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Abstract

This is the first paper in a series on new higher categorical structures called higher
Segal spaces. For every d ≥ 1, we introduce the notion of a d-Segal space which
is a simplicial space satisfying locality conditions related to triangulations of cyclic
polytopes of dimension d. In the case d = 1, we recover Rezk’s theory of Segal spaces.
The present paper focuses on 2-Segal spaces. The starting point of the theory is the
observation that Hall algebras, as previously studied, are only the shadow of a much
richer structure governed by a system of higher coherences captured in the datum of a
2-Segal space. This 2-Segal space is given by Waldhausen’s S-construction, a simplicial
space familiar in algebraic K-theory. Other examples of 2-Segal spaces arise naturally
in classical topics such as Hecke algebras, cyclic bar constructions, configuration spaces
of flags, solutions of the pentagon equation, and mapping class groups.

Contents

Introduction 4

1 Preliminaries 11
1.1 Limits and Kan extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Simplicial objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Homotopy limits of diagrams of spaces. . . . . . . . . . . . . . . . . . . . . . . . 14

2 Topological 1-Segal and 2-Segal spaces 18
2.1 Topological 1-Segal spaces and higher categories . . . . . . . . . . . . . . . . . . 18
2.2 Membrane spaces and generalized Segal maps . . . . . . . . . . . . . . . . . . . . 21
2.3 2-Segal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Proto-exact categories and the Waldhausen S-construction . . . . . . . . . . . . 29
2.5 Unital 2-Segal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 The Hecke-Waldhausen space and relative group cohomology . . . . . . . . . . 35

∗Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven CT 06520 USA, email:
tobias.dyckerhoff@yale.edu, mikhail.kapranov@yale.edu

1

http://arxiv.org/submit/0614448/pdf


3 Discrete 2-Segal spaces 39
3.1 Examples: Graphs, Bruhat-Tits complexes . . . . . . . . . . . . . . . . . . . . . 39
3.2 The twisted cyclic nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 The multivalued category point of view . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 The Hall algebra of a discrete 2-Segal space . . . . . . . . . . . . . . . . . . . . . 51
3.5 The bicategory point of view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 The operadic point of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Set-theoretic solutions of the pentagon equation . . . . . . . . . . . . . . . . . . 66
3.8 Pseudo-holomorphic polygons as a 2-Segal space . . . . . . . . . . . . . . . . . . 70
3.9 Birationally 1- and 2-Segal semi-simplicial schemes . . . . . . . . . . . . . . . . 74

4 Model categories and Bousfield localization 78
4.1 Concepts from model category theory . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Enriched model categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Enriched Bousfield localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Homotopy limits in model categories . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 The 1-Segal and 2-Segal model structures 92
5.1 Yoneda extensions and membrane spaces . . . . . . . . . . . . . . . . . . . . . . 92
5.2 1-Segal and 2-Segal objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 1-Segal and 2-Segal model structures . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 The path space criterion for 2-Segal spaces 102
6.1 Augmented simplicial objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Path space adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 The path space criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 The path space criterion: semi-simplicial case . . . . . . . . . . . . . . . . . . . . 109

7 2-Segal spaces from higher categories 113
7.1 Quasi-categories vs. complete 1-Segal spaces . . . . . . . . . . . . . . . . . . . . 113
7.2 Exact ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 The Waldhausen S-construction of an exact ∞-category . . . . . . . . . . . . . 119
7.4 Application: Derived Waldhausen stacks . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 The cyclic bar construction of an ∞-category . . . . . . . . . . . . . . . . . . . . 130

8 Hall algebras associated to 2-Segal spaces 133
8.1 Theories with transfer and associated Hall algebras . . . . . . . . . . . . . . . . 133
8.2 Groupoids: Classical Hall and Hecke algebras . . . . . . . . . . . . . . . . . . . . 138
8.3 Groupoids: Generalized Hall and Hecke algebras . . . . . . . . . . . . . . . . . . 144
8.4 ∞-groupoids: Derived Hall algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.5 Stacks: Motivic Hall algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

2



9 Hall (∞,2)-categories 160
9.1 Hall monoidal structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2 Segal fibrations and (∞,2)-categories . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.3 The Hall (∞,2)-category of a 2-Segal space . . . . . . . . . . . . . . . . . . . . . 167

10 An (∞,2)-categorical theory of spans 174
10.1 Spans in Kan complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.2 Vertical Spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.3 Horizontal Spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.4 Bispans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

11 2-Segal spaces as monads in bispans 204
11.1 The Higher Hall monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A Bicategories 211

3



Introduction

The theory of Segal spaces, as introduced by C. Rezk [Rez01], has its roots in the classical
work of G. Segal [Seg74] where the notion of a Γ-space is introduced and used to exhibit
various classifying spaces as infinite loop spaces. Rezk’s work analyzes the role of Segal
spaces as a model for the homotopy theory of (∞,1)-categories. The concept of a Segal
space can be motivated as follows. Given a simplicial set X , we have, for each n ≥ 1, a
natural map

(0.1) fn ∶Xn Ð→ X1 ×X0
X1 ×X0

⋯×X0
X1

where the right-hand side is an n-fold fiber product. The condition that all maps fn be
bijective is called the Segal condition and a simplicial set which satisfies this condition is
called Segal. The relevance of this condition comes from the fact that it characterizes the
essential image of the fully faithful functor

N ∶ Cat→ Set∆

which takes a small category to its nerve. Given a Segal simplicial set X , we can recover the
corresponding category C: The set of objects is formed by the vertices of X and morphisms
between a pair of objects are given by edges in X between the corresponding pair of vertices.
The invertibility of f2 allows us to interpret the diagram

(0.2) µ ∶ {X1 ×X0
X1 X2

f2=(∂2,∂0)oo ∂1 // X1}

as a composition law for C, while the bijectivity of f3 implies the associativity of this law.
One can view the theory of Segal (simplicial) spaces as a development of this idea in a
homotopy theoretic framework, where simplicial sets are replaced by simplicial spaces, fiber
products by their homotopy analogs, and bijections by weak equivalences. This leads to a
weaker notion of coherent associativity which can be used to describe composition laws in
higher categories.

The goal of this paper, and the sequels to follow, is to study a “higher” extension of
Rezk’s theory to what we call d-Segal spaces. These are simplicial spaces which are required
to satisfy analogs of the Segal conditions corresponding to triangulations of d-dimensional
convex polytopes. We outline the basic idea. Note that the fiber product in (0.1) can be
viewed as the set Hom(Jn,X), where we define the simiplicial set

(0.3) Jn =∆1 ∐∆0 ∆1 ∐∆0 ⋅ ⋅ ⋅ ∐∆0 ∆1

whose geometric realization can be interpreted as an oriented interval, subdivided into n

subintervals. Further, the Segal map fn from (0.1) is obtained by pulling back along the
natural inclusion Jn ⊂ ∆n. This can be generalized as follows. Consider a convex polytope
P ⊂ Rd given as the convex hull of a finite set of points I ⊂ Rd. Choose a numbering of this
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set I ≅ {0,1, ..., n}. Any triangulation T of P with vertices in I gives rise to a simplicial
subset ∆T ⊂∆n, and we obtain a natural pullback map

fT ∶ Xn Ð→XT

where we observe that Xn ≅ Hom(∆n,X) and define XT ∶= Hom(∆T ,X). For example, the
triangulations of the square

(0.4)

0

3 2

1

↪
0

1

2

3
0

3 2

1

↪
0

1

2

3

induce two natural maps X3 → X2 ×X1
X2. We call the elements of XT membranes in X of

type T . Similarly, for a simplicial space X we have a natural derived version of the membrane
space, denoted RXT , which comes equipped with a map Xn → RXT . The Segal map fn of
(0.1) is recovered for I = {0,1, . . . , n} ⊂ R1, in which case P = [0, n] is an interval, and for T
being the triangulation of [0, n] by the segments [i, i + 1], in which case ∆T = Jn. From this
perspective, it is natural to refer to Rezk’s notion of Segal spaces, as 1-Segal spaces.

In the present paper, we study the 2-dimensional theory corresponding to triangulations
T of convex plane polygons Pn, with I being the set of vertices of Pn, numbered counter-
clockwise (so Pn has n + 1 vertex). A simplicial space X is called 2-Segal space if, for every
convex polygon Pn and every triangulation T , the resulting map Xn → RXT is a weak ho-
motopy equivalence. Note that, in contrast to the 1-dimensional situation, a given convex
polygon Pn has many triangulations T , each involving all the vertices. For a 2-Segal space
X , each derived membrane space RXT comes equipped with a weak homotopy equivalence
Xn → RXT . In particular, all derived membrane spaces corresponding to different triangu-
lations of Pn are weakly equivalent to one another. Moreover, the 2-Segal space X exhibits
the independence of RXT on T up to a coherent system of weak equivalences.

Remarkably, 2-Segal spaces appear in several areas of current interest:

• Various associative algebras obtained via correspondences such as Hall algebras, Hecke
algebras, and various generalizations, appear as shadows of richer structures: 2-Segal
simplicial groupoids, stacks, etc. The invariance under change of triangulations of a
square (cf. (0.4)) is the property which is responsible for the associativity of these
algebras. In this context, the most important example of a 2-Segal space is given
by the Waldhausen S-construction S(E) of an exact category E, and ∞-categorical
generalizations thereof. While the geometric realization of the simplicial space S(E)
plays a fundamental role in algebraic K-theory, its structural property of being 2-Segal
seems to be a new observation and can be viewed as a kind of “hidden 2-dimensional
symmetry” of classical homological algebra. The above mentioned associative algebras
are obtained by applying suitable theories with transfer to various incarnations of S(E).
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• The cyclic nerve [Dri04] of any category is a 2-Segal set. More generally, the cyclic
bar construction of an ∞-category is a 2-Segal space. On the one hand, this class
of examples leads to new associative algebras whose structure constants are given by
counting certain factorizations. On the other hand, we obtain natural examples of
2-Segal spaces which carry a cyclic structure in the sense of A. Connes. A detailed
study of cyclic 2-Segal spaces will be deferred to the sequel of this work. We provide a
more detailed outlook at the end of this introduction, explaining relations to mapping
class groups and potential applications in the context of 2-periodic derived categories.

• 2-Segal spaces can be naturally interpreted in the context of model categories. We
introduce a model category for 2-Segal spaces which is, in a precise way, compatible
with Rezk’s model structure for 1-Segal spaces.

• In analogy to the role of 1-Segal spaces in higher category theory, we provide several
higher categorical interpretations of 2-Segal spaces. A 1-Segal space encodes a co-
herently associative composition law in which a given pair of composable morphisms
admits a composition which is unique up to homotopy. More precisely, the space of all
possible compositions of a fixed pair of composable morphisms is contractible. Infor-
mally, a 2-Segal space describes a higher categorical structure in which a composable
pair of morphisms may admit a multitude of possibly non-equivalent compositions.
Nevertheless, the 2-Segal maps provide a coherent notion of associativity among the
composition spaces. Following a suggestion of J. Lurie, we will make this statement
precise by associating to a 2-Segal space an (∞,2)-category enriched in ∞-categories
of presheaves. Various alternative structures of higher bicategorical nature can be
associated to a 2-Segal space such as a monad in the (∞,2)-category of bispans.

• 2-Segal simplicial sets provide a combinatorial version of the Clebsch-Gordan formalism
for semi-simple tensor categories. 2-Segal simplicial spaces can be thought of as higher
categorical generalizations of this formalism. In particular, we expect our theory to be
relevant in the context of the Reshetikhin-Turaev-Viro tensor category formalism for
3-dimensional topological quantum field theories (cf. [Tur10] and references therein).

• Cluster coordinate systems on various versions of Teichmüller spaces, see [FG06], can
be naturally explained in terms of certain 1- and 2-Segal spaces. In particular, set-
theoretic solutions of the pentagon equation [KS98, KR07] can be considered as very
special types of 2-Segal semi-simplicial sets.

The theory of 2-Segal spaces can be developed in different contexts and at different levels
of generality. In the first part of this paper (Chapters 1-3), we work in the more elemen-
tary context of simplicial topological spaces, thus reducing to a minimum of background in
homotopy theory required from the reader. This part can be seen as an extended introduc-
tion to the rest of the paper. In particular, the motivating example of the Waldhausen’s
S-construction is studied in Section 2.4. We generalize Quillen’s concept of an exact category
to a non-additive setting and call the resulting class of categories proto-exact. We show that
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the definition and properties of the Waldhausen S-construction extend to this more general
framework. The “belian categories” of Deitmar [Dei11] and categories of representations of
quivers in pointed sets studied by Szczesny [Szc10] provide many examples of proto-exact
categories. Another important class of examples is given by various categories of Arakelov
vector bundles, see Example 2.4.7. The role of the classical Waldhausen S-construction in al-
gebraic K-theory suggests that our construction should give a natural definition of K-groups
in these more general contexts.

Already the discrete case of 2-Segal simplicial sets, requiring no homotopy theoretical
background at all, leads to an interesting theory presented in Chapter 3. Such structures
axiomatize the idea of “associative multivalued compositions”. More precisely, for any sim-
plicial set X , we can consider the diagram in (0.2) above as a correspondence (multivalued
map) from X1×X0

X1 to X1. The 2-Segal condition can then be regarded as the associativity
of µ in the sense of composition of correspondences, the only sense in which multivalued
maps can be meaningfully composed. Such an “associative correspondence” induces an as-
sociative multiplication in the usual sense on the linear envelope of X1, thus giving rise to
a linear category H(X) which we call the Hall category of X , see Section 3.4. In Theorem
3.5.8, we show how to categorify the Hall category construction one more time so as not to
lose any information and to identify 2-Segal sets with certain bicategories. As an alternative
perspective, we give an interpretation in terms of operads in Section 3.6. We give exam-
ples of discrete 2-Segal spaces relating to Bruhat-Tits complexes, set-theoretic solutions of
the pentagon equation, and pseudo-holomorphic polygons and conclude with Section 3.9 on
examples of birational Segal schemes.

