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Higher plasma levels of
lysophosphatidylcholine 18:0 are related
to a lower risk of common cancers in a
prospective metabolomics study
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Abstract

Background: First metabolomics studies have indicated that metabolic fingerprints from accessible tissues might

be useful to better understand the etiological links between metabolism and cancer. However, there is still a lack

of prospective metabolomics studies on pre-diagnostic metabolic alterations and cancer risk.

Methods: Associations between pre-diagnostic levels of 120 circulating metabolites (acylcarnitines, amino acids,

biogenic amines, phosphatidylcholines, sphingolipids, and hexoses) and the risks of breast, prostate, and colorectal

cancer were evaluated by Cox regression analyses using data of a prospective case-cohort study including 835

incident cancer cases.

Results: The median follow-up duration was 8.3 years among non-cases and 6.5 years among incident cases of

cancer. Higher levels of lysophosphatidylcholines (lysoPCs), and especially lysoPC a C18:0, were consistently related

to lower risks of breast, prostate, and colorectal cancer, independent of background factors. In contrast, higher

levels of phosphatidylcholine PC ae C30:0 were associated with increased cancer risk. There was no heterogeneity

in the observed associations by lag time between blood draw and cancer diagnosis.

Conclusion: Changes in blood lipid composition precede the diagnosis of common malignancies by several years.

Considering the consistency of the present results across three cancer types the observed alterations point to a

global metabolic shift in phosphatidylcholine metabolism that may drive tumorigenesis.
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Background

The simultaneous measurement of a large variety of

small molecules in accessible tissues by metabolomics

techniques may facilitate the identification of metabolic

fingerprints of different cancers [1]. First prospective

metabolomics studies have shown that elevations in cir-

culating branched-chained amino acids 2–5 years prior

to diagnosis are related to increased risk of pancreatic

adenocarcinoma [2], that significant differences in serum

levels of phosphatidylcholines and fatty acids between

later prostate cancer cases and controls can be detected

[3], and that pre-diagnostic serum concentrations of gly-

cochenodeoxycholate are associated with colon cancer

risk [4]. A complex pattern of pre-diagnostic metabolites

representing several pathways has been identified in an-

other prospective study on hepatocellular carcinoma [5].

For other cancers, differences in plasma metabolite con-

centrations between cases and controls have also been

demonstrated, but prospective data are missing [1].

Here, we report results of the largest prospective

metabolomics study so far on cancers of the breast,

colorectum, and prostate. Our goal was the identification

of metabolites that may give insight into metabolic al-

terations preceding the manifestation of cancer. In a
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case-cohort subset of the prospective population-based

EPIC-Heidelberg study, we analyzed pre-diagnostic levels

of 120 plasma metabolites by liquid chromatography-

tandem mass spectrometry (LC-MS/MS) and flow injec-

tion analysis-tandem mass spectrometry (FIA-MS/MS),

and evaluated associations between these metabolites and

cancer risk over time.

Methods

Study population

EPIC-Heidelberg was established as part of the European

Prospective Investigation into Cancer and Nutrition (EPIC)

between 1994 and 1998 [6]. Overall, 25,540 adults (53.3 %

females) aged 35–65 years from the local general popula-

tion entered the study [7]. The vast majority of participants

are white. Detailed information on habitual diet, smoking,

alcohol consumption, physical activity, and socio-economic

status was obtained by questionnaires and during inter-

views. In addition, anthropometric measurements were

taken by trained personnel. Blood was drawn, processed,

and aliquoted into 0.5 ml straws of serum (8 straws),

plasma (12 straws), buffy coat (4 straws), and erythrocytes

(4 straws), which were stored in liquid nitrogen at −196 °C.

Plasma straws used for the present study were retrieved for

the first time, i.e. they had not undergone freeze-and-thaw

cycles.

