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Starting from the equations of motion expressed as ground-state expectation values, we
have derived a higher-order random-phase approximation (RPA) for excitation frequencies of

low-lying states.

The matrix elements in the expectation value are obtained up to terms lin-

ear in the ground-state correlation coefficients. We represent the ground state as eV IHF)Y,
where U is a linear combination of two particle~hole operators, and |HF) is the Hartree-Fock

ground state.
the equation determining the ground state.

We then retain terms only up to those linear in the correlation coefficients in
This equation and that for the excitation energy

are then solved self-consistently., We do not make the quasiboson approximation in this pro-

cedure, and explicitly discuss the overcounting characteristics of this approximation.

The

resulting equations have the same form as those of the RPA, but this higher RPA removes

many deficiencies of the RPA,
1. INTRODUCTION

The Hartree-Fock (HF) method has been success-
fully applied to various problems in atomic, molec-
ular, nuclear, and solid-state physics. On the
other hand, more precise methods are required to
include the effects of electroncorrelationonvarious
physical observables. This is particularly true in
atomic and molecular physics. For instance, dis-
sociation energies of molecules can be of the order
of the correlation energy, andthe ordering of atomic
and molecular spectroscopic states can be consider-
ably shifted by electron correlation. A straight-
forward way to improve the HF approximation is
by configuration interaction (CI), An alternative
and simpler approach is to use Sinanoglu’s! many-~
electron theory, which expands the correlation
wave function in a series of pair correlation func-
tions and their unlinked clusters, reducing the prob-
lem into sets of effective two-particle problems.
These methods, however, must be applied separate-
ly to each stationary-state wave function. If one
is interested in relative quantities such as excita-
tion energies or oscillator strengths, such proce-
dures are not optimal. The random-phase approx-
imation (RPA) is one approach to calculating these
relative quantities directly, treating the stationary-
state wave functions as having secondary impor-
tance. The RPA has been successtully applied to
the theory of the electron gas and in the interpreta-
tion of nuclear spectra. Because of the significant
differences between such systems and the electronic
structure of atoms and molecules, we cannot as-
sume that the RPA will give a consistent interpre-
tation of atomic and molecular spectra. Altick
and Glassgold? used the RPA to predict excitation
energies and oscillator strengths for various tran-
sitions in beryllium, magnesium, calcium, and
strontium. We have used the RPA to study the
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low-lying excited states of ethylene and formal-
dehyde to see how the approximation works for
molecules. The results for transitions to singlet
excited states were encouraging and the formalism
of the RPA suggests some promising procedures
for including the effects of electron correlation on
the spectra of large conjugated molecules.® How-
ever, the RPA worked poorly for triplet excited
states. Removal of this deficiency is one of the
goals of this paper.

Various attempts have been made to improve and
extend the RPA. The RPA violates the Pauli ex-
clusion principle to some degree. In the equations-
of-motion method of deriving the RPA this violation
comes about because we approximate particle-hole
pairs as bosons. There are other ways of deriving
the RPA, e.g., the Green’s-function method and
the time-dependent HF theory. However, the equa-
tions-of-motion method is very flexible and, for
example, has been used to derive a second RPA in
which the excitation operator includes both two-
and four-quasiparticle components.* The first at-
tempt to consider ground-state correlation effects
on the RPA was made by Tkeda, Udagawa, and
Yamamura.® They took into account corrections
to the one-body densities in the quasiboson approxi-
mation. Rowe® discussed other extensions of the
RPA along with their limitations. Rowe® also pro-
posed a new equation-of-motion method for studying
excitation frequencies and oscillator strengths di-
rectly. The equations of motion are expressed as
the ground-state expectation of operator equations.
The formal equations become exact closed expres-
sions which do not violate the exclusion principle
and are not subject to the old objections to the
RPA. The RPA is just the simplest approximation
to the solution of these general equations. Rowe®
derived a higher-order approximation to the solu-
tion of these equations in which the HF single-par-
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ticle energies and densities are replaced by renor-
malized quantities, e.g., the HF particle-hole en-
ergies are replaced by renormalized particle-hole
energies. Rowe® suggested that the renormalized
energies could be estimated from experiment and
the single-particle densities calculated self-consis-
tently. For applications to atomic and molecular
systems this form of the theory is not very conve-
nient, We show that the matrix elements in the
equation determining the excitation frequency con-
tain terms linear in the ground-state correlation
coefficients. For applications to molecular spectra
we would also like to calculate the ground-state
correlations and the excitation frequency self-con~
sistently,

In this paper we start from the equations-of-
motion method proposed by Rowe® and obtain the
various matrix elements up to terms linear in the
ground-state correlation coefficients. We make
no further assumptions in obtaining these equations.
We then retain only up to linear terms in the clus-
ter expansion in the equation determining the ground
state. This equation and that for the excitation
energy are then solved self-consistently. We do
not make the quasiboson approximation in this pro-
cedure. Inanother paper’® we will apply these equa-~
tions to study the excited states of ethylene for
comparison with our previous RPA calculations
on this system., We will discuss the types of prac-
tical approximations which can be used to simplify
the problem considerably.

II. ROWE’'S EQUATIONS OF MOTION

Rowe® recently showed by equations of motion
and by variational methods that the operator Of
for creating an excited state Ix) from the ground
state is a solution of the equation

(0][50,, H, 0] 1|0) = w,{0][50,, 011|0} 6
for all variations 60, where

otjoy =N, (2a)

0, |0> =0. (2Db)

In Eq. (1), w, is the excitation energy E, - E,, and
the double commutator is defined by

2[4, B,Cl=[4,[B,c]]+[[4,B],c]. 3

The solution of Eq. (1) gives the excitation energy
of the state 1) relative to the correlated ground
state 10) . If one replaces the correlated ground
state 10) in Eq. (1) by the uncorrelated ground state,
e.g., the HF function |HF), and restricts the ex-
citation operator to single- particle-hole form, the
solution of Eq. (1) is just the RPA, Our aim is to
study the solutions of the equations of motion with
correlated functions 10) to see the effect of these
correlations on the excitation energy. One of the
advantages of Eq. (1) for including these effects is
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that this expression contains the expectation value
of a commutator and a double commutator. The
commutator of two operators is of lower particle
rank than the product of the two operators and its
matrix elements are less sensitive to the complexi-
ties of the wave function 10), This is how the equa-
tions~of-motion method includes the effects of com-
plexities in the wave functions on the excitation en-
ergy but bypasses the complexities themselves by
calculating this relative quantity directly.

In the RPA, Eq. (1) is solved by assuming for
10) the HF ground state. It is well known that this
is a defect of the RPA since the HF wave function
does not satisfy Eq. (2b), i.e.,

O,[HF) #0 (@)

for the RPA excitation operator 0. For the RPA,
O;’ is restricted tosingle-particle-hole operators
O*: Z [Ym'yl cfn:c,' - Zml,,tC:'Cm'] N (5)
m'y’
where v’ are hole states and »’ are particle states.
For atomic and molecular spectra Eq. (5) is a good
approximation. However, from our earlier results
on ethylene the approximation implied by Eq. (4) is
a poor one for low-lying triplet states. To remedy
this defect we need to know the correlated ground
state [0). In this paper we develop a scheme for
solving Egqs. (1)} and (2b) self-consistently. We
believe that the results will be useful in studying
atomic and molecular spectra nonempirically and
in developing semiempirical theories for their in-
terpretation. We do not make the quasiboson ap-
proximation and, in fact, we will show elsewhere’
that such an approximation works poorly for mol-
ecules. In this paper we present our formal results,
but in Ref. 7(a) we will discuss various approximate
methods for solving these equations.
Consider the excited state I\I'SM):

s =0t (TsM) |0), (6)

where SM specifies the spin state; I" the irreduci-
ble representation of the molecular symmetry group;
and A the different eigenstates in the class (T'SM).
We must solve Eq. (1) for excitation frequencies

w, and Eq. (2b) for all states I\):

O(\I'SM)|0) = 0. (7

We also require orthogonality of excited-state wave
functions,

(0l[o'T’'s'M"), 0*(ATSM)] |0) = 63/, 0rr+ D550 yur -
(8)
Note that we have assumed (010) =1. As in the RPA
the operators O'(AT'SM) will contain only single -
particle-hole operators:

otarsm = 2 [Y.,9Cl(SM) - Z,,,(x9) C,,,(SM)].
my(I') (9)
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For simplicity we will assume that the irreducible
representation I" to which the particle~hole pair
my belongs is one dimensional. Extensions to gen-
eral irreducible representations are straightfor-
ward. In Eq. (9), C},(SM) is a particle-hole crea-
tion operator defined as

S - ClaCya M=1)
ChA1M) ={ 27Vt cpo—clac,s]  (M=0)
chatra (M=1)
C1(00) =273l c,o+ Chacsl, (10)
CoySM) =(=)SC,,, (S M). (11)

Some useful properties of these operators are dis-
cussed in Appendix A. The index m refers to a
particle-state orbital and y to a hole. The sub-
scripts o and 8 denote the usual Pauli spinfunctions.
For a closed-shell HF ground state we have c],/HF)
= Co/HF) = 0 and similarly for the operators c)g,
cqs. The particle-hole operators satisfy the equa-~
tions (see Appendix A)

[S,, Cl(8, M =[S(S+1) = M{M = D]V3CT (S, Mx1),
[S. , Cl(S, M| = MCL(SM). (12
It then follows that

[S,, 0'(rsm)]=[S(S + 1) — M{M= D] 20T(A\TSM £ 1),
[8., OM(AT'SM)}= MOT(AT SM). (13)

The summation in Eq. (9) extends over those pairs
my which belong to the irreducible representation
T.

Substitution of Eq. (9) for O'(AT'SM) into Eq. (1)
gives the following equations for the amplitudes
Yuppand Z,,:

2. e m?.nﬁ(S) Y,s(\S) + mm.nﬁ(s)zﬂﬁ(AS)]
nd(I')
=wATS) 2 Dy no¥nsAS),
n6(T) (19
Z(:r' la an,nﬁ(s) Z,s(19) +& %, m o(9) Y ,s(5)]
nb(I)

T - w(AI"S) Z :D;';w.nﬁznﬁ(Ag}'
ng(T’)

(m and n refer to particle states and ¥ and & to hole
states) where

amv,nb(s) E(OHC,,,,,(SM), H: C:ﬁ(SM)H(» 1
® mrnelS) == {0 [[Cp(SM), H, C,o(SID)][0),  (15)
Dy n6 =0 [[C{SM), Cl(SM][0)

The matrix elements of @ and ® do not depend on
M and the matrix elements of Ddo not depend on
either S or M. (See Appendix B.) All these matrix
elements vanish if my and 20 belong to different
irreducible representations. The equations can
therefore be written for each I"' in matrix form
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jno

a™ (58 ) YR

= w(AT'S)
_® (r)*(s)_gtr)*(s) _Z(P)(kS) ©

) 0 Y(F )()\8)
59(1') ~Z<r)(ks)

X (14"

lo 1B

We write (I') on the submatrices to indicate the ir-
reducibility of the equation,
Note that substitution of Eq. (9) into (8) gives

T [ D e ¥ AS)
m! ' (T?) my(T) (16)
= Z% (N DX 1 Z y(AS)]= ByaOrer

III. HAMILTONIAN
In second-quantized form the Hamiltonian is®

H=Z Ei'C;!'Cil +—1- Z Z V,-ljtk: I'C}IC}.ICkIC’l
i 2igt e
- Z 2 Vieye gogs = Viegege ) clecyo . (17
it
The first term corresponds to the sum of HF single-
particle Hamiltonians, the second to the Coulomb
interactions, and the third to the HF potentials.
The second and third terms are the residual inter-
actions between electrons. In Eq. (17) v’ refers
to a hole spin orbital and i ’, 5, %', 1’ to any spin
orbital, i.e., holeorparticle. Unprimed indices
refer to orbitals. The matrix elements of V are