In the main body of the paper, we work in the general context of combinatorial model
categories which we recall in Chapter 4. In particular, we understand spaces combinatorially,
as simplicial sets. In Chapter 5, we construct a model structure S2 on the category S∆ of
simplicial spaces whose fibrant objects are exactly the Reedy fibrant 2-Segal spaces. More
precisely, denoting by I the Reedy model structure on S∆, we construct a chain of left
Bousfield localizations

(0.5) (S∆,I)Ð→ (S∆,S2)Ð→ (S∆,S1),
where S1 is the model structure for 1-Segal spaces constructed by Rezk [Rez01]. The precise
statement will be given in Theorem 5.3.2 and depends crucially on the fact that every 1-Segal
space is 2-Segal. In particular, we obtain a construction of the “2-Segal envelope” of any
simplicial space X as the fibrant replacement of X with respect to S2.

In Chapter 6, we introduce the path space criterion which characterizes 2-Segal spaces
in terms of 1-Segal conditions: A simplicial space X is a 2-Segal space if and only if its
associated simplicial path spaces P◁X and P▷X are 1-Segal spaces. In the context of
2-Segal semi-simplicial sets, this criterion provides a natural explanation of the following
remarkable (but originally mysterious) observation of Kashaev and Sergeev [KS98]: if C is
a set and

s ∶ C ×C Ð→ C ×C
is a bijection satisfying the pentagon equation (3.7.3), then the first compoment of s, con-
sidered as a binary operation C ×C → C, is associative.

7



In Chapter 7, the path space criterion is essential to verify 2-Segal conditions in the
context of ∞-categories: We use it to show that the Waldhausen S-construction of an exact
∞-category is a 2-Segal space. Here, we define the new concept of an exact ∞-category as a
non-linear higher generalization of Quillen’s notion of an exact category. For example, stable
∞-categories are examples of exact ∞-categories, hence our result covers pre-triangulated
dg categories and various categories appearing in stable homotopy theory. As another appli-
cation of the path space criterion, we define the cyclic bar construction of any ∞-category
and show that it is a 2-Segal space.

2-Segal spaces underlie practically all associative algebras “formed by correspondences”.
In Chapter 8, we explain a general procedure of forming such algebras. The input is, on one
hand, a 2-Segal simplicial object X of a model category C and on the other hand, a theory
with transfer h on C. The latter is a functor compatible with products, covariant under
one class of morphisms and contravariant with respect to another class, satisfying natural
axioms. We then use the diagram µ above to produce a genuinely associative map

(0.6) m = ∂1∗(∂2, ∂0)∗ ∶ h(X1)⊗ h(X1)Ð→ h(X1),
defining an algebraH(X,h) which we call the Hall algebra with coefficients in h. Taking forX
various incarnations of the Waldhausen S-construction, we recover “ classical” Hall algebras
[Sch06] (C is the category of groupoids, h is the space of functions), derived Hall algebras
of Toën [Toë06] (C is the category of spaces, h is the space of locally constant functions),
motivic Hall algebras of Joyce [Joy07] and Kontsevich-Soibelman [KS08] (C is the category
of stacks, h is given by motivic functions), etc. Further, we observe that Hecke algebras arise
via a theory with transfer from a simplicial groupoid which we call the Hecke-Waldhausen
space studied in Section 2.6.

Given a 2-Segal space X and a suitable theory with transfer, the 2-Segal conditions
corresponding to the triangulations (0.4) are responsible for the associativity of the multi-
plication (0.6). The relevance of the higher 2-Segal coherences can be understood in terms
of higher categorical structures. For example, in Chapter 9, we construct the Hall monoidal
∞-category associated to X which can be interpreted as a categorification of the ordinary
Hall algebra. In Chapter 11 we provide an alternative higher categorical interpretation of
2-Segal spaces within a (∞,2)-categorical theory of bispans, developed in Chapter 10. In
terms of this theory, we can functorially associate to a 2-Segal space X a monad AX in the(∞,2)-category of bispans in spaces. If the space X0 is contractible, then we can reinterpret
AX as an algebra object in the category of spans in spaces, equipped with the pointwise
Cartesian monoidal structure constructed in Chapter 10.

In a sequel to this work, we provide yet another interpretation of 2-Segal spaces which is
suitable for a comparison statement between model categories: We can associate to a 2-Segal
space X a generalized ∞-operad OX in the sense of [Lur11]. On the one hand, the∞-operad
OX can be easily obtained from the monad AX . On the other hand, we can construct a
Quillen adjunction

S∆ ←→ (Set+∆)/N(∆)
8



between the category simplicial spaces equipped with the 2-Segal model structure and
the category of marked simplicial sets over N(∆), equipped with the model structure for
quadratic operads. This latter model structure is a localization of the model structure for
non-symmetric generalized ∞-operads (constructed using [Lur11, B.2]). We expect that this
Quillen adjunction is in fact a Quillen equivalence, thus providing a complete description
of the homotopy theory of 2-Segal spaces in ∞-categorical operadic terms. One interesting
feature of this description is the possibility to study algebras for the operad OX . We expect
this notion to provide a natural higher categorical generalization of the Deligne’s theory of
determinant functors [Del87], and, more generally, the of notion of a charade [Kap95] due to
the second author.

Let us indicate two further directions which will be taken up in the sequel to this paper.
The first is the study of cyclic 2-Segal spaces such as the cyclic bar construction. We recall
that Connes [Con94] has introduced a category Λ containing the category ∆ of simplices,
and cyclic objects in a category C are contravariant functors X ∶ Λ → C. So a cyclic object
is a simplicial object with extra structure and we can hence speak about 2-Segal objects
in this context. Above, we observed that, for each n ≥ 2, the derived membrane space
RXT of a 2-Segal space X is weakly independent of the choice of triangulation T of the
convex polygon Pn. If X carries a cyclic structure, then we can “globalize” this statement to
triangulations T of a marked oriented surface S. Roughly, this construction goes as follows.
The orientation of S equips each of the triangles of T with a cyclic structure. We can glue
these cyclic triangles to obtain a cyclic set ΛT . The formalism of homotopy Kan extensions
allows us to evaluate the cyclic space X on ΛT which produces a cyclic derived membrane
space. Again, this homotopy type can be shown to be weakly independent of T in a coherent
way which, in particular, implies that it admits an action of the mapping class group of
the marked surface S. We expect this result to be particularly interesting in the context
of 2-periodic triangulated dg categories: heuristic considerations predict the existence of a
natural cyclic structure on the Waldhausen S-construction. This cyclic structure seems to
be highly interesting and opens up potential connections between 2-periodic triangulated
categories (e.g., 2-periodic orbit categories, matrix factorization categories) and mapping
class groups.

As the title of this paper suggests, we can view 1- and 2-Segal spaces as part of a hierarchy
consisting of successively larger classes of d-Segal spaces defined for d ≥ 0, and a chain of
Bousfield localizations extending (0.5). Systematic study of the case d ≥ 3 will be done in
a sequel to this paper. It is based on R. Street’s notion of orientals [Str87]. The main idea
behind this notion is to subdivide the boundary of the d-simplex into two combinatorial(d − 1)-balls

∂∆d = ∂+∆d ∪ ∂−∆d

with ∂+, resp. ∂− obtained as the union of the faces ∂i with even, resp. odd i. So for each
simplicial set X , the correspondence (0.2) is included (as a particular case d = 2) into a
hierarchy of correspondences

µd = {Hom(∂−∆d+1,X)←Ð Xd+1 = Hom(∆d+1,X)Ð→ Hom(∂+∆d+1,X)}

9



each of which can be viewed as a coherence condition for the previous one. For d = 3 the
∂±∆3 form the two triangulations of the 4-gon, with ∆3 itself providing the flip between
them. The d-Segal condition on a simplicial space X is obtained, in the first approximation,
by forming a homotopy analog of µd+1 and requiring that one or both of its arrows be weak
equivalences. This should be further complemented by “associativity” conditions involving
various triangulations of cyclic polytope C(n, d) ⊂ Rd with n+ 1 vertices, see [KV91, Ram97]
which plays the role of a convex (n + 1)-gon Pn.
Acknowledgements. We would like to thank A. Goncharov, P. Lowrey, J. Lurie, I. Mo-
erdijk, P. Pandit, and B. Toën for useful discussions which influenced our understanding of
the subject.
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1 Preliminaries

1.1 Limits and Kan extensions

We recall some aspects of the basic categorical concepts of limits and Kan extensions. For
more background on this classical material see [Sch70, ML98, Kel05, KS06a].

Given a small category A, an A-indexed diagram (or simply A-diagram) in a category C

is defined to be a covariant functor F ∶ A → C. It is traditional to denote the value of F on
an object a ∈ A by Fa and to write the diagram as (Fa)a∈A, suppressing the notation for the
values of F on morphisms in A. We denote by

CA = Fun(A,C), CA = Fun(Aop,C)
the categories of A-indexed (resp. Aop-indexed) diagrams where the morphisms are given
by natural transformations. The projective limit (or simply limit) and the inductive limit
(or colimit) of an A-indexed diagram (Fa)a∈A will, if they exist, be denoted by lim←Ð

C

a∈A
Fa and

limÐ→
C

a∈A
Fa, respectively. If C has all inductive and projective limits, we obtain functors

limÐ→
C ∶ CA Ð→ C, lim←Ð

C ∶ CA Ð→ C,

which are, respectively, left and right adjoint to the constant diagram functor

κ ∶ CÐ→ CA, X ↦ (X)a∈A.
More generally, let φ ∶ A→ B be a functor of small categories, and consider the pullback

functor
φ∗ ∶ CB Ð→ CA, (φ∗G)(a) = G(φ(a)),

reducing to κ for B = pt. The left and right adjoints to φ∗ are, assuming they exist, known
as the left, resp. right Kan extension functors along φ, denoted by

φ! ∶ CA Ð→ CB, φ∗ ∶ CA Ð→ CB,

If C has all inductive and projective limits, then φ! and φ∗ exist and their values on a functor
F ∶ A → C are given by the formulas [ML98, §X.3, Thm. 1]:

(φ!F )(b) ≅ limÐ→C

{φ(a)→b}∈φ/b
F (a),

(φ∗F )(b) ≅ lim←ÐC

{b→φ(a)}∈b/φ
F (a).(1.1.1)

Here the comma category φ/b has as objects pairs (a,φ), consisting of an object a ∈ A and a
morphism φ(a) → b in B, and similarly for b/φ. Further, the values of φ!F and φ∗F on an
arrow b→ b′ in B can be found from the pointwise formulas (1.1.1) by using the functoriality
of the limits.
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1.2 Simplicial objects

Let ∆ be the category of finite nonempty standard ordinals and monotone maps. As usual,
we denote the objects of ∆ by [n] = {0,1, ..., n}, n ≥ 0. A simplicial object in a category C

is a functor X ∶ ∆op → C. Since any finite nonempty ordinal is canonically isomorphic to a
standard ordinal, we may canonically extend X to all finite nonempty ordinals; we leave this
extension implicit and use the notation XI for the value of X on an ordinal I. Further, we
write Xn for the object X[n] of C. The objects {Xn} are related by the face and degeneracy
morphisms

∂i ∶ Xn Ð→ Xn−1, i = 0, ..., n, si ∶ Xn Ð→Xn+1, i = 0, ..., n,

satisfying the standard simplicial identities, see [GZ67]. To emphasize that X is a simplicial
object, we sometimes write it as X● or (Xn)n≥0. Using the notation introduced above, the
category of simplicial objects in C will be denoted by C∆.

Example 1.2.1. In this paper we will be mostly interested in simplicial objects in the three
following categories. First, the category C = Set of sets, so that objects of Set∆ are simplicial
sets. We denote by S = Set∆ the category of simplicial sets. Second, the category C =
Top of compactly generated topological spaces, see, e.g., [Hov99]. Objects of Top∆ will be
called simplicial spaces. Third, the category C = S. Simplicial objects in S will be called
combinatorial simplicial spaces and can be identified with bisimplicial sets.

Let ∆inj ⊂∆ denote the subcategory formed by injective morphisms. By a semi-simplicial
object in a category C we mean a contravariant functor ∆inj → C. The category of such objects
will be denoted by C∆inj

. Thus a semi-simplicial object in C gives rise to a sequence {Xn}
of objects in C, related by face maps as above, but without degeneracy maps. For example,
semi-simplicial objects in Set have been studied in [RS71] under the name of ∆-sets. Any
simplicial object can be considered as a semi-simplicial object by restricting the functor from
∆ to ∆inj. Even though we focus on simplicial objects, much of the theory developed in this
work will also be applicable to semi-simplicial objects.

For a natural number n ≥ 0, we introduce the standard n-simplex ∆n ∈ Set∆, which is the
representable functor

∆n ∶ ∆op Ð→ Set, [m]↦ Hom∆([m], [n]).
We have a natural isomorphism HomS(∆n,D) ≅Dn for any simplicial set D. Occasionally, it
will be convenient to define the I-simplex∆I ∶= Hom∆(−, I) ∈ S for any finite ordinal I, where
as above, we canonically identify ∆ with the category of all finite nonempty ordinals. Any
simplicial set D can be realized as an inductive limit of a diagram indexed by its category of
simplices, by which we mean the comma category ∆/D formed by all morphisms ∆n →D in
S, n ≥ 0:

(1.2.2) D ≅ limÐ→
S
{(∆n→D)∈∆/D} ∆

n.

In fact, this is a general property of functors from any category to Set: any such functor is
an inductive limit of representable functors.

12



We further denote by

∣∆I ∣ = {p = (pi)i∈I ∈ RI ∣pi ≥ 0,∑ pi = 1} ∈ Top
the geometric I-simplex. Here, the geometric realization ∣D∣ of a simplicial set D is the
topological space obtained by replacing ∆n with ∣∆n∣ in (1.2.2):

∣D∣ = limÐ→ Top

{∆n→D}
∣∆n∣.

