk
zÞ, the mass matrix Mk, and the face

matrix F k according to

ðDk
mÞi j ¼ @mL jð~riÞ with m2fx; y; zg;

ðMkÞi j ¼
Z

V
k

Lið~rÞL jð~rÞ d~r;

ðF kÞi j ¼
Z

@Vk

Lið~rÞL jð~rÞ d~r where j2f jj~r j 2 @V
kg:

The remaining step of integrating the semi-discrete

system (5) and (6) in time is executed through a 4th-

order low-storage Runge–Kutta scheme as described in

Ref. [12]. Since the foregoing procedure is explicit, a

Courant-Friedrichs-Levy (CFL) criterion has to be

fulfilled in order to guarantee stability. In practice, we

limit the time-step according to

Dt � cCFL dmin min
k

ðrkinÞ; (7)

where dmin is the minimal distance between two inter-

polation nodes~ri. Furthermore, rkin denotes the radius of

the incircle or insphere of element k and cCFL is a

number of the order one. Its critical value can only

be obtained empirically and depends on the dimension-

ality of the system as well as on the expansion order.

However, the value cCFL ¼ 1 leads to stable results in all

of our calculations. It should be noted that the reduced

performance due to the CFL criterion can be improved

upon by using more advanced integration methods such

as those described in Refs. [13–15].

3. Implementation of PMLs, point sources and

dispersive media

In order to properly model nano-photonic systems,

certain extensions to the bare numerical scheme

are required. A first relevant aspect is the imple-

mentation of absorbing boundaries. While Silver-

Müller boundary conditions can be applied as

described above, they are only of first order and

insufficient for the accurate modeling of open

systems. Thus, they need to be complemented by

Perfectly Matched Layers (PMLs, see e.g. Refs.

[4,16]). In Ref. [16], Lu et al. demonstate how to

properly implement uniaxial PMLs in two dimensions

within a DG framework. To extend their work to

fully three-dimensional systems, we start from the

general uniaxial formulation [4,17], where one

describes a PML region as a dispersive, anisotropic

material with susceptibility tensor e ¼ eL and

permeability tensor m ¼ mL. Here, the diagonal
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tensor L is explicitly given by

L ¼

sysz

sx
0 0

0
sxsz

sy
0

0 0
sxsy

sz

0

B
B
B
B
@

1

C
C
C
C
A

with

sm ¼ 1þ sm

iv
; m2fx; y; zg:

(8)

Upon transforming Maxwell’s equations to the fre-

quency domain and inserting the anisotropic material

parameters we obtain

iveL~E
�¼ r� ~H

�
; (9)

�ivmL~H
�¼ r�~E

�
; (10)

where ‘˘’ denotes the variables in frequency domain.

For brevity, we limit the discussion to the first compo-

nent of ~E
�
, which reads

iveE�x ¼ � @

@y
H�z þ

@

@z
H�y � ive

sysz

sx
� 1

� �

E�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

x

¼: J�

x: (11)

The newly introduced polarization current J�x can be

further simplified to

J�x ¼
ive

ivþ sx

sy þ sz � sx þ
sysz

iv

� �

E�x: (12)

By introducing the new variable P�x ¼ J�x
�eðsy þ sz � sxÞE�x, we obtain the expression

ivP�x ¼ �sxP�x þ eðs2
x þ sysz � sysx � szsxÞE�x;

(13)

which can now be transformed back to the time-

domain. The resulting coupled equations then take

on the form

@

@t
Ex ¼ � @

@y
Hz þ

@

@z
Hy � eðsy þ sz � sxÞEx � Px;

(14)

@

@t
Px ¼ �sxPx þ eðs2

x þ sysz � sysx � szsxÞEx:

(15)

The derivation of corresponding auxiliary differential

equations (ADEs) for the other field components is

completely analogous. At this point, we would like to

note that the widths of the layers and their strengths sm

are free parameters that have to be optimized for best

performance.

A second important point is the excitation of the

system through sources. Besides via initial conditions,

there are two conceptually different ways to inject

radiation into the system. The more obvious path is to

add current density terms to Eqs. (5) and (6). An

alternative is given by the so-called Total-Field/

Scattered-Field approach (TF/SF, see e.g. Ref. [4] for

a detailed discussion). Typically, the current density is

more suitable to introduce localized sources while the

TF/SF method can be employed to inject plane waves.