Since the baseline, participants are followed-up by active

and passive procedures [8]. Self-reported and registry-

derived incident cases of cancer were validated by study

physicians who accessed diagnostic records provided by

treating physicians and hospitals. A case-cohort design [9]

was chosen for the present metabolomics study and metab-

olites were measured in pre-diagnostic blood samples of

cancer cases and a random subcohort [10]. Individuals in

the case-cohort selection were free of diabetes at baseline,

as the subcohort was initially drawn for the EPIC-InterAct

study on incident diabetes [10]. All incident primary cases

of breast (ICD-10 C50), prostate (ICD-10 C61), and colo-

rectal cancer (ICD-10 C18–20) as well as cases secondary

to non-melanoma skin cancer that had occurred before 31

December 2006 were selected. After exclusion of partici-

pants with missing covariate information (n = 4) and preva-

lent cancer cases (n = 65), the subcohort comprised 774

individuals. The final numbers of incident cases of breast,

prostate, and colorectal cancer were 362, 310, and 163,

respectively, after exclusions due to missing covariate

information (breast cancer: n = 3; colorectal cancer: n = 2).

Ethics

The present study was approved by the Ethics Committee

of the Medical Faculty of the University of Heidelberg

(Heidelberg, Germany). The study participants pro-

vided written consent for the use of their blood samples

and data.

Laboratory analyses

Metabolites, i.e. 40 acylcarnitines, 21 amino acids, 14

biogenic amines and creatinine, 76 phosphatidylcholines

(PCs), 14 lysophosphatidylcholines (lysoPCs), 15 sphin-

gomyelins, and overall hexose were quantified using the

MetaDisIDQ™ Kit (Biocrates, Innsbruck, Austria). Sample

preparation and measurements were carried out according

to the suppliers’ protocol and have been described in detail

elsewhere [11]. In short, 10 μl of standards, quality con-

trols, and plasma samples, which had been thawed for

30 minutes at −4 °C, were pipetted onto filter paper within

each well of the 96-well plate that had been commercially

prepared. Nitrogen gas was used to dry the samples

followed by application of phenylisothiocyanate (PITC)

and extraction of metabolites from the filter paper. The

eluate was then dried under flowing nitrogen gas and the

wells sealed. Kit plates were shipped to the partner labora-

tory at the Department of Proteomics, Helmholtz Centre

for Environmental Research (Leipzig, Germany), where li-

quid FIA-MS/MS (amino acids and biogenic amines) and

LC-MS/MS (lipids and hexoses) analyses were carried out

on each kit. Samples were blinded to the laboratory team.

Metabolites were detected using an Agilent 1100 HPLC

(Agilent Technologies, Böblingen, Germany) coupled to

an API 5000 triple quadrupole mass spectrometer (AB

Sciex, Darmstadt, Germany).

The MetaDisIDQ™ software (Biocrates) was used to

randomize samples of the study population so that

samples of cases and non-cases were stratified within and

across batches. Each analytical batch contained three qual-

ity control (QC) samples of lyophilized human EDTA-

plasma with standardized low, medium (spiked), and high

(spiked) concentrations of internal standards to monitor

the validity of measurements. Two blinded pooled QC

plasma samples were included in duplicate to independ-

ently verify the consistency of measurements within and

across batches. In addition to a commercially available

pooled QC sample (NIST SRM 1950), we used a pooled

sample from our own population. One blank without in-

ternal standard was included on each batch to calculate

background levels and to check the system for contamin-

ation. Three additional zero samples with internal stan-

dards, but no analytes were integrated to calculate limits

of detection.

Data pre-processing and statistical analyses

Metabolites with more than 25 % missing values (n = 2),

within batch coefficients of variation greater than 25 %

(n = 12), or more than 25 % of values below the limit

of detection (n = 47) were excluded so that 120 out of

181 metabolites were used for statistical evaluation

(Additional file 1). All metabolite values were then

log2-tranformed and normalized by metabolite-wise

batch-standardization [12]. Multivariable outliers were
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identified by robust principal components analyses and

excluded [13]. Spearman’s rho adjusted for age and sex

was calculated to detect correlations between metabolites.