Remark 1.2.3.More generally, one can define the geometric realization of any simplicial
space X ∈ Top∆ by gluing the spaces Xn × ∣∆n∣ or, more precisely, forming the coend (see
[ML98]) of the bivariant functor

X● × ∣∆●∣ ∶∆op ×∆Ð→ Top, ([m], [n]) ↦Xm × ∣∆n∣.
We introduce some standard examples of simplicial objects.

Examples 1.2.4. (a) For a set I we define the fat I-simplex to be the simplicial set (∆I)′
given by (∆I)′J = HomSet(J, I),
where we consider all maps between the sets underlying the ordinals J and I. As usual, in
the case I = [n], we write (∆n)′ for (∆I)′.
(b) For a small category C we denote by NC the nerve of C. This is a simplicial set, with

Nn C being the set of functors [n] → C, where the ordinal [n] is considered as a category.
Explicitly, we have the formula

Nn C = ∐
x0,...,xn∈Ob(C)

HomC(x0, x1) ×⋯ ×HomC(xn−1, xn).
For instance, the fat simplex (∆I)′ is the nerve of the category with the set of objects I and
one morphism between any two objects. We write BC = ∣NC∣ for the geometric realization
of the nerve and call it the classifying space of C.
More generally, by a semi-category we mean a structure consisting of objects, morphisms
and their associative composition (as in the ordinary concept of a category) but without
requiring the existence of identity morphisms. For instance, a semi-category with one object
is the same as a semigroup, while a category with one object is a monoid (a semigroup with
unit). For any semi-category C, we can define its nerve NC as a semi-simplicial set.
(c) Let C be a small topological category, i.e., a small category enriched in Top. Then we

can define a topological nerve Nontop C which is naturally a simplicial space.
(d) Any (semi-)simplicial set X gives rise to the discrete (semi-)simplicial space ≺X ≻ so

that ≺X ≻n =Xn considered with discrete topology. Any topological space Z ∈ Top gives rise
to a constant simplicial space, also denoted by Z, so that Zn = Z and all face and degeneracy
morphisms are identity maps.
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1.3 Homotopy limits of diagrams of spaces.

Homotopy limits were originally introduced by Bousfield and Kan [BK72] using explicit
constructions, usually referred to as bar and cobar constructions, which we now recall.

Definition 1.3.1.Let Y = (Ya)a∈A be a diagram in Top.

(a) Assume that each space Ya is a retract of a CW-complex. Then the homotopy inductive
limit (or homotopy colimit) of Y , denoted by holimÐ→a∈A Ya, is the geometric realization

of the simplicial space YÐ→●, defined by

YÐ→n = ∐
a0→...→an

Ya0 ,

where we take the disjoint union over all chains of composable morphisms in A.

(b) The homotopy projective limit (or homotopy limit) of Y , denoted by holim←Ða∈AYa, is the
topological space formed by the following data:

(1) For each object a ∈ A, a point ya ∈ Ya;

(2) For each morphism a
u→ b in A, a path (singular 1-simplex) ya→b ∶ [0,1]→ Yb with

ya→b(0) = u∗(ya) and ya→b(1) = yb.
(3) For each composable pair of morphisms a

u→ b
v→ c in A, a singular triangle

ya→b→c ∶ ∣∆2∣ → Yc whose restrictions to the three sides of ∆2 are yb→c, ya→c, and
v∗(ya→b).

(4) For each composable triple of morphisms a
u→ b

v→ c
w→ d in A, a singular tetra-

hedron ya→b→c→d ∶ ∣∆3∣ → Yd whose restriction to the 2-faces are yb→c→d, ya→c→d,
ya→b→d and w∗(ya→b→c).
⋮

(n) The analogous data for each composable n-chain of morphisms in A.

The topology on holim←Ða∈AYa is induced from the compact-open topology on mapping
spaces.

There are various frameworks which allow for a more conceptual definition of homotopy
limits. For an approach using model categories, see Chapter 4 and specifically §4.4 below. In
the later chapters, we will also utilize the ∞-categorical theory of limits. In both contexts,
one can show that, for diagrams of spaces, homotopy limits can be computed using the
formula given in Definition 1.3.1.

For now, it will be sufficient to introduce the notion of a weak equivalence in Top which
is a morphism f ∶ X → Y inducing a bijection on π0 and, for every i ≥ 1, an isomorphism
πi(X,x) → πi(Y, f(x)). Further, a morphism f ∶ (Ya)a∈A → (Y ′a)a∈A of diagrams in Top will
be called a weak equivalence, if each fa is a weak equivalence.
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Note that we have natural maps

(1.3.2) lim←Ð
Top
a∈AYa Ð→ holim←Ða∈AYa, holimÐ→a∈A Ya Ð→ limÐ→

Top
A∈AYa.

Further, note that, on the level of connected components, homotopy limits are given by
set-theoretic limits:

(1.3.3) π0 holimÐ→a∈A Ya = limÐ→
Set
a∈Aπ0(Ya), π0 holim←Ða∈AYa = lim←Ð

Set
a∈Aπ0(Ya).

Examples 1.3.4. (a) The homotopy limit

X ×RZ Y ∶= holim←Ð{X f
Ð→ Z

g
←Ð Y }

is known as the homotopy fiber product of X and Y over Z. Up to weak equivalence, this
is the space consisting of triples (x, y, γ), where x ∈ X , y ∈ Y and γ is a path in Z, joining
f(x) and g(y).
(b) The homotopy limit

Rf−1(y) = holim←Ð{X f
Ð→ Y ←Ð {y}}, y ∈ Y,

is known as the homotopy fiber of f over y. Up to weak equivalence, the homotopy fiber is
given by the space consisting of pairs (x, γ), where x ∈ X and γ is a path joining f(x) and
y.

The following is a crucial property of homotopy limits.

Proposition 1.3.5. Let f ∶ (Ya → Y ′a)a∈A be a weak equivalence of diagrams in Top. Then
the induced map

holim←Ð(f) ∶ holim←Ða∈AYa → holim←Ða∈AY
′
a

is a weak equivalence. Assume further that all spaces Ya, Y ′a are retracts of CW-complexes.
Then we have a weak equivalence

holim←Ð(f) ∶ holimÐ→a∈A Ya → holimÐ→a∈A Y
′
a .

We now recall a concept related to that of the homotopy limit. Denote by Cat the
category of small categories with morphisms given by functors. By a diagram of categories
we mean a functor from a small category A to Cat.

Definition 1.3.6.Let (Ca)a∈A be a diagram of categories. The projective 2-limit 2 lim←Ð a∈ACa

is the category whose objects are data consisting of:

(0) An object ya ∈ Ca, given for each a ∈ Ob(A).
(1) An isomorphism yu ∶ u∗(ya)→ yb in Cb, given for each morphism u ∶ a→ b in A.
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(2) The yu are required to satisfy the compatibility condition: For each each composable

pair of morphisms a
u→ b

v→ c in A, we should have yvu = yv ○ v∗(yu).
A morphism in 2 lim←Ð a∈ACa from (ya, yu) to (y′a, y′u) is a system of morphisms ya → y′a in Ca

commuting with the yu and y′u.

In particular, we have the 2-fiber product of categories

C ×(2)D E = 2 lim←Ð{C p
Ð→ D

q
←Ð E}.

Proposition 1.3.7. If (Ca → C′a)a∈A is a morphism of diagrams in Cat consisting of equiv-
alences of categories, then the induced morphism 2 lim←Ð a∈ACa → 2 lim←Ð a∈AC

′
a is an equivalence

of categories as well.

We recall that a groupoid is a category with all morphisms invertible.

Proposition 1.3.8. (a) For any diagram of categories (Ca)a∈A we have a natural morphism
of spaces

f ∶ B(2 lim←Ð a∈ACa)Ð→ holim←Ða∈ABCa.

(b) Assume that (Ca)a∈A is a diagram of groupoids. Then 2 lim←Ð a∈ACa is a groupoid, and
f is a weak equivalence.

Proof. (a) A vertex of N(2 lim←Ð a∈ACa), i.e., an object of 2 lim←Ð a∈ACa, gives a datum as in
Definition 1.3.1, in fact a datum consisting of a combinatorial n-simplex ∆n → NCan for
each composable chain a0 → ... → an of n morphisms in A (which then gives a singular
n-simplex in BCa). This datum gives therefore a point of holim←Ða∈ABCa. Further, for a

combinatorial p-simplex σ ∶ ∆p → N(2 lim←Ð a∈ACa) we get, in the same way, a morphism of

simplicial sets ∆n ×∆p → NCan , and these morphisms give a map fσ ∶ ∣∆p∣ → holim←Ða∈ABCa.

It is straightforward to see that the fσ assemble into the claimed map f .
(b) The fact that 2 lim←Ð a∈ACa is a groupoid is obvious from the definition of its morphisms.

We now construct a homotopy inverse for f . For a space Y ∈ Top let Sing(Y ) be its singular
simplicial set, so that the natural map ∣Sing(Y )∣ → Y is a homotopy equivalence. Let also
Π1(Y ) be the fundamental groupoid of Y , so Ob(Π1(Y )) = Y and HomΠ1(Y )(x, y) is the set
of homotopy classes of paths from x to y. We have a natural morphism of simplicial sets
hY ∶ Sing(Y ) → NΠ1(Y ). If all the connected components of Y have π≥2 = 0, then ∣hY ∣ is a
homotopy equivalence. This is true, in particular, if Y = BC where C is a groupoid. In that
case we also have that the natural functor of groupoids C→ Π1(BC) is an equivalence.

Further, if (Ya)a∈A is any diagram in Top, then we have a morphism of simplicial sets

g ∶ Sing(holim←Ða∈AYa)Ð→ N(2 lim←Ð a∈AΠ1(Ya)).
We apply this to Ya = BCa. Propositions 1.3.5 and 1.3.7 together with the above equivalences
imply that g is homotopy inverse to f .
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We will also need a slight generalization of homotopy limits: the homotopy version of the
concept of the end of a bifunctor. Let us present an explicit definition using a kind of cobar
construction.

Let A be a small category and Y ∶ Aop×A → Top be a bifunctor. Thus for each morphism
u ∶ a→ b and each object c of A we have the maps

u∗ ∶ Y (c, a)Ð→ Y (c, b), u∗ ∶ Y (b, c) Ð→ Y (a, c).
Definition 1.3.9.The homotopy end of Y , denoted by R ∫a∈A Y (a, a) is the topological space
formed by the following data:

(0) For each object a ∈ A, a point ya ∈ Y (a, a).
(1) For each morphism a

u→ b in A, a path (singular 1-simplex) ya→b ∶ [0,1] → Y (a, b) with
ya→b(0) = u∗(ya) and ya→b(1) = u∗yb.

(2) For each composable pair of morphisms a
u→ b

v→ c in A, a singular triangle ya→b→c ∶∣∆2∣→ Y (a, c) whose restrictions to the three sides of ∆2 are u∗yb→c, ya→c, and v∗(ya→b).
⋮

(n) And so on for composable chains of morphisms of any length n − 1 ≥ 0.
Thus, if Y (a, b) = Yb is constant in the first argument, then

R∫
a∈A

Y (a, a) = holim←Ða∈AYa.
Similarly to Proposition 1.3.5, the homotopy end takes weak equivalences of functors Aop ×
A→ Top to weak equivalences in Top.
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2 Topological 1-Segal and 2-Segal spaces

2.1 Topological 1-Segal spaces and higher categories

Informally, a “higher category” should be given by

(0) a collection of objects,

(1) for objects x, y a collection of 1-morphisms between x and y,

(2) for objects x, y and 1-morphisms f, g between x and y a collection of 2-morphisms
between f and g,

⋮
(n) a collection of n-morphisms involving analogous data,

⋮
together with composition laws which are weakly associative up to coherent homotopy. For
example, the classical concept of a bicategory involves data (0), (1) and (2), see Appendix A
for details.

The most accessible so far has been a class of higher categories, called (∞,1)-categories,
in which all k-morphisms, k > 1, are invertible. Several different approaches to (∞,1)-
categories have been shown to be equivalent in [Ber10], not unlike Čech, Dolbeault and
other realizations for “cohomology”. One of these approaches is Rezk’s theory of Segal
spaces (cf. [Rez01, Seg74, Lur09c]). It is based on the following observation.

Proposition 2.1.1. The functor N ∶ Cat → Set∆, associating to a small category its nerve,
is fully faithful. The essential image of N consists of those simplicial sets K such that, for
each n ≥ 2, the map

Kn Ð→K1 ×K0
K1 ×K0

⋅ ⋅ ⋅ ×K0
K1,

induced by the inclusions {i, i + 1}↪ [n], is a bijection.

Let X be a simplicial space. For n ≥ 2, the inclusions {i, i + 1} ↪ [n] as above, and the
canonical map from lim←Ð to holim←Ð, give rise to the diagram of spaces

Xn Ð→X1 ×X0
X1 ×X0

⋅ ⋅ ⋅ ×X0
X1

(1.3.2)
Ð→ X1 ×RX0

X1 ×RX0
⋅ ⋅ ⋅ ×RX0

X1.

We denote the composite map by fn and refer to the collection {fn∣ n ≥ 2} as 1-Segal maps.

Definition 2.1.2.A simplicial space is called 1-Segal space if, for every n ≥ 2, the map fn is
a weak equivalence of topological spaces.

Our definition is a topological variant of Rezk’s combinatorial notion of a Segal space
[Rez01], following [Lur09c, Definition 2.1.15].
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Proposition 2.1.3. Let X be a simplicial space. Then the following are equivalent:

(1) X is a 1-Segal space.

(2) For every 0 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n, the map

Xn Ð→Xi1 ×RX0
Xi2−i1 ×RX0

⋅ ⋅ ⋅ ×RX0
Xn−ik

induced by the inclusions {0, . . . , i1},{i1, . . . , i2}, . . . ,{ik, . . . , n} ↪ [n], is a weak equiv-
alence.

