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Abstract

Conventional topological insulators support boundary states with dimension one lower than that of the bulk system

that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-

order topological insulators have been proposed as a way of realizing topological states with dimensions two or more

lower than that of the bulk due to the quantization of bulk quadrupole or octupole moments. However, all these

proposals as well as experimental realizations have been restricted to real-space dimensions. Here, we construct

photonic higher-order topological insulators (PHOTIs) in synthetic dimensions. We show the emergence of a

quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules

with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the

phase difference of the modulation between adjacent coupled photonic molecules, we predict a dynamical

topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be

exploited to realize even higher-order multipole moments such as a fourth-order hexadecapole (16-pole) insulator

supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.

Introduction

A conventional topological insulator in 2D and 3D

supports gapless edge states and surface states, respec-

tively, that are protected against local perturbations by the

nontrivial topology of the bulk. The existence of these

gapless states, which have dimension one lower than that

of the bulk that hosts them, is guaranteed by the bulk-

boundary correspondence. Recently, the concept of

higher-order topological insulators (HOTIs) has been

proposed to generalize this bulk-boundary correspon-

dence, revealing the existence of topological states with

dimensions two or more lower than that of the bulk. In

general, an nth order topological insulator in D-dimen-

sions supports (D-n)-dimensional topological boundary

modes of codimension n. The first such prediction was of

zero-dimensional zero-energy corner states in a second-

order topological insulator with gapped edge states, and

the existence of these zero-energy corner states was

guaranteed by a quantized bulk quadrupole moment1.

This theoretical prediction was closely followed by the

experimental realization of quadrupole HOTIs in several

systems, including bismuth2, mechanical metamaterials3,

acoustics4,5, electrical circuits6, and photonics7. However,

both the theoretically proposed and experimentally

demonstrated HOTIs have been restricted to real-space

dimensions, that is, spatially periodic lattices.

In contrast to real-space dimensions, synthetic dimen-

sions are formed by coupling internal degrees of freedom,

which can be, for example, the frequency, arrival time, or

orbital angular momentum of photons or the spin of

ultracold atoms8,9. Introducing coupling between these

degrees of freedom then allows the study of higher-

dimensional physics in lower-dimensional structures10–12.

A prime focus of research on synthetic dimensions has

been the pursuit of conventional topological phases in

simple structures, such as the study of the 2D quantum

Hall effect in a 1D real-space array13–17 or the study of 3D

topological physics in a 2D planar array18,19. Additionally,

researchers have studied two or more simultaneous
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synthetic dimensions to implement higher-dimensional

physics in essentially 0D systems20–24. Since the concept

of synthetic dimensions is well suited to the study of

topological physics in high-dimensional lattices, a natural

question is whether HOTIs can be realized in

synthetic space.

Here, we answer this question in the affirmative by

constructing a photonic higher-order topological insu-

lator (PHOTI) in synthetic dimensions. Our system con-

sists of pairs of ring resonators that are mutually coupled

to form an array, realizing a 1D chain of “photonic

molecules”25,26. By antisymmetrically modulating the two

rings in a photonic molecule at the frequency spacing

between the ring modes, we realize a lattice along the

synthetic frequency dimension. A 1D array of modulated

photonic molecules forms a quadrupole PHOTI in the

synthetic frequency dimension, in which we show the

excitation of topologically nontrivial corner modes. By

changing the phase difference of the modulation between

adjacent photonic molecules, we show a phase transition

from the topologically protected phase with a nonzero

quantized quadrupole moment to a phase with zero

quadrupole moment. Additionally, we propose, for the

first time, a hexadecapole (16-pole) insulator with topo-

logically nontrivial corner modes by leveraging synthetic

dimensions to create a 4D hypercubic lattice that cannot

be realized in real-space lattices. Our work illustrates the

potential of using the concept of synthetic dimensions to

explore exotic new phases, including very-high-order

topological insulators in high dimensions.