Within the DG framework, one can easily implement

the TF/SF approach by modifying the field differences

in the numerical fluxes. The addition of current terms

also presents no fundamental problem, but the spatial

profile is obviously expanded into Lagrange polyno-

mials. For the very important case of a delta-like point

source, this expansion becomes rather intricate and a

highly refined mesh around the source is required to

model it accurately. In turn, this dramatically reduces

the computational performance due to the stability

criterion (7). Therefore, we propose to implement point

sources by exploiting the TF/SF method. For the

injection, a small contour around the desired source

location is embedded into the mesh and the outer area is

defined as the TF region. The required fields on the

contour can be obtained by means of Green’s functions

similar to the discussion in Ref. [18]. For the two-

dimensional case in TM-polarization and using polar

coordinates, the fields generated by a point source at the

origin can be expressed as

Ezðr;j; tÞ ¼
1

2p

Z t

r

dt
j0ðt � tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p ; (16)

Hxðr;j; tÞ ¼
cos ðjÞ
2phr

Z t

r

dt
t j0ðt � tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p ; (17)

Hyðr;j; tÞ ¼ � sin ðjÞ
2phr

Z t

r

dt
t j0ðt � tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p ; (18)

were jðtÞ is the time-dependence of the source and j0ðtÞ
denotes its derivative with respect to the argument. The

above integrals exhibit a singularity at the left limit

t ¼ r. However, when employing an appropriate quad-

rature rule [19], it becomes possible to numerically

obtain values at arbitrary locations with sufficiently

high accuracy.

A third extension is the implementation of dispersive

materials. For the DG method, an auxiliary differential

equations (ADEs) formulation [4] appears to be the

most natural choice. Here, we will focus on the

modeling of silver, which in the visible frequency range

is well described by a Drude model [20]. The
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corresponding frequency-dependent permittivity is

given by

eðvÞ ¼ 1� vpl

vðvþ ivcolÞ
; (19)

where vpl and vcol denote, respectively, the plasma and

collision frequency. The derivation of the ADEs for the

Drude model is well documented [4,15,21] and leads to

additional equations, one per spatial dimension, that

complement Maxwell’s equations

@

@t
~jDrude ¼ v2

pl
~E � vcol

~jDrude: (20)

As long as the material parameters are constant for each

elementVk, the inclusion of the corresponding auxiliary

equations is straightforward.

4. Optimization of PML parameters and

comparison with FDTD

As alluded to above, the PMLs contain a free

parameter s which needs to be determined numerically

for best performance. In the case of FDTD, extensive

numerical studies [4] have shown that optimal

performance is obtained when making s position

dependent. A typical choice is the polynomial grading

sðxÞ ¼ ðx=dÞmsmax ;

where d is the thickness of the PML-layer while m and

smax are free parameters. Best results are obtained for

values of m� 3� 4 and smax �ððmþ 1Þ=2dÞR, where
R is a number of the order 10. To facilitate a comparison

of our PMLs in the DG method with those of FDTD, we

adopt the same polynomial grading with free parameters

m and R. In order to scan the entire parameter space, we

use a small two-dimensional test system in TM-polar-

ization as sketched in Fig. 1(a). A point-source is placed

in the center of the system and is injected via a TF/SF

contour as discussed in the previous section. The tem-

poral shape of the source is chosen to be a differentiated

Gaussian pulse jðtÞ ¼ �ðt � t0Þ=t2wexp ð�ðt � t0Þ2=
ð2t2wÞÞ with parameters tw ¼ 0:5 and t0 ¼ 5. At this

point, we would like to note that we are using dimen-

sionless units and all simulations have been run for a

total simulation time of T ¼ 30. During the calculation,

the field values Ez are recorded for two distinct points, A

and B (marked as crosses in Fig. 1(a)). Afterwards this

data is compared to the semi-analytic solution Eref
z

obtained from numerical integration of Eq. (16). As a

measure for the relative error we use

Erel ¼
max tðjEref

z � EzjÞ
max tðEref

z Þ : (21)

In Fig. 2, we display the results of our parameter studies

for the system sketched in Fig. 1(a) as well as for a setup

J. Niegemann et al. / Photonics and Nanostructures – Fundamentals and Applications 7 (2009) 2–116

Fig. 1. Meshes used for the validation of PMLs. In both cases, the red shaded areas are the PML regions and the blue lines indicate TF/SF contours.

In panel (a), the mesh used for exploring the influence of the absorption grading on the PMLs is shown. The two crosses denote points Að0;�1:8Þ and
Bð�1:8;�1:8Þ where the fields are recorded for comparison. The panel (b) depicts the mesh used for the calculation of scattering cross sections.

Here, the TF/SF contour also serves for the flux integration. In total, this mesh consists of 1506 triangles. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of the article.)



with two layers of PMLs around it. In both cases, we

used a 4th-order discretization. Most importantly, we

note that for our system with only one layer of PMLs,

we already achieve a relative error below 10�3. Further,

this minimum does not coincide with the one expected

from FDTD. Instead, the best performance can be

observed for m ¼ 0 which renders the grading obsolete.

Adding a second layer improves the performance by

roughly one order of magnitude and makes the system

less sensitive to the parameters m and R. While we still

observe the best performance for m ¼ 0, the range of m

between 1 and 3 now yields similar results. From

studying a multitude of different systems using different

numbers of elements as well as different polynomial

orders (not shown here), we conclude that a minimum at

m ¼ 0 is a rather universal feature.

A more detailed look at the performance form ¼ 0 is

presented in Fig. 3, where the maximal error is plotted

J. Niegemann et al. / Photonics and Nanostructures – Fundamentals and Applications 7 (2009) 2–11 7

Fig. 3. Performance of the PMLs for m ¼ 0 as a function of the parameter R. The colors denote different expansion orders, while the linestyles

correspond to points A (solid) and B (dashed). In panel (a) the data for the system with a single layer of PMLs around is shown, while panel (b)

contains the results for a system with two layers. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.)

Fig. 2. Dependence of the relative error at points A and B on the parametersm and R for two different systems of PMLs. Panels (a) and (b) depict the

error for a single layer of PMLs as displayed in Fig. 1. In panels (c) and (d), a second layer of PMLs is added around the system. Panels (a) and (c)

show the error at point A, while panels (b) and (d) corresponds to data recorded at point B.



as a function of R. In contrast to the previous results, we

now compare the recorded fields against those obtained

numerically in a much larger system. This allows us to

focus on the errors caused by spurious reflection at the

PMLs. From these extensive numerical studies we

conclude that a flat absorption profile yields similar or

better results than the polynomial grading usually

employed in FDTD. Further, for most applications it is

sufficient to only use a single cell of PMLs around the

system and for optimal performance one should choose

R� 10. Preliminary studies indicate that most of these

conclusions also hold for three-dimensional systems.

To further validate our implementation of the DG

technique and to compare it to the FDTD method, we

study the cross section of an infinitely extended metallic

cylinder for the case of TE-polarization, where analytic

solutions are available via Mie theory [22]. The

schematic setup is shown in Fig. 1(b), where a plane-

wave impinges onto a metallic cylinder with radius

r ¼ 75 nm. The metal is incorporated via a Drude

model with parameters vpl ¼ 1:39� 1016 s�1and

vcol ¼ 3:23� 1013 s�1[20]. The scattering cross sec-

tions are then obtained by integrating the Poynting

vector along a closed contour around the cylinder. From

the data in Fig. 4, one can clearly see that the FDTD

method yields spurious oscillations, while the DG

results are in perfect agreement with the analytical

results. The poor performance of the FDTD method in

this case is a direct consequence of the stair-casing

approximation, which supports unphysical surface

modes [23]. Due to the unstructured mesh used in

the DG case, one can locally refine the discretization at

the surface and, therefore, obtain highly accurate results

with only few triangles. In the present case, we use a

mesh with 1506 triangles which has been generated

using NETGEN [24]. Employing a 5th order poly-

nomial expansion amounts to a total of 31626 grid

points. These are more than two orders of magnitude

fewer points than what is required for a similarly

converged FDTD calculation. Hence, despite the

increased computational effort per grid point, the DG

method can outperform the FDTD scheme, both in

CPU-time and memory consumption, when an accurate

modeling of geometrical features is mandated.

5. Transmission through subwavelength

apertures

While extraordinary transmission through individual

subwavelength apertures has attracted a lot of attention

in the past years, most theoretical work is still based on

approximations that describe the metal as a perfect

electric conductor (PEC) [25,26]. Although this

simplifies the calculations and may provide a qualitative

picture of the physical processes, it is not suitable for

designing and optimizing experiments. As an applica-

tion of the DGTD approach we will, in the following,

study the influence of a more accurate description of the

material on the transmittance properties of such

apertures. A typical structure is sketched in Fig. 5

and consists of an infinite metallic screen of thickness w

with a nano-structured surface. We assume a slit of

width a going through the metal and next to it N grooves

of width a and depth h that are spaced a distance d apart

from each other. The many parameters make it obvious,

that a fast and reliable numerical method is required to

thoroughly study the properties of such systems.

Although these structures can be grid-aligned and, thus

be treated with FDTD, the DG method still exhibits a

distinct advantage: The unstructured meshes allow an

accurate resolution of the small nano-structures without

wasting grid points in the bulk regions. Specifically, we

employ a 4th-order discretization in all forthcoming

calculations.

Before getting to the full structure we first analyze the

simple slit aperture without grooves so as to obtain a

reference. We assume a metallic film of thickness

J. Niegemann et al. / Photonics and Nanostructures – Fundamentals and Applications 7 (2009) 2–118

Fig. 4. Scattering cross section of a silver cylinder with radius

r ¼ 75 nm. The analytic reference solution (black line) has been

obtained via Mie theory.

Fig. 5. Schematic setup of a slit aperture in a metallic film. The

aperture is flanked by a finite number of grooves and the dashed line

indicates a contour used to calculate the transmittance.



w ¼ 350 nm with a single slit of width a and irradiate it

with a plane wave, where the magnetic field is parallel to

the slit. The pulse shape is taken to be a broadband

Gaussian with a carrier wavelength of l0 ¼ 500 nm that

covers the relevant spectrum from 350 nm to 1000 nm.

Behind the aperture, we integrate the flux over the entire

half-space and normalize it to the width of the aperture.

First, we conduct a series of calculations with different

slit width a for both, a PEC structure as well as for amore

realistic Drude model with silver parameters

vpl ¼ 1:37� 1016 s�1 and vcol ¼ 8:5� 1013 s�1[27].

We display the results in Fig. 6. Already for the simple

slit aperture, the differences between PEC and a Drude

metal are quite significant. For the realistic metal, the

transmission is reduced, which is consistent with the fact

that the silver exhibits absorption through an imaginary

part in the dielectric function. Further, the position of the

resonance at higher wavelength is strongly blue-shifted

for the Drude case. Finally, for both material models the

resonances shift with varying slit width a, but they move

in opposite directions. For the PEC structure, the

resonances shifts to longer wavelengths as a increases,

while they move towards shorter wavelengths when the

Drude model is used to describe the metal.

We now proceed to the full structures with added

grooves, and again start the analysis by comparing the

PEC and the Drude model. The geometrical parameters

are fixed to d ¼ 500 nm, h ¼ 100 nm, w ¼ 350 nm, and

a ¼ 40 nm, identical to those reported in Ref. [26]. As

discussed above, a simple slit shows two pronounced

resonances, while adding the corrugation gives rise to a

third peak with significantly increased transmittance.

Our data for the PEC structure is in perfect agreement

with results obtained via the modal expansion technique

(c.f. Fig. 2(a) in Ref. [26]). By comparing the data in

Fig. 7(a) and (b), we again observe the strong influence

of the material model on the spectra. In addition to the

resonance shifts observed before, for the PEC case, the
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Fig. 6. Normalized transmittance spectra for simple apertures with different slit widths a. In panel (a) the spectra for systems with perfectly

conducting metal are shown, while panel (b) contains the results for metallic systems that are described by a Drude model (see text for details).

Fig. 7. Normalized transmittance spectra for slit apertures with added grooves for different numbers of grooves. The geometrical parameters are

d ¼ 500 nm, h ¼ 100 nm,w ¼ 350 nm, and a ¼ 40 nm. Panel (a) depicts the spectra for systems with perfectly conducting metal, while in panel (b)

the metal is described by a more realistic Drude model.



central resonance quickly saturates for N � 5 grooves.

When using the Drude model, around N ¼ 15 grooves

are required to observe a similar enhancement.

In a next step, we want to study the influence of the

groove depth h and the spacing d between the grooves on

the systems’ transmittance properties. In accordancewith

the experimental setup in Ref. [26], we fix the number of

grooves to N ¼ 5 and keep all other parameters identical

to those of the previous calculations expect for the height

h, which is now scanned from h ¼ 20 nm to h ¼ 80 nm.

All calculations are carried out with the more realistic

Drude model. From the results depicted in Fig. 8(a), we

deduce that changing the height results in a shift of the

central resonance. The highest transmittance is observed,

when this central resonance coincides with a peak of the

simple aperture at 610 nm (see Fig. 6(b)). The results for

scanning the distance d between the grooves display a

similar behavior as shown in Fig. 8(b). Here, we have

fixed the depth to h ¼ 40 nm and changing d again leads

to shifts of the central resonance frequency. As before,

one observes that the maximum transmittance is reached

when the resonance coincides with the resonance of the

simple aperture.

6. Conclusion

In conclusion, we have demonstrated how the

discontinuous Galerkin method can be employed to

study the optical response of metallic nano-structures.

Through the development of important add-ons such as

optimized PMLs and point sources, the DG method

acquires the same versatility as standard methods such

as FDTD. Most importantly, through its ability to work

on conforming meshes and the higher-order spatial

accuracy, the DG method exhibits distinct advantages

over FDTD. We have exploited those features to study

certain aspects of the phenomenon of extraordinary

transmission through nano-structured metallic films. In

particular, we have demonstrated the importance of

modeling the metal as a dispersive material and we have

studied the sensitivity to the system’s geometrical

parameters. In order to further enhance the performance

of the DG method, great potential lies in the time

integration scheme. So far, we have employed a simple

and efficient low-storage Runge–Kutta technique.

However, unconditionally stable methods such as those

presented in Refs. [4,14,15] should allow larger time

steps and should lead to significantly faster calculations.
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