(3) For every 0 ≤ i ≤ n, the map
Xn Ð→Xi ×RX0

Xn−i

induced by the inclusions {0, . . . , i},{i, . . . , n} ↪ [n], is a weak equivalence.

Proof. This is an immediate consequence of the 2-out-of-3 property of weak equivalences.

Example 2.1.4 (Discrete nerve and categorified nerve).Let C be a small category.
There are two immediate ways to associate to C a 1-Segal space:

(a) The discrete nerve ≺N(C)≻ is, by Proposition 2.1.1, a 1-Segal space and every discrete
1-Segal spaces is isomorphic to the discrete nerve of a small category.

(b) The set N(C)n of composable chains of morphisms in C is in fact the set of objects of
the category Fun([n],C). Denote by Cn ⊂ Fun([n],C) the groupoid of all isomorphisms
in Fun([n],C). Then the collection {Cn} assembles to a simplicial groupoid C● which
we call the categorified nerve of C. Passing to classifying spaces, the simplicial space
X● obtained by setting Xn = B(Cn), n ≥ 0, is a 1-Segal space. This follows at once from
Proposition 1.3.8: the 1-Segal maps identify the groupoid Cn with the 2-fiber product
C1 ×(2)C0

C1 ×(2)C0
⋅ ⋅ ⋅ ×(2)

C0
C1. Within Rezk’s theory, this categorified nerve is the preferred

way to model a small category as a 1-Segal space, since it satisfies a completeness
condition which will be explained in more detail in §7.1.

By Example 2.1.4, we can associate a 1-Segal space to any small category. Vice versa,
given a 1-Segal space X we can define the homotopy category of X , denoted hX , as follows.
The set of objects Ob(hX) is given by the set underlying the space X0. For objects x, y ∈ X0,
we define

HomhX(x, y) = π0({x} ×RX0
X1 ×RX0

{y}),
where the homotopy fiber product involves the face maps ∂1 and ∂0. To compose morphisms
f ∶ x → y and g ∶ y → z, we consider the span diagram

(2.1.5) {x} ×RX{0} X2 ×RX{2} {z}
p

��

q // {x} ×RX{0} X{0,2} ×RX{2} {z}

{x} ×RX{0} X{0,1} ×RX{1} X{0,1} ×RX{2} {z} .
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The pair (f, g) singles out a connected component of the bottom space in (2.1.5). Since the
vertical map in (2.1.5) is a weak equivalence, we obtain a well-defined connected component
q ○ p−1(f, g) of {x} ×RX{0} X{0,2} ×RX{2} {z} which we define to be the composition of f and g.

A similar argumentation, using the fact that the 1-Segal map

X3 Ð→ X1 ×RX0
X1 ×RX0

X1

is a weak equivalence, shows that the above composition law is associative. The identity
morphism of an object x ∈ X0 is obtained by interpreting the image of x under the degeneracy
map X0 → X1 as an element of {x} ×RX0

X1 ×RX0
{x}.

Note that the definition of hX only involves the 3-skeleton of X . The additional data
contained in X , allows us to define mapping spaces

(2.1.6) MapX(x, y) ∶= {x} ×RX0
X1 ×RX0

{y},
together with maps

MapX(x1, x2) ×MapX(x2, x3) × ⋅ ⋅ ⋅ ×MapX(xn−1, xn)Ð→MapX(x1, xn),
which form a coherently associative system of composition laws.

Remark 2.1.7.Let Top∆inj
be the category of semi-simplicial spaces. Note that the 1-Segal

maps fn in Definition 2.1.2, being defined in terms of the injections {i, i+1} → [n], make sense
for any X ∈ Top∆inj

. We say that X is 1-Segal, if they are weak eqiuivalences. The (discrete)
semi-simplicial nerve construction (Example 1.2.4(b)) gives an equivalence of categories

{Small semi-categories}Ð→ {Discrete 1-Segal semi-simplicial spaces}, C ↦ ≺NC≻.

Similarly, the categorified nerve construction from Example 2.1.4(b) applies to any small
semi-category and associates to it a different 1-Segal semi-simplicial space.

Up to a completeness condition which will be recalled in §7, we have the following informal
statements.

Universality principle 2.1.8. (a) 1-Segal simplicial spaces model any reasonable con-
cept of (∞,1)-categories.

(b) 1-Segal semi-simplicial spaces model (∞,1)-analogs of semi-categories.

For now, we leave the statement at this informal level; the main purpose of formulating
the principle at this point is to put the theory of 2-Segal spaces below into a context.
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2.2 Membrane spaces and generalized Segal maps

Let X be a simplicial space and D a simplicial set. First forgetting the topology of the
spaces {Xn}, we consider X as a simplicial set and form the set

(D,X) ∶= HomSet∆(D,X) ⊂∏
n≥0

XDn
n .

The topology on {Xn} naturally makes (D,X) a topological space which we call the space
of D-membranes in X . The general formula (1.2.2) implies the identification

(2.2.1) (D,X) ≅ lim←ÐTop

{∆p→D}∈∆/D
Xp.

Further, we define the derived space of D-membranes in X by

(2.2.2) (D,X)R = holim←Ð{∆p→D}∈∆/DXp.

Example 2.2.3. (a) Taking D = ∆n, we find that the category ∆/∆n has a final object,
given by id ∶∆n →∆n, and so

(∆n,X)R ≃ (∆n,X) ≅Xn.

(b) For the segment

Jn ∶=∆1∐∆0⋯∐∆0 ∆1 = ●Ð→ ●Ð→⋯Ð→ ●
of n edges, we have (Jn,X)R ≃X1 ×RX0

X1 ×RX0
⋯×RX0

X1,

and similarly for the ordinary space of membranes, with ordinary fiber products instead of
homotopy fiber products.
(c) Let Z ∈ Top be a topological space, considered as a constant simplicial space. For any

simplicial set D, the membrane spaces

(D,Z) =Map(π0∣D∣,Z) and (D,Z)R =Map(∣D∣,Z),
are given by the space of locally constant maps and the space of all continuous maps from∣D∣ to Z, respectively.

We will be interested in the behavior of the membrane spaces (D,X) and (D,X)R with
respect to colimits in the first argument. To this end, we introduce some terminology.

Definition 2.2.4.Let A,B be small categories. A diagram (Db)b∈B in SetA is called acyclic
if, for every a ∈ A, the natural map

holimÐ→b∈BDb(a)Ð→ limÐ→b∈BDb(a)
is a weak homotopy equivalence of spaces. Here, the diagram (Db(a))b∈B , obtained from(Db)b∈B by evaluating at a, is to be interpreted as a diagram of discrete topological spaces.
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In this section, we will mostly apply this concept in the case when A =∆, so (Db)b∈B is a
diagram of simplicial sets. Let (Db)b∈B be such a diagram and denote its colimit by D. For
n ≥ 0 and a simplex σ ∈Dn, we define a category Bσ as follows:

• The objects of Bσ are given by pairs (b, τ) where b ∈ B and τ ∈ (Db)n such that τ ↦ σ

under the canonical map Db →D.

• A morphism (b, τ) → (b′, τ ′) is given by a morphism b → b′ in B such that τ ↦ τ ′ under
the induced map Db → Db′ .

With this terminology, the following statement follows immediately from the definition.

Proposition 2.2.5. The diagram (Db)b∈B is acyclic if and only if, for every n ≥ 0 and every
simplex σ ∈Dn, the classifying space of the category Bσ is weakly contractible.

Proposition 2.2.6. Let (Db)b∈B be a diagram of simplicial sets and X a simplicial space.
Then:

(a) We have a natural homeomorphism

(limÐ→Set∆

b∈B
Db,X) ≅ lim←ÐTop

b∈B
(Db,X).

(b) If (Db)b∈B is acyclic, then we have a natural weak equivalence

(limÐ→Set∆

b∈B
Db,X)R ≃ holim←Ðb∈B(Db,X)R.

Proof. Part (a) is obvious. To prove (b), we formulate a more general statement holding for
arbitrary diagrams (Db) which reduces to (b) when (Db) is acyclic.

First, for any two simplicial spaces Y,X ∈ Top∆, we introduce the ordinary and derived
mapping spaces as the ordinary and homotopy ends (see Definition 1.3.9)

Map(Y,X) ∶= ∫
[n]∈∆

Map(Yn,Xn), RMap(Y,X) ∶= R∫
[n]∈∆

Map(Yn,Xn).
Here Map(Yn,Xn) is the space of continuous maps with compact–open topology. Then

(2.2.7) (D,X) =Map(≺D≻,X), (D,X)R = RMap(≺D≻,X),
where ≺D≻ is the discrete simplicial space corresponding to D.

Let now (Yb)b∈B, be a diagram in Top∆. As in any category of diagrams, colimits in the
category Top∆ are calculated componentwise, so

(limÐ→Top∆

b∈B
Yb)n = limÐ→Top

b∈B
Yb,n.

Define the homotopy colimit of (Yb) to be the simplicial space holimÐ→b∈B Yb obtained by ap-

plying homotopy colimits componentwise:

(holimÐ→b∈B Yb)n ∶= holimÐ→b∈B Yb,n.
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Then, straight from the definitions, we obtain a natural homeomorphism

(2.2.8) RMap(holimÐ→b∈B Yb,X) ≃ holim←Ðb∈BRMap(Yb,X)
for arbitrary simplicial spaces X and Y . Now, the condition that (Db) is an acyclic diagram
of simplicial sets, means that the natural map

holimÐ→b∈B ≺Db≻ Ð→ limÐ→b∈B ≺Db≻

is a weak equivalence of simplicial spaces. Combining (2.2.8) with (2.2.7) and with the
homotopy invariance of RMap, we obtain the statement (b).

The following statement shows that in formula (2.2.2) it suffices to consider nondegenerate
simplices of the simplicial set D.

Proposition 2.2.9. Let D be a simplicial set. Then we have a natural homeomorphism,
resp. weak equivalence

(D,X) ≅ lim←ÐTop

{∆p↪D}∈∆inj/D
Xp, (D,X)R ≃ holim←ÐTop

{∆p↪D}∈∆inj/D
Xp.

Proof. From the finality of the embedding ∆inj/D →∆/D, and (1.2.2), we deduce

(2.2.10) D = limÐ→
Set∆

{σ∶∆p↪D}∈∆inj/D
∆p.

The formula involving (D,X) follows from part (a) of Proposition 2.2.6. To deduce the
formula for (D,X)R from part (b) of the same proposition, we need to verify that the diagram
in (2.2.10) is acyclic. For n ≥ 0 and σ ∈ Dn, the category (∆inj/D)σ from Proposition 2.2.5
has an initial object given by the unique nondegenerate simplex ∆k ↪ D of which σ is a
degeneration. Therefore, Proposition 2.2.5 implies that the diagram under consideration is
acyclic.

The formulas in Proposition 2.2.9 imply that for D ⊂ ∆I the (derived) membrane space(D,X) depends only on the underlying semi-simplicial structure (face maps) of X . We will
use these formulas to extend the definition of (D,X) and (D,X)R to semi-simplicial spaces
X . We will be particularly interested in D-membranes where D is a subset of a standard
simplex ∆I . Let D,D′ ⊂ ∆I be simplicial subsets. We define the intersection and the union
of D and D′ by

D ∩D′ ∶=D ×∆I D′, D ∪D′ ∶=D∐D∩D′D
′ ⊂∆I .

The set of p-simplices of D ∩D′, resp. D ∪D′ is the intersection, resp. the union of the
sets Dp and D′p. Passing to geometric realizations, we recover the intersection and union of
topological subspaces of ∣∆I ∣.
Proposition 2.2.11. For simplicial sets D,D′ ⊂ ∆I , and a (semi-)simplicial space X, we
have (D ∪D′,X)R ≃ (D,X)R ×R(D∩D′,X)R (D,X)R.
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Proof. By Proposition 2.2.6, it suffices to show that the diagram of simplicial sets

D ←Ð D ∩D′ Ð→ D′

is acyclic. To show this, we use Proposition 2.2.5 with B = {pt ← pt → pt}. For n ≥ 0
and σ ∈ D ∪D′, the category Bσ is either the trivial category with one object, or the full
index category B. In both cases, the respective classifying space is contractible such that
Proposition 2.2.5 implies the statement.

Combinatorially, a simplicial subset D ⊂ ∆I can be constructed from a collection of
subsets I ⊂ 2I : Any subset J ⊂ I defines a subsimplex ∆J ⊂ ∆I and we define

(2.2.12) ∆I ∶= ⋃
J∈I

∆J ⊂∆I .

Proposition 2.2.13. (1) Let ∆/I, resp. ∆inj/I, be the full subcategory of the overcategory
∆/I, resp. ∆inj/I, spanned by those maps J → I whose image is contained in one of
the sets in I. Then we have representations as colimits of acyclic diagrams:

∆I ≅ limÐ→
Set∆

{J→I}∈∆/I
∆J ≅ limÐ→

Set∆

{J↪I}∈∆inj/I
∆J .

(2) For two collections I ,I ′ ⊂ 2I we have

∆I ∪∆I′ ≅∆I∪I′ and ∆I ∩∆I′ ≅∆IEI′,
where I ∪ I ′ is the union of I and I ′ as subsets of 2I , and I E I ′ is the set formed by
all pairwise intersections of elements of I and I ′.

Proof. The only statement requiring proof is the acyclicity of the diagrams in (1). But this
follows as in the proof of Proposition 2.2.9.

Example 2.2.14.Consider the collection In = {{0,1},{1,2},⋯,{n − 1, n}} of subsets of [n]
for a fixed n ≥ 2. Then

∆I = ∆{0,1}∐∆{1}∆
{1,2}∐∆{2} ⋯ ∐∆{n−1}∆

{n−1,n} = Jn

is the segment with n edges from Example 2.2.3(b).