Associations between metabolite concentrations and

epidemiological covariates were assessed by calculating

Spearman’s correlations (continuous covariates) and

geometric mean values across categories (categorical

covariates). Cox proportional hazards regression analyses

were carried out to evaluate the relationships between cir-

culating metabolites and cancer risks. Metabolite concen-

trations were divided into quartiles and linear trends were

tested for using log2-transformed metabolite values on the

continuous scale. The so-called Prentice method was used

to account for the case-cohort design of the study [14].

Age was used as the underlying timescale, with age at

recruitment as age at entry and age at the end of follow-

up, death, or cancer diagnosis, whichever came first, as

age at exit. The proportional hazards assumption was

tested based on Schoenfeld residuals [15]. With respect to

the vast majority of metabolites, and particularly those

which showed significant associations with cancer risk, no

strong violations of the proportional hazards assumption

were noted. Adjustment factors for multivariable Cox re-

gression models were selected based on literature review.

The Bonferroni method was used to adjust for multiple

testing, i.e. P values of single tests were divided by the total

number of tests (n = 120). All statistical tests were two-

sided and P values below 0.05 were considered statistically

significant. All analyses were performed using SAS 9.3

(SAS Institute, Cary, NC, USA).

Table 1 Characteristics of the study population (EPIC-Heidelberg, case-cohort sample)

Incident cancer cases Subcohort

Colorectum Breast Prostate Women Men

N 163 362 310 426 348

Age at recruitment (years) 55.8 ± 6.4 51.4 ± 7.8 57.9 ± 5.2 49.1 ± 8.5 52.3 ± 7.1

Women (%) 37.4 100

Menopausal status (%)

Premenopausal 31.5 48.6

Postmenopausal 68.5 51.4

BMI (kg/m2) 27.2 ± 3.8 25.1 ± 4.4 26.9 ± 3.3 24.8 ± 4.4 26.5 ± 3.4

Waist circumference (cm) 93.5 ± 12.5 81.0 ± 11.3 96.2 ± 9.6 79.8 ± 11.0 95.2 ± 9.8

Smoking (%)

Never 31.9 55.0 42.6 50.5 34.4

Former 44.8 25.7 41.6 28.4 41.7

Current 23.3 19.3 15.8 21.1 23.9

Physical activity (%)a

Inactive 12.3 11.6 11.6 9.9 11.8

Moderately inactive 34.3 35.1 36.1 34.5 31.3

Moderately active 27.0 26.5 29.7 29.8 29.6

Active 26.4 26.8 22.6 25.8 27.3

Education level (%)

Primary school 33.1 24.6 34.2 25.6 25.9

Secondary school 34.4 48.6 32.9 51.2 33.0

University degree 32.5 26.8 32.9 23.2 41.1

NSAID use (%) 9.2 2.5 8.7 2.1 6.0

Age at diagnosis (years) 62.3 ± 7.2 57.5 ± 7.8 64.5 ± 5.2

Stage at diagnosis (%)

Local 40.5 62.2 70.7

Regional 40.5 32.0 24.8

Distant 19.0 2.2 3.2

Unknown - 3.6 1.3

Values are means ± standard deviations or proportions. aAccording to the Cambridge physical activity index
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Fig. 1 (See legend on next page.)
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Results

Characteristics of the study population are shown in

Table 1. The case-cohort sample comprised a random

subcohort (n = 774) and cases of breast (n = 362), prostate

(n = 310), and colorectal cancer (n = 163). Median follow-

up durations were 8.34 years in the subcohort and

6.36 years (breast cancer), 6.57 years (colorectal cancer),

6.83 years (prostate cancer), and 6.48 (overall cancer)

among incident cases.

Associations between metabolite levels and cancer risk

are depicted in Fig. 1. The strongest statistical relation-

ship was found between levels of the lysoPC a C18:0 and

(See figure on previous page.)

