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A self· consistent scheme of random phase approximations, for studying the properties 

of classical many-body systems, is defined. The case of spin t Ising model, with nearest 

neighbor interaction, is taken as the simplest representative example and the 2nd RPA is 

worked out in detail. The results agree with the exact high and the low temperature series 

expansions to the first three terms and are found to be adequate at all intermediate temper

atures. These results compare favorably with those of the diagrammatic high density expan

sions carried to the order (liz). 

§ 1. Introduction 

The spin t Ising model, with ferromagnetic interaction, serves as·a useful 

approximation for the interpretation of the cooperative magnetic behavior exhibited 

by certain Dy compounds1
) at low temperatures. In the literature, there exist 

accounts of many attempts which have been made to obtain approximate solu

tions 2
),3) of the three-dimensional Ising model. From among these, the methods 

of Broue) and Horwitz and Callen5
) are particularly interesting for the reason 

that they attempt to evolve a prescription for the evaluation of the system free 

energy in powers of a small expansion parameter: (liz), where z is the effec

tive number of spins interacting with any given spin. Such a scheme might in 

principle be expected to have the advantage that for three-dimensional systems 

it would converge rapidly (because z>6) and thus, in contrast with the low and 

high temperature expansion methods,3) the system thermodynamics would be known 

adequately at all temperatures-except possibly in the immediate neighborhood of 

the phase transition where the relative size of fluctuations could become as 

large as z itself. Unfortunately, however, the computation of the (liz) expan

sion beyond the first order terms turns out to be exceedingly complicated.6
) 

The method of Green's function decoupling approximations has been used 

extensively in the study of the cooperative behavior of many spin systems.7) The 

simplest decoupling, to be called the first RP A, yields reasonable results for 

the system magnetization. It does not, however, give any correlation between 

*) . Supported by the U, S. Atomic Energy Commission, 
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· Higher Random Phase Approximations for the Ising Model. I 1313 

the z-components of ,spatially separated spins and, moreover, it overestimates the 

position of the transition point. 

Improvements beyond the simplest RPA turn out to be hard to achieve. 

Recently8) an attempt was made to go beyond the simplest RP A and, in particular, 

to incorporate the existence of correlations between the z-components of spins. 

The upshot of this work was that while some improvement on the simple RP A 

results is obtained in the form of a modified RPA, the actual computation of 

the second-order-RP A is prohibitively complicated because of the dynamical nature 

of the interactions in general spin systems. As the Ising model, in contrast to 

the quantum mechanical general spin systems, does not include any dynamics, 

the computation of its thermodynamics, within the second RPA,does not present 

the same level of difficulty; 

In the present paper we formulate the general order RP A and carry out 

the calculation of the 2nd RP A in some detail. . The comparison of the results 

of such an approach with those following from the diagrammatic high density 

expansion technique of references 4) -6) is interesting: Both the approaches 

lead to the molecular field theory eMF A) results as their first approximation. 

The MFA result is known4
) to be exact to the order (1/ z) 0. Moreover, the 

low-temperature, i.e. T<.Tc where Tc is the Curie temperature, and the high 

temperature, i.e. T';JJ> T c, characteristics of our solution are as good as the results 

following from the second approximation of references 4) and 5) obtained by 

summing the (l/z) graphs. In the transition region, however, there seems to 

be an indication that the results of the present formalism may also suffer from 

the rather subtle thermodynamic inconsistencies that are known to arise in the 

diagrammatic high density expansions. 6
) With the increase in the accuracy of 

the approximations, i.e. when 3rd and higher RPA's are taken into account, the 

hope is that the region where these inconsistencies are prominent will shrink 

ever closer towards the transition point. 

Section 2 of the present paper is devoted to a brief exposition of the Ising 

model, and that of the relevant- thermodynamic Green's functions. The fir'st 

RP A is worked out in § 3. 

Higher order RPA's are defined in section 4 and the solution for the single 

spin Green's function is given within the 2nd-RPA. The two-spin Green's func

tion is solved within the 2nd-RPA in § 5. In § 6, solutions for the system 

magnetization and the spin correlation are investigated. In the limit of high 

and low temperatures, the results are displayed as convergent series expansions ' 

and are compared with tbe exact ones. The transition region is also discussed. 

The salient conclusions of this paper are briefly summarized in § 7. 

The proof of the temporal symmetry of the RP A decoupling scheme is given 

in the appendix. 
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1314, R. A. Tahir-Kheli 

§ 2. The Green's function 

The Ising Hamiltonian is 

!f{ = - (t) ~ I(!1 !2) S:1S:2 - fJ.H ~ S/, (2 ·1) 
h,f2 f 

where !1, !2 denote lattice positions. I(!l !2) is a scalar potential depending on 

the separation !1 - !2. For simplicity we shall restrict the range of the interac

tion potential to the nearest neighbors only. This assumption, ho"\vever, is not 

strictly necessary and the procedure of the present paper is also applicable to' 

the case of arbitrary range interaction. 'The last, term in Eq. (2 ·1) describes 

the Zeeman energy due to an applied field H. 

The eigenvalues of the operator S/ are either + t or - t (in Dirac's units). 

This restriction imposes, the well-known kinematic constraint: 

where 

S ± - S :c ± l·S Y 
f' - f f· 

(2·2a) 

In combination with the usual spin commutation relations, Eq. (2. 2a) leads 

to the following useful relations: 

S +S - + S -S + - + 1· S zs + - 1 S + f f f f - 'f f -"2 f . (2·3) 

It we define a retarded Green's function 

«A(t); B(t'))=-i8(t-t')<[A(t), B(t')J->, (2· 4) 

where 8 (x) = + 1 for x>O and is zero otherwise and where the time dependence 

of A and B is in the Heisenberg representation with respect to the Hamiltonian 

!f{, its energy Fourier transform 

+00 

«A; B»(E) = 2~ ~ «A (t); B (t')) exp liE (t - t') ] d (t - t') (2·5) 

leads to the relevant correlation function :7) 

+co 

<A (t) B (t) > = + (21i}~+) ~ dE[l- exp ( - i1E) ] -l«A; B»(E+iE). (2·6) 
-co 

In Eqs. (2·4) and (2·6) 'the statistical averages, denoted qy the pointed brackets 

< ... >, are assumed to be taken with respect to the canonical ensemble, I.e. 

(·-)=Tr[exp( -(3!f{) ···J/Tr[exp( ~i1!f{)]. (2·7) 

The equation of motion of the single spin retarded Green's function, under 

the Hamiltonian (2·1), is 

(2. Sa) 
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Higher Random Phase Approximations for the Ising Model. I 1315 

where 

(2· Sb) 

Equation (2· Sa) is readily derived by operating with i (dl dt) on the Green's 

function «Sg + (t); Sg - (t')) and Fourier transforming both sides with respect 

to the energy via Eq. (2·5). This operation can be performed an arbitrary 

number of times and we get: 

[E - ttH] n«Sg +; Sg-»(E) 

= (lin) [(E-ttH)n-1(J+ ~ I(gf1) <SI1S/) (E-tt1I)n-2+ ... 
• 1"1 

(2·9) 

In addition to the above equation of. motion, we also need to study the equa

tion of Illotion of the higher order Green's function occurring on the right hand 

side, i.e. «SI1'" S InSg +; Sg -». In this connection we note that due to the kine

matic constraints (2·2) and (2·3), the above Green's function reduces to low~r 

order Green's function whenever any two, or more, of the spatial locations II, 
"', fn and g coincide. To deal with this situation we sha~l use the following 

procedure: 

«S;1", S ;1'Sg+; Sg-»(E) = {[l-.1(fI, "',fn g)] +.1(f1,"', In g)} 

X «SI1'" SI,/,Sg +; Sg -»(E) , (2 ·10) 

where the projection operator [1- .1 (I b "', In g)] = 0 (r) IS such that it has 

zero eigenvalues whenever any two, or more, of the (r+ 1) spatial locations II, 

"', fT and g coincide; otherwise its eigenvalues are unity. 

In this manner, the right-hand side of Eq. (2 ·10), will contain Green's 

functions of all orders, beginning with «Sg +; Sg -»(E) and continuing up to OCr) 
«Sf1' , ,SI'/'S/; Sg-», with the stipulation that now none of the spatial locations, 

that a given Green's function refers to, coincide. 

The relevant equation. of motion can now readily be found: 

OCr) «S11 " ,SI1'Sg +; Sg -»(E) [E - ttH]n 

= (-~)O(r) [(E-ttH )n-1<SI1",SI1'S/) + (E-ttH)n-2~ I(ggl)<SI1",SlrSgZS~) 
n . ~ 

+ ". + ~ ". ~ I(ggl) ,,·I(ggn-l) <SI1",SI,/,S/S;1",S;n_)] 
g1 gn-1 

+ OCr) ~ '" ~ I(ggl) .. ·I(ggn) «S~1",S~nSl1 .. ·S11'Sg +; Sg-»(E) . (2 ·11) 
gl gn 
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1316 R. A. Tahir-Kheli 

§ 3. The first RP A 

The simplest approximation to the set of Eqs. (2·9-11) consists m com

pletely ignoring correlations between spatially separated spins. In terms of the 

Green's function, this amounts to doing the following: 

«S/Sg+; Sg-»(E) = [(I-og,j) +Og,jJ«S/S/; Sg-»(E), 

Og,j«S/Sg +; Sg -»(E) = (t) Og,t«Sg +; Sg -»(E)' 

(I-og,f)«S/S/; Sg-»(E) lstRP~ (I-og,f)O"«S/; Sg-»(E)' 

(3 ·Ia) 

(3 ·Ib) 

(3 ·Ic) 

Using Eq. (2· 6) we readily find the implication of the above decoupling: 

(3·2) 

where L (f g) expresses the fluctuation of the SZ operator from its average value. 

We shall henceforth refer to L (f g) as the system correlation function. 

For the single spin Green's function, the approximation (3 ·1) implies 

(3 ·3) 

and again usmg Eq. (2·6) we get 

(3·4) 

where J(O) = ~f l(g f)· 

Equations (3·2) and (3·4) are identical to the molecular field theory results 

and agree with the correct (liz) 0 evaluation of the free energy in the Brout4
) 

and Callen and Horwitz5
) formulations. 

In the limit fJ.H~ + 0, the system is found to be spontaneously magnetized 

as long as T<{}c' As the temperature approaches {}c, the magnetization disap

pears. We shall call (}c the MFA Curie temperature: 

kB{}c = [J(O) 14J. (3·5) 

Above {}c, the system IS paramagnetic with the susceptibility XMFA: 

XMFA= (-d~iI)MFA = l-~~c~T) .' 
(3·6) 

At temperatures much lower than (}c, the system is nearly fully aligned and 

m the limit of zero magnetic field the magnetization is 

0" = t - exp [- (3J(O) 12J (1 + E), (3·7) 

where E<I and tends to zero exponentially as T --?O. 

The paramagnetic susceptibility and the low temperature magnetization 

expansions agree with the exact ones to the first two terms. Disagreement with 
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Higher Random Phase Approximations for the Ising Model. I 1317 

the exact results, however, appears immediately in the next order terms rep

resented by E. 

Although we shall have occasion to discuss the question of the definition of 

the Curie temperature more fully in a later section (i.e. § 6), it may be remarked 

here that the above solution is internally inconsistent While in the limit of 

vanishing field the system magnetization indeed disappears as T ~fJc- 0, and the 

paramagnetic susceptibility diverges as T approaches {}c from above, the spin cor

relation does not portray the existence of the phase transition. The range of the 

correlation L (f g) is expected to grow inordinately as the Curie point is ap

proached for the reason that the spin fluctuations will become exceedingly large. 