Example 2.2.15. (a) Let I ⊂ Rd be a finite set of points and let P be the convex hull of I,
a convex polytope in Rd. Suppose that I is given a total order, so that the simplicial set ∆I

is defined. Let T be any triangulation of P into (straight geometric) simplices with vertices
in I. Every simplex σ ∈ T is uniquely determined by its subset of vertices Vert(σ) ⊂ I, so T
itself can be viewed as a subset T ⊂ 2I . Hence, the triangulation T defines simplicial subset
∆T ⊂∆I . Its realization is a CW-subcomplex in the geometric simplex ∣∆I ∣, homeomorphic
to P . By definition of the convex hull, P is the image of the map

p ∶ ∣∆I ∣Ð→ Rd, (pi)i∈I ↦∑
i

pi ⋅ i.

This map projects the subcomplex ∣∆T ∣ onto P in a homeomorphic way.
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(b) More generally, by a polyhedral subdivision of P with vertices in I we mean a decom-
position P of P into a union of convex polytopes, each having vertices in I, so that any
two such polytopes intersect in a (possibly empty) common face. Each polytope Q of P is
completely determined by its set of vertices Vert(Q) ⊂ I, so we can view P as a subset of 2I ,
and, generalizing the convention of (a) we obtain an inclusion of simplicial sets ∆P ⊂∆I . The
set of polyhedral subdivisions of P with vertices in I is partially ordered by refinement, its
unique minimal element is the subdivision {P} consisting of P alone. In this case ∆{P} = ∆I .
The maximal elements are precisely the triangulations as defined in (a).

Example 2.2.16.The two triangulations of a square in R2 are given by collections T ={{0,1,2},{0,2,3}} and T ′ = {{0,1,3},{1,2,3}} of subsets of I = [3]. The corresponding
embeddings ∆T ⊂ ∆3 and ∆T

′ ⊂∆3 can be depicted as follows:

(2.2.17)

0

3 2

1

↪
0

1

2

3
0

3 2

1

↪
0

1

2

3

For a collection I ⊂ 2I and a (semi-)simplicial space X , we write

XI ∶= (∆I ,X), RXI ∶= (∆I ,X)R
for the ordinary and derived spaces of ∆I-membranes. Using this notation, Proposition
2.2.11 reads:

Proposition 2.2.18. Let X be a (semi-)simplicial space and I ′,I ′′ ⊂ 2I . Then there is a
natural weak equivalence

RXI′∪I′′
≃Ð→ RXI′ ×RRXI′EI′′ RXI′′.

The following statement allows us to simplify, for some triangulations T , the indexing
diagrams for RXT = (∆T ,X)R given by (2.2.2).

Proposition 2.2.19. Let T be a triangulation of a convex polytope P with vertices in I, as
defined in Example 2.2.15. Suppose that each geometric simplex of T of dimension ≤ p is a
face of P . Then we have the formula

RXT ≃ holim←Ð{J∈T ,∣J ∣≥p+1}XJ ,

expressing the derived membrane space as the homotopy limit over geometric simplices of T
of dimension p + 1 or higher.

Proof. Assume that P is d-dimensional. Then

∆T ≅ limÐ→
Set∆

{J∈T ,∣J ∣≥p+1}
∆J
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for any p ≤ d − 2. To deduce our statement from Proposition 2.2.6, it suffices to show that,
under our assumptions, the diagram in the above limit is acyclic. To show this, we use
Proposition 2.2.5 where B is the full subcategory of ∆inj/∆T spanned by the nondegenerate
simplices of dimension ≥ p+1. For n ≥ 0 and σ ∈ ∆Tn , let σ ∶ ∆k ↪∆T be the minimal simplex
of which σ is a degeneration. If k ≥ p + 1, then (σ,σ) is a final object of the category Bσ

which therefore has a contractible nerve. If k ≤ p, then the category Bσ is given by the poset
of all geometric simplices of T that contain σ. By our assumption, σ is a k-dimensional face
of P . This implies that Bσ can be identified with the poset of positive-dimensional cones of
a subdivision of the normal cone to σ in P into convex subcones. Therefore, the classifying
space of Bσ is contractible.

Example 2.2.20. If each element of I is a vertex of P , then we can disregard 0-dimensional
simplices when computing RXT . For example, for the triangulation T of the square from
Example 2.2.16, we get

RXT ≃X{0,1,2} ×RX{0,2} X{0,2,3} ≅X2 ×RX1
X2,

where the last homotopy fiber product taken with respect to the map ∂1 ∶ X2 → X1 for
the first factor and ∂2 ∶ X2 → X1 for the second factor. Note that this formula also follows
immediately from Proposition 2.2.18. The space RXT ′ is given by a similar homotopy fiber
product but with respect to different face maps.

Let I ⊂ 2I be a collection of subsets. Composing the pullbackXI → XI along the inclusion
∆I ⊂∆I with the natural map XI → RXI , we obtain a map

(2.2.21) fI ∶ XI Ð→ RXI

which we call the I-Segal map.

Example 2.2.22.For the collection In of Example 2.2.14, the map Xn → RXIn reproduces
the nth 1-Segal map

fn ∶ Xn Ð→X1 ×RX0
X1 ×RX0

⋅ ⋅ ⋅ ×RX0
X1

from Definition 2.1.2.
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2.3 2-Segal spaces

We fix a convex (n + 1)-gon Pn in R2 with a chosen total order on the set of vertices, com-
patible with the counterclockwise orientation of R2. The chosen order provides a canonical
identification of the set of vertices of Pn with the standard ordinal [n]. Any polygonal sub-
division P of Pn as in Example 2.2.15 can be identified with a collection of subsets of [n].
Note that the class of collections thus obtained does not depend on a specific choice of Pn:
any two convex (n + 1)-gons are combinatorially equivalent.

As explained in §2.2, the subdivision P gives rise to a simplicial subset ∆P ⊂ ∆n and to
the corresponding P-Segal map

fP ∶ Xn Ð→ RXP = (∆P ,X)R
from (2.2.21). The map fP will be called the 2-Segal map corresponding to P. We are now
in a position to give the central definition of this work.

Definition 2.3.1.Let X be a (semi-)simplicial space. We call X a 2-Segal space if, for every
n ≥ 2 and every triangulation T of the polygon Pn, the corresponding 2-Segal map fT is a
weak equivalence of topological spaces.

The following statement is the analog of Proposition 2.1.3 in the context of 2-Segal spaces.

Proposition 2.3.2. Let X be a (semi-)simplicial space. Then the following are equivalent:

(1) X is a 2-Segal space.

(2) For every polygonal subdivision P of Pn the map fP is a weak equivalence.

(3) For every n ≥ 3 and 0 ≤ i < j ≤ n, the map

Xn Ð→ X{0,1,...,i,j,j+1,...,n} ×RX{i,j} X{i,i+1,...,j}
induced by the inclusions {0,1, . . . , i, j, j+1, . . . , n},{i, i+1, . . . , j} ⊂ [n] is a weak equiv-
alence.

(4) The same condition as in (3) but we only allow i = 0 or j = n.

Proof. Note, first of all, that we have obvious implications (1)⇐(2)⇒(3)⇒(4). The impli-
cation (1)⇒(2) follows inductively from the 2-out-of-3 property of weak equivalences. The
implication (4)⇒(1) follows by a similar inductive argument, using the fact that each trian-
gulation T of Pn has a diagonal of the form {0, j} or {i, n}.

Following our general point of view on 2-Segal spaces as generalizations of categories (see
Introduction), we start with a basic comparison result between the notions of 1-Segal and
2-Segal spaces.

Proposition 2.3.3. Every 1-Segal (semi-)simplicial space is 2-Segal.
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Proof. Let X be a 1-Segal space. Consider a triangulation T of Pn and let

In = {{0,1},{1,2}, . . . ,{n − 1, n}}
denote the collection from Example 2.2.14. The inclusions of simplicial sets ∆In ⊂ ∆T ⊂ ∆I

induce a commutative diagram

XI

fT //

h !!❉
❉❉

❉❉
❉❉

❉
XT

g

��
XIn

.

We have to show that the 2-Segal map fT is a weak equivalence. Since X is a 1-Segal space,
the 1-Segal map h is a weak equivalence and, by the two-out-of-three property, it suffices to
show that g is a weak equivalence. To prove this, we argue by induction on n.

There exists a unique 0 < i < n such that {0, i, n} ∈ T . We show how to argue for
1 < i < n − 1, the cases i ∈ {1, n − 1} are similar but easier. We define the collections
T1 = {I ∈ T ∣ I ⊂ {0,1, . . . , i}} and T2 = {I ∈ T ∣ I ⊂ {i, i + 1, . . . , n}}. Applying Proposition
2.2.18 twice, we obtain a weak equivalence

XT
≅Ð→ RXT1 ×RX{0,i} X{0,i,n} ×RX{i,n} RXT2 .

Further, since X is a 1-Segal space, we obtain a weak equivalence

X{0,i,n}
≃Ð→ X{0,i} ×RX{i} X{i,n}.

Composing these maps, we obtain a weak equivalence

g′ ∶ RXT ≃Ð→ RXT1 ×RX{i} RXT2 .
By induction, we have weak equivalences

g1 ∶ RXT1 ≃Ð→ X{0,1} ×RX{1} X{1,2} ×RX{2} ⋅ ⋅ ⋅ ×RX{i−1} X{i−1,i}
and

g2 ∶ RXT2 ≃Ð→ X{i,i+1} ×RX{i+1} X{i+1,i+2} ×RX{i+2} ⋅ ⋅ ⋅ ×RX{n−1} X{n−1,n}.
We conclude that the map g = (g1, g2) ○ g′ is a weak equivalence as well.

Proposition 2.3.4. If X,X ′ are 2-Segal simplicial spaces, then so is X ×X ′.
Proof. Let T be a triangulation of Pn. Then the map

fT ,X×X′ ∶ (X ×X ′)n = Xn ×X ′n Ð→ R(X ×X ′)T = RXT ×RX ′T
is the product of the maps fT ,X and fT ,X′ and so is a weak equivalence. Similarly for the
maps fn,i.
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2.4 Proto-exact categories and the Waldhausen S-construction

In this section, we present the example which initiated our study of 2-Segal spaces: the
Waldhausen S-construction originating in Waldhausen’s work [Wal85] on algebraic K-theory.
We will generalize this example to the context of ∞-categories in §7.3.

We start with generalizing Quillen’s notion of an exact category to the non-additive case.
Let E be a category. A commutative square

(2.4.1) A2
i //

j2
��

A1

j1
��

A′2
i′ // A′1

in A is called biCartesian, if it is both Cartesian and coCartesian.

Definition 2.4.2.A proto-exact category is a category E equipped with two classes of mor-
phisms M, E, whose elements are called admissible monomorphisms and admissible epimor-
phisms such that the following conditions are satisfied:

(PE1) E is pointed, i.e., has an object 0 which is both initial and final. Any morphism
0→ A is in M, and any morphism A→ 0 is in E.

(PE2) The classes M,E are closed under composition and contain all isomorphisms.

(PE3) A commutative square (2.4.1) in E with i, i′ admissible mono and j1, j2 admissible
epi, is Cartesian if and only if it is coCartesian.

(PE4) Any diagram in E
A1

j1Ð→ A′1
i′←Ð A′2

with i′ admissible mono and j1 admissible epi, can be completed to a biCartesian
square (2.4.1) with i admissible mono and j2 admissible epi.

(PE5) Any diagram in E
A′2

j2←Ð A2
iÐ→ A1

with i admissible mono and j2 admissible epi, can be completed to a biCartesian
square (2.4.1) with i′ admissible mono and j1 admissible epi.

Example 2.4.3.Any exact category in the sense of Quillen is proto-exact, with the same
classes of admissible mono- and epi-morphisms. In particular, any abelian category A is
proto-exact, with M consisting of all categorical monomorphisms, and E consisting of all
categorical epimorphisms in A.

Example 2.4.4 (Pointed sets). (a) Let Set∗ be the category of pointed sets (S, s0) and
morphisms preserving base points. Let M consist of all injections of pointed sets and E
consist of surjections p ∶ (S, s0) → (T, t0) such that ∣p−1(t)∣ = 1 for t ≠ t0. This makes
Set∗ into a proto-exact category. The full subcategory FSet∗ of finite pointed sets is also
proto-exact.
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(b) Let A be a small category and E a proto-exact category. The category Fun(A,E) of
A-diagrams in E is again proto-exact, with the componentwise definition of the classes M,E.
In particular, the category of representations of a given quiver (or a monoid) in pointed sets
is proto-exact. Such categories have been studied in [Szc10, Szc12] from the the point of
view of Hall algebras.

Remark 2.4.5.The categories from Example 2.4.4 belong to the class of belian categories,
a non-additive generalization of the concept of abelian categories introduced by A. Deitmar
[Dei11]. Each belian category B has two natural classes of morphsms: M, consisting of
all categorical monomorphisms, and E, consisting of strong epimorphisms, i.e., morphisms
f ∶ A → B which can be included into a biCartesian square

K

��

// A

f
��

0 // B

see [Dei11], Def. 1.1.4. In the examples we know, these two classes form a proto-exact
structure.

Example 2.4.6 (Quadratic forms).By a quadratic space we mean a pair (V, q), where V
is a finite-dimensional R-vector space and q is a positive definite quadratic form on V . A
morphism of quadratic spaces f ∶ (V ′, q′) → (V, q) is an R-linear operator f ∶ V ′ → V such
that q(f(v′)) ≤ q′(v′) for each v′ ∈ V ′. We denote by QS the category of quadratic spaces.

Call an admissible monomorphism a morphism i ∶ (V ′, q′) → (V, q) in QS such that i
is injective and q(i(v′)) = q′(v′) for v′ ∈ V ′, i.e., q′ is the pullback of q via i. Call an
admissible epimorphism a morphism j ∶ (V, q)→ (V ′′, q′′) in QS such that j is surjective and
q′′(v′′) =minj(v)=v′′ q(v) for each v′′ ∈ V ′′, see [KSV12] for more details. This makes QS into
a proto-exact category.