Results

Quadrupole PHOTI

Consider the Benalcazar–Bernevig–Hughes (BBH) lat-

tice in Fig. 1a as an example quadrupole higher-order

topological insulator (HOTI)1. Each vertical 1D strip in

this lattice is a Su–Schrieffer–Heeger (SSH) strip27, with

the alternating values of the couplings γ and λ repre-

senting the intra-cell and inter-cell hopping strengths,

respectively. The signs of the couplings along each vertical

strip are the same, whereas adjacent lines have a π phase

difference between the couplings. All the horizontal

couplings have positive real values. Thus, there is a

magnetic flux π through each of the plaquettes.

We show that the model in Fig. 1a can be realized by

using the concept of a synthetic dimension. To construct

each SSH strip of the quadrupole HOTI, we use a pair of

mutually coupled identical ring resonators A and B, each

with an electro-optic modulator, as shown in Fig. 1b. Such

a pair of photonic cavities, with or without modulation, is

often called a “photonic molecule”25,26,28–31 in analogy

with a diatomic molecule. Each individual ring supports

longitudinal cavity resonances at ωn= ω0+ nΩ, separated

by the free spectral range (FSR) Ω/2π= vg/L, where vg is

the group velocity of light in the ring, and L is the ring

length (Fig. 1c). In forming the photonic molecule, the

two modes of the two individual rings at the same fre-

quency ωn hybridize into symmetric and antisymmetric

supermodes with frequencies ωn−= ωn−K≡ ω2m and

ωn+= ωn+K≡ ω2m+1, respectively, where K is the cou-

pling strength between the rings (Fig. 1d). We neglect

dispersion in the ring-to-ring coupling strengths. The

frequencies of the photonic molecule in the basis of the

symmetric and antisymmetric supermodes thus form a

strip with alternating spacings 2K andΩ−2K. By choosing

a modulation of the form

JA t;ϕð Þ ¼ 2A0cos 2Kt þ ϕð Þ þ 2A1cos Ω� 2Kð Þt þ ϕ½ �;

JB t;ϕð Þ ¼ �JA t;ϕð Þ ð1Þ

one can form a synthetic frequency dimension with

alternating coupling strengths A0 and A1 (see Supple-

mentary Materials Section I). Note that the coupling

strengths achieved in previous work13,32 along the

synthetic frequency dimension have typically been uni-

form for a single modulated ring. Here, we use a pair of

modulated rings to realize the nonuniform alternating

coupling strengths needed for an SSH strip, since the

unequally spaced modes can be addressed by the different

frequencies of the modulation 2K and Ω−2K. The

antisymmetric modulation JB=−JA is necessitated by

the opposite symmetries of the two supermodes at

adjacent frequencies. Throughout most of the paper, we

assume

A0;A1 � K<Ω=4 ð2Þ

so that the rotating wave approximation is valid. In

Supplementary Materials Section II, we confirm the

validity of our synthetic dimension approach in realizing

the tight-binding model for the SSH strip when Eq. (2) is

satisfied. We also show that the hallmark of the SSH

model—the exponentially localized topological edge state

—is preserved for moderate modulation strength A1/K=

0.2 even beyond the RWA, although the tight-binding

model breaks down. Eventually, the edge state vanishes

for ultrastrong modulation A1/K= 133,34.

Next, to form the full 2D lattice of the quadrupole

insulator in Fig. 1a, we form a lattice of the pairs of cav-

ities described above, with alternating coupling strengths

γ and λ determined by the respective coupling gaps

between the nearest neighbor cavities along the horizontal

axis (Fig. 1e). This system is described by a two-

dimensional synthetic space with a real space axis (x)

and a synthetic frequency axis (m). The signs of the

modulation are switched between adjacent cavity pairs

(ϕ= 0 and ϕ= π in Eq. (1)) to implement a flux of π per

Dutt et al. Light: Science & Applications           (2020) 9:131 Page 2 of 9



plaquette in the two-dimensional lattice13,35. Interestingly,

the signs of the modulation in each unit cell of this array

of paired resonators follow a quadrupole pattern, as seen

in Fig. 1e. The strength of the modulation is chosen to

satisfy A0= γ and A1= λ, which ensures that the model is

isotropic in the magnitude of the coupling strengths along

x and m. Thus, the BBH model is realized, which pos-

sesses time-reversal symmetry, two mirror symmetries

(along x and m) and inversion symmetry. Importantly, the

two mirror symmetries along the real and synthetic axes

do not commute due to the presence of the π flux per

plaquette, which is ensured by the relative modulation

phase between all adjacent pairs of rings along x of π1.