Vi jowrre = @052 ik (D 7(2) . (18)
Hence the matrix element of the HF potential » is

<illl]{jl> :Z(Vflylj'?,l - V{lylylj')u (19)
»

In terms of the multipole operators C],(SM)(see
Appendix A) the Hamiltonian can be written as

1
H=2,€V2 C},(00) +2.[- 3 2 Viens
; i n
+22(Vipys= 2Vi0; ) IVZ €} (00)
k4

+ 7 Vigw C1L00)CY,(00). (20)
ikl

1V. GROUND STATE
The true ground state of the system can be written:

|0} = N[ [HF) + | ) ]; (x[HF) =0, (21

where [HF) is the HF wave function and [x) the cor-

relation wave function for the ground state. Clearly,
for the systems of electrons in atoms and molecules
we have

(x| x)/HF|HF) < 1. (22)

Sinanoglu' showed that |x) is well approximated for

closed~shell systems of atoms and molecules by
including the pair correlation functions and their
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unlinked clusters. The wave function of Eq. (21)

can then be written®
|0) ¥ NopeV |HF); eV=1+U+5U8++-- (23)
where

U= Z 72;:5' CprCyt o (24)

7' <6

The #'’s have the following properties:

(@) /HFY =0, [, 1} 5]=0;
ley ol [eh L] =o0. )
In CI notation we have
Whp= 2, ChEclcl. (26)

iy
Note that all Greek letters refer to hole states and
the Latin letters m, »n to particle states. Wave
functions of the form of Eq. (23) have also been
used in discussing applications of the RPA to nu-

clear physics. ™1
Instead of using the coefficients CIi, we write
- t
U= Z {Kmy,nﬁcmacnﬁcﬁﬂcra
mn vd
1 t oAt Tt
-+ ngy'm[Cman aCsaCyat CmgCln BcﬁBCYB]}' (27)

Note that we are considering only closed-shell
ground-state HF functions in Eq. (23). The matri-

ces of coefficients K and L are symmetric:
Koy mo=Kao,mrs Lmy,no= Lns,my (28)

Also U is unchanged if L,,,,,sis replaced by (L .y a5

~ Lys,n)- The coefficients of Eq. (26) are related
to those of Eq. (27) by
C;'n:glf ;n:gz:: my,nd s C?’f/éé”= %%'&B: - Kos,nys

mano _ mBn (29)

reba T YBGB - Lm‘r,ms Lmﬁ,nr-

For simplicity we are assuming that all irreducible
representations of the molecular symmetry are
one dimensional, The coefficients K and L must
vanish if the particle-hole pairs my and #n0 belong

to different irreducible representations, and, hence,

the matrices K and L with elements K, .5 and L, .5
are block diagonal.
Note that

ct,(00)C(00) + Ct (10)C}5(10)

(302)
= ChaCasCoCra+ CraCmpCraCoo s
C}.(00)C}00) — C}.,(00)C}4(10)
= C;aC:acﬁaC‘ra + C;BC;BCGBCYB . (30b)

Then Eq. (27) can be written:
~—E (Ko ns ZZ C1,(S0)C15(50)

mﬁ,m') Z (" I)SCIM(SO) CZG(S_O)]
S$=0,1
(31)

+ E(Lmrmﬁ -

or
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1
=5 gszcws(ﬁcm(so)c S0}, (32

where
C::w,nﬁ(s) :Kmr,n6+ (_ 1) S%(Lmr,nﬁ" Lmﬁ.nv)' (33)

The following form for U has been used in applica-
tions to nuclear spectroscopy °!L
T T O aS)CLSMICL(SM).  (34)

2 mn,y6 SM

This is not an appropriate form for our purpose
since we do not plan to use the quasiboson approxi-
mation. In fact it is easy to see that the four opera-
tors C},(SM)C!(SM) for S=0,1 in Eq. (34) are not
linearly independent. The assumption that these
coefficients are linearly independent leads to the
overcounting characteristic of the quasiboson ap-
proximation, This is discussed in Appendix D,

The usual way to determine U is to solve the vari-
ational equation directly, In Sinanoglu’s many-
electron theory this equation is reduced by a per-
turbation-variation method to a set of pair equations
for #"s which are directly soluble, The coefficients
in Eq. (26) can be determined in a straightforward
manner. In the CI method U of Eq. (27) may be
used truncating the sum over particle states. The
equations can then be solved variationally for the
K and L coefficients.

We will, however, determine U in quite 2 dif-
ferent manner., We attempt to obtain U by solving
Eq. (7) and Eq. (14), which determines the excita-
tion energy, self-consistently, To set up an itera-
tive scheme we take the U of Eq. (27), express the
matrix elements of @, ®, and D in terms of the
coefficients K and L, and solve Eq. (27) subject to
the constraints on the correlation coefficients and
the amplitudes ¥ and Z expressed in Eq. (7).

V. EQUATION O(AT'SM)i0)=0

To determine the correlated ground state and the
excitation energies and the associated amplitudes,
we must solve Egs. (7) and (15) self-consistently.
In this section we deal with Eq. (7).

With 10) of Eq. (23) and Eq. (9) for O'(AI'SM), we
have
OMI'SM)(1+ U+ 208+ (31102 +...)|[HF)=0.  (35)
Also we have

O(\I'SM) |HF) = =Y, Z%,(\9)C}(SM) |HF). (36)
my{(T')

As is shown in Appendix C, we can write

Cn(SM)U|HF) = Zc,,,,,,,a(s)c W(SM)|HF), (37

where
cm?’.nﬁ(s) =
Kmv,nﬁ -

Km'y,nb'*'(" 1)S(Km7,n5"Kmﬁ.nr)s (38)
Lmﬁ.n? . (39)

mény = Lmr.nﬁ -
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Now C},(SM)UIHF) is a three-particle-hole term
and is coupled to C,,(SM)U?HF), and so forth.
Equation (35) becomes
{-Z 25,0965, + T ¥509

my(I')

my(I")
X 7 Coy s OCH(S F) 4+ -} [HF) =0, (40)

The terms not explicitly shown contain three-,

five-, etc., particle-hole creation operators.
Equation (40) can be solved by equating to 0

the coefficients of all the linearly independent com-

ponents on the left-hand side of the equation. For

the single-particle-hole components we have (myeI’)

zx, (08 = 2 Y5(AS)Cpp, mrS) (41)
no(r)
and
Coy,ns{S) =0 if #6€T, (42)

Equation (42) follows from the fact that the matri-
ces of correlation coefficients K’s and L’s are
block diagonal and their irreducible submatrices
are characterized by I'.  The matrix of coefficients
C is symmetric since the matrices K and L are
symmetric:

Cmr,né(s) = Cnb, my(s)y

Corr® = Copny(D; Copomd®) =Copmd D). 49
We can now rewrite Eq. (41):
2%, (08) = 7 C oy sl )Y 5(RS) (49)

nb{I)
or, in matrix form,
Z*TUg) = C DAY TS, (45)

The coefficients of the components containing
three-particle-hole operators can be treated sim-
ilarly. These coefficients are, however, one order
higher in the correlation coefficients and are cer-
tainly less important than those we included above,
Including these terms would be inconsistent with
restricting the excitation operator O] to contain
only single-particle-hole operators [Eq. (9)]. To
include such terms we would have to go over to a
sceond-RPA type of formulation, * For most prob-
lems of interest, Eq. (45) should be a very good
approximation. Equation (45) has the same form
as the equation derived by solving Eq. (7) with the
U of Eq. (34) and the quasiboson approximation.
Methods for solving this type of equation have been
discussed by Sanderson and da Providéncia.® How-
ever, see Appendix D for the overcounting problem
in the quasiboson approximation.)

VI. MATRIX ELEMENTS OF @ and ®

We now derive explicit expressions for the mat-
rix elements of @(S) and ®&(S) as a function of the
correlation coefficients. We have
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er.nﬁ(s) :NgAmy,na(s); (Bm'y,nﬁ(s) =N(2;Bm7,,,5(s),

where (48)

Apy S =(HF | "[C,,,(SM), H, Clo(SM)] ¥ | HF),

By, no(S) == (HF | V"[C,,(SM), H, C,(5M)] " |HF) .
(47

We expand Eqs. (47) in a power series in U:
A9 =AY + AP +. ..,
E(S) ____E(O)(S) +§(1)(S) b,

For convenience we write the Hamiltonian as a
sum of three parts:

H=H(1) +H2) +H(3); H(1) =2 €, V2 Cl,(00),
i
HQ)=2[-+2 Vikwi+ Z(Vir.w"' 2V,-,,,]-7)]

if k

X2 C};(00), (49)
H(3) = 2. V,;, C1(00)CT,(00).
ijkl

(48)

With the properties of the operators C,(SM) (Ap-
pendix A) we can obtain expressions for the matrix
elements [Eq. (48)] to arbitrary order. Here we
shall derive only the zero- and first-order terms
in detail. We can make no basic improvement by
including the higher-order terms, e.g., A® in
Eq. (48) if the excited-state operator contains only
single-particle~hole operators.

A. Matrix Elements of A(S)

We have
A (8 =(HF|[C,,(SM), H, C}(SM)]| HF)
=(HF| C,,(SM)HC} (SM) | HF)
~ B, 0y (HF | H|HF) , (50)
(HF[H}HF):ZZEY—ZOZ(ZJW—K,,E), (51)

(HF |C i (SM)H(1) CTo(SM)| HF) =85, 8,5[ 2 1, 2€, + (€, — €,)],
(HF| C,(SM)H(2) C}(SM) |HF)
=- 5,",,5,5@ [2 Kus+ 2Zﬂ: (2J .- K,)]
- 676[% l:-jvmkkn + Z} (zvvmm - Vumnv)]
+ 5mn[—%2 Vﬁkk‘/‘*'z (zvvﬁuy“ vﬁw)] s

(52)
(HF| C,,,(SM)H(3)C}o(SM) | HF)

=051,00 2V morn— Vmonr + 6mn576(22 Juy
uv

+ ZKW) + 576{2(2Vmunn' %Vmuun)*‘%z Vmppn)
F24 N »

+ amn[z (- 2% uyu +%V5uu7 - '15% VG:)N] s
F72

(HF|C,(SM)HC] (SM) |HF)
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= Oy Oyel (HF | H| HF) + (€, — €,)]
+ 8 51,00 2Vmoyn — Vimony -
Thus, we have
A(O),ns(s) 5mn575(€ - Ey) [1"‘(" 1) ] mbyn ™~ Vmbny *

(53)
This is the matrix element used in the Tamm-Dan-
coff approximation and in the usual RPA,
We now obtain the first-order term A% (S):

AL (9 =(HF| UT[C,,,(SM), H, Clo(SM)])| HF)
+{HF|[C,,(SM), H, C},(SM)} U HF)

=(HF | U [C,{SM), H(3), C}(SM)]| HF)
+(HF | [C,(SM), H(3), C},(SM)] U|HF) .
(54)
Evaluating Eq. (54), we have
(HF| U'[C,,(SM), H(3), Cl(sm)] |HF)
= 18,5 2 Vinguo(HF| U'C] L (00) C L (00) [ HF)
+ B 2 Voo (HF| UC1(00)C1(00) |HF)] , (55a)

pev

(HF| [C,,(SM), H(3), CI{SM)]U|HF)
== 3[0y5 25 V uome (HF| C,,,,(00)C,(00) U HF)

+ 8y 2 Vappe CHF | C,,(00)C,,(00) U| HF )], (55b)
pav

The zero-order term B{J) ,(S) is
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With the results of Eqs. (C10)-(C13) of Appendix
C we can write

(7;7)' na(s)" = Bys Z [ mwvctfu,qv(o) + Vuuﬂqcmu,qu(o)}

-0 :«L: [VPQ.WCPG,qu(O) + Vﬁupqcpy,qu(o)]

which is independent of S. (56)
B. Matrix Elements of B(S)
First note that
[CmlSM), C}(00), C,4(SM)]=0, (572)

if ¢ and j are both particle states or both hole states
However, we also have

{0} [C mp(SM), C}(00), C,5(5M)] | O) =0, {57b)

if one of the states ¢ and j is a hole state and the
other a particle state. Hence we have

By mo(S) = = CHF| e"[C,,,{SM), H(3), C,,(5M)] Y |HF},
(58)
B (S) =~ (HF|[C,,{SM), B(3), C,(SH)} | HF)

{59a)
B (8) == {(HF| U'[C,,(SM), H(3), C,,,(SM)]| HF)

+{HF | [C,,{SM), H(3), C,,i(SM)] U| HF)}.
(59b)

B o(S) =(HF| C,0y(S, M) C,,o(SM)H(3) | HF) = Z V pann CHF | Coip(SM) C,o(SH) €}, (00) C 1, (00| HF)

= [+ = D5 Vppy = (= DV = {g"mnro— o

mnby s

This is the matrix element used in the RPA. The
first term in BY), s (S) [Eq. (59b)] vanishes because
U' contains two-particle-hole annihilation operators
and H(3) contains at best two-particle-hole creation
operators still leaving a total of two-particle-hole

operators in the matrix element:

B (9 == (HF|[C,,{SM), H(3), C,s(SM)]U| HF)
—

Equation (61) becomes

(s=0)
(s=1). (60)

=~ (HF|[C,,(SM), [H(3), C,,B(SM)}} Ulgp . (8D
Also, we have

[C100)C1,(00), C,elSM)] = 2712{C],(00)[6,5C, (M)
= 8,;,C5(SM)]+ C],(00)[8,5C,.;(SM)
= 64,Cs(SMD] } + 5 {8,6[6;,C14(8M) = 6;,C,,(SM)]
= 83a[6;4C16(S M) = 8;6C,(SM)] }. (62)

Bfnya')mﬁ(s) - Vr_— Z Vukt <HFHcmr(SM) C; k(oo)[ﬁlﬁcnj(SM) - éjn lﬁ(SM)]}U,HF>

== (- 1)S Z(HF | Coi(00) [V sCrnp (00) + Viy C s 00)] U| HE)

- ZV,m<HF][5,mcM(SM)~5,,, i (SM [644C, ;(5FT) = 6,,C16(SMD] U HE) (63)

ijkl

and thus

Bfnlr),nﬁ(s) = - ("-‘ 1) SZ [Vmuﬁbcﬁumy(o) + Vnuwc#u.ma(o)]
b33

f
- Z [ VinupsCopr, nu(s) + Vnum‘cmuypﬁ(s)]

+Z anpqcpv,qb(s) +Z Vuwscmu.nv( )- (64)
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VII. MATRIX ELEMENTS OF D AND ONE-ELECTRON
DENSITIES

From Eq. (B3) in Appendix B, we have

D iy ,n6 = OmnPy6 = OyoPam » (65a)
where
pi;={0]cfoc;al 0. (65b)
Defining
pis=CHF " clac 00 e”|HF), (66a)
Dm?,négémp?& = 8y5Lnm s (66b)
we have
iDm,nazNgDmy,na; Pii=Nipy. (87
Expanding Eq. (66a), we have
piy=pP 4Dl 05+ (682)
where

{9 =(HF | cloe ;0 HEY

Do HF | Ulelyc;q+ clac; o UHFY (68b)

@ L HF| U] ¢+ clatiq UUIHF)
+(HF|U'cl 0,0 U/ HF) .

Clearly p*¥ is linear in the correlation coefficients,

»'® quadratic, and so on. Also, we have

D=b,5; =0
pi =0; pii=0 if ¢ odd, (69)

3% ~<HF| U'elye;o UIHF)
= 2'”2<HF1 vtcl(00) U HF).
With U of Eq. (32), we have

[CI(00), U] =~ 27V2 2, Zc,u,q,(s)c;n(so)czﬁ(so)
pan S (70)
[C1.(00), U]=272 L% C, . ml9)C}L(S0)C],(50).
puy S

From Eq. (70) and the results of Appendix C we
obtain

pa(%’ = r6<HF I UTU‘HF>"' : Z Zcpu.w(S)Cpu,aﬁ(S)

(71a)
’(“2") = E Z Z CPM,MU(S) Cpu.,nv S) (71b)
puv 8
(HF| U'U|HF) =% ZJ Zcpu,q,(s)c;u,q,(s), (72)
me zN D(HF | U'U|HF)
Z »& =(HF|U'U|HP) . (73)

Noting that
Ni=1-(HF|U'U|HF) ++--, (74
we now have

@ NI
pid =By5; Prs =0y

(2) p(a> - 575<HF| UTUIHF>

~3 Z"chtu.ar(s)cfu.qﬁ(s)s (752)
pgu S
Pas =P =0,
P2 = pf8 =5 20 7. Chu ol Chu (), (75b)
puv S
Tpii’ Zp(a) (HF | U'U| HF). (75¢)

Finally, we have

0) (1) (2)
Dy ne =D mr,n&"’:Dmy,nG‘*iD mynbt (76)

Dy s =D§g»),n6+Dgy),n5+D(2 net .

D 16 =D n6 = OOy »

DI 5=D 6= 0, (77
my,n my,ns = B mnOys <HF’ mUIHF>

émnp;%’ - éyﬁpfngn)

VIII. APPROXIMATION TO EQUATIONS OF MOTION

D@ - -p®

Substitution of Eqs. (46) and (67) into Eq. (14a)
gives
é(S) _B(S) XO\S) D
- BX(9) - A*)| | Z(8)] ~ w(rs) 0
(78)
where the elements of 4, B, and D are defined in
Egs. (47 and (86). There is an equation, Eq. (78),
for every irreducible representation I'" of the mo-~ [

lecular symmetry group. In addition to Eq. (78) we
must also solve

Z*(\8) = C(9Y*(19). (45)

Again there is an equation, Eq. (45), for each ir-
reducible representation I,
For the usual RPA we set

é(s) :é(ﬂ)(s)’ E(S) =§(0)(S),

The elements of these matrices are shown in Egs.
(53), (60), and (77). In this approximation Eq. (16)
becomes

2 YYD (1) -
my(T)
With the matrices A9'(S), B‘Y(S), and D'”, Eq.
(78) is just the RPA. The RPA has been apphed
to the atoms? Be, Mg, Ca, and Sr, and to the mol-
ecules ethylene and formaldehyde. ®

Thouless'? has discussed the formal properties

of the RPA and shown that all excitation frequencies
of the RPA are real provided the HF ground state
is stable. The appearance of an imaginary frequen-
cy indicates an instability in the HF wave function,
In practical calculations, however, the true HF
solutions are not available and an excitation fre-
quency may come out imaginary. This can happen
even if the HF ground state is well defined. If a

P :P(O) , (79)

ZO*(N'9) 28 (A9)]= 6y,
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component absent in the practical HF ground state
significantly affects the excited states of a certain
class, then an instability may occur even if the
inclusion of the component in the HF wave function
hardly affects the ground-state energy. ®

For real frequencies in the RPA the solutions
Y and 2 can be put into Eq. (45) to solve for
the correlation coefficients C. If RPA frequencies
come out imaginary, we can go to a lower approxi-
mation than the RPA and use the Tamm-Dancoff
approximation (TDA). The TDA always yields real
frequencies. In the usual TDA one keeps only the
first term in O [Eq. (9)] and takes the HF wave
function for the ground-state wave function 10) .
The TDA equations are just

é(O)(S)X(TDA)(}\S) - w(TDA)(AI‘S)X(TDA’()\S). (80)

This assumes that the correlation coefficients are
very small, It is still possible to solve Eq. (45)

for these coefficients using just the TDA solutionsl.”a)
If these coefficients do not come out small, the
calculated values are not reliable. In the RPA the
expression for w does not depend on the coefficients
C. These corrrelation coefficients are obtained
from Eq. (45) with the Y'®’s and 2" of Eq. (78).
Hence, the equations cannot be solved self-consis-
tently.

Proposed Self-Consistent Scheme: Higher RPA

We now go beyond the RPA., We include terms
linear in the correlation coefficients in the elements
A(9), B(9), and D:

é(s)zé(O)(s)+é(l)(S)’
B(S)=B"(8)+BM(9),
D=D"+ D",

(81)

The elements A", B'Y, and D'V are given in Egs.
(56), (64), and (77). Note that

D=0, (82)
which is a very useful result, since
Dm'r,nﬁ =8, 0y (83)

and, hence,

Z ¥k 0'S) ¥pyAS) = 28, (V'S) Zpy (08 1= 000 (g4
my A
With elements A(S), B(S), and D of Eq. (81), Eg.
(78) becomes

A BS) | [xos Y(S)

= w(AT'S)

~Bxs) -4 || 209 209 | ®
Clearly these equations are of the same form as
those of the usual RPA. But now the elements A(S)

and B(S) are functions of the correlation coefficients
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C’s. We can set up an iterative procedure for solv-
ing Egs. (45) and (85). We take some crude esti-
mates of the C’s, calculate A‘*(S) and B'V(S) to get
A(S) and B(S), solve Eq. (85), and use those values
of Y’s and Z’s in Eq. (45) to obtain new estimates
of the C’s. We can iterate these equations for any
desired accuracy.

We have applied this scheme to study the low-lying
states of the ethylene. Details will be given else~
where. "® We obtainvertical excitation energies of
4,95 eV for the N- T transition, 9.4 eV for the N
- V transition, and an oscillator strength of 0.4%7 for
the N- V,*while theusual RPA gives 1.50 eV, 7.93
eV, and 0.51%, respectively. Experimental values
are 4.6 eV, 7.6 eV, and 0. 34, respectively, '

IX. DISCUSSION

Starting from the equations of motion expressed
as ground-state expectation valu'es, % we have derived
a higher-order RPA for excitation frequencies of
low-lying states. We represent the ground state as
eV |HF), wherethe operator Uis a linear combina-
tion of two-particle-hole operators. The coeffi-
cients of this linear combination are just the corre-
lation coefficients and are assumed small. We ex-
pand the matrix elements of the equations of motion
in a power series of these coefficients and retain up
to terms linear in the coefficients C’s. The zero-
order approximation is just the RPA. However, the
equations with the linear terms added retain the
same form as the RPA. These are the equations of
the higher RPA. The ground state eU|HF) mustvan-
ish when acted on by the adjoint of the excited-state
creation operator O], This condition is expanded
in unlinked clusters of particle-hole creation opera-
tors giving an equation relating the amplitudes Y and
Z of the excited states and the correlation coeffi~
cients C’s. This equation and the one determining
the excitation frequency are solved self-consistent-
ly. This higher RPA removes many deficiencies
of the RPA but still ignores second- and higher-
order terms. These corrections are certainly
small and would be included in a second RPA.®

Rowe® recently proposed a renormalized RPA in
which HF single-particle energies and densities are
replaced by renormalized quantities. These renor-
malized energies can be estimated from experiment
and single-particle densities calculated self-consis-
tently. However, certain important terms in the
matrix element of §(S) which are linear in the cor-
relation coefficients are neglected in Rowe’s renor-
malized RPA. Also, for applications to molecular
spectra we want to calculate the ground-state corre-
lations and excitation frequencies self-consistently.
In deriving the RPA in a similar fashion Altick and
Glassgold? assumed that all terms linear in the cor-
relation coefficients C’s in the expectation value of
the operator equations for the excitation frequency
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vanished. This is due to the false assumption that

in the expectation value of two-particle-hole crea-

tion operator over the ground state all terms linear
in C be 0 [see Eg. (19) and statements in the lower
half on page 637 of Ref. 2].

We have applied these results to the low-lying T
and V states of ethylene. The changes in going from
the RPA to the higher-order RPA certainly confirms
the importance of the first-order corrections which
we have included. For example, the predicted ex-
citation energies for low-lying triplets are now in
good agreement with experiment. These results
will be published separately.”® We have alsodevel-
oped approximations to the higher RPA and, in fact,
show that good solutions to these equations can be
obtained using only the potential matrix elements
Vijm needed in the RPA solution. Solution of the
equations requires only a few iterations for self-
consistency.

APPENDIX A: MULTIPOLE OPERATORS C:i (S.M)

We define the multipole operators C},(S, M) as ir-
reducible tensor operators that satisfy the following
-commutation relations with the spin angular-momen-
tum operator S:

[S., CL,(S, M)]=[S(S+1) ~M(M=1)]'/2 Cl (S, M+ 1),
}

With Eq. (A4) we obtain the commutator

[Czj(S, M), C},W(S',M')] = Z a(S, M,' S’, M'[S','M")[Gi-jCL.(S",M") - (_l)s #8514 8" 6”, Ciflj(SI,IMII)],

S#pn

where
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[Ses Cii(S, M)]=M Ciy(s, M). (A1)
We also define their Hermitian conjugates as
Ci (S, M) = (=) Cy(S, - M). (A2)

We also introduce the operators C;;(SM), where

Ci,(SM)=(~=1)%*¥ C (S, —=M). (A3)
The subscripts ¢ and j refer to spatial orbital states.
The operator C},(S, M) is given by

Cli(s, M)= 4?/2(—1)‘/2’”<%,M+n; $-n|S M)
n=d

x cl(M +n)e; ), (a4)

where ¢}(¢) and c¢;(£) are the creation and annihila-
tion operators for level i with spin projection £ = 3
or —3. We identify

cid=cle;  cl(-3)=cly. (A5)
These operators satisfy the usual anticommutation

relations
{ei®), clmt=084 8., 1c}®), cimi=0.

The coefficients in Eq. (A4) are just the Clebsch-
Gordan coefficients. Equation (10) follows directly
from Eq. (A4).

(A6)

als, M; 8, M| 8= T (S)VE(E, Man; s, -] S, M)

n=x1/2

X (% m 5 M =n|S, M'XE Men; 5 M'=n{S",M")

== (=) [25+1)(@S "+ 1)]V2 (S, M; ', M!|STM") { 14

and

S 8 8
ooy
2 2 2
is a Wigner 6-j coefficient. A more general ex-

pression for j-j coupling has been given by Dreizler
et al.'® In Table I we list the coefficients

V2 als, M; S, M'| 8", M'")=a(S, M; S', M'| ', M"")
for various values of S5, S and S’’.
APPENDIX B: MATRIX ELEMENTS OF D, @, AND D
Consider the expectation value
(of[cyyls, M), Chy(s, MN]|0)
= (=1 (0|[cl(s-M), Cl, (s, M"]]0).  (BY)

The commutator transforms under the R; group
on spin space as the irreducible representations

(A7)
S S’ S”} (AB)
|
(s'’, M'), where
§7=5+8", S+8 ~1,...,|S=5],
(B2)

M"=-M+M'.

For Eq. (Bl1) to be nonvanishing the commutator
must contain the (0, 0)-irreducible representation.
This is true only for S=S" and M=M'., With Eq.
(A7) we have

(0][Cyy(s, M), Cl(s, M]|0)

=21/ [6:e (O!CL(OOHW =55 (OEC’:‘(OO)SOH’

3
which is independent of S and M. (B3)
By similar arguments we have
(O[[Cy s, 2, H, Cly(s',M"]|0)=0,
unless S =S', M=M". (B4)

The double commutators of Eq. (B4) are independent
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TABLE 1. The coefficients a(S, M; S', M’ 1S", M'").
@ =0 for all other cases.

S,M S,,M' S”’N“ E
1,1 1,0 1,1 -1
1,0 -1
L -1 {0,0 -1
0,0 1,1 +1
1’0 1,1 {1,1 +1
1,0 0
L0 0,0 +1
1,~1 1,~1 -1
1,0 +1
0 ’
»0 {0,0 0
1, ~1 {10 +1
1 s
o1 0,0 -1
1,0 1, -1 +1
0,0 1, -1 +1
0,0 1,1 1,1 +1
1,0 +1
1,0 {0,0 1]
1, -1 1, -1 +1
1,0 0
0,0 {0,0 +1

of M. This can be shown by examining in the ex-
pansion of Eq. (B4). Consider, as an example, the
term

(0]Cy,(8,M =1) H C},(S,M -1)]0)

=[8(S+1) =M(M -1)]"*

X(0]Cyy(S, M)S, HS.C}(S, M)|0)

=(0]C, (S, M) H C},(S, M)|0). (B5)
To obtain Eq. (B5) we have used the relations

[82 - s(s+1)] €L, (s, M)|0)=0,

[s.,H] =0, 5,8.=8% - 5,(5,~1).
Hence, the matrix elements @y, ,,(S) and ®;; ,,(S)
are independent of M.