One has a similar proto-exact categoryHS ofHermitian spaces formed by finite-dimensional
C-vector spaces and positive-definite Hermitian forms.

Example 2.4.7 (Arakelov vector bundles).By an Arakelov vector bundle on Spec(Z) we
mean a triple E = (L,V, q), where (V, q) is a quadratic space and L ⊂ V be a lattice (discrete
free abelian subgroup) of maximal rank. A morphism E′ = (L′, V ′, q′) → E = (L,V, q) is
a morphism of quadratic spaces f ∶ (V ′, q′) → (V, q) such that f(L) ⊂ L′. This gives a

category Bun(Spec(Z)). The rank of E is set to be rk(E) = rkZ(L) = dimR(V ). The set of
isomorphism classes of Arakelov bundles of rank r is thus the classical double coset space of
the theory of automorphic forms

Bunr(Spec(Z)) = GLr(Z)/GLr(R)/Or.

Call an admissible monomorphism a morphism i ∶ (L′, V ′, q′) → (L,V, q) in Bun(Spec(Z))
such that i ∶ (V ′, q′) → (V, q) is an admissible monomorphism in QS and i ∶ L′ → L is an
embedding of a direct summand. Call an admissible epimorphism a morphism j ∶ (L,V, q) →
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(L′′, V ′′, q′′) in Bun(Spec(Z)) such that j ∶ (V, q) → (V ′′, q′′) is an admissible epimorphism

in QS and j ∶ L→ L′′ is surjective, see [KSV12] for more details. This makes Bun(Spec(Z))
into a proto-exact category.

One similarly defines proto-exact categories consisting of vector bundles on other arith-
metic schemes compactified at the infinity in the sense of Arakelov, see [Man99, Sou92] for
more background.

We now give a version of the classical construction of Waldhausen [Wal85, Gil81] which
associates to a proto-exact category E a simplicial space. Let Tn = Fun([1], [n]) be the poset
(also considered as a category) formed by ordered pairs (0 ≤ i ≤ j ≤ n), with (i, j) ≤ (k, l) iff
i ≤ k and j ≤ l. A functor F ∶ Tn → E is therefore a commutative diagram

F (0,0) // F (0,1) //

��

⋯ // F (0, n − 1) //

��

F (0, n)
��

F (1,1) // ⋯ // F (1, n − 1) //

��

F (1, n)
��⋱ ⋮

��

⋮

��
F (n − 1, n − 1) // F (n − 1, n)

��
F (n,n)

formed by objects F (i, j) ∈ E and morphisms F (i, j) → F (k, l) given whenever i ≤ k and
j ≤ l. Let Wn(E) be the full subcategory in Fun(Tn,E) formed by diagrams F as above
satisfying the following properties:

(W1) For every 0 ≤ i ≤ n, we have F (i, i) ≃ 0.
(W2) All horizontal morphisms are in M, and all vertical morphisms are in E.

(W3) Each square in the diagram is biCartesian.

Let Sn(E) be the subcategory in Wn(E) formed by all objects and their isomorphisms.
One easily verifies that the construction SnE is functorial in [n] and defines a simplicial
category (groupoid) S●E . We call it the Waldhausen simplicial groupoid of E . Assume that E
is small. Passing to the classifying spaces, we then obtain a simplicial space S●(E) = BS●(E)
which we call the Waldhausen space of E .

Proposition 2.4.8. For any small proto-exact category E the Waldhausen space S●(E) is
2-Segal.
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Proof. Informally, an object of Sn(E) orWn(E) can be seen as an object F (0, n) of E equipped
with an “admissible filtration” of length n together with a specified choice of quotient objects.
More precisely, Let Mn, resp. En be the groupoid formed by chains of (n − 1) admissible
mono- resp. epi-morphisms and by isomorphisms of such chains.

Lemma 2.4.9. (a) The functor µn ∶ Sn(E)→Mn which associates to F the subdiagram

F (0,1)Ð→ F (0,2)Ð→ ⋯Ð→ F (0, n),
is an equivalence.

(b) Similarly, the functor ǫn ∶ Sn(E) → En which associates to F the subdiagram

F (0, n)Ð→ F (1, n)Ð→ ⋯Ð→ F (n − 1, n),
is an equivalence.

Proof. (a) Given a sequence of objects F (0, i) and monomorphisms as stated, we first put
F (i, i) = 0 for all i, and then define the F (i, j) inductively, filling the second (from top)
row left to right, then the third (from top) row left to right, etc. by successively forming
coCartesian squares using (PE4) :

F (1,2) = limÐ→ E
⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (0,1) → F (0,2)
↓

F (1,1)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, F (1,3) = limÐ→ E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (0,2) → F (0,3)
↓

F (1,2)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

etc.

This gives a functor which is quasi-inverse to µn.
(b) Similar procedure, by successively forming Cartesian squares using (PE3).

We now prove the proposition. Write Sn for Sn(E). To prove that S(E) is 2-Segal, it
suffices to verify the conditions in Part (4) of Proposition 2.3.2. Using Proposition 1.3.8, we
rewrite these conditions in terms of 2-fiber products of categories. That is, it is enough to
prove that the functors

Φj ∶ Sn Ð→ S{0,1,...,j} ×(2)S{0,j} S{j,j+1,...,n}, j = 2, ..., n − 1,
Ψi ∶ Sn Ð→ S{0,1,...,i,n} ×(2)S{i,n} S{i,i+1,...,n}, i = 1, ..., n − 2,

are equivalences. In order to prove that Φj is an equivalence, we include it into a commutative
diagram

Sn
Φj //

µn

��

S{0,1,...,j} ×(2)S{0,j} S{j,j+1,...,n}
µj×µn−j+1

��

Mn

φj // Mj ×(2)S{0,j} Mn−j+1

with vertical arrows being equivalences by Lemma 2.4.9. Now, the functor φn is obviously
an equivalence: two objects

{F (0,1)→ ... → F (0, j)} ∈Mj, {F ′(0, j)→ ...→ F ′(0, n)} ∈Mn−j+1
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together with an isomorphism F (0, j) → F ′(0, j) combine canonically to give an object of
Mn. Therefore Φj is an equivalence as well.

In order to prove that Ψi is an equivalence, we include it into a similar diagram with
bottom row

En
ψiÐ→ Ei ×(2)S{i,n} En−i+1

via the equivalences ǫn and ǫi × ǫn−i+1. Again, ψi is an equivalence for obvious reasons.
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2.5 Unital 2-Segal spaces

Recall from the Universality Principle 2.1.8 that in the context of 1-Segal spaces, a semi-
simplicial space X corresponds to a nonunital higher category. The existence of a simplicial
structure on X implies the existence of units. For 2-Segal spaces, the situation is more
subtle. The existence of a simplicial structure is not sufficient to give a reasonable notion of
units – we require an additional condition which we introduce in this section.

For n ≥ 2 and 0 ≤ i ≤ n − 1, consider the commutative square

[n − 1] {i}oo

[n]
σi

OO

{i, i + 1}.oo

OO

in ∆, where σi denotes the i-th degeneracy map, so that σi is surjective and σ−1i (i) = {i, i+1}.
Given a simplicial space X , we have an induced square

(2.5.1) Xn−1
//

��

X{i}

��
Xn

// X{i,i+1}

of topological spaces.

Definition 2.5.2.Let X be a 2-Segal simplicial space. We say X is unital if, for every n ≥ 2
and 0 ≤ i < n, the square (2.5.1) is homotopy Cartesian.

We have the following strengthening of Proposition 2.3.3.

Proposition 2.5.3. Every 1-Segal simplicial space is a unital 2-Segal simplicial space.

Proof. We can refine the square (2.5.1) to the diagram

Xn−1
fn−1 //

��

X{0,1} ×RX{1} ⋅ ⋅ ⋅ ×RX{n−2} X{n−2,n−1} //

��

X{i}

��
Xn

fn // X{0,1} ×RX{1} ⋅ ⋅ ⋅ ×RX{n−1} X{n−1,n} // X{i,i+1},

where fn−1 and fn are 1-Segal maps and hence by assumption weak equivalences. In partic-
ular, the lefthand square of (2.5.1) is homotopy Cartesian. The righthand square of (2.5.1)
is homotopy Cartesian by inspection, and we therefore deduce that (2.5.1) is homotopy
Cartesian as well.

Examples 2.5.4. (a) As a special case of Proposition 2.5.3, we obtain that the nerve of a
small category is a unital 2-Segal simplicial set.
(b) The Waldhausen space of a proto-exact category E is a unital 2-Segal simplicial space.
(c) If X,X ′ are unital 2-Segal simplicial spaces, then so is their product X ×X ′.
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2.6 The Hecke-Waldhausen space and relative group cohomology

For a small groupoid G we denote by π0(G) the set of isomorphism classes of objects of G.
Let G be a group acting on the left on a set E. Then we have the quotient groupoid G//E.
It has Ob(G//E) = E, with HomG//E(x, y) being the set of g ∈ G such that gx = y. Thus the
source and target diagram of G//E has the form

(2.6.1) Mor(G//E) = G ×E s //
t

// E = Ob(G//E) , s(g, x) = x, t(g, x) = gx.
In particular, π0(G//E) is the orbit space G/E.

For any n ≥ 0 consider En+1 with the diagonal action of G and put Sn(G,E) = G//En+1 to
be the corresponding quotient groupoid. The collection of categories (Sn(G,E))n≥0 is made
into a simplicial category S●(G,E) in an obvious way: the simplicial operations (functors)
∂i, si are defined by forgetting or repeating components of an element from En+1. We define
Sn(G,E) to be the classifying space of Sn(G,E), so S●(G,E) is a simplicial space which we
call the Hecke-Waldhausen space associated to G and E.

Example 2.6.2. (a) Let E = G/K, where K ⊂ G is a subgroup. Let e ∈ G/K be the
distinguished point (corresponding toK itself). Any element (x0, ..., xn) ∈ En can be brought
by an appropriate g ∈ G to an element (x′0, ..., x′n) with x0 = e, and such a g is defined uniquely
up to left multiplication by K. This means that we have an equivalence of categories

Sn(G,E) = G//(G/K)n+1 ≃K//(G/K)n.
In particular,

π0(S0(G,E)) = pt, π0(S1(G,E)) =K/G/K.
If K = G, then E = G/G = pt, and Sn(G,G/G) = BG for each n. In other words,

S●(G,G/G) is the constant simplicial space corresponding to BG.
If K = {1}, then E = G. In this case G acts freely on each Gn+1, so Sn(G,G) is the discrete

category corresponding to the set G/Gn+1 = NnG. In other words, S●(G,G) = ≺NG≻ is the
discrete simplicial space corresponding to the simplicial set NG.
(b) Let k be a field, and k[[t]] resp. k((t)) be the ring, resp. field of formal Taylor, resp.

Laurent series with coefficients in k. Fix r ≥ 1 and let G = GLr(k((t))). Put K = GLr(k[[t]]).
Then E = G/K can be identified with the set of lattices (free k[[t]]-submodules of rank r)
L ⊂ k((t))r . This set is partially ordered by inclusion, and the action of G preserves the order.
Put

En+1
≤ = {(L0, ...,Ln) ∈ En+1∣L0 ⊂ ⋯ ⊂ Ln},

and further put S≤n(G,E) = G//En+1
≤ . This gives a simplicial subcategory S≤● (G,E) ⊂

S●(G,E). On the other hand, let A be the abelian category of finite-dimensional k[[t]]-
modules. We then have a functor of simplicial categories

S≤● (G,E)Ð→ S●(A), (L0 ⊂ ⋯ ⊂ Ln)z→ (Lj/Li)i≤j.
This makes it natural to think of S●(G,E) for general G and E as a group-theoretic analog
of the Waldhausen space.
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Proposition 2.6.3. The simplicial space S●(G,E) is 1-Segal.

Proof. Let Sn = Sn(G,E). By Proposition 1.3.8, it suffices to verify the 1-Segal condition at
the level of groupoids, i.e., show that the natural functor

φn ∶ Sn Ð→ S1 ×(2)S0 S1 ×(2)S0 ⋯×(2)S0 S1 (n − 1 times)
is an equivalence of categories. Explicitly, an object of the iterated 2-fiber product on the
right is a set of data
(2.6.4)

((x(0)0 , x
(0)
1 ), (x(1)1 , x

(1)
2 ), ..., (x(n−1)n−1 , x

(n−1)
n ), g1, ..., gn−1), x

(i)
ν ∈ E,gi ∈ G,gi(x(i)i+1) = x(i+1)i+1 .

A morphism from such a set of data to another one, say to

((y(0)0 , y
(0)
1 ), (y(1)1 , y

(1)
2 ), ..., (y(n−1)n−1 , y

(n−1)
n ), h1, ..., hn−1)

is a sequence (γ1, ..., γn−1) of elements of G such that

(2.6.5)
γi(x(i)ν ) = y(i)ν , i = 0, ..., n − 1, ν = i, i + 1;

γi+1gi = hiγi, i = 0, ..., n − 2.
The functor φn takes an object (x0, ..., xn) ∈ Sn = G//En+1 into the system of data consisting
of

(2.6.6)
x
(0)
0 = x0, x

(0)
1 = x

(1)
1 = x1,⋯, x(n−2)n−1 = x

(n−1)
n−1 = xn−1, x

(n−1)
n = xn,

g1 = ⋯ = gn−1 = 1.
A morphism (x0, ..., xn) → (y0, ..., yn) in Sn corresponding to g ∈ G such that g(xi) = yi, is
sent into the sequence (γ1, ..., γn−1) with all γi = g.

We now prove that φn is fully faithful. Let (x0, ..., xn) and (y0, ..., yn) be two objects of
Sn and (γ1, ..., γn−1) be a morphism between the corresponding systems (2.6.6). Then the
second condition in (2.6.5) gives γi+1 = γi for each i = 0, ..., n − 2, so all γi = g for some g ∈ G,
whence the statement.