In contrast, the correlation (3·2) shows no fluctuations at any temperature. (Note 

that the particular ease of z = 00 is rather anomalous and for this case the fore

going result is exact. Here the correlation does not manifest any dominant 

change in its range with the changing of the system temperature for the reason 

that the infinite range of the interaction stabilizes the fluctuations.) 

§ 48 Higher order RP A's 

The natural generalizationS) of the first RPA of Eq. (3 ·lc) is the nth order 

RPA defined lU the following way. Let us express the (n + 1) th-order semi

invariants9
) 

and 

O(n) (S;1",S}nSg-(t')S,/(t»e } 

o (n) (S;1"'S JnSg + (t) Sg-- Ct'» I" 

(4 ·1) 

lU terms of the correlation functions. (Note that (".) I" denotes the seml-lUvariant 

which treats the (n+ 1) operators S}1' "', Sin' (Sg-Sg+) and S}1' "', Sfn' (S/Sg-) 

as the relevant statistical operators. Moreover the presence of the projection 

operators 0 (n) insures that no two, or more, - of the (n + 1) spatial locations 

fh "', fn and 9 coincide.) The difference of these two (n + 1) th order semi

invariants, multiplied by the function - i@ (t - t'), then defines the nth order RP A. 

Note that this approximation expresses the Greeen's function 0 (n) «Sf1"', SfnSg +; 

Sg -»(E) in terms of all the lower order Green's functions. 

This prescription is illustrated below for the case of the first and the second 
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(xy) c= <xy) - <x)<y), 

(xyz) c = <xyz) - <xy)<z) - <xz)<y) - <yz)<x) + 2<x)<y)<z), (4· 2) 

therefore the first and the 2nd RPA's respectively are as given in Eq. (3 ·Ic) 

and the following: 

--+ 
2nd RPA, 
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\ 

0(2) [O"«S}tSg +; Sg -»(E) + 0"«S}2Sg +; Sg -»(E) + L (/1/2) «Sg +; Sg -»(E) 

- 0"2«Sg +; Sg -»(E)]' (4·3) 

Note that according to the statement defining L1 ( ... ) in § 2, the projection operator 

L1 (II, 12, g)' is given by, the following relation: 

0(2) =1+2(ofl>f20h,g) - [OlJ.t2+0h,g+Of2,g] =1-L1(/1,/2, g). (4·4) 

Having defined the 2nd-RPA, it is now necessary to introduce it as an ap

proximation in the equations of motion. For the single-spin Green's function, 

this entails using Eq. (2·9) with n = 2 which we re-write in the following more 

convenient form: 

x «S}lS}2Sg+; Sg-»(E), 

where we note the· fact that 

1 = (1-° fIh) + 0 fd2 , 

and the kinematic condition (2. 2a). As 

l(g 11) l(g 12) (1- 0fd2) =l(g 11) l(g 12) (1- OfIf~) 0 (2), 

(4·5a) 

(4·5b) 

(4·5c) 

therefore the last term on the right hand of Eq. (4· 5a) can be decoupled as 

noted in Eq. (4·3). Proceeding in this manner and eliminating the terms con

taining~f l(g I) «S/Sg +; Sg -»(E) by using the identity 

[E-,llHJ«Sg+; Sg-»(E)- (~). =~ l(gl) «S/S(/; Sg-»(E), (4·5d) 
. n f 

(compare Eq. (2·9) for n = 1): we readily find: 

II S +. S -\\ = (~) [A+ 0" (E-E(O))~O"x] 
\\ g , g II (E) n [E - E ( + ) ] [E - E ( - ) ] ' 

where for convenience we have introduced the notation 

E(O) =/lH+O"J(O) (z:~), 

x= [O"J(O)/z] , 

E(±) =E(O) ±(j), 

(j)2 _ x 2 = ~ ~ I(/lg) l(j;g) L (/1/2) =?ff , 
fJ. 12 

A= L:, l(! g)L(lg), 

(4·5e) 

(4·6a) 

(4·6b) 

(4· 6c) 

(4· 6d) 

(4·6e) 
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and where we have used' the following reduction resulting fropl the nearest 

neighbor approximation: 

~ [I(g f) ]n= z[J(O) IzT~. (4·7) 
f 

The use of Eq. (2·6) now leads us to the expression relating the system 

magnetization to the function ([j defined above, i.e. 

(4·8a) 

where 

(4· 8b) 

Equations (4·8) constitute the 2nd-RP A result for the system magnetization. 

Analogously to the first RP A result, it is a transcendental relation but unlike 

the 1st RPA it contains an additional, unknown, parameter ([j. The com.putation 

of ([jin effect requires the knowledge of the correlation function L (flf2). 

We might mention here that in the extreme limit of z~oo, the above result 

reduces to the previous one because then both x and (/) are self-consistently zero. 

Thus in a certain sense the 2nd RP A result, (4·8), includes some of the addi

tional (11 z) effects which are ignored in the 1st RP A. We shall return to the 

di~cussion of this point in a later section. 

§ 5. The correlation 

To determine the correlation L (f g) we need to study the equation of motion 

of the Green's function «S/Sg +; Sg -»(E). [See the appendix for additional remarks.] 

From Eq. (2 ·11) we get: 

[E -I1H] «S;1Sg +; Sg -»(E) = [E -I1H] «S;1Sg +; Sg -»(E) [1- Og,h + Og,f1] 

= [(E-I1H) (t)Og,h+ (:l-)I(gjl)] «S/; Sg-»(E) 

+ (l-o g,fJ (~) [L(flg) +(j2] 

(5 ·1) 

The last term on the right-hand side of Eq. (5 ·1) contains the Green's function 

«SJ2SJlS~+; Sg -» with the stipulation that none of the, spatial positions labelled 

by g, fl and 12 coincide. As such we can directly introduce the 2nd-RPA of 

Eq. (4·3) into Eq. (5·1) just as it was done in the preceding secti9n .. After 

some algebra, we arrive at the result 
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where 

R. A. Tahir-Kheli 

+ ug.!! (! - (J) «Sg +; Sg-»(E) [E - E (3) J 

+ [A (gjl) -Og,hAJ«S/; Sq-»(E) 

- Z(J] (g 11) [«S}lSg +; Sg-»(E) - (J«Sg +; Sg -»(E)], 

E(3) =E(O) +X=!J.H+ (JJ(O) , 

A(g 11) = ~ l(g 12)L(/I!2); A (gg) = A. 
12 

(5· Za) 

(5· Zb) 

(5· Zc) 

The above equation can now be combined with Eq. (4·5e) and solved. 

This procedure, however, would seem to result in an integral representation for 

the Green's function, because of the presence of the J(};.g) terms on the right

hand side of Eq. (5· Za). The kernel of this integral equation, given in the 

inverse-lattice summation representation, is, however) trivially separable. This 

separability is a direct consequence of the translational invariance of the system. 

A much more transparent procedure for solving Eq. (5· Za) is to stay in 

the real lattice representation and treat 1(11 g) as an operator with the eigenvalues 

+ J = J(O) /z, whenever g and J;. are nearest neighbors, and zero otherwise. 

In this manner we are led to the 2nd-RPA solution for the longitudinal 

Green's function, i.e. 

IISZ S +. S -\\ , = (JIIS +. S -\\ + (~)[L(9~) -Og,!1L (gg)] 
\\ fl g , g II (E) \\ g , g liCE) \TC E-E(3) 

+ [0 (~-6) + A(g 11) -Og,hA]IIS +. S -\\ 
g,!l 2 E-E(3) \\ g , g liCE) 

'26 [L(9J;.)J(9Il) A( +)I( +)IIS + S -\\ ] 
- [E - E (3) J [E - E (4) ] TC + g JIg J1 \\ g ; g II (El , 

(5· 3) 

where 

E(4) =E(O) -x. (5·4) 

The correlation function is now computed in the usual manner and after 

some straightforward algebra we find 

LegI) = [(~- (J2) - URJo + U" [exp[iK(9-I)]] 
. 4 g,f N~ I-VJ(K) , 

(5· 5a) 

where the inverse lattice sum is over the first Brillouin zone and where 

+ [ __ (J~-J [(fl! + X) n (+ ) _ ((f) -x) n (_ ) _ 4aJxn (32.J 
(fjr (3) (jj - x (fj + x ?jT 
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_ {( 20
2 

)?]I[n( +) +~(-=l_2@n(3)J + (20A ) [n( +) -n( - )J} 
@J(O) @-x @+x ?]I @J(O) 

X {(A) [n (+) +~L~_}@~~] 
@ @-x @+x ?]I 

+ (~)[(~~-~)n(+) - (-~~~)n(-) - 4@X;(3)]}-1, (5.5b) 

V= (~_) [2@n(3) -~J +L_n( -=l] 
@r(3) ?]I @-x @+x 

+ [-~-J [ 4@xn (3) + (~@-= . .A7_) n (- ) - (_p_+. x) n ( + ) J, 
@r (3) ?]I @ + x @ - x . 

(5·5c) 

R= ~ ~ [1- VJ(K)]-t, (5.5d) 

n(a) = [exp(pE(a)) -lJ-\ a= +, -,3. ' (5·5e) 

Here rea) is defined as in Eq. (4·8b) with a gIven by Eq. (5·5e) and ?]I is 

as given in Eq. (4· 6d) . 

In deriving Eqs. (5·5) we have made use of the well-known relation10
) for 

spatially isotropic nearest-neighbor interactions (e.g. in lattices of cubic symmetry): 

~ ~ J(K-J) f(A) = [J(K)_]~ ~ J(A)f (A), (5·6) 
N ,l J(O) N ,l 

which follows whenever f(A) = f( - J) . 
~ 

We note that since U and V are functions of 0, A and @, and since A and 

@ are themselves determined in terms of U and V through the relations 

AV=U[R-IJ, (5·7) 

(/)2 = x
2 + ( 0-) [R - 1] + [-} - (J2 - U R] Jl0

) , (5·8) 

thus the set of Eqs. (4·8), (5·5), (5·7) and (5·8) are a coupled transcendental 

set. Their self-consistent solution determines both the magnetization (J and the 

correIa tion L (g f) . 

§ 6. Solution 

The set of Eqs. (4·8), (5·5), (5·7) and (5·8) cannot be solved analytically 

at general temperature and as such the solution will have to be computed numer

ically. (Note that this is also true of the much simpler result of the first RPA, 

i.e. Eq. (3·4).) However, in certain ranges of temperature rapidly convergent 

iteration procedures can be used which yield the result as a self-consistent 

solution in terms of suitable series expansions. 

Let us first investigate the situation at very high temperatures. Here the 
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1322 R. A. Tahir-Kheli 

magnetization is much smaller than unity (as long as /lH~kT). In the limit 

of vanishing applied field, the system susceptibility is readily found from Eq. 

(5·5) using the well-known thermodynamic relation: 

(6 ·la) 

where L (K) IS the mverse lattice Fourier transform of the correlation, i.e. 

L(g f) =~ ~ L(K) exp [iK(g- f)]. 
NK 

(6 ·lb) 

Note that the equivalence of the susceptibility X defined by Eq. (6 ·la) and 

the relation, 

X = Cd~i-I)' (6 ·lc) , 

is in the nature of a thermodynamic Ward identity. The satisfaction of such 

identities in approximate statistical mechanical treatments is by no means auto

matic. Indeed, the high density expansion treatments of references 4) and 5) 

suffer from the drawback that such Ward identities are exceedingly difficult to 

conserve.11
) 

Now, in the limit of high temperatures and vanishing field we have 

n(a) = [eaP'@-l]-l-O(S/lH); a= +, 

Therefore from Eq. (4·8) we get 

Similarly Eqs. (5· 5b) and (5· 5c) give 

U [t - (A2j@2)], 
pH=O; T"2Te 

V (Aj@2). 
pH=O;T"2Te 

Combining Eqs. (6·3) with the Fourier transform of Eq. (5. 5a), I.e. 

L(K) = (~_()2) - UR+ [ U ], 
4 I-VJ(K) 

we readily get 

where 

Using Eq. (6·1a) we now rapidly find the susceptibility: 

(6·2) 

(6·3a). 

(6·3b) 

(6·3c) 

(6·4) 

(6·5a) 

(6·5b) 
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Higher Random Phase Approximations for the Ising Model. I 1323 

X= (;3/4) [1+ (;3/4)J(0) + (;3/4)2J2(0) (~:1)] 

+ (;3/4) 4J3 (0) [1- ;z -;6J + 0(;3) \ (6·6) 

where a = 0; for s.c. and b.c.c. lattices and is equal to + 1 for the f.c.c. lattice. 

The above result agrees with the exact one to the order {33 but the {34 term 

IS only approximately correct. 

The specific heat, Cv , can also be similarly computed and we find: 

Once again the above expression agrees with the exact result t'o the order {35 

and the (34 term is again only approximately correct. 

Thus the high temperature behavior of the 2nd RPA represents an improve

ment over that of the 1st RPA. In fact, within this temperature range, the 2nd 

RPA n~sults seem to be equivalent to the diagrammatic, high density expansion12
) 

results computed to the order (l/z). 

Let us look next at the low-temperature region. Once again rapidly conver

gent series expansion, in powers of exp ( - (3J(O) /2), is feasible." We emphasize 

that both this expansion and the preceding high-temperature expansion are achieved 

self-c()nsistently through the coupled relations for the system magnetization and 

the longitudinal correlation. For T<Tc (where Tc is the RPA Curie tempera

ture) and pH = 0 we find 

and 

V={3 exp[ -{3J(O)/2] (1+ E), 

U = exp [ - {3J (0) /2J (1 + E), 

aJ = x+ exp [ - (3J(O) /2J J(O) (1 + E), 

A={3exp[ -{3J(O)J (J2(0)/Z) (l+E) 

- 1 [;3J(O)] [ (z-l)] cJ-'2-- exp --2- -zexp -{3J(O)----;;~ (l+E), 

where E is exponentially vanishing as (3 ---) 00. 

(6· Sa) 

(6·8b) 

(6·8c) 

(6·8d) 

(6· 9) 

The expression (6·9) agrees with the exact result of the low temperature 

series expansions to the order given. 3
) Once again this result is an improvement 

over the 1st RP A result given in § 3. 

Finally, let us consider the region in the immediate vicinity of the phase 

transItIOn. Here, in the absence of the field H, the system magnetization vanishes 

and simultaneously the spatial range of the correlation L (g f) becomes macro

scopically long. In other words, the Fourier transform L (K) becomes large as 

K---)O. From Eq. (5· 5a) it is obvious that when this happens: 
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1324 R. A. Tahir-Kheli 

V-j-V(e) = [J(O) ] -1 .. (6 ·10) 

Now proceeding to th~ limit j1H = 0, T,= Tc and 0 =;= 0 III Eqs. (6·2) and (6·3) 

(or directly using Eqs~ (4,8) and (5·5)) we get 

Vee) =A(e)J(jP(e) , (6·11a) 

U(e) = t - A2 (e)/<D2 (e), (6 ·llb) 

2 [A (e) J<D (e) ] = tanh (f!!0) .... ). (6 -llc) 
2kBT c 

Combining Eqs. (6 ·10) and (6 ·11), the Curie temperature Tc IS found to obey 

the following relation: 

tanh[(·'.[iot) (F(-=l)~)1/2J = (F_~=l2_-1)1/2, (6.12) 
4kBTc F( -1) F( -1) 

where F( ~ 1) is the well-known Watson\3) sum; I.e. F( --':'1) = 1.51638 for s.c.; = 

1.39320 for b:c.c. and = 1.34466 for f.c.c. ,The solution of Eq. (6 ·12) leads to 

the result: 

(6 ·13) 

Table. 

The Curie Temperature is given as kBTc= (J (0) /4) y. The system energy at the critical point, i.e. 

/J.H=O, T=Tc, is <!JC>=E(c). 

L' I (y) I 
(y) (y) (y) 

! 
- (E(c)S/NJ (0)) I (-SE(c)/NJ(O)) 

__ ~ttIC~ ... 2~~J:>~ j Pade ref. 4) ref. 5) 
I 

2nd RPA Pade 
- - --- --1---------- --

s.c. 0.875 0.752 ' 0.660 0.656 0.360 

b.c.c. 0.898 0.794 0.71S 0.712 0.282 
I 

f.c.c. 0.908 0.816 0.740 0.739 0.256 0.245 

where Y IS less than unity and is listed in the table. For comparison, the results 

of the Pade approximant, high temperature series extrapolation scheme/4
) and 

those following from references 4) and 5), are also included. The 2nd RP A 

result for the Curie temperature is seen to be about 10% higher than the Pade 

estimate, while the estimates' of xeferences 4) and 5) are about 10% too low. 

'The system energy, <!Jl), at the transition point can now also be readily 

evaluated and we get . 

(6 ·14) 

, These results are included 111 the table and are compared with the available 

Pade estimates. 
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Higher Random Phase Approximations for the Ising Model. I 1325 

Perhaps it is worth emphasizing that the Curie temperature, T e,' given in 

Eq. (6 ·13) has been computed on the assumption that the range of the correla

tion, in the absence of an applied field, becomes infinite as T approaches the 

transition temperature from above. Thermodynamically this statement is identical 

to that relating to the divergence of zero field susceptibility at the Curie point. 

In any given approximation, however, the exact equivalence of the two statements 

is not necessarily true. For instance, in the words of Englert/I) there is no 

"guarantee that the Curie point obtained by the divergence in the long-range 

order (or in the specific heat) coincides with the infinity of the susceptibility." 

§ 7. Conclusions 

The 2nd RPA has been shown to represent a considerable improvement over 

the 1st RPA-i.e. the molecular field approximation. Both at low temperatures 

as well as at high temperatures its behavior agrees more accurately with the 

exact low and high temperature series expansions. 

In the vicinity of the phase transition the situation is also an improvement 

over the molecular field results. Unlike in the first RPA,- the longitudinal cor

relation is shown to be non-zero even when the spins are spatially separated. 

The feature which in our opinion particularly recommends the use of the 

general random phase approximation scheme presented in this paper, is its sim

plicity coupled with its relatively reasonable validity in the. entire range of 

temperatures. 

Finally it may be mentioned that the RPA scheme presented here is readily 

applicable to the study of other classical, many-bodysystems.
16

) Some of these 

applications, as well as the study of the third order RPA, will be the subject 

of our future investigations. 

Acknowle(!.gements 
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discussions. 

Appendix 

The preservation of the temporal symmetry, which is essential in construct

mg a conserving approximation,8),15) is achieved trivially in the Ising model 

Green's functions. To prove this we show below that the equations of motion 

relevant to the 2nd RPA, are manifestly time-symmetricaL- For instance, we 

should either use the equation 

(~) (~~ ) «Sg+ (t); Sg-(t
l»)= ~~, [o(t-tl)J (2cr) 

+ ~ ~ I(fIu)I(/2U) «SflSg + (t); Sf2Sg - (tl») . 
11 f2' 

(A·l) 
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1326 R. A. Tahir-Kheli 

Or, alternatively a suitable combination17
) of the equations of motion (i (dj dt) ) 2 

«Sr/ (t); Sa - (t l )>> and (i(djdtl)) 2«Sa + (t); Sa- (t')>> is needed to maintain the 

temporal symmetry. In view, however, of the fact that 

S/ (t) = S/ (t') = S/ (0), (A·2) 

all these equations of motion are identical. Therefore, the operation of the 2nd 

RPA on either of these time-symmetrized equations of motion leads to identical 

results to those given in the text. 

An obvious extension of the above argument demonstrates the time-symmetry 

of the general order RPA described in the text whenever it refers to a classical 

many-body system such as the Ising model. 
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