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1 Introduction

Wilson loops are gauge-invariant non-local operators that can be defined in any gauge

theory. These operators provide a window into the dynamics of the theory and serve as

important order parameters. For example, in confining theories their expectation values

display an area law behavior implying a linear quark-antiquark potential. In non-confining

theories, such asN = 4 supersymmetric Yang-Mills (SYM), the expectation value of Wilson

loops has been shown to correspond to a Coulomb interaction. Even in this simpler case

much can be learned from the nontrivial dependence on the coupling constant.

In the context of the AdS/CFT correspondence, Wilson loops play a particularly im-

portant role as they are described, at leading order, by classical configurations of strings

and branes [1, 2]. These classical configurations represent a controlled departure from the

strict supergravity limit into stringy aspects of the correspondence. Indeed, the AdS/CFT

dictionary has been enlarged to include D3 and D5 branes corresponding to Wilson loops

in the symmetric and antisymmetric representations of SU(N) for N = 4 SYM [3–7].

The AdS/CFT correspondence conjectures a mathematical equivalence between string

theories and gauge theories. One of the prototypical pairs is string theory on AdS4×CP3,

with Ramond-Ramond fluxes and an N = 6 Chern-Simons theory coupled to matter known

as ABJM [8]. Using supersymmetric localization techniques, it was shown in [9] that

the computation of the expectation values of some supersymmetric observables in ABJM

theory can be reduced to a matrix integral. One of the first observables tackled with

this approach was precisely a 1/6 supersymmetric Wilson loop. More general results,

including exact expressions in the rank of the gauge group, N , and the Chern-Simons

level, k, for other supersymmetric Wilson loops were obtained using advanced matrix

model techniques [10, 11].
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Given their prominent role in the case of the correspondence between strings on AdS5×
S5 andN = 4 SYM, it is natural to turn our attention to Wilson loops in higher dimensional

representations for the case of the correspondence between string theory on AdS4 × CP3

and ABJM theory. For the most part, the vacuum expectation values of Wilson loops in

high-rank representations have not been systematically studied, although some results were

reported in, for example, [12, 13, 34]. In this manuscript we use standard matrix model

techniques to compute the leading order expression for the Wilson loops in the m-symmetric

and m-antisymmetric representations in the large-N limit with f ≡ m/N fixed. We find

precise agreement with the holographic results. Namely, our matrix model results match

the classical actions of the corresponding D6 and D2 branes in AdS4 × CP3 as computed

in [14]. We also go beyond the saddle point approximation and compute some sub-leading

corrections, setting the stage for potential precision tests on the holographic side.

The rest of the paper is organized as follows. In section 2 we review the 1/6 super-

symmetric Wilson loop in ABJM theory and describe the general computational setup.

In section 3 we derive the result for the antisymmetric representation. We present the

details of the symmetric representation in section 4. We conclude in section 5. We re-

serve appendix A for a few intuition-building numerical vignettes related to the various

approximations used in the main text.

2 Wilson loops in ABJM theory

The ABJM theory is a three-dimensional Chern-Simons-matter theory with U(N)×U(N)

gauge group [8]. The gauge fields are governed by Chern-Simons actions with opposite

integer levels for the two gauge groups, k and −k. The matter sector contains four com-

plex scalar fields CI , (I = 1, 2, 3, 4) in the bifundamental representation (N, N̄) and the

corresponding complex conjugate in the (N̄,N) representation; the theory also contains

fermionic superpartners (see [8] for details).

To build 1/6 supersymmetric Wilson loops, one considers only one of the gauge fields

of the whole U(N) × U(N) gauge group, denoted by Aµ. To preserve supersymmetry

we need to include a contribution from the matter sector. The main intuition comes

from the construction of supersymmetric Wilson loops in N = 4 SYM. However, in the

absence of adjoint fields, one considers the appropriate combination of bi-fundamentals,

CI , namely [14–16]:

WR =
1

dim[R]
TrR P

∫ (
iAµẋ

µ +
2π

k
|ẋ|M I

JCIC̄
J

)
ds, (2.1)

where R denotes the representation. It was shown in [14–16] that the above operator

preserves 1/6 of the 24 supercharges when the loop is a straight line or a circle and the

matrix takes the form M I
J = diag(1, 1,−1,−1).