This leads to a quantized nonzero bulk quadrupole

moment in the system. A deviation of the relative mod-

ulation phase from π breaks the time-reversal symmetry.

Similarly, disorder in the resonance frequencies between

adjacent rings breaks the corresponding mirror symmetry.

The robustness of higher-order topology to such broken

symmetries is studied in the Supplementary Materials

Section IV.

Excitation of corner modes

The hallmark of the quadrupole HOTI model descri-

bed in Fig. 1a is the existence of fourfold degenerate

zero-energy corner modes with codimension 2, while the

edge modes are gapped, for γ=λj j<1. In our imple-

mentation with an array of modulated photonic mole-

cules, as shown in Fig. 1e, these midgap corner modes

can be excited by coupling external waveguides to the

array (Fig. 2a–c). The demonstration of these corner

modes then indicates that we have indeed constructed a

quadrupole photonic HOTI in synthetic space. Since

these corner modes only exist in a finite lattice, we

choose Mω= 10 sites (five pairs of supermodes) along

the frequency axis and six rings (Fig. 2a–c) along the

real-space horizontal axis for our calculations. Such a

termination of the frequency axis can be achieved by
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Fig. 1 Construction of a quadrupole higher-order topological insulator using a synthetic frequency dimension in a photonic molecule

array. a Tight-binding lattice of a quadrupole topological insulator. Blue and red lines represent positive and negative real values of the coupling

strength. Thin and thick lines represent intra-cell and inter-cell coupling strengths of magnitude γ and λ, respectively. Each vertical column is an SSH

strip with the same coupling strength sign throughout, whereas adjacent vertical lines have a phase offset in the coupling strength of π.

b Implementation of the SSH strip in the synthetic frequency dimension using modulated coupled rings (photonic molecule), with JA(t) as in Eq. (1).

c Mode structure of the system in b with sets of frequency modes separated by the FSR Ω in the absence of modulation and coupling. d Mode

spectrum of the coupled ring system or photonic molecule. Each set is separated by a frequency difference equal to the coupling constant between

the rings, 2K. The modulation introduces coupling between the supermodes. e Several of the synthetic SSH strips in b can be evanescently coupled

with alternating coupling strengths γ and λ to realize the quadrupole HOTI lattice in a. We note that the modulation pattern of the unit cell of four

rings has a quadrupole nature
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Fig. 2 Energy eigenspectrum, edge modes, and corner modes of the synthetic dimension quadrupole HOTI. a–c Schematics of selective

excitation of corner, edge, and bulk modes in the photonic molecule array using external waveguides. d Intensity aj j2 in the excited rings under

various input frequency detunings Δω for the excitations indicated in a–c. Peaks appear at input frequency detunings that correspond to the

positions of the corner, edge, and bulk modes in e. Solid lines represent tight-binding model solutions under the rotating wave approximation [RWA,

Eq. (2)], with γ/λ= 0.1. Dots represent the solutions of the full dynamical coupled-mode equations using the modulation in Eq. (1), with A1/K= 0.05

and A0/A1= γ/λ= 0.1 e Energy eigenspectrum for a large finite lattice of the quadrupole HOTI. For γ=λj j<1, the system exhibits topologically

protected corner modes pinned to zero energy. For γ=λj j>1, the corner modes cease to exist. f Same as in d but in the topologically trivial regime

γ/λ= 1.1. No peaks are observed in the bandgap, as the corner and edge modes cease to exist. The overall amplitude in the excited rings is lower

than that in c because the excitation spreads into the bulk. g–i Cavity field intensity when exciting the finite lattice at the corner g, edge h and bulk

i for γ/λ= 0.1. The RWA results agree well with the solution of the full dynamical equations. No such corner or edge localized modes were observed

in the trivial phase under the same excitations for γ=λj j>1. The color scale in the bottom two rows indicates the steady-state field amplitude

distribution in the lattice. Blue dashed circles denote the lattice site excited in each case. j Lattice field distributions for corner excitation in the

topological phase with γ/λ= 0.1 obtained using the full dynamical equations for increasing values of A1/K= 0.2, 1, and 2, all beyond the validity of

the RWA [Eq. (2)]. The field distribution significantly deviates from that for the corner mode excitation based on the RWA (in g), but corner localization

is still observed for moderate modulation strengths A1/K < 1. k Simulations highlighting the difference in the field distributions obtained using the full

solution and the RWA upon exciting a corner site in the trivial regime [A0/A1= γ/λ= 1.1] under ultrastrong modulation [A1/K= 1]

Dutt et al. Light: Science & Applications           (2020) 9:131 Page 4 of 9



strong coupling to a ring with a radius Mω times smaller

than that of the main rings to induce a strong local

change in the FSR every Mω modes23. Alternatively, one

can engineer the dispersion of the ring waveguide to

strongly perturb the FSR beyond the Mω modes13, which

makes the modulation in Eq. (1) beyond the finite lattice

formed by these Mω modes off-resonant.

Figure 2d shows the results of exciting the photonic

molecule array in the topological phase with γ/λ= 0.1.

We can observe corner, edge, and bulk modes by exciting

suitable rings at the appropriate frequency (ωin= ωm+

Δω), where m denotes the desired frequency mode and

Δω maps to the quasi-energy when this time-modulated

system is treated as a Floquet system. Note that selective

excitation of a single site in the synthetic lattice requires

the excitation of two rings either in phase (+ mode, m

even) or out of phase (− mode, m odd), as the modes in

each photonic molecule are symmetric and antisymmetric

combinations of the isolated ring modes (Fig. 2a–c). For

corner mode excitation, we choose the leftmost pair of

rings with an excitation frequency ωin= ωm=0+Δω. We

observe a peak for Δω= 0 because the midgap corner

modes are pinned to zero energy, consistent with the

eigenspectrum shown in Fig. 2e. The broadening of the

peak is due to the coupling to the external waveguides at a

rate κex= 0.03A1 and due to the intrinsic losses κin= κex
assumed in each ring. In Fig. 2d, dots represent the results

of integrating the full dynamical coupled-mode equations

using the modulation in Eq. (1), whereas solid lines

represent the solutions under the RWA. The two methods

agree well with each other since Eq. (2) is satisfied: A1/K

= 0.05≪ 1 and K= 0.15Ω. The corresponding steady-

state field amplitude distribution in the synthetic lattice

for Δω= 0 is shown in Fig. 2g, which exhibits strong

localization at the corner, with excellent agreement

between the RWA and the full solution. For edge mode

excitation, we choose the same pair of rings but change

ωin to ωm=7+Δω and observed peaks for Δω/λ ≈ ±0.5.

The output amplitude is zero between the peaks, which

indicates that the edge modes are gapped. For bulk exci-

tation, we choose a pair of rings in the center of the array

and observed peaks at Δω/λ ≈ ±0.71, in accordance with

the eigenspectrum in Fig. 2e. The corresponding field

amplitude distributions in the synthetic lattice when

exciting the edge and bulk modes at their respective

detunings Δω are shown in Fig. 2h, i, with reasonable

agreement in all cases between the RWA and the full

solution. By contrast, in the trivial regime γ/λ= 1.1, we do

not observe midgap peaks because the corner modes

cease to exist—in fact, there are no modes in the bandgap

even for a finite lattice (Fig. 2f). Experimentally, the field

distributions corresponding to the corner and edge states

can be mapped by frequency-resolved detection of the

cavity output from the leftmost pair of rings. Heterodyne

detection can be used for this purpose, as demonstrated in

our recent experiments22,36, by beating the cavity output

with a frequency-shifted portion of the input laser.

To further probe the validity of the synthetic dimension

approach in realizing the quadrupole HOTI, we studied

the field distributions under corner excitation for

increasing strength of modulation A1 beyond the validity

of the RWA [Eq. (2)], as shown in Fig. 2j, k. For A1/K=

0.2, the steady-state field distribution in Fig. 2j deviates

from the RWA solution in Fig. 2g, but corner localization,

a signature of nontrivial higher-order topology, is still

observable33. For ultrastrong modulation [A1/K= 1 and

2], the field significantly penetrates into the edge along the

synthetic dimension as the counterrotating terms become

non-negligible. The penetration into the bulk along the

real-space axis is less significant, as there are no coun-

terrotating terms in that direction that depend on the

modulation strength. In Fig. 2k, we show the field dis-

tribution in the trivial regime [γ/λ= 1.1] for ultrastrong

modulation. Although the field patterns obtained from

the RWA and the full dynamical solution differ, both

show significant penetration into the bulk.

Topological phase transition

The concept of a synthetic dimension provides great

flexibility in dynamically reconfiguring the hopping

amplitudes and phases by changing the strengths and

phases of the modulation, respectively. We use this flex-

ibility to show a topological phase transition between the

regime with a quantized bulk quadrupole moment and a

2D SSH phase with no quadrupole moment, which occur

for π and 0 flux per plaquette, respectively. The lattice

with zero flux (2D SSH model) possesses all the symme-

tries of the quadrupole insulator, namely, it is invariant

with respect to the translation, reflection (about x and y)

and time-reversal operations. While this ensures that the

bulk quadrupole moment is quantized, its value is zero. In

fact, there is not even a bulk bandgap at zero energy in

this model, meaning that the bulk is not insulating. Our

photonic molecule array can be used to implement such a

change in flux by changing the relative phase between the

modulations on adjacent molecules (Fig. 3a). In Fig. 3, we

plot the energy eigenspectrum for various ϕ. The bandgap

remains open for intermediate values of flux 0 < ϕ <π but

eventually closes for ϕ→ 0. However, the quadrupole

moment is not quantized for intermediate values of flux ϕ

due to the breaking of the reflection symmetry along the

frequency dimension37. The bulk band structures for ϕ=

π and ϕ= 0 are plotted in Fig. 3c, d. The 2D SSH model

with ϕ= 0 is not an insulator at zero energy, since the

bulk is not gapped for E= 0, and although corner modes

exist, they spectrally overlap with the bulk excitations. To

compare the topological protection of corner modes in

the quantized quadrupole phase with ϕ= π and the 2D
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SSH phase, we introduce disorder in the couplings. The

corresponding eigenspectra (Fig. 3g, h) retain the well-

separated midgap corner modes for the quadrupole phase

but not for the 2D SSH case. Upon exciting the corner

site in the two cases, strong corner localization of the

field distribution is observed for ϕ= π (Fig. 3i), but sig-

nificant leakage into the bulk is observed for ϕ= 0

(Fig. 3j). Leakage into the bulk preferentially occurs along

the kx= ky and kx=−ky directions since the central bulk

subbands in Fig. 3d touch at zero energy, which is the

energy where the corner modes exist for a finite lattice.

This lack of protection of the corner modes for ϕ= 0 is

expected because the system has zero bulk quadrupole

moment and no bandgap at zero energy. Recently, this

2D SSH model without magnetic flux has received some

attention38–40, because it can be associated with a non-

zero 1D Zak phase in both directions. This is in fact what

ensures the existence of the corner modes in the system

without disorder. However, as we can see in Fig. 3j, these

corner states are not as robust as those of the bulk

quadrupole insulator phase, which is harder to achieve in

real space due to the requirement of negative-valued

couplings but is straightforward to achieve using syn-

thetic dimensions.

An alternative way to implement a topological phase

transition is to tune the ratio of intra-cell hopping A0 to

inter-cell hopping A1 in the synthetic frequency dimension

by varying the modulation amplitude. This produces an

anisotropic 2D SSH model with π flux per plaquette, as the

hoppings along the real-space axis x are fixed. However, the

corner modes only exist for A0/A1 < 1. As the modulation

amplitudes are tuned from A0 <A1 to A0 >A1, the one-

dimensional Zak phase along the frequency dimension

becomes topologically trivial, and the corner modes dis-

appear. The Zak phase along the real dimension, however,

remains nontrivial, and upon truncation in real space, edge

modes still exist at the boundary of the real dimension38.

Octupole and hexadecapole insulators

Finally, we show how the concept of synthetic dimen-

sions can be exploited to construct PHOTIs of even

higher order, such as an octupole insulator in a 3D cubic

lattice and a hexadecapole (16-pole) insulator in a 4D

hypercubic lattice supporting corner modes with
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topologically protected corner modes pinned to zero energy. For ϕ= 0, no such bandgap exists at zero energy, as confirmed by the bulk band

structure in d. c and d Bulk band structures for the quadrupole HOTI (ϕ= π) and the 2D SSH model (ϕ= 0), respectively. All energies are in units of

λ. In c, both bands are doubly degenerate. e and f Energy eigenspectrum of an ideal finite lattice for ϕ= π and 0, respectively, without disorder in the

couplings. Although corner modes exist in both cases, for ϕ= 0, they spectrally overlap with the bulk bands. g and h Energy eigenspectrum with

normally distributed random disorder in the couplings with variance σ2= 0.04. Since the lattice with ϕ= π hosts a quantized bulk quadrupole

moment, corner modes are visible in the bandgap in g, unlike in h. i and j Steady-state field distribution at the disordered synthetic lattice sites for an

excitation with zero detuning Δω= 0 at the lowest frequency mode m= 0 for the leftmost ring, as indicated by the arrows. For the quadrupole

PHOTI (ϕ= π) in the top row, the corner modes are still strongly localized in the presence of disorder. For the 2D SSH phase in the bottom row,

disorder in the couplings makes the corner excitation not well localized, with leaking into the bulk. Specifically, the excitation preferentially

propagates at ~±45° in the lattice39 because the bands in d touch at zero energy along the kx= ky and kx=−ky lines. In c–j, γ/λ= 0.4
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codimension 4. The unit cell for the octupole insulator

cubic lattice is shown in Fig. 4a. It consists of two layers of

the unit cell for the quadrupole insulator connected by

positive-valued coupling γ1. The signs of all couplings are

reversed between the two layers (Fig. 4a). The full lattice

for the octupole insulator can be created by connecting

such unit cells with coupling strength ±λ such that a π

flux is maintained in each plaquette. An example of a

small finite lattice for this model is shown in Fig. 4b.

Regardless of the multipole order, multipole HOTIs can

be viewed as being composed of 1D SSH strips connected

in a certain way. In Fig. 4b, for example, a 1D strip in any

direction is an SSH chain with either a positive or a

negative sign for all of its couplings. The crucial char-

acteristic for each dimension is then whether the cou-

plings of the SSH chains flip sign when the chains are

stacked in that dimension (as in the x- and ω-dimensions

in Fig. 4b) or if they are all of the same sign (as in the y-

dimension). The general rule is that the SSH chains flip

sign along all but one of the dimensions.

In the construction of a quadrupole PHOTI, in connec-

tion with the experiments in ref. 22, we formed an SSH

model using two rings and utilized only one of the two

polarizations that the ring can support. For the construc-

tion of octupole and hexadecapole PHOTIs, since we are

using a much larger number of rings, it is of interest to

reduce the number of rings used. Therefore, we instead

construct the SSH model using only one ring resonator and

utilize the polarization degree of freedom. For this purpose,

we consider the setup shown in Fig. 4c, where two electro-

optic modulators EOM1 and EOM2 are incorporated in a

single ring. This setup was previously used in ref. 25 for
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Fig. 4 Hierarchical construction of octupole and hexadecapole insulators using synthetic dimensions. a Unit cell and b tight-binding model

of the octupole insulator. Thin lines have coupling strength γ, and thick lines have coupling strength λ. Blue and red lines represent positive and

negative coupling strengths, respectively. c Dipole insulator (SSH strip) formed using two polarization modes in a single resonator25. EOM1

introduces a frequency offset between the resonances of the two polarizations. EOM2 is modulated by a signal similar to Eq. (1) to form the synthetic

frequency dimension spanned by ωm. d Unit cell of the quadrupole insulator formed by coupling two site rings (green) with an auxiliary link ring

(gray) with a slightly smaller length and asymmetrically placed with respect to the coupling region with an offset η+= π/2β0
41. This implements layer

1 of the octupole unit cell in a. The modulation phases between adjacent site rings differ by π. e Implementation of layer 2 of the octupole unit cell in

a. The red link ring implements a negative coupling in real space by having an offset η
−
= 3π/2β0. Negative-valued real-space coupling strengths are

needed in our construction of octupole and hexadecapole insulators. f 2D lattice of modulated rings with a synthetic frequency dimension forming

the 3D octupole insulator in b. g Array of rings implementing the unit cell of the hexadecapole insulator using two layers of the octupole insulator

vertically coupled. The phases of all synthetic and real-space couplings alternate between the two layers. The vertical ring couplings are positive-

valued. h 4D hypercubic unit cell of the hexadecapole insulator. The inner cube is realized using the bottom layer in g, and the outer cube is realized

using the top layer
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realizing a photonic molecule, but without a synthetic

frequency dimension. Here, the two modes forming the

SSH unit cell are the polarizations in-plane with the ring

and perpendicular to the ring (Fig. 4c). The splitting

between the resonance frequencies of these two polariza-

tions is proportional to the voltage applied on EOM1 and

can be tuned to 2K, similar to Fig. 1d. Next, using EOM2,

these polarizations are coupled to each other and to the

modes separated by the FSR using the modulation in

Eq. (1) with frequency components at 2K and Ω−2K. To

facilitate this coupling, the principle axes of EOM2 are at

an angle of 45° with respect to those of EOM1.

After realizing the SSH model in a single ring, we form

the unit cell of the quadrupole insulator using two such

rings, as shown in Fig. 4d. Since layer 2 of the octupole unit

cell requires negative-valued couplings in real space, we use

off-resonant link rings of a slightly smaller length

L−η, similar to the construction of Hafezi et al. 41. The link

rings in the second layer are offset from the site rings by

η
−
= π/2β0 to realize this negative coupling (Fig. 4e), where

β0 is the propagation constant of the mode at frequency ω0

in the waveguide forming the ring. We assume L≫ η to

ensure negligible variation of the coupling phase across the

Mω frequency dimension modes. The signs of the mod-

ulation also alternate between each neighboring site ring in

the unit cell. Figure 4f shows the entire 2D square array of

modulated rings that forms the octupole insulator 3D cubic

tight-binding lattice. Thus, the 2D lattice in Fig. 4f with a

synthetic frequency dimension forms a quantized octupole

insulator supporting midgap corner-localized modes.

Using a similar recipe, we construct a hexadecapole

insulator by adding a third spatial dimension to the octu-

pole insulator and switching the signs of all real-space

couplings between vertical layers. The unit cell for the

hexadecapole insulator has eight site rings with alternating

signs of the modulation between adjacent site rings (Fig.

4g). Thus, we form the 4D hypercubic lattice shown in Fig.

4h in real and synthetic dimensions, supporting 0D corner

modes with codimension 4, signifying a fourth-order

topological insulator. Specifically, the inner cube of the

hypercubic lattice in Fig. 4h is formed by the bottom layer

of rings in Fig. 4g, and the outer cube is formed by the top

layer of rings. The two cubes are connected by positive-

valued couplings, as shown in Fig. 4h, which are imple-

mented by vertical coupling between the site rings in Fig.

4g. Such vertically coupled rings have been routinely

experimentally realized in silicon photonics and III–V

photonics42–45. We note that the realization of the hex-

adecapole insulator is difficult in real space due to the

three-dimensional nature of space.

Discussion

We have introduced the concept of synthetic dimensions

for realizing higher-order topological phases supporting

quantized bulk quadrupole, octupole, and hexadecapole

moments. These phases support topologically protected

zero-dimensional corner modes that are robust against

disorder in the couplings. We have also shown the exci-

tation of these corner modes in real and synthetic dimen-

sions and a dynamical topological phase transition between

a quadrupole insulating phase and a 2D SSH phase. Future

work could involve constructing 1D boundary modes of

HOTIs, such as chiral hinge states, using similar synthetic-

space concepts. Although we focused on a photonic

implementation using a synthetic frequency dimension,

our approach can be generalized to other degrees of free-

dom, such as the spin or momentum of ultracold atoms

and molecules or the orbital angular momentum of light.

Additional frequency dimensions can also be harnessed for

this purpose20,21,24. Lastly, our proposal is ripe for experi-

mental demonstration using integrated nanophotonic

platforms that can modulate resonators at frequencies

approaching their FSR, especially in silicon and lithium

niobate systems46–48.

Note: While this manuscript was being prepared, we

became aware of a related work using synthetic frequency

and orbital angular momentum dimensions49.
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