Fig. 1 Plasma metabolite concentrations and cancer risk. P values from Cox regression analyses on individual metabolite concentrations on the

log-2 scale and cancer risk are represented by the needles. The blue dashed lines depict the significance threshold at an uncorrected P <0.05 and

green dashed lines depict the significance threshold after Bonferroni correction (0.05 divided by 120). Unfilled circles indicate inverse associations

and filled circles indicate direct associations. Metabolites are grouped by chemical properties: block 1, acylcarnitines; block 2, amino acids; block 3,

biogenic amines; block 4, lysophosphatidylcholines (lysoPCs); block 5, diacylphosphatidylcholines; block 6, acyl-alkyl-phosphatidylcholines; block 7,

sphingolipids; and block 8, overall hexoses. All multivariable Cox regression models were adjusted for age, smoking (never, former, current),

lifetime alcohol intake (g/d), current aspirin use (yes/no), physical activity (Cambridge index), waist circumference (cm), BMI (continuous),

height (cm), and education level (primary school, secondary school, university degree). Analyses on breast cancer risk were additionally adjusted for

menopausal status, current HRT use (yes/no), current oral contraceptive use (yes/no), and at least one full term pregnancy (yes/no). Analyses

on colorectal cancer risk were additionally adjusted for sex, fiber intake (g/d), and processed meat intake (g/d)

Table 2 Hazard ratios (95 % CIs) of cancer across quartiles of lysoPC a C18:0 and PC ae C30:0 concentrations

Quartile 1 Quartile 2 Quartile 3 Quartile 4 ptrend (raw) ptrend (corrected) Measured in

LysoPC a C18:0 100 %

Breast cancer Mediana 13.52 17.34 20.36 23.23

n cases 137 96 84 45

Ref. 0.63 (0.41, 0.97) 0.65 (0.41, 1.02) 0.29 (0.18, 0.47) 0.00004 0.00421

Prostate cancer Median 15.33 18.69 21.43 26.3

n cases 93 96 73 48

Ref. 1.31 (0.75, 2.28) 0.79 (0.45, 1.39) 0.57 (0.33, 0.98) 0.01388 1

Colorectal cancer Median 14.37 17.71 21.21 24.13

n cases 47 47 46 23

Ref. 1.16 (0.67, 2.01) 1.06 (0.62, 1.82) 0.50 (0.28, 0.90) 0.00196 0.2348

Overall cancer Median 14.37 17.93 20.85 24.63

n cases 280 228 211 116

Ref 0.83 (0.61, 1.12) 0.74 (0.55, 1.00) 0.37 (0.27, 0.51) 1.10 × 10−9 1.10 × 10−7

PC ae C30:0 95.6 %

Breast cancer Median 0.33 0.40 0.47 0.60

n cases 69 74 92 113

Ref. 1.08 (0.67, 1.75) 1.45 (0.88, 2.37) 1.97 (1.20, 3.23) 0.00522 0.6260

Prostate cancer Median 0.28 0.35 0.4 0.53

n cases 64 63 71 100

Ref. 0.89 (0.50, 1.58) 1.38 (0.78, 2.44) 1.89 (1.06, 3.36) 0.00194 0.2328

Colorectal cancer Median 0.28 0.38 0.45 0.59

n cases 36 36 46 39

Ref 1.00 (0.54, 1.83) 1.79 (1.01, 3.18) 1.84 (1.02, 3.34) 0.01069 1

Overall cancer Median 0.30 0.37 0.44 0.58

n cases 168 174 208 253

Ref 1.03 (0.73, 1.45) 1.41 (1.01, 1.96) 1.85 (1.31, 2.60) 0.00026 0.03137

Results from Cox proportional hazards regression analyses on pre-diagnostic metabolite concentrations and cancer risk over time. All multivariable Cox models were

adjusted for age, smoking (never, former, current), lifetime alcohol intake (g/d), current aspirin use (yes/no), physical activity (Cambridge index), waist circumference (cm),

BMI (continuous), height (cm), and education level (primary school, secondary school, university degree). Analyses on breast cancer risk were additionally adjusted for

menopausal status, current HRT use (yes/no), current oral contraceptive use (yes/no), and at least one full term pregnancy (yes/no). Analyses on colorectal cancer risk

were additionally adjusted for sex, fiber intake (g/d), and processed meat intake (g/d). aMedian metabolite concentrations in μmol/L
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breast cancer risk, at a P value of 0.00421 corrected for

multiple testing by the Bonferroni method. The hazard

ratio (HR) of breast cancer among women in the highest

quartile of lysoPC a C18:0 concentrations was 0.29

(95 % CI, 0.18–0.47, Table 2). The second and third

strongest associations were between PC ae C38:1 and

breast cancer risk (HR = 0.53, 95 % CI, 0.34–0.83, P = 0.08),

and PC ae C30:0 and prostate cancer risk (HR = 1.89, 95 %

CI, 1.06–3.36, P = 0.23). Considering the consistency of as-

sociations between levels of lysoPC a C18:0 and PC ae

C30:0 and individual cancer types, visualized in Fig. 1, we

decided to expand our analyses to overall cancer risk.

LysoPC a C18:0 concentrations were strongly associated

with decreased overall cancer risk (HR = 0.37, 95 % CI,

0.27–0.51, P <0.0001, Table 2). Similarly, levels of lysoPC a

C18:1 and further lysoPCs, which positively correlated with

lysoPC a C18:0 levels (Fig. 2), showed inverse associations

(Fig. 1, Table 2). Circulating PC ae C30:0 was directly

associated with overall cancer risk (HR = 1.85, 95 % CI,

1.31–2.60, P = 0.0314, Table 2).

There was no heterogeneity in the associations be-

tween lysoPC a C18:0 or PC ae C30:0 concentrations

and cancer risk by lag time (Additional file 2: Table S2).

No meaningful associations between metabolite levels

and epidemiological covariates such as age, BMI, dietary

factors, or smoking status were observed (Tables 3 and 4).

Moderate to strong positive correlations were observed

between a majority of metabolites within chemical groups

(Fig. 2 and Additional file 2: Figure S1).

Discussion

Since the metabolite levels in our study were measured

in blood samples taken years before diagnosis, the present

associations between lysoPC and PC ae C30:0 concentra-

tions with the risk of cancer may represent general meta-

bolic alterations fostering the development and growth of

cancer cells. In contrast to the relationship between PC ae

C30:0 and cancer risk that has not been described in

the literature, our findings of associations between lysoPC

levels and cancer risk are consistent with results of three

case-control studies, in which lower blood concentrations

of lysoPCs in patients with breast, prostate and colorectal

cancer were found, as compared to controls [16-18].

While a potential shift between lysoPC levels from

blood to tumor tissue indicates a higher consumption of

lysoPCs by cancer cells, specific signaling properties of

lysoPCs in cancer remain to be established [19]. Alterna-

tively, lysoPCs may act as carriers of fatty acids, and

extracellular hydrolization of lysoPC a C18:0 and lysoPC

a C18:1, followed by a rapid uptake of the respective fatty

acids, i.e. stearic (18:0) and oleic acid (18:1), appears to be

a characteristic of solid tumors in mice [20]. This is in line

with epidemiologic observations of inverse associations

between stearic acid levels and breast [21], prostate [3],

and colorectal cancer risk [4]. However, it appears spuri-

ous why lysoPC a C16:0, lysoPC a C18:1, and lysoPC a

C20:4 concentrations also showed inverse associations

with cancer risk in our study, whereas circulating palmitic

(16:0), oleic (18:1), and arachidonic acid (20:4)—that were

not covered by our assay—were not related to cancer risk

in previous epidemiological studies.

Possibly, other degradation products of lysoPCs than fatty

acids drive tumorigenesis. Extracellular lysoPCs are

converted into lysophosphatidic acid (LPA), which in-

duces tumor growth, by autotaxin (ATX), a secreted

lysophospholipase D. Overexpression of ATX and LPA

receptors has been proposed to be a common feature of

several cancers, and both ATX and LPA receptor knockout

mice show lower cancer risk [22–24]. Moreover, lysopho-

sphatidylcholine acyltransferase 1 (LPCAT1), which con-

verts lysoPCs into PCs is overexpressed in several cancers,

and increased incorporation of PCs into cell membranes

Fig. 2 Age- and sex-adjusted Spearman’s correlations between levels

of different lysoPCs

Table 3 Age- and sex-adjusted partial Spearman’s correlations between levels of lysoPC a C18:0 as well as PC ae C30:0 and

covariates

Age BMI Height (cm) Waist (cm) Fiber intake (g/d) Meat intake (g/d)

LysoPC a C18:0 −0.01 −0.01 −0.03 −0.02 0.00051 0.06

PC ae C30:0 −0.02 −0.17 0.06 −0.16 0.03 −0.22
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may facilitate proliferation, adhesion, and motility of cancer

cells [25–27].

Less is known about the role of PC ae C30:0 in car-

cinogenesis. Elevated PC ae C30:0 concentrations were

detected in plasma of patients with ovarian endometriosis

[28]. Even though PC levels were inversely associated with

prostate cancer risk in one previous study [3] and have

been found to be higher in cancer cells than in non-

malignant cells [29–31], a distinct biological function of

PC ae C30:0 has not been described and ours was the first

prospective study on PC ae C30:0 and cancer to our

knowledge.

Levels of lysoPCs and PC ae C30:0 were not related to

background factors such as BMI, physical activity, or

smoking in our study. While PC ae C30:0 has not been

shown to be associated with chronic diseases in previous

studies, it may seem noteworthy that lysoPC a C18:2 has

been proposed to be a potential pre-diagnostic biomarker

of diabetes [32]. At the same time, associations between

lysoPC a C18:0 and diabetes risk have not been observed

in previous studies [32, 33], and potential mediation of

associations between lysoPCs and cancer risk by a pre-

diabetic state does therefore not appear to be a valid

explanation for the present findings.

A limitation of our study is that only a single blood

sample was available; however, reasonable mid-term

reliability of metabolite levels over time has been dem-

onstrated in reproducibility studies [34–37]. While we

cannot provide data on the stability of the analyzed

metabolites in long-term storage at −196 °C, it has been

shown that freeze-and-thaw cycles do not substantially

affect most metabolites covered by the kit we used

[38, 39]. Longer exposure to room temperature, which

may indeed lead to an increase of lysoPC levels [38],

was avoided in our study, and the plasma samples of

case patients and non-cases used for the present meta-

bolomics project have been stored and prepared under

exactly the same conditions. Many of the metabolites

measured in our project are not part of metabolomics

platforms previously used in other studies, which hampers

comparisons across studies and underlines the need

for standardization [1]. Undoubtedly, replication of the

present associations is needed before metabolites such as

lysoPC a C18:0 or PC ae C30:0 may eventually be used as

cancer biomarkers. Moreover, our findings require further

investigation in mechanistic studies, before more definite

conclusions on lysoPCs and PC ae C30:0 in tumorigenesis

can be drawn.

Conclusion
In summary, we observed consistent associations of lysoPC

a C18:0 and PC ae C30:0 concentrations with the risk of

three frequent cancer types independent of background fac-

tors. Intriguingly, associations in our study did not depend

on lag time between blood draw and diagnosis, indicating

that low levels of lysoPCs and high levels of PC ae C30:0

are cancer risk factors rather than early markers of disease.

The consistency of findings across three cancer types points

to global rather than cancer type-specific alterations under-

lying the observed associations. Further studies are needed

to evaluate whether the top hits from our study may have a

potential as biomarkers of cancer risk.
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Additional file 1: Limits of detection, coefficients of variation, and

percentages of missing values for individual metabolites. (XLSX 19 kb)

Additional file 2: Supplementary main results on hazard ratios of

cancer across quartiles of metabolite levels (Table S1 as an

extension of Fig. 1), results of evaluations of associations between

metabolites and cancer risk by lag time (Table S2), and correlations

between metabolite concentrations by chemical group (Figure S1).

(PDF 586 kb)
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