A remarkable result of [9] was to show that the computation of the vacuum expectation

values of these Wilson loops reduces to a matrix model. Namely, for supersymmetric
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observables, it suffices to compute their expectation using the following partition function:

Z(N, k) =
1

(N !)2

∫ N∏
i=1

dµi
2π

dνi
2π

∏
i<j

(
2 sinh

µi−µj
2

)2 (
2 sinh

νi−νj
2

)2
∏
i,j

(
2 cosh

µi−νj
2

)2 exp

[
ik

4π

∑
i

(µ2i − ν2i )

]
.

(2.2)

The Wilson loop in the symmetric, Sm, and antisymmetric, Am, representations are

given by the following expression in terms of the eigenvalues µi (for the other gauge group

the eigenvalues νi would be involved):

WSm
1/6 =

1

dim[Sm]

∑
1≤i1≤···≤im≤N

exp[µi1 + · · ·+ µim ], (2.3)

WAm
1/6 =

1

dim[Am]

∑
1≤i1<···<im≤N

exp[µi1 + · · ·+ µim ], (2.4)

where dim[Sm] and dim[Am] are the dimensions of the respective representations. Note

that the main difference is in the ordering of the eigenvalues. A convenient way of accessing

these operators, as noted in [7], is to use the generating functions for the symmetric and

antisymmetric representations, respectively

FS(t) ≡
N∏
i=1

1

1− teµi , and FA(t) ≡
N∏
i=1

(t+ eµi). (2.5)

The expectation values of the Wilson loops are then the coefficients of the appropriate

powers of t. One efficient way of extracting the vacuum expectation value of Wilson loops

from the generating functions is by performing contour integrals

WSm
1/6 =

1

dim[Sm]

1

2πi

∮
C0

FS(t)

tm+1
dt; WAm

1/6 =
1

dim[Am]

1

2πi

∮
C∞

FA(t)

tN−m+1
dt, (2.6)

where C0 is around zero and C∞ is around infinity.

We will focus on the planar limit in the large-N expansion. In preparation for the

limit and with a view toward using the steepest descent method, we write 〈FS,A(t)〉 as:

〈FS,A(t)〉 =
1

Z

∫ ∏
i

dµi
2π

dνi
2π

exp(−SA,S), (2.7)

with

SS,A = − ik
4π

∑
i

(µ2i − ν2i )−
∑
i<j

2 ln

[(
2 sinh

µi − µj
2

)(
2 sinh

νi − νj
2

)]
(2.8)

+
∑
i,j

2 ln

[
2 cosh

µi − νj
2

]
−
∑
i

{
− ln(1− teµi)
ln(t+ eµi)

. (2.9)

The top case in the final sum is for symmetric and the bottom for antisymmetric. The

steepest descent method corresponds to evaluating the above integral at the saddle point,
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given by the equations ∂SS,A/∂µi = ∂SS,A/∂νi = 0. Although we have inserted the gen-

erating function FS,A into the integral, we expect that the saddle point solution will be

unchanged from that of the partition function, as the dominant terms have O(N2) depen-

dence, while the added term, coming from the Wilson loop, has only O(N) dependence.

More rigorously, because the operators FS,A have no νj dependence, only the µi equations

are changed, and become

0 =
∂SS,A
∂µi

= − ik
2π
µi −

∑
j 6=i

coth
µi − µj

2
+
∑
j

tanh
µi − νj

2
−


teµi

1− teµi
eµi

t+ eµi

. (2.10)

In principle the parameter t is a formal expansion parameter. However, note that, for small

enough t in the symmetric case and for large enough t in the antisymmetric case, the added

term is small. Since we are only interested in contours around zero and infinity for the

symmetric and antisymmetric case respectively, it is enough for the eigenvalue solution to

remain the same for small t and large t, respectively. Once we make this approximation,

we do not need t to be small or large as we can treat it as a normal contour integral. Note

that at this point we have not yet made any assumptions about the Chern-Simons level,

k, or the ’t Hooft coupling, λ = N/k. Thus the saddle point expressions are applicable to

both the Type IIA limit (N, k →∞ and λ = N/k fixed) and the M-theory limit (N →∞
and k fixed).