We next prove that φn is essentially surjective. Indeed, for any object (2.6.4) of the
iterated 2-fiber product as above we have an isomorphism

φn(x(0)0 , g−11 (x(1)1 ), g−11 g−12 (x(2)2 ), ..., g−11 ...g−1n−1(x(n−1)n−1 ), g−11 ...g−1n−1(x(n−1)n )) Ð→
((x(0)0 , x

(0)
1 ), (x(1)1 , x

(1)
2 ), ..., (x(n−1)n−1 , x

(n−1)
n ), g1, ..., gn−1)

given by γi = gigi−1...g1. This finishes the proof of the proposition.

We now consider ∣S●(G,E)∣, the realization of the simplicial space S●(G,E). As each
space Sn(G,E) is, in its turn, the realization of the nerve of Sn(G,E), we have a bisimplicial
set S●●, with

Snm = NmSn(G,E)
being the set of chains of m composable morphisms in Sn(G,E). Then ∣S●(G,E)∣ = ∥S●●∥ is
the double realization (or, what is the same, the realization of the diagonal) of S●●.
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Proposition 2.6.7. The space ∣S●(G,E)∣ is homotopy equivalent to BG.

Proof. Consider the simplicial space S′● formed by the realizations of the slices of S●● with
respect to the second simplicial direction: S′m = ∣Sm●∣. Then ∣S′●∣ = ∥S●●∥ = ∣S●(G,E)∣. To
prove our statement, it suffices to construct, for each m, a homotopy equivalence between
S′m and the set NmG = Gm (considered as a discrete topological space), in a way compatible
with simplicial operations. To do this, notice that (2.6.1) applied to En instead of E, implies
that Smn = Gm ×En, and the simplicial operations in the n-direction consist of forgetting or
repeating elements of E. In other words, Sm● = Gm × (∆E)′, where (∆E)′ is the fat simplex
(Example 1.2.4), known to be contractible. So S′m = Gm × ∣(∆E)′∣ → Gm is a homotopy
equivalence.

Remark 2.6.8. In fact, Proposition 2.6.7 can be refined to identify the higher category
modelled by X = S●(G,E). A straightforward calculation shows that, the homotopy category
hX is given by the category with set of objects E, and, for every pair of elements e, e′, the
set HomhX(e, e′) can be identified with G. The composition is given by the composition law
of the group G. Therefore, the category hX is equivalent to the groupoid with one object
and endomorphism set G. Further, the mapping spaces (2.1.6) associated to X are unions
of contractible components. These observations imply that the higher category modelled by
the 1-Segal space X is in fact weakly equivalent to the ordinary category hX . Therefore,
the completion of the 1-Segal space X is simply given by the constant simplicial space BG.
In particular, the higher category associated to X does not depend in any way on the action
of G on the set E.

However, since the 1-Segal space X is not complete, it captures information which is lost
after passing to the completion. This information is retained if we interpret X as a 2-Segal
space. As such, the Hecke-Waldhausen space will reappear in §8.2, where we explain its
relevance for Hecke algebras.

Remark 2.6.9.Let K ⊂ G be a subgroup. The simplicial space S●(G,G/K) with realization
BG is a group-theoretic analog of the filtered complex used to construct the Hochschild-Serre
spectral sequence (HSSS) for a Lie algebra with respect to a Lie subalgebra [Fuk86]. More
precisely, for a G-module A the relative cohomology groupsHn(G,K;A) are defined by means
of the cochain complex

Cn(G,K;A) =MapG((G/K)n+1,A), (df)(ḡ0, ..., ḡn+1) = n+1∑
i=0

(−1)if(ḡ0, ..., ̂̄gi, ..., ḡn+1),
see [Ada54, Hoc56]. On the other hand, A defines an obvious functor from Sn(G,G/K)
to abelian groups (each object goes to A, each morphism corresponding to g ∈ G goes
to g ∶ A → A) and so gives a local system An on Sn(G,G/K). These local systems are
compatible with the simplicial maps so give a local system A● on S●(G,G/K) and thus a
spectral sequence

E
pq
1 =H

q(Sp(G,G/K);Ap)⇒ Hp+q(∣S●(G,G/K)∣;A●) = Hp+q(G;A),
E
p0
2 = H

p(G,K;A).
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This is an analog of the group-theoretic HSSS for the case of a not necessarily normal
subgroup. Cf. [BH62] where a spectral sequence like this was constructed using “relative
homological algebra”.
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3 Discrete 2-Segal spaces

In this chapter we study the 2-Segal condition in the more immediate, non-homotopy setting:
that of semi-simplicial sets, not spaces. A semi-simplicial set Y will be called 2-Segal, if ≺Y ≻,
the discrete semi-simplicial space associated to Y , is 2-Segal. This simply means that for
any n ≥ 2 and any triangulation T of the (n+1)-gon Pn, the map fT ∶ Yn Ð→ YT is a bijection
of sets.

Let C be any category with finite projective limits. A semi-simplicial object Y = (Yn) ∈
C∆inj

will be called 2-Segal, if, for any object U ∈ C the semi-simplicial set

HomC(U,Y ) = (HomC(U,Yn))n≥0
is 2-Segal. Alternatively, for any triangulation T as above we define an object YT ∈ C as a
projective limit in C, and the condition is that each fT is an isomorphism in C. In particular,
we can speak about 2-Segal schemes, analytic spaces etc.

3.1 Examples: Graphs, Bruhat-Tits complexes

We start with some very simple examples and then provide several generalizations.

Example 3.1.1. (a) We say that a simplicial set Y is 1-skeletal, if all simplices of Y of
dimension ≥ 2 are degenerate. We will also refer to 1-skeletal simplicial sets as oriented
graphs. If T is a triangulation of Pn as above, we include fT into a commutative diagram

Yn
fT //

$$❏
❏❏

❏❏
❏❏

❏❏
❏ YT

��
Y{0,n} = Y1

If Y is 1-skeletal, then the two other arrows in the diagram are bijections, which implies that
fT is a bijection, so Y is 2-Segal.

(b) An oriented graph Y is 1-Segal if and only if it has no pair of composable arrows (this
includes arrows whose source and target coincide, as such an arrow is considered composable
with itself).

Applying Proposition 2.3.4, we obtain the following:

Corollary 3.1.2. Any finite product of oriented graphs is 2-Segal.

Definition 3.1.3. (a) A Z+-order on a set I is a pair (≤, F ), where ≤ is a partial order on I,
and F ∶ I → I is an order-preserving map. A Z-order is a Z+-order such that F is a bijection.

(b) Given a Z+-ordered set I, its building Bld(I) is defined to be the simplicial subset in
N(I,≤), the nerve of I, whose n-simplices are chains

a0 ≤ a1 ≤ ⋯ ≤ an ≤ F (a0).
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Proposition 3.1.4. For any Z+-ordered set I, the building Bld(I) is 2-Segal.

Proof. Let T be a triangulation of the (n + 1)-gon Pn. As Bld(I) is a simplicial subset in
N(I), we have the commutative diagram

Bldn(I) ⊂ //

fT ,Bld(I)

��

Nn(I)
fT ,N(I)
��

BldT (I) ⊂ // NT (I)
As the nerve of any category, N(I) is 1-Segal and therefore 2-Segal, so fT ,N(I) is a bijection.
This implies that fT ,Bld(I) is an injection.

Let us prove surjectivity. Let σ ∶ ∆T → Bld(I) be a membrane in Bld(I) of type T . As
N(I) is 2-Segal, there is a unique n-simplex Σ ∈ Nn(I) which maps to σ under fT ,N(I). This
simplex is a chain of elements a0 ≤ ⋯ ≤ an. Let us prove that Σ ∈ Bldn(I), i.e., that the
additional condition an ≤ T (a0) is satisfied. For this, look at the unique triangle {0, j, n} of
T which contains the side {0, n} of Pn. The image of this triangle under σ is a 2-simplex of
Bld(I), i.e., a triple of elements of I of the form

a0 ≤ aj ≤ an ≤ T (a0),
so the additional condition is indeed satisfied.

Example 3.1.5.Let k be a field. Denote by K = k((t)) and O = k[[t]] be the field of
formal Laurent series and the ring of formal Taylor series with coefficients in k. Fix a
finite-dimensional K-vector space V and let d = dim(V ). By a lattice in V we mean a free
O-submodule L ⊂ V of rank d. Let Γ = Γ(V ) be the set of all lattices in V . The group
GL(V ) acts transitively on Γ. For the coordinate vector space V =Kd the set Γ is identified
with the coset space GLd(O)/GLd(K). The set Γ is partially ordered by inclusion. Define
a bijection F ∶ Γ → Γ by F (L) = t−1L. With this data, Γ becomes a Z-ordered set. The
building Bld(Γ) is known as the Bruhat-Tits building of V and denoted BT(V ). By the
above, BT(V ) is 2-Segal.
Example 3.1.6.Consider the simplicial subset A ⊂ BT(Kd) whose vertices are lattices of
the form

ti1O ⊕⋯⊕ tidO, (i1, ..., id) ∈ Zd
and higher-dimensional simplices are all chains of such lattices satisfying the condition

L0 ⊂ L1 ⊂ ⋯ ⊂ Ln ⊂ t−1L0.

This subset is known as the standard apartment in the building BT(Kd).
Let IZ be the oriented graph with the set of vertices Z and one oriented edge from i to

i + 1 for each i, so that ∣IZ∣ is the subdivision of R into unit intervals:

⋯ Ð→ ●Ð→ ●Ð→ ●Ð→⋯
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Then A is isomorphic to the dth Cartesian power IdZ, which is 2-Segal by Corollary 3.1.2.
The building BT(Kd) is the union of the translations of A under the elements of GLd(K).

See [Bro89, GI63] for more details.

Proposition 3.1.7. Let Y be a simplicial set and G be a group acting on Y by automor-
phisms of simplicial sets. Suppose that the G-action on each Yn is free. Then the quotient
simplicial set

G/Y = (G/Yn)n≥0
is 2-Segal if and only if Y is 2-Segal.

Proof. Suppose Y is 2-Segal. To prove that G/Y is 2-Segal, means to show that for any
n ≥ 2 and any triangulation T of Pn, any morphism of simplicial sets σ ∶ ∆T → G/Y can
be uniquely extended to a morphism Σ ∶ ∆n → G/Y (such a morphism in the same as an
n-simplex). To indeed show this, suppose that T , σ are given. Because G acts on each Yn
freely, the canonical projection π ∶ Y → G/Y induces an unramified covering of geometric
realizations. Since Pn = ∣∆T ∣ is simply connected, σ has a lifting σ̃, as in the diagram:

∆n Σ̃ // Y

π

��
∆T

σ //

incl.

OO
σ̃

<<②②②②②②②②②
G/Y

Since Y is 2-Segal, σ̃ can be uniquely extended to a morphism Σ̃ as in the diagram. Then
Σ = π ○ Σ̃ is a required extension of σ. This proves that an extension exists. To show
uniqueness, suppose Σ′,Σ′′ are two extensions of σ. Because both ∆T and ∆n are simply
connected, we can find liftings Σ̃′, Σ̃′′ ∶∆n → Y which restrict to the same lifting σ̃ ∶ ∆T → Y

of σ and must therefore be equal. This equality implies that Σ′ = Σ′′.
This proves that G/Y is 2-Segal, if Y is. The proof in the opposite direction is similar

and left to the reader.

We apply this to the action of G = Z on BT(V ) generated by the transformation F which
acts on simplices as follows:

F (L0, ...,Ln) = (tL0, ..., tLn).
Clearly, this action is free. The apartment InZ is preserved under the action, and F acts on
Zd, the set of its vertices, by adding the vector (1, ...,1). We denote by

BT(V ) = Z/BT(V ), I
d

Z = Z/IdZ
the quotient simplicial sets. By Proposition 3.1.7 they are 2-Segal.
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3.2 The twisted cyclic nerve

Let C be a small category and F ∶ C → C be an endofunctor. The F -twisted cyclic nerve of
C is the simplicial set NFC with NF

n C being the set of chains of arrows in C of the form

(3.2.1) Σ = {x0 u01Ð→ x1
u12Ð→ x2

u23Ð→⋯ un−1,n
Ð→ xn

un0Ð→ F (x0)}.
The simplicial structure is defined as follows. For Σ as above and 1 ≤ i ≤ n the chain ∂i(Σ)
is obtained from Σ by omitting xi and composing the two arrows going in and out of it. For
i = 0 we put

∂0(Σ) = {x1 u12Ð→ x2
u23Ð→ x3

u34Ð→⋯ un−1,n
Ð→ xn

un0Ð→ F (x0) F (u01)Ð→ F (x1)}.
For any 0 ≤ i ≤ n the chain si(Σ) is obtained from Σ by replacing xi with the fragment

xi
IdÐ→ xi. One verifies directly that the simplicial identities hold.

Examples 3.2.2. (a) If C = (I,≤) is a poset, then F is a monotone map, so (I,F ) is a
Z+-ordered set and NFC = Bld(I) is the building associated to it (Definition 3.1.3).

(b) The twisted cyclic nerve N IdC corresponding to F = IdC, will be called simply the
cyclic nerve of C and denoted NC(C), see [Dri04]. In the case when C has one object (i.e.,
reduces to a monoid), the cyclic nerve is a particular case of the cyclic bar-construction of
Waldhausen [Wal79, §2.3].

(c) Assume that C is a groupoid. In this case NC(C) is identified with the nerve of the
functor category

LC = Fun(Z,C),
where Z is the additive group of integers considered as a category with one object. This
category is a groupoid, known as the inertia groupoid of C. This observation is essentially
due to D. Burghelea [Bur85] who treated the case when C = G is a group considered as a
category with one object. In this case

Ob(LC) = G, HomLC(g, g′) = {u ∈ G ∶ g′ = ugu−1},
so isomorphism classes of objects in LC are the same as conjugacy classes in G.

Theorem 3.2.3. For any small category C and any endofunctor F ∶ C → C, the simplicial
set NFC is 2-Segal.

Proof. Denote X = NFC. Let T be a triangulation of the polygon P = Pn with vertices
0,1, ..., n. We need to prove that fT ,X ∶ Xn → XT is a bijection. By induction in n we can
assume that the statement is true for any triangulation of any Pm with m < n. Now, looking
at the unique triangle {0, i, n} of T containing the edge {0, n}, we see that there is 0 < i < n
such at least one of the two pairs {0, i}, {i, n} is an edge of T . Assume that the first pair is
an edge, the second case is treated similarly.
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Lemma 3.2.4. The map

g ∶ Xn Ð→X{0,1,...,i} ×X{0,i} X{0,i,i+1,...,n}
is a bijection.

The lemma implies bijectivity of fT ,X . Indeed, the edge {0, i} subdivides P into two sub-
polygons: P ′, with vertices 0,1, ..., i, and P ′′, with vertices 0, i, i + 1, ..., n. The triangulation
T induces then triangulations T ′,T ′′ of P ′, P ′′, and XT = XT ′ ×X{0,i} XT ′′ . The map fT ,X is
therefore the composition of g and

fT ′,X × fT ′′,X ∶X{0,1,...,i} ×X{0,i} X{0,i,i+1,...,n} Ð→XT ′ ×X{0,i} XT ′′ =XT ,
which is a bijection by the inductive assumption.
Proof of the lemma: We first prove that g is injective. Given an n-simplex of X , i.e., a chain
Σ as in (3.2.1), the two simplices corresponding to it via g, are the chains

(3.2.5)
Σ′ = {x0 u01Ð→ x1

u12Ð→ ⋯ ui,i−1
Ð→ xi

ui0Ð→ F (x0)},
Σ′′ = {x0 v0iÐ→ xi

vi,i+1
Ð→ ⋯ vn,n−1

Ð→ xn
vn0Ð→ F (x0)},

such that vp,p+1 = up,p+1, i ≤ p ≤ n − 1 and, in addition,

(3.2.6) v0i = ui−1,i ○ ui−2,i−1 ○ ⋯ ○ u01, ui0 = vn0 ○ vn−1,n ○⋯ ○ vi,i+1.
Among the arrows of these two chains, we find all the arrows in Σ, which shows the injectivity
of g.

We next prove that g is surjective. Suppose we have two chains Σ′ and Σ′′ as in (3.2.5).
The fact that the simplices represented by these chains have a common edge {0, i}, means
that we have (3.2.6) But this precisely means that putting up,p+1 = vp,p+1, i ≤ p ≤ n − 1, we
define a chain Σ such that g(Σ) = (Σ′,Σ′′). This finishes the proof of the lemma and of
Theorem 3.2.3.
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3.3 The multivalued category point of view

Let C be a category with fiber products. By a span (or correspondence) between two objects
Z,Z ′ of C we will mean a diagram

(3.3.1) σ = {Z s←ÐW
p
Ð→ Z ′}

and write σ ∶ Z ///o/o/o Z ′ . All spans from Z to Z ′ form a category SpanC(Z,Z ′), with mor-
phisms being commutative diagrams

W1

s1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

f

��

p1

!!❈
❈❈

❈❈
❈❈

Z Z ′

W2

s2

``❆❆❆❆❆❆❆❆ p2

==⑤⑤⑤⑤⑤⑤⑤⑤

The composition of two spans

σ′ = {Z ′ s′←ÐW ′ p′

Ð→ Z ′′} and σ = {Z s←ÐW
p
Ð→ Z ′}

is defined by taking the fiber product:

σ′ ○ σ = {Z s←ÐW
prW←ÐW ×Z′W ′ prW ′Ð→ W ′ p′

Ð→ Z}.
Composition is associative: for any three spans of the form

Z
σ ///o/o/o Z ′

σ′ ///o/o/o Z ′′
σ′′ ///o/o/o Z ′′′

the spans (σ′′○σ′)○σ and σ′′○(σ′○σ) are connected by a natural isomorphism in the category
SpanC(Z,Z ′′′).

One can express these properties more precisely by saying that the collection of categories
SpanC(Z,Z ′) and composition functors connecting them, forms a bicategory SpanC with the
same objects as C. This bicategory was introduced by Benabou [Bén67].

Remark 3.3.2.A span (3.3.1) in the category of sets can be thought of as a “multivalued
map” from Z to Z ′, associating to z ∈ Z the set s−1(z) (which is mapped into Z ′ by p). As
s−1(z) may be empty, this understanding of “multivalued” includes “partially defined”.

Definition 3.3.3.Amultivalued category (a µ-category, for short) is a a weak category object
in the bicategory SpanSet.

Explicitly, a µ-category is a datum C consisting of:

(µC1) Sets C0,C1 (objects and morphisms of C) and maps s, t ∶ C1 → C0 (source and target).
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(µC2) A span µ ∶ C1 ×C0
C1

///o/o/o C1 in Set (multivalued composition).

(µC3) An isomorphism (associator)

α ∶ µ ○ (µ × Id)Ð→ µ ○ (Id×µ) in SpanSet(C1 ×C0
C1 ×C0

C1,C1).
(µC4) A map e ∶ C0 → C1 (unit) and isomorphisms

λ ∶ µ ○ (et, Id)Ð→ Id, ρ ∶ µ ○ (Id, es)Ð→ Id

in SpanSet(C1,C1) (left and right unitality).

These data are required to satisfy the properties familiar from the theory of monoidal cate-
gories and bicategories:

(µC5) (Mac Lane pentagon constraint) The diagram

µ ○ ((µ ○ (µ × Id)) × Id)
µ○(α×Id)

**❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱
(µ×Id× Id)∗α

tt❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤

µ ○ (µ × µ)
(Id× Id×µ)∗α

��

µ ○ ((µ ○ (Id×µ)) × Id)
(Id×µ×Id)∗α
��

µ ○ (Id×(µ ○ (Id×µ))) µ ○ (Id×(µ ○ (µ × Id)))µ○(Id×α)oo

in the category SpanSet(C1 ×C0
C1 ×C0

C1 ×C0
C1,C1) is commutative.

(µC6) (Unit coherence) The following diagram in SpanSet(C1 ×C0
C1,C1) is commutative:

µ ○ (µ ○ (Id, es) × Id)
α(Id×et×Id)

��

µ(ρ×Id)

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙

µ ○ (Id×µ ○ (et, Id))
µ(Id×λ)

// µ

Remarks and Complements 3.3.4. (a) By a µ-semicategorywe will mean a “µ-category
but possibly without units”, i.e., the datum of (µC1-3) satisfying the condition (µC5).
(b) As usual, we will use the term µ-monoid, resp µ-semigroup to signify a µ-category

(resp. a µ-semicategory) C with one object, i.e., with C0 = pt.
(c) Given any category C with fiber products, one can speak about µ-categories in C

by replacing morphisms and spans in Set by morphisms and spans in C. Similarly for µ-
semicategories, µ-monoids, µ-semigroups.

Definition 3.3.5.Let C,D be two µ-categories with composition spans

µC ∶ C1 ×C0
C1

///o/o/o C1, µD ∶D1 ×D0
D1

///o/o/o D1.
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A (single-valued) functor F ∶ C → D is a datum of maps Fi ∶ Ci → Di, i = 0,1, commuting
with s, t, e, and of a morphism of spans

F̃2 ∶ F1 ○ µC Ð→ µD ○ (F1 ×F0
F1), F̃2 ∈ SpanSet(C1 ×C0

C1,D1),
commuting with α,λ and ρ. We denote by µCat the category formed by µ-categories and
their functors.

Similarly, a functor F ∶ C → D between two µ-semicategories is a datum of F0, F1 com-
muting with s, t and of F̃2 commuting with α. We denote by µSCat the resulting category
of µ-semicategories.

The following is the main result of this section.

Theorem 3.3.6. (a) The category of 2-Segal semi-simplicial sets is equivalent to µSCat.
(b) The category of unital 2-Segal simplicial sets is equivalent to µCat.

Proof. (a) Let X be a 2-Segal semi-simplicial set. We associate to X a µ-semicategory
C = C(X) as follows. We put Ci =Xi for i = 0,1. Further, we define the composition span in
C to be the diagram

(3.3.7) µ = { X1 ×X0
X1 X2

f2=(∂0,∂2)oo ∂1 // X1 }.
which we call the fundamental correspondence of X . To construct the associator α, let ν be
the span

ν = { X1 ×X0
X1 ×X0

X1 X3

(∂{2,3},∂{1,2},∂{0,1})oo
∂{0,3}// X1}.

Consider the two triangulations of the 4-gon:

T ′ = {{0,1,3},{1,2,3}} and T ′′ = {{0,1,2},{0,2,3}}
or, pictorially,

3 0oo

��
2

OO

1oo

^^❂❂❂❂❂❂❂

3 0oo

��✁✁
✁✁
✁✁
✁

��
2

OO

1oo

Since X is 2-Segal, these triangulations define isomorphisms of spans

µ ○ (µ × Id) fT ′←Ð ν
fT ′′Ð→ µ ○ (Id×µ).

We d efine α to be the morphism of spans

(3.3.8) α = fT ′′ ○ f−1T ′ ∶ µ ○ (µ × Id) ∼Ð→ µ ○ (Id×µ).
Proposition 3.3.9. Let X be any 2-Segal semi-simplicial set. Then α satisfies the pentagon
constraint (µC5), thus making C = C(X) into a µ-semicategory.
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Proof. Denote the Mac Lane pentagon in (µC5) byM. Consider also the pentagon P4 (not
to be confused withM) and its five triangulations, which we denote by Ti, i = 0, ...,4, so that
Ti consists of 3 triangles with common vertex i. Then the five spans in the vertices of M
have the form

(3.3.10) X1 ×X0
X1 ×X0

X1 ×X0
X1 XTi

(∂{0,1},∂{1,2},∂{2,3},∂{3,4})oo
∂{0,4} // X1 , i = 0, ...,4.

For instance, µ○((µ○(µ×Id))×Id) corresponds to T4, etc. The morphisms inM corresponds
to elementary flips of triangulations which connect Ti with Ti±2(mod 5).

Let now Π be the poset of all polyhedral subdivisions of the pentagon P4, ordered by
refinement, so that the Ti are the maximal elements. For j ≡ i±2(mod5) we denote by Pij the
subdivision consisting of one 4-gon and 1-triangle of which both Ti and Tj are refinements.
These Ti, Pij together with the subdivision consisting of P4 alone, exhaust all elements of Π,
so the nerve of Π looks like the barycentric subdivision of a pentagon or, more precisely of
the Mac Lane pentagonM.

As in Example 2.2.15 (b), we view any subdivision P ∈ Π as a subset of 2[4] and associate
to it the simplicial subset ∆P ⊂ ∆4 and the corresponding space (set, in our case) of mem-
branes XP ← X4. The correspondence P ↦XP is thus a covariant functor from Π to Set, so
we have a commutative diagram having the shape of the barycentric subdivision ofM:

(3.3.11)

X{01234} =X4 XT0

XT2

XT4

XT1

XT3

XP02

XP24

XP14

XP13

XP03

Because X is 2-Segal, all the maps in this diagram are bijections. Extending (3.3.10), for
each P ∈ Π we define F (P) to be the span in Set given by

X1 ×X0
X1 ×X0

X1 ×X0
X1 XP

(∂{0,1},∂{1,2},∂{2,3},∂{3,4})oo
∂{0,4} // X1
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The F (P) form then a commutative diagram of isomorphisms in SpanSet of the same shape
Π as (3.3.11). This diagram contains the Mac Lane pentagonM: any arrow F (Ti)→ F (Tj)
inM can be seen as the composite arrow

F (Ti)←Ð F (Pij)Ð→ F (Tj)
after reversing the isomorphism on the left. ThereforeM is commutative.

It is clear that a morphism of 2-Segal semi-simplicial sets X → Y defines a functor
C(X)→ C(Y ).

We now describe a reverse construction, associating to any µ-semicategory C a semi-
simplicial set N = NC. We put Ni = Ci for i = 0,1, and define N2 as the middle term of the
composition span:

µC = {C1 ×C0
C1

p
←Ð N2

q
Ð→ C1}.

Define maps ∂i ∶ N2 → N1, i = 0,1,2, by putting ∂1 = q and (∂0, ∂2) = p. Let also ∂1 = s, ∂2 =
t ∶ N1 → N0. These data make (Np)p≤2 into a semi-simplicial 2-skeleton, i.e., into a functor
∆inj[0,2]op → Set, where ∆inj[0,2] ⊂ ∆inj is the full subcategory on objects isomorphic to[0], [1], [2]. Therefore, for any triangulation T of the polygon Pn we can form the set

NT = lim←Ð{∆p↪∆T }p≤2
Np .

Recall that triangulations of Pn correspond to bracketed products of n factors. Note further
that NT fits into a span

C1 ×C0
⋯×C0

C1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

←Ð NT Ð→ C1

which is nothing but the bracketed iteration of µ corresponding to the triangulation T . So
the same argument as in the Mac Lane coherence theorem shows that we have a transitive
system of bijections fT ,T ′ ∶ NT → NT ′ coming from iterated applications of α. In particular,
for any 0 ≤ i < j < k < l ≤ n, the associator α gives a bijection

αijkl ∶ N{i,j,l} ×N{i,j} N{j,k,l} Ð→ N{i,k,l} ×N{i,k} N{i,j,k}.
Consider the limit

Ñn = lim←Ð{∆p↪∆n}p≤2
Np .

For an element x of Ñn and 0 ≤ i < j < k ≤ n we will denote by xijk the component of x
corresponding to the embedding ∆2 → ∆n sending 0 ↦ i, 1 ↦ j and 2 ↦ k. A monotone
injection φ ∶ [m] → [n] gives rise to the embedding of simplices, also denoted φ ∶ ