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We demonstrate that multiple higher-order topological transitions can be triggered via the continuous change of
the geometry in kagome photonic crystals composed of three dielectric rods. By tuning a single geometry param-
eter, the photonic corner and edge states emerge or disappear with higher-order topological transitions. Two
distinct higher-order topological insulator phases and a normal insulator phase are revealed. Their topological
indices are obtained from symmetry representations. A photonic analog of the fractional corner charge is intro-
duced to distinguish the two higher-order topological insulator phases. Our predictions can be readily realized
and verified in configurable dielectric photonic crystals. © 2021 Chinese Laser Press
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1. INTRODUCTION

Topological phases and phase transitions have been extensively
studied in electronic [1,2], photonic [3], and acoustic [4,5] sys-
tems in the past decades. Recently, a new class of topological
insulators, called higher-order topological insulators (HOTIs)
that are characterized by higher-order bulk-boundary (e.g.,
bulk-corner or bulk-hinge) correspondence, were discovered
[6–36]. HOTIs set up examples with multidimensional topo-
logical physics going beyond the bulk-edge correspondence in
conventional topological insulators and semimetals and thus
attract growing attention. Prototype HOTIs include quadru-
pole and octupole topological insulators [6–16,37,38], 3D
HOTIs in electronic systems with topological hinge states
[17–20], and HOTIs with quantized Wannier centers [21–34,
39–41]. Among these prototype HOTIs, the breathing kagome
lattice is regarded as an excellent platform to study higher-order
topological phases and phase transitions. It was first proposed in
Ref. [21], and subsequently experimentally realized in acoustic
[22,23] and photonic [24,25] systems. In the breathing ka-
gome lattice, the higher-order topology is characterized by the
quantized bulk polarization (or the position of the Wannier
center). When there is a mismatch between the Wannier center
and the lattice site, the breathing kagome lattice becomes a
higher-order topological phase and exhibits gapped edge states
and in-gap corner states. On the contrary, the breathing ka-
gome lattice becomes a topological trivial phase when the
Wannier center overlaps with the lattice site. Despite extensive
studies on HOTIs based on the breathing kagome lattice, most

studies only distinguish the higher-order topological phases
from the trivial phases. As a result, the distinctions between
two higher-order topological phases and phase transitions have
not yet been revealed.

Here, we study multiple higher-order topological phases and
phase transitions in C3 symmetric 2D photonic crystals
(PhCs). We show that by moving the dielectric rods continu-
ously, the C3 symmetric PhCs can switch between triangle and
kagome lattice configurations, leading to rich higher-order
topological phases and phase transitions. Accompanying such
phase transitions, the corner and edge states emerge or disap-
pear, while the corner charge changes between 0 and 1/3. The
topological indices for various phases are deduced from the
symmetry indicators that are closely related to the fractional
corner charge [42]. We also discuss the physical meaning of
the fractional corner charge in the photonic context. The rich-
ness of the higher-order topological phases and their evolutions
provide intriguing photonic phenomena and potential applica-
tions in topological photonics that can be readily realized in
genuine materials.

2. HIGHER-ORDER TOPOLOGICAL PHASES IN

TUNABLE C3 SYMMETRIC PHOTONIC

CRYSTALS

We study 2D hexagonal PhCs of C3 rotation symmetry, as
illustrated in Fig. 1. The lattice vectors are denoted as
~a1 � �a; 0� and ~a2 � �a2 ,

ffiffi

3
p

a
2 �, where a is the lattice constant.
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The side length of the unit cell is denoted as l � a∕
ffiffiffi

3
p

.
Throughout this study, we consider the C3 symmetric PhC
to consist of three identical dielectric rods with permittivity
ϵ � 15 and radii r � 0.1a. The simplest configuration is the
triangular lattice with a dielectric rod at the center of each unit
cell [Fig. 1(a)], which can be regarded as a special case where
three identical dielectric rods overlap with each other. By mov-
ing the three dielectric rods along the three symmetry lines, as
indicated by the arrows in Fig. 1(b), the PhC undergoes a con-
tinuous geometry transformation that includes three triangular
lattice configurations (denoted as triangular I, II, and III) and
three kagome lattice configurations (denoted as kagome I, II,
and III), as shown in Figs. 1(b)–1(f ). The configurations be-
tween these six special cases are the breathing kagome lattices.
The whole cycle of the continuous deformation encompasses d
from 0 to 3l , as shown in Fig. 1. The kagome lattices are char-
acterized by d � �n� 1

2
�l with n � 0,1,2, while the triangular

lattices are characterized by d � nl with n � 0,1,2.
Intuitively, as the dielectric rods move, the Wannier center

changes. We consider the band gap between the first and the

second photonic bands; therefore, there is only one Wannier
center in the unit cell that can locate at the center (α) or the
corner of the unit cell (β or γ), as shown in Fig. 1(g). The
Wannier center positions of the triangular lattices with different
configurations are discussed in detail in Appendix A. Unlike the
positions of the dielectric rods, the Wannier center is
constrained by the crystalline symmetry and thus cannot con-
tinuously change. The change of the Wannier center is non-
adiabatic, which must be achieved by the closing and
reopening of the band gap, as shown in detail below.

We first provide the photonic band structures for nine
prototype cases in Figs. 2(a)–2(c), where we use c∕a as the fre-
quency unit (c is the speed of light in vacuum). Throughout
this work, we focus on the low-lying photonic bands due to the
transverse magnetic (TM) harmonic modes. All the numerical
simulations are carried out using the finite element numerical
solver COMSOL Multiphysics. The photonic bands for the
triangular I, II, and III configurations are shown in Fig. 2(a),
which indicates that the three triangular configurations have an
identical band structure. This phenomenon happens because

Fig. 1. Geometric transitions in 2D PhCs with C3 symmetry. The primitive cells are indicated by hexagonal dotted lines with the lattice constant
a and the side length l . A tunable parameter d with a range of 0–3l (the parameter d is modulo 3l ) is employed to illustrate the geometric transitions
between triangular, kagome, and breathing kagome configurations. By tuning the geometric parameter d, the C3 symmetry is preserved, while
various configurations can be generated, including: (a) triangular I with d � 0∕d � 3l , (b) kagome I with d � 0.5l , (c) triangular II with d � l ,
(d) kagome II with d � 1.5l , (e) triangular III with d � 2l , and (f ) kagome III with d � 2.5l . Each primitive cell consists of three dielectric rods
(possibly overlapping with each other) with identical radii r � 0.1a and permittivity ϵ � 15. (g) Possible position of the Wannier center for C3

symmetric unit cells.
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the three triangular configurations differ only by a partial lattice
translation, while the structure of the 2D array of the dielectric
rods remains the same. However, the symmetry representations
of the photonic bands are distinct for the three triangular con-
figurations. Hence, their topological properties are different. In
particular, the location of the Wannier center is distinct for the
three triangular configurations, as revealed below.

Similarly, the photonic band structures for the kagome I, II,
and III configurations are identical because they can be related
to each other by partial lattice translations, as shown in
Fig. 2(b). Such translations change the location of the Wannier
center as well as the symmetry representations of the Bloch
bands and their topological properties.

Furthermore, as shown in Fig. 2(d), the photonic band
structure is identical, if two configurations differ by an integer
time of l in the geometry parameter d. Since the lattice perio-
dicity for the translation along the black arrows in Fig. 1(b) is
3l, there are three different configurations with the same pho-
tonic band structure, where the geometry parameter d differs
by an integer time of l . The translation of l along the black
arrows in Fig. 1(b) shifts the unit cell center to the unit cell
corner without changing the pattern of the 2D array of the di-
electric rods. The photonic band structure is insensitive to such
global shifts. Therefore, configurations that differ by an integer
time of l in the geometry parameter d have the same photonic
band structure. To further demonstrate such a periodicity of
the photonic band structure, we present the photonic bands
for three breathing kagome configurations with d � 0.25l ,

1.25l, and d � 2.25l in Fig. 2(c). It is seen that their photonic
band structures are identical to each other.

The evolution of the first two photonic bands at the K point
[i.e., k � �4π3 ; 0�] with the geometry parameter d is summa-
rized in Fig. 2(d). There are three topologically distinct pho-
tonic band gaps (regions painted by different colors) that are
characterized by three different locations of the Wannier center,
as indicated in Fig. 2(d). The band gap between the first two
bands closes and reopens during the change of the parameter d.
We find that the band gap closes at the kagome I, II, and III
configurations where d � �n� 1

2�l with n � 0,1,2, separately.
These three d separate the whole region d ∈ �0,3l � (bearing in
mind that the parameter d is modulo 3l , since 3l corresponds
to a lattice periodic translation) into three topologically distinct
phases: d ∈ �−0.5l ; 0:5l�, where the Wannier center is at α;
d ∈ �0.5l ; 1:5l�, where the Wannier center is at β; and
d ∈ �1.5l ; 2:5l�, where the Wannier center is at γ.

The symmetry representation of the first photonic band at
the K point is depicted by the phase profile of the electric field
E z , which is shown in Fig. 2(d) for several d. We find that the
C3 symmetry eigenvalue does not change within the same
phase. Upon the topological phase transitions (i.e., the band
gap closing and reopening), the symmetry eigenvalue changes
abruptly. We use the symmetry indicators to characterize the
bulk band topology. Following Ref. [42], the topological crys-
talline index can be expressed by the full set of the C3 eigen-
values at the high-symmetry points (HSPs). For an HSP
denoted by the symbol Π, the C3 eigenvalues can only be

Fig. 2. Photonic band structures of 2D PhCs with C3 symmetry for: (a) d � 0, l ; 2l (i.e., triangular I, II, and III lattices), (b) d � 0.5l ; 1:5l ; 2:5l
(i.e., kagome I, II, and III lattices), and (c) d � 0.25l ; 1:25l ; 2:25l (i.e., breathing kagome lattices). (d) The eigenfrequencies of the first and second
photonic bands at the K point as functions of d . Band gaps of distinct topology are painted with different colors. The topological index χ is labeled
for each region. The Wannier center for each region also is depicted. Insets illustrate the phase distributions of the eigenstates of the first photonic
band at the K point for various d.
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Πn � ei2π�n−1�∕3 with n � 1,2,3. Here, the HSPs include the
Γ, K , and K 0 points. The full set of C3 eigenvalues at the HSPs
are redundant due to the time-reversal symmetry and the con-
servation of the number of bands below the band gap. The
minimum set of indices that describe the band topology is given
by [42]

�K �n � #K n − #Γn, n � 1,2, (1)

where #K n (#Γn) is the number of bands below the band gap
with the C3 symmetry eigenvalue K n (Γn) at the K (Γ) point.
In this scheme, the Γ point is taken as the reference point to get
rid of the redundance. For the trivial atomic insulators (i.e., the
band gap formed by uncoupled atoms), all the HSPs have ex-
actly the same symmetry eigenvalues. Therefore, the trivial
atomic insulators have �Πn� � 0 for all the HSPs. In contrast,
any nonzero �Πn� indicates a topological band gap that is adia-
batically disconnected from the trivial atomic insulator.

For the C3 symmetric PhCs, the topological indices can be
written in a compact form as

χ � ��K 1�, �K 2��: (2)

We find that for all d, #Γ1 � 1 and #Γ2 � 0. Furthermore,
from the C3 eigenvalue at the K point, as indicated in
Fig. 2(d), we find that the topological indices for the three
parameter regions are: χ � �0,0� for d ∈ �−0.5l ; 0:5l�; χ �
�−1,1� for d ∈ �0.5l ; 1:5l�; and χ � �−1,0� for d ∈ �1.5l ; 2:5l�.

3. EMERGENCE AND EVOLUTION OF THE

CORNER AND EDGE STATES

Both the phase with χ � �−1,1� and that with χ � �−1,0� are
higher-order topological phases that host gapped edge states
and in-gap corner states. In contrast, the phase with
χ � �0,0� is the trivial phase. To demonstrate the higher-order
topology, we construct a large triangular supercell that is sche-
matically shown in Fig. 3(a). In the supercell, the inside is the
phase that we study, while the outside is the trivial band gap
phase with d � 0.25l . The side length of the supercell is 10a,
while the inside structure has a side length of 4a. The whole
structure is surrounded by the PEC (i.e., perfect electric con-
ductor) boundary condition that is physically a hard-wall boun-
dary for photons.

We study the evolution of the edge and corner states when
the parameter d of the inside PhC structure goes from 0 to 3l .
Several prototype geometries are shown in Fig. 3(a). The results
are presented systematically in Fig. 3(b). Figure 3(c) gives the
electric field jE z j distributions of the eigenstates. Throughout
this paper, the electric field patterns of the corner states are
given by the superposition of jE z j on the three degenerate cor-
ner states. From the figure, it is seen that the edge and corner
states emerge only in the region with 0.5l < d < 2.5l (i.e., the
two higher-order topological phases). In particular, in the re-
gion with 0.5l < d < 1.5l , two types of edge states emerge,
as revealed previously in Ref. [25]: type-I corner states [denoted
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Fig. 3. (a) Schematic illustration of the large triangular supercells with two types of PhCs. The outer PhC has d � 0.25l , while the inner PhC has
variable d . Several cases with different d are shown in (a). (b) Eigenfrequencies of the photons as functions of the geometry parameter d. The gray
regions represent the bulk states, the green regions represent the edge states, and the purple and blue curves represent the type-I and type-II corner
states, respectively. (c) Electric field patterns of corner states and edge states with different d . Throughout this paper, the electric field patterns of the
corner states are given by the superposition of jE z j on the three degenerate corner states. In the calculation, the side length of the supercell is 10a,
while the inside structure has a side length of 4a.
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by the purple curve in Fig. 3(b), and two examples (“A” and
“C”) are shown in Fig. 3(c)] due to the nearest neighbor cou-
plings; and type-II corner states [denoted as the blue curve
in Fig. 3(b), and two examples (“B” and “D”) are shown in
Fig. 3(c)] due to long-range couplings. As the common band
gap between the inside and outside structures becomes smaller,
at d � l , the type-II corner states are much less localized and
become similar-looking edge states [see “D” in Fig. 3(c)]. In
contrast, the type-I corner states remain well-localized and dis-
tinguishable from the edge states [denoted in green in Fig. 3(b)]
and bulk states [denoted in gray in Fig. 3(b)]. This indicates
that the type-I corner states are due to the bulk topology, while
the type-II corner states may originate from long-range cou-
plings between the adjacent edge states.

The region with 1.5l < d < 2.5l has not yet been studied
in the literature. We find that in this region the type-II corner
states are hardly seen. Meanwhile, there are two sets of type-I
corner states. Each set has three degenerate corner states. One
set has a frequency higher than the edge states, while the other
set has a frequency lower than the edge states. In both sets, the
wave functions of the corner states are well-localized around the
corners, distinguishable from the edge states (the green band)
and the bulk states (the gray bands). Examples of the
corner and edge wave functions at d � 1.9l and d � 2.25l are
shown in Fig. 3(c). In some cases, for instance, d � 2.25l ,

type-II corner states can be found. However, the wave functions
are not well-localized at the corners.

In addition, we consider another type of supercell by
exchanging the outer and inner PhCs of the above supercell.
As shown in Fig. 4(a), the trivial PhCs with phase χ � �0,0�
are surrounded by the PhCs with adjustable parameter d.
The side length of the supercell is 10a, while inside structure
has a side length of 4a.

We then study the evolution of the edge and corner states
when the parameter d of the outside PhC structure goes from 0
to 3l . Four prototypes of supercells are shown in Fig. 4(a).
The eigenfrequencies of the photons as functions of the
geometry parameter d are displayed in Fig. 4(b). As expected,
the edge and corner states only emerge in the region with
0.5l < d < 2.5l (i.e., the two higher-order topological phases).
Figure 4(c) further gives the electric field jE z j distributions of
the eigenstates. From the figures, it is seen that there are both
type-I corner states [denoted by the purple curve] and type-II
corner states [denoted by the blue curves] emerging in the re-
gion with 0.5l < d < 1.5l . Examples of type-I (“C” and “F”)
and type-II corner states (“A,” “B,” “D,” and “E”) are shown in
Fig. 4(c). The fundamental difference between the field pat-
terns of the type-I corner states and that of the type-II corner
states also indicates that they have distinct origin, as revealed
previously in Ref. [25].
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Fig. 4. (a) Schematic illustration of the large triangular supercells with two types of PhCs. The inner PhC has d � 0.25l , while the outer PhC has
variable d . Several cases with different d are shown in (a). (b) Eigenfrequencies of the photons as functions of the geometry parameter d. The gray
regions represent the bulk states, the green regions represent the edge states, and the purple and blue curves represent the type-I and type-II corner
states. (c) Electric field patterns of the corner states and edge states with different d . Throughout this paper, the electric field patterns of the corner
states are given by the superposition of jE z j on the three degenerate corner states. In the calculation, the side length of the supercell is 10a, while the
inside structure has a side length of 4a.
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For the region with 1.5l < d < 2.5l , it is seen that two cor-
ner modes split off from the edge states continuum. The cor-
responding field patterns (“G,” “I,” and “J”) in the Fig. 4(c)
resemble those of the topological edge states, but exponentially
decay away from the corners, indicating that they are type-II
corner states. Interestingly, we also find that there only exist
type-II corner states while the type-I corner states are absent
in this region.

We now explore the corner and edge states in another type
of supercell. We design the supercell in such a way that the
inner structure is a PhC with parameter d while the outer struc-
ture is the PhC with parameter 3l − d ; that is, we consider the
edge and corner boundaries between complementary PhC
structures. Such a supercell architecture will induce intriguing
edge and corner boundaries [e.g., various zigzag edge bounda-
ries, as depicted schematically in Fig. 5(a)]. The evolutions of
the bulk, edge, and corner states are systematically summarized
in Figs. 5(b) and 5(c).

In this type of supercell, the edge and corner states emerge
only in the two topological regions, 0.5l < d < 1.5l and
1.5l < d < 2.5l , as shown in Fig. 5(b). In the region with
0.5l < d < 1.5l , the inner PhC has the topological index
χ � �−1,1�, while the outer PhC has the topological index
χ � �−1,0�. In the other region with 1.5l < d < 2.5l , the
inner PhC has χ � �−1,0� and the outer PhC has χ � �−1,1�.
The emergence of the edge and corner states, which has not yet

been discovered in the literature, reveals that higher-order topo-
logical phenomena can appear at the boundaries between two
topologically distinct higher-order phases. This is consistent
with the topological band theory [42,43] and the Wannier
center picture.

From Fig. 5(b), the bulk band gap closing is clearly seen at
the phase transition points, d � 0.5l , 1.5l, and 2.5l.
Interestingly, type-II corner states can be found only in the
higher-order phase with χ � �−1,1� (i.e., the phase studied
in Ref. [25]; here 0.5l < d < 1.5l ), but not in the higher-order
phase with χ � �−1,0� (i.e., 1.5l < d < 2.5l ). This finding can
be demonstrated by the tight-binding approach, which is dis-
cussed in detail in Appendix B. For all cases in the region
0.5l < d < 2.5l , the edge states are clearly visible [Fig. 5(c)].
The bandwidth of the edge states is considerably larger in
this type of supercell compared to the supercell studied in
Fig. 3. As a consequence, the corner states are less localized,
particularly in the region with 1.5l < d < 2.5l where the cor-
ner states live in the small band gap between the edge and bulk
states.

4. FRACTIONAL CORNER CHARGE

We now show that the higher-order band topology can also be
manifested in the fractional corner charge. Even though we are
considering photonic bands and photonic states in this work, it
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Fig. 5. (a) Schematic illustration of the large triangular supercells with two types of PhCs. The outer PhC has the displacement d , while the inner
PhC has the displacement 3l − d . Several cases with different d are shown in (a). (b) Eigenfrequencies of the photons as functions of the geometry
parameter d. The gray regions represent the bulk states, the green regions represent the edge states, and the purple and blue curves represent the
type-I and type-II corner states, respectively. (c) Electric field patterns of corner states and edge states with different d . Throughout this paper, the
electric field patterns of the corner states are given by the superposition of jE z j on the three degenerate corner states. In the calculation, the side
length of the supercell is 10a, while the inside structure has a side length of 4a.
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is possible to define an analog of “charge” through the local
density of states (LDOS), ρe�r,E�. In electronic systems, the
charge contributed by the filling of the valence bands in the
j-th unit cell is given by

Q j,e � e

Z

E gap

dE

Z

j
drρe�r, E�: (3)

Here, e is the charge of an electron, E gap is an energy in the
topological band gap that is below the eigenenergies of the edge
and corner states. In the above equation, the integration over
the position r is defined within the j-th unit cell. The filling of
all the valence bands below the topological band gap contrib-
utes a fractional charge in the corner region. It was predicted
[42] that the fractional corner charge eQ c is completely deter-
mined by the topological indices of the bulk bands as

Q c � −

1

3
��K 1� � �K 2��mod1. (4)

The actual size of the corner region depends on the specific
model. However, one can often choose one or a few unit cells
around the corner boundary to converge the fractional corner
charge.

We then check the theoretical prediction in photonic system
by calculating the quantity

Q j �
Z

f gap

0
df

Z

j
drρp�r, f �, (5)

which is the analog of the “charge” in the j-th unit cell in the
photonic system. Here, we omitted the elementary charge e,

which does not have a physical meaning in photonics. The in-
tegration over the frequency is from 0 to a frequency in the
band gap f gap that is below the eigenfrequencies of the edge
and corner states. The photonic LDOS is calculated through
the following spectral decomposition of all the photonic eigen-
states of the valence bulk bands:

ρp�r, f � �
X

n

Γ

π

ϵ�r�jE �n�
z �r�j2

�f − f n�2 � Γ
2 : (6)

Here, n labels the photonic eigenstates of the valence bulk
bands, and Γ → 0 is a sufficiently small number that converges
the calculation. E �n�

z �r� is the scaled electric field distribution of
the n-th photonic eigenstate that satisfies the normalization
condition,

1 �
Z

drϵ�r�jE �n�
z �r�j2, (7)

where the integral of r is over the whole photonic system, and
ϵ�r� is the position-dependent relative permittivity.

The photonic “charge” defined above does have a physical
meaning. It represents the number of the photonic modes con-
tributed from the j-th unit cell from the valence bulk bands.
We calculate the photonic “charge” for each unit cell and
present the results in Fig. 6 for various configurations.

For all four cases considered in Fig. 6, the calculated charge
for the bulk unit cells is close to 1. This is consistent with the
fact that there is only one band below the band gap [i.e., each
unit cell contributes a single charge (mode) to the bulk band].
Figures 6(a) and 6(c) show that for both d � 0.25l and

Corner
Edge
Bulk

Bulk

)a/c( 
ycneu

qer
F

0.5
(a)

)a/c( 
yc

ne
uqer

F

F
re

q
u

en
cy

 (
c/

a)

Solution number
15

F
re

q
u

en
cy

 (
c/

a)

Bulk Corner
Edge
Bulk

(b)

(c) (d)

1.00

1.01

1.00 1.00

1.00

1.00

1.00 1.00

1.00

0.09

0.09 0.09

1.06

0.33

0.33 0.33

1.00

30 45

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

Solution number
15 30 450

Solution number
15 30 450

Solution number
15 30 450

d=0.25l

d=2.75l

d=0.75l

d=2.25l

1.01

1.01

1.00

1.00

1.00

1.06

1.06

Fig. 6. Fractional “charges” in the triangular supercell with perfect electric conductor boundary conditions. Only the charges of the bulk unit cells
are shown in the figure. The charges are calculated by including only the contributions from the bulk states below the topological gap, as indicated by
the light blue areas. Four cases are considered: (a) d � 0.25l , (b) d � 0.75l , (c) d � 2.75l , and (d) d � 2.25l .

1860 Vol. 9, No. 9 / September 2021 / Photonics Research Research Article



d � 2.75l (i.e., χ � �0,0�), the fractional corner charge is
zero, since the corner unit cell has a charge very close to 1.
Figure 6(b) shows that for d � 0.75l (i.e., χ � �−1,1�), the
fractional corner charge is Q c � 0, which is indicated by that
the corner unit cell has a charge very close to 0. In this case,
despite that the band gap carries higher-order topology and the
resultant corner states, the corner charge vanishes, which is con-
sistent with the theoretical prediction given in Eq. (4). The ori-
gin of the corner states in this case can be explained in detail in
the previous study [25]. Figure 6(d) shows that for d � 2.25l
(i.e., χ � �−1,0�), the fractional corner charge is Q c � 1∕3
which is manifested by the fact that the corner unit cell has
a charge very close to 1∕3. These photonic charges can be mea-
sured through the classical or quantum versions of the Purcell
effect, as indicated by Ref. [44].

5. CONCLUSION

In conclusion, we demonstrate that rich higher-order topologi-
cal phases and multiple phase transitions can be obtained in C3

symmetric PhCs by tuning a single geometry parameter d.
These higher-order topological phases yield intriguing multidi-
mensional topological phenomena where the corner and edge
states can be tuned in versatile ways. Our study shows that con-
tinuously configurable dielectric PhCs [45] can be useful in
generating topological photonic circuits with tunable edge
and corner states. The emergent fractional photonic charge in-
dicates that photonic systems can be powerful in revealing the
fundamental properties of topological bands.

APPENDIX A: WANNIER CENTER POSITIONS

The Wannier center refers to the center of the maximally local-
ized Wannier function, which is identical to the bulk polariza-
tion. In the 2D system, the bulk polarization is defined in terms
of the Berry phase vector potential as

Pα � −

1

�2π�2
Z

BZ
d2kT r�Aα�, α � 1, 2, (A1)

where �Aα�mn�k� � ihum�k�j∂kα jun�k�i, with α denoting the
two directions of the triangular lattice vectors, and m and n
running over the bands below the considered band gap.
jum,n�k�i is the periodic part of the wave function of the m or
n order band with wave vector k. BZ refers to the Brillouin
zone. The associated Wannier centers are pinned to �P1, P2�.
We then implement the numerical calculation of the bulk
polarization via the Wilson-loop approach as [46]

Pα � −

1

2π

Z

L
dθα,kβ , α � 1, 2, β � 1, 2, (A2)

where L denotes the projection length of the BZ along the kβ
direction. θα,kβ is the Berry phase along the loop kα for a fixed
kβ. Figure 7 shows the BZ in a calculation, which is adapted by
deforming the hexagon to a rhombus. As an example, we cal-
culate θ2,k1 as a function of k1 for the kagome PhCs with phase
χ1 � �0,0�, χ2 � �−1,1�, and χ3 � �−1,0�, respectively. The re-
sults are displayed in Figs. 7(b)–7(d). Thanks to the restriction
of C3 symmetry, the Berry phase along loop k1 for a fixed k2 is
equal to that along the loop k2 for a fixed k1 [42]; i.e.,
θ2,k1 � θ1,k2 . Using Eq. (A2), the bulk polarization for the
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Fig. 7. (a) Adopted rhombic Brillouin zone in the calculation of the bulk polarization, which shares the same area with the original hexagonal
Brillouin zone. The calculated Berry phase θ2,k1 as a function of k1 is presented, respectively, for the PhC with: (b) the phase χ1 � �0,0�, (c) the phase
χ2 � �−1,1�, and (d) the phase χ3 � �−1,0�. The bulk polarization is accordingly obtained by the integration of θ2,k1 over k1 and is shown by the red
dotted lines (for illustration) with the exact values of 0, 1/3, and −1∕3. The corresponding Wannier centers are marked by the black, blue, and green
dots, which coincide with the Wyckoff positions. Note that the kagome PhCs with different configurations may share the same Wannier center
positions.
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kagome PhC with the phases χ1 � �0,0�, χ2 � �−1,1�, and
χ3 � �−1,0� can be accordingly obtained as Pχ1 ;1�0, Pχ2 ;1� 1

3,

and Pχ3 ;1 � −

1
3, respectively. Similar calculations on θ2,k1

confirm that Pχ1
� �0,0�, Pχ2

� �13 , 1
3�, and Pχ3

� �− 1
3 , −

1
3�.

Therefore, the Wannier centers, indicated by the black, blue,
and green dots in the insets of Figs. 7(b)–7(d), are located at the
Wyckoff position α for phase χ1 � �0,0�, β for the phase
χ2 � �−1,1�, and γ for the phase χ3 � �−1,0�, as we pointed
out in Fig. 1(g). Note that the kagome PhCs with different
configurations may share the same Wannier center positions.
We thus present different PhC configurations and the
Wannier center positions accordingly in the insets of
Figs. 7(b)–7(d).

APPENDIX B: TIGHT-BINDING MODEL

EXPLANATION OF THE ABSENCE OF TYPE-II

CORNER STATES

Here we employ the tight-binding approach to explain the ab-
sence of type-II corner states in Fig. 5 with the region of
1.5l < d < 2.5l . As shown in Fig. 8(a), we first present the
schematic of a finite triangular-shaped supercell, where the in-
tracell (intercell) coupling and next nearest neighbor hopping
are denoted by t0�t1� and t2, respectively. To match the con-
figuration described in Fig. 5 (namely, the outside lattice with
the phase χ � �−1,1� and inside lattice with the phase
χ � �−1,0�), we set t1 � 10t0. The boundary is indicated by
the red dotted line.

We then implement the study of the finite triangular-shaped

supercell via the tight-binding approach. The eigenenergy of

the supercell versus the next nearest neighbor hopping strength

is displayed in Fig. 8(b). From this figure, it is seen that the

edge and corner states emerge in the bulk band gap. Here,

we only focus on the edge states (solid gray line) and corner

states (solid red line) from the inside boundary (i.e., red dotted

line) of the finite triangular-shaped supercell. Note that eige-

nenergy spectrum also consists of edge states (indicated by

the dashed gray line) and corner states (dashed red line) from

the outside lattice with phase χ � �−1,1�. As an illustration, we

present the eigenstates of both edge (“A” and “E”) and corner

states (“B,” “C,” and “D”) with t2 � 0.5t0 in Fig. 8(c). It is

evident that modes “A” and “D” are edge states and type-I cor-

ner states localized at the inside boundary, while the modes “B”

(“C”) and “E” are type-I (type-II) corner states and edge states

localized at the outside boundary. Obviously, there only exist

type-I corner states while the type-II corner states are absent.

Therefore, we clarify that the type-II corner states are absent in

Fig. 5 with the region of 1.5l < d < 2.5l .
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