2.1 Eigenvalue distribution

One key attribute of large-N methods in matrix models is the assumption that in the limit

of large N , one can describe the discrete set of eigenvalues by a continuous distribution.

It is, indeed, this distribution of eigenvalues that plays the central role. In this subsection

we discuss in detail the approximation we use for the eigenvalue distribution.

The eigenvalue distribution for the ABJM matrix model in the planar limit was worked

out in [10, 17–19], and it is given by

ρ(µ) =
1

πt1
tan−1

[√
α− 2 coshµ

β + 2 coshµ

]
µ ∈ [−µ∗, µ∗], (2.11)

where

µ∗ = ln

[
1

2

(
α+

√
α2 − 4

)]
. (2.12)

While this distribution was derived in the corresponding lens space matrix model, it can

be analytically continued to the ABJM slice by taking

t1 = 2πiλ, α = 2 + iκ, β = 2− iκ, (2.13)

and

λ =
κ

8π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ

2

16

)
, (2.14)
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where 3F2 is a generalized hypergeometric function. (See appendix A for additional com-

ments on the analytical continuation and comparison with numerical results.)

Although (2.11) is valid for arbitrary values of λ, we focus on the Type IIA limit with

large λ. In this case, the expression for ρ(µ) simplifies to be approximately constant, which

is the same as in the M-theory limit. In particular, for λ � 1, we may invert (2.14) to

obtain

κ = eπ
√

2λ̂

[
1 +O

(
e−2π
√

2λ̂

)]
� 1, (2.15)

where λ̂ ≡ λ− 1/24. The µ-cut then extends from −µ∗ to µ∗ where

µ∗ = π
√

2λ̂+ i
π

2
+O

(
e−π
√

2λ̂

)
. (2.16)

The eigenvalue density (2.11) can now be expanded for κ� 1, with the result

ρ(µ) ≈ 1

4π2λ
ln
(
eµ + e−µ − eµ∗

)
, (2.17)

up to O(1/κ) corrections, at least for µ not within O(1/κ) of the branch point of the log

in (2.17). Note that ρ(µ) remains normalized up to exponentially small corrections in λ∫ µ∗

−µ∗
ρ(µ)dµ ≈ 2

∫ µ∗

0

1

4π2λ
ln(eµ − eµ∗)dµ =

(µ∗ − iπ/2)2 + π2/12

2π2λ
+O(e−µ∗)

=
λ̂+ 1/24

λ
+O

(
e−π
√

2λ̂

)
. (2.18)

We further note that, for µ along the line connecting −µ∗ to µ∗ (but not within O(1/κ)

of the endpoints), the eµ∗ term dominates, and ρ(µ) may be approximated by the constant

distribution

ρ(µ) ≈ µ∗ − iπ +O(1/ lnκ)

4π2λ
=
π
√

2λ̂− iπ/2 +O
(

1/
√
λ̂
)

4π2λ
. (2.19)

Therefore, at leading order in large λ, in the IIA limit, we recover a constant eigenvalue

density along the line stretching from −µ∗ to µ∗:

ρ(µ) =
1

2µ∗
, µ ∈ [−µ∗, µ∗]. (2.20)

At this order, we do not make a distinction between λ and λ̂, so we have simply µ∗ =

π
√

2λ + iπ/2. This distribution is the same to leading order in λ as the one in the M-

theory limit derived in [20]. We therefore expect our results to be applicable in both the

large-λ IIA limit and the M-theory limit.

2.2 Large N saddle point approximation

In the planar limit, the expectation values of the generating functions (2.7) are simply

〈FA〉 ≈ exp

[
N

∫ µ∗

−µ∗
dµ ρ(µ) ln(t+ eµ)

]
, 〈FS〉 ≈ exp

[
−N

∫ µ∗

−µ∗
dµ ρ(µ) ln(1− teµ)

]
,

(2.21)
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where the eigenvalue density is given by (2.11), or in the large-λ limit by (2.20). For the

antisymmetric integral, we can do a change of variables sending t → 1/t just as in [7], so

we can write succinctly (up to a minus sign in the antisymmetric case)

〈WSm,Am
1/6 〉 =

1

dim[R]

1

2πi

∮
C
dt

1

tm+1
exp

[
∓N

∫ µ∗

−µ∗
dµ ρ(µ) ln(1∓ teµ)

]
≡ ISm,Am

dim[R]
, (2.22)

where the contour, C, is taken around t = 0. Here R is either Sm or Am and the top sign

refers to the symmetric case while the bottom sign refers to the antisymmetric case.

We will focus just on evaluating ISm,Am now. Similar to [7], we switch from the complex

plane to the complex cylinder by making the change of variables

t→ eπ
√
2λz. (2.23)

The cylinder has periodicity z = z + 2i/
√

2λ. Moreover, since we are interested in the

infinite rank limit of the Wilson loops, we introduce the variable

f ≡ m

N
, (2.24)

where m is the rank of the representation, and we hold f fixed in the large-N limit.

Because the eigenvalue density is uniform, the integral in the exponent can be explicitly

carried out in terms of dilogarithms yielding

ISm,Am =

√
2λ

2i

∮
C
dz exp

∓N
Li2

(
∓ieπ

√
2λ(z−1)

)
− Li2

(
±ieπ

√
2λ(z+1)

)
2µ∗

± fπ
√

2λz

 .
(2.25)

The principal branch of the dilogarithm, with its branch cut along [1,∞), implies that the

exponent has two branch cuts along z ± i
2
√
2λ
∈ [−1,∞) and z ∓ i

2
√
2λ
∈ [1,∞), where the

top sign is for the symmetric case as always (see figure 1 and figure 2). The contour, C,
lies to the left of the branch cuts. We will now treat the two cases separately.

3 Antisymmetric representation

For the antisymmetric case, we take the bottom sign in (2.25), and approximate the integral

by steepest descent. We find a saddle point at ẑ where

eπ
√
2λẑ =

sinh(µ∗f)

sinh(µ∗(1− f))
. (3.1)

For large λ, and with f ∈ (0, 1), this expression becomes

ẑ ≈ µ∗

π
√

2λ
(2f − 1) =

(
1 +

i

2
√

2λ

)
(2f − 1). (3.2)

The saddle point is never near any of the branch points of the dilogarithms, so we may

directly evaluate the Gaussian integral at the saddle.

– 6 –
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C
−1

− i
2
√
2λ

i
2
√
2λ

1

y

x

Figure 1. We plot the branch cuts of the integrand of (2.25) in terms of z = x + iy for the

antisymmetric case. The contour, C, is shown to the left.

Expanding around the saddle point, we find that the second derivative of the integrand

evaluated at the saddle point is

π2λ

µ∗

cosh(π
√

2λ)

sinh(π
√

2λ)− icosh(π
√

2λẑ)
=

π2λ

µ∗

sinh(π
√

2λ) + icosh((π
√

2λ+ iπ/2)(2f − 1))

cosh(π
√

2λ)

λ→∞−−−→ π2λ

µ∗
. (3.3)

Inserting the saddle point value ẑ into (2.25) and evaluating the Gaussian integral around

the saddle then gives for the antisymmetric Wilson loop

WAm
1/6 =

−i
dim[Am]

√
µ∗
Nπ

exp [Nµ∗f(1− f) +O(N/µ∗)]

∼ exp

[
Nπ
√

2λf(1− f) +
1

4
ln

(
2λ

N2

)
+ · · ·

]
.

(3.4)

This result matches the calculation of the D6-brane in [14] in the type IIA limit to leading

order and has the expected f → 1−f symmetry. We have also provided the first correction

in the 1/N expansion to the saddle point result; it is the logarithmic term. Such term

corresponds, in the holographic side, to a one-loop correction to the effective action of the

dual D6 brane; partial results in this direction have recently been reported in [21].