APPENDIX C: COMMUTATORS OF C,_ (5,1) AND U

We have
[Cmr(s, M): CIG(S’, M')] = (= I)M 2-1/2

x 2 als, -M; s,m'| s,mM) (c1)
2
X[Gm,, C,:s (S", M = (= 1)5 5t Sn
X 8y C;m(s"’ M),
{Cmv(sy M)y C;G(S', M')]lHF): s u,su° 65"7,n6 l HF) .
{c2)
The operator U is
=5 20 21 Cryms(9) Chy(S5,0) C1s(50),  (C3)

mnyd §
where
crlm'.nﬁ (S) = Kmy,na (S) + ("‘ l)s % (Lm'r,nﬁ - Lmﬁ ,n'r)' (C4)

Also, we have
[Crr(S,00), C1,(8",0) CLET)]
=C},(5,0) [Cpy(S, M), CL(S, 0)]
+C(570) [CpylS, M), CJu(5,0)]
+(=1)% [ [Cpy(SM), C} (S, 0)], CL(50)]. (C5)
Thus, we have
[CoS, M), U= 22 35C},,0(S)CLLST, 0)

bauv S’

X[C oS, M), C(S", 0] = (- DF

L for M=0 o
X mik, pY t
PZM 1 Uy BY for M= 1} CPIJ(S’ M),

(ce)
ColS, OUIHE) =T [K,y, pu+ (= DLy
bu
- Lmu.ﬂ)] C;u(m) IHF> » (C7)
Cm(1,£1) Ul HF) =2, Kmu,pyczu(m) ’ HF).
pu
With Egs. (C2) and (C'), we have
(HF | C{S;0)C (S, O U HE) = Ky
+ (_ I)S(Lm‘r,na" Lmﬁ,m'),
(c®)

(HF| Cpl1, £1)Coe{1, £ DU HF) = K,y -

The matrix elements of Eq. (C8) are independent
of M. Hence, for S=1 we have

Km‘r,nﬁ" Kmb,m': Lmy,n&' Lmﬁmr’ (CQ)

(HF| C (8, M) C,ol S, M')UHF) = 8541, s Cry oS
(C10)

where
Cm’r,rcﬁ =8y net -1 S(Km?,nﬁ - Kmﬁ,nr)-
We now have
(HF|[U', U] |HF > 22C el C oy nslS)
2 mnys S

(C11)

= Z [K?ny.nﬁ‘*%(Km?.na‘ m&.n’r)z]~ (c12)

mnyg

Equation (C%) is now written as
Co(SM)U|HF) =75 C,,, 5, (9 C} (5P [HF) . (C19)
by

APPENDIX D: OVERCOUNTING CHARACTERISTIC
OF QUASIBOSON APPROXIMATION

Recently Rowe® discussed ways to calculate the
correlation corrections to the one-body densities
needed in the renormalized quasiboson approxima-
tion. He pointed out that the corrections to the
densities obtained within the quasiboson model are
too large by a factor of 2. This point was indepen-
dently confirmed recently by Johnson, Dreizler,
and Klein,'® Rowe attributed this error in the quasi:
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boson model to the fact that the four operators
Cl (SM)Cl(SM) tor S=0,1 in Eq. (34) used in the
model are not linearly independent. The purpose
of this Appendix is to clarify this.

In our scheme the correlation coefficients C(S)
are evaluated by solving Eq. (45) with given values
of Y(19) and Z(AS). Once this C(S)’s are evaluated,
the coefficients K are obtained by {see definition of
c(9 [Eq. (39)]}

Koy, nt =% [Cmy,nb (0)+
or

Cm)',nﬁ (1 )]

K=3[C(0+c)] .

Rowe’s expressions for the corrections to the one-
body densities are explicit functions of Z(AS).

The coefficients C’(S) defined in Eqs. (32) and
(33) are obtained by

cl0)=3c0)+1c); c'W)=tcO)+3icq) .
Let us now look at Eq. (34), the quasiboson model
expression for U. We can readily show that this

can be also written as

% S D Clyns (S)Chy (SO)CT, (SO)

mnyd S=0,1

where

C”’Y nﬁ(o) 7, né (0) + C,’,:s nr(l) 3

Coy, w(l)= C?Z?,nﬁ(l) + Cr,;ﬁ,m‘(l)

Note that this expression of U is identical to Eq.
(32), the one we used in our scheme, if C”(S) are
equal to C’(S). However, in the quasiboson model,
the C(S) evaluated by Eq. (45) are set equal to C"(S),
i.e.,

SHIBUYA AND V. McKOY 2

C"(S)=C(S) (quasiboson approximation).
Thus, we have

C:x,'y, n6(0) = Cruy, n )+ Cmﬁ,ny(l) s

Cr::fr, nﬁ(l) = Cruy,ns 1)+ Cmﬁ,m'(l)

The differences between C'(S) and C'” (S) can be
more clearly seen in the following expression in
terms of K:

Cr,ny,ns(s) = Kmv, ne T ( - )S %(Km?,nﬁ - Kmﬁ,m') ’

C:zlr,nfi(s) mG m') -
Thus, we have

c'(S)=

'/n6+( (K, myens

1 CII.‘(S)

which clearly shows that C’”(S) are twice as large
c’(S).

The substitution of C”(S) into Egs. (75) for C’(S)
gives us the values of p{2) p{?, and (HF|U'UIHF)
which are all twice as large as the correct ones.
The correlationwave function of the ground state
is ~ U|HF). Thus, the use of C”(S) instead of C'(S)
leads to the correlation energy twice as large as
the correct one.

It should be, however, noted that these conclu-
sions hold only when these arguments are based on
a given set of values of Y(AS) and Z()S). If the cor-
relation coefficients are to be determined self-con-
sistently, these conclusions will not hold in general.
In an iterative scheme like the one we proposed in
the present article, the larger magnitudes of the
correlation coefficients may produce smaller values
after one iteration, and vice versa.
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