4 Symmetric representation

For the symmetric case, the steepest descent method leads to a saddle point exponentially

close to the branch point at −1− i/2
√

2λ, while the width of the Gaussian decreases slower

than the distance from the branch point. Therefore, the saddle point approximation fails,

and we must turn to another method for evaluating the integral (2.25).

In order to proceed, we find it convenient to deform the branch cut of the dilogarithm

away from its principal branch along [1,∞), and instead to lie along the curve eµ∗r for

– 7 –
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− i
2
√
2λ

−1
x

y

i
2
√
2λ

1C

C2

C1

Figure 2. The original branch cuts of (2.25) with z = x + iy for the symmetric case are shown

in blue, and the branch cut after the manipulation is shown in black. The integral reduces to just

calculating the discontinuity across the branch cut, C1.

r ∈ [0,∞). As shown in figure 2, this allows the branch points of (2.25) to be joined by a

single branch cut that extends from −1− i/2
√

2λ to 1 + i/2
√

2λ. We may now deform the

original contour C into a new contour C′ which is composed of two parts: the discontinuity

across the branch cut, C1, and a contour to the right of the branch cut, C2. Because the

integrand of (2.25) goes to 0 as <[z] → ∞, the integral along C2 vanishes. This allows us

to write ISm in terms of the discontinuity across the cut encircled by C1:

ISm =
µ∗e

Nµ∗f

2πi

∫ 2

0
dw exp

[
−N

(
Li2
(
eµ∗(w−2)

)
− Li2 (eµ∗w)

2µ∗
+ fµ∗w

)](
1− e−Nπiw

)
,

(4.1)

where the dilogarithms are taken on their principal branches.

In order to approximate the integral (4.1), we lift the factor (1 − e−Niπw) into the

exponent and look for stationary points. The resulting saddle point equation is

1

2

[
ln(1− eµ∗w)− ln(1− eµ∗(w−2))

]
+ fµ∗ +

πi

1− eNπiw = 0, (4.2)

which is transcendental. Numerically, we find a saddle point for µ∗w ∼ 0, so this leads

us to assume |Nw| � 1, which implies |µ∗w| � 1 as well in the large-N limit. The first

condition allows us to expand the final term in (4.2), while the second condition allows us

to expand the logs. Dropping terms that are exponentially small and expanding for small

w then gives
1

2
ln(−µ∗w) +

iπ

2
+ fµ∗ −

µ∗/N

µ∗w
= 0. (4.3)

While this remains transcendental, it has the formal solution

ŵ =
2/N

W
(
2µ∗
N e2µ∗f

) , (4.4)

– 8 –



J
H
E
P
1
1
(
2
0
1
6
)
1
2
1

where the Lambert-W function W (z) is the inverse of f(z) = zez. Unlike for the antisym-

metric case, where the saddle point expression (3.1) depends only on µ∗ and f , here there

is also dependence on N . (This arises because of the last factor in (4.1) that encodes the

discontinuity across the cut.)

In the IIA limit, where λ and hence µ∗ is held fixed, we may expand (4.4) in the

large-N limit to obtain

ŵ =
1

µ∗
e−2µ∗f +O(1/N), (IIA limit), (4.5)

where we have taken the principal branch of W (z). While this satisfies |µ∗ŵ| � 1, the

assumption that |Nŵ| � 1 breaks down. In this case, we would have to return to the

full saddle point expression (4.2) in order to obtain ŵ. Instead, we turn to the M-theory

limit, where µ̂ ∼ O(
√
N), so that the argument of the Lambert-W function becomes

exponentially large when N →∞. In this case, we find

ŵ =
1

Nµ∗f

(
1 +

ln(Nf)− 2πi

2µ∗f
+ · · ·

)
, (M-theory limit). (4.6)

This is a self-consistent solution to the saddle point equation, as it satisfies both |Nŵ| � 1

and |µ∗ŵ| � 1. We thus focus on the M-theory limit.

At this stage, we would ordinarily proceed with a saddle point approximation to the

integral (4.1). However, this problem has a moving maximum, ŵ ∼ 1/N , which arises from

the factor (1 − e−Nπiw) in (4.1). Since the integral is dominated by the w → 0 limit, we

instead expand around w = 0 using the relation

Li2(z) = −Li2(1− z) +
π2

6
− ln(1− z) ln z. (4.7)

The result is

ISm ≈ µ∗N

2
e
Nµ∗f+

Nπ2

12µ∗

∫ ∞
0

w dw exp

[
−Nw

2
(ln (−µ∗w) + 2µ∗f − 1)

]
, (4.8)

where we have discarded exponentially small terms in λ. We have also extended the upper

limit of the integral to infinity, which only incurs an exponentially small error. To proceed,

we recall from (4.6) that the integrand is peaked at ŵ ≈ 1/Nµ∗f in the complex plane.

We thus make the substitution w = z/Nµ∗f , which results in the expression

ISm ≈ 1

2Nµ∗f2
e
Nµ∗f+

Nπ2

12µ∗

∫ ∞
0

z dz exp

(
−αz − z ln z

2µ∗f

)
, (4.9)

where

α = 1− ln(Nf) + iπ + 1

2µ∗f
. (4.10)

Note that we have deformed the contour in the complex plane in order to pass through the

saddle point that lies at a complex value of ŵ.
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Because |2µ∗f | � 1 as N → ∞, the z ln z term in the exponent of (4.9) is slowly

varying. We therefore Taylor expand that part of the exponent to get:

ISm ≈ 1

2Nµ∗f2
e
Nµ∗f+

Nπ2

12µ∗

∫ ∞
0

ze−αz dz

( ∞∑
n=0

1

n!

(
−z ln z

2µ∗f

)n)
. (4.11)

Integrating one term of the sum at a time leads to an asymptotic expansion in µ∗ ∼
√
N .

Evaluating the first few terms gives

ISm ≈ 1

2Nµ∗f2
e
Nµ∗f+

Nπ2

12µ∗

[
1

α2
− 3− 2γ − 2 lnα

2µ∗fα3
+ · · ·

]
, (4.12)

where γ ≈ 0.577 is the Euler-Mascheroni constant. As N →∞, we see that the expression

in the square brackets on the right-hand side of (4.12) approaches 1 (since α → 1 in the

limit). As a result, the expectation value of the Wilson loop in the symmetric representation

takes the form

WSm
1/6 =

1

dim[Sm]

1

2Nµ∗f2
exp

[
Nµ∗f +

Nπ2

12µ∗
+ o(1)

]
∼ exp

[
Nπ
√

2λf − ln(2Nπ
√

2λf2) + · · ·
]
,

(4.13)

where in the second line we have kept only the leading terms in the large-λ expansion.

At this point, it is worth recalling that the above expression was derived in the M-

theory limit. Working in the IIA limit requires a different treatment, as the expression

in (4.8) was expanded assuming |Nŵ| � 1, which is violated in this limit. Nevertheless,

the leading behavior WSm
1/6 ∼ exp(Nπ

√
2λf) remains valid. Furthermore, this matches

precisely the dual holographic calculation obtained as the classical action of a D2-brane

embedded in AdS4×CP3 [14]. To make the comparison with the holographic computations

precise one needs to set m = k/2, where k is the Chern-Simons level. As discussed in the

old literature of Chern-Simons theory, the role of ’t Hooft operators affects the naive

interpretation of the symmetric representation allowing values of m only modulo k. In

the context of ABJM this effect remains and has been discussed, for example, in [13].

Beyond the successful comparison with the leading result, it is worth noting that our

answer contains, at subleading order, a logarithmic term which would correspond to a

one-loop computation on the holographic side. Some progress in the computation of the

one-loop effective action of the dual D2-brane has recently been reported in [21].

5 Conclusions

In this manuscript we have computed the vacuum expectation value for 1/6 supersymmetric

Wilson loops in the m-antisymmetric and the m-symmetric representations. One important

implication of our computation is that it matches the results obtained using the AdS/CFT

correspondence. In particular, at leading order our matrix model computation equals the

actions of the dual D6 and D2 brane configurations for the antisymmetric and symmetric

– 10 –
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representations, respectively, presented in [14]. We have further computed sub-leading

corrections which serve as a prediction for the holographic side.

There has been a concerted, decade-long, effort toward matching the holographic one-

loop corrections with subleading terms in the field theory side [22–26]. More recently, in

an attempt to tame some of the intrinsic ambiguities on the holographic side, the ratio

of 1/4 and 1/2 BPS Wilson loops has been compared to the field theory ratio [27, 28],

yielding some improvement in the comparison and pointing to interesting aspects of string

perturbation theory. There is also an ongoing program of extending one-loop corrections

to holographic configurations dual to Wilson loops in higher rank representations of the

SU(N) gauge group in N = 4 SYM [29–32]. Among the open problems that our work

stimulates, a logical continuation will include comparing our results with the one-loop

effective actions of the dual D2 and D6 configurations. Some partial results toward the

one-loop effective action of the corresponding dual D6 and D2 branes have recently been

reported in [21]. The work presented in this manuscript can be viewed as an important step

into extending similar high precision comparisons to the context of the AdS4×CP3/ABJM

correspondence.

Another outstanding problem to which we hope to return pertains to the various order

of limits presented here. One lesson that can be drawn from [32] is that in attempting to

match with the holographic results it is important to understand clearly various orders of

limits. Some progress in this direction has recently been reported in the context of the

N = 4 SYM Gaussian matrix model [33]. In this manuscript we have largely restricted

ourselves to the M-theory limit and have verified that its limit of applicability goes beyond

what is reasonable to expect in the sense that we are able to match, at leading order,

holographic results for the D6 and D2 branes corresponding to the IIA limit. Along the

same lines, it might also be interesting to use advanced matrix model techniques with the

aim of finding exact solutions for any set of (N, k,m).
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A A note on the matrix eigenvalue distribution on the ABJM slice

It is worth emphasizing that the eigenvalue distribution (2.11) was initially derived for

the lens space matrix model in the planar limit. In particular, the eigenvalues µi and νi
are taken to be real, and condense along two cuts in the complex plane. (When working

with the total resolvent, the νi cut is displaced by iπ, although the eigenvalues themselves

remain real.) The analytic continuation to the ABJM slice is then accomplished by taking

the ‘t Hooft parameters to be imaginary

t1 = −t2 = 2πiλ. (A.1)
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The resulting expression for the density ρ(µ) is then

ρ(z) =
−i

2π2λ
tan−1

(√
2 + iκ− 2 cosh z

2− iκ+ 2 cosh z

)
, (A.2)

where

λ =
κ

8π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ2/16

)
. (A.3)

The range of z in (A.2) is taken between −µ∗ and µ∗ where

µ∗ = ln

[
1

2

(
2 + iκ+

√
κ(4i− κ)

)]
. (A.4)

The points −µ∗ and µ∗ are branch points of the ABJM resolvent. However, the location

of the cut is not entirely obvious when continued away from the real axis. Since ρ(z) is

analytic away from the branch points, saddle point integrals, such as (2.21), remain valid

when continued from the lens space matrix model to the ABJM slice. Nevertheless, it is

instructive to examine the eigenvalue distribution in the complex plane.

We may gain insight on the µi and νi distribution in the planar limit of ABJM theory

by numerically solving the saddle point equations arising from the partition function (2.2)

−ik
2π

µi =
∑
j 6=i

coth
µi − µj

2
−
∑
j

tanh
µi − νj

2
,

ik

2π
νi =

∑
j 6=i

coth
νi − νj

2
−
∑
j

tanh
νi − µj

2
. (A.5)

This was investigated in the M-theory limit in [20] by treating the above equations as

effective forces acting on the eigenvalues. Alternatively, it is possible to perform multi-

dimensional root finding directly within modern computer algebra systems (such as using

FindRoot[] in Mathematica).

If we ignore the coupling between the µi and νi, then the equilibrium position of

the eigenvalues is governed by the force balance between a harmonic oscillator potential

(albeit with imaginary spring constant ±k/2πi) and a coth repulsion between eigenvalue

pairs. In the M-theory limit, the repulsion dominates over the harmonic oscillator, and

the eigenvalues are spread out. In this case, the coth in (A.5) can be approximated by

±1 depending on the relative ordering of the eigenvalues. Balancing this against a linear

Hooke’s law force then gives rise to a uniform distribution [20] along the line connecting

−µ∗ to µ∗ where µ∗ = π
√

2λ+ iπ/2 for the µi eigenvalues, and the complex conjugate for

the νi eigenvalues. The comparison with the numerical solution is shown in figure 3.

We are, of course, mostly interested in the IIA limit. In this case, as k is increased,

the harmonic oscillator spring constant gets stronger, and the eigenvalues are pulled closer

towards the origin. As a result, the approximation coth ∼ ±1 is no longer valid, and as

λ → 0 the coth repulsion in (A.5) can be better approximated as coth z ∼ 1/z. Since

this matches the repulsion arising from the Vandermonde determinant in the ordinary

Hermitian matrix model, the eigenvalue distribution more closely resembles the Wigner
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Figure 3. The numerical eigenvalue distribution for N = 500 and k = 1. Left: distribution of µi

and νi in the complex plane. Right: the density ρ̂(x) of the real part of the µi eigenvalues.
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Figure 4. The numerical eigenvalue distribution for N = 500 and λ = 1. Left: distribution of µi

and νi in the complex plane. The dashed line corresponds to the linear approximation µi ∈ [−µ∗, µ∗]
and its complex conjugate for νi where µ∗ is given in (A.4). Right: the density ρ̂(x) of the real part

of the µi eigenvalues. The dashed line corresponds to the real part of ρ̂ given in (A.8).

semi-circle distribution in the small λ limit, at least when suitably translated into the

complex plane. As an example, we show the numerical solution for N = 500 and λ = 1 in

figure 4.

In order to obtain a real density of eigenvalues, note that the eigenvalue density ρ(µ)

in (A.2) is normalized according to ∫ µ∗

−µ∗
ρ(z)dz = 1, (A.6)

where the integral is taken along the cut where the eigenvalues lie. Writing z = x+ iy, we

may convert this to a real integral∫ x∗

−x∗
ρ(x+ iy(x))(1 + iy′(x))dx = 1. (A.7)

The path y(x) describes the cut, and can in principle be solved for by demanding that the

above integrand, which represents the density of the real part of the eigenvalues, be real

along the cut. We have not actually solved for the actual path. However, examination of

– 13 –



J
H
E
P
1
1
(
2
0
1
6
)
1
2
1

-6 -4 -2 0 2 4 6

0.02

0.04

0.06

0.08

-3 -2 -1 0 1 2 3

0.05

0.10

0.15

0.20

Figure 5. The density ρ̂(x) of the real part of the µi eigenvalues for N = 500. The left plot

corresponds to λ = 2 and the right plot corresponds to λ = 1/2. (The λ = 1 plot is shown in

figure 4.) The dashed lines corresponds to the real part of ρ̂ in (A.8).

figure 4 shows that the cut remains essentially a straight line segment joining −µ∗ to µ∗
(for the µi distribution). We may thus take y(x) = (y∗/x∗)x, so that

ρ̂(x) ≡ ρ(x+ iy(x))(1 + iy′(x)) = ζρ(ζx), ζ =
z∗
<[z∗]

= 1 + i
y∗
x∗
. (A.8)

Note that ρ̂ generally has a small imaginary component, indicating that the straight line

cut approximation is not exact. Nevertheless, =[ρ̂] is suppressed in the large λ limit, and

<[ρ̂] agrees well with the numerical results. Additional eigenvalue densities for λ = 2 and

λ = 1/2 are shown in figure 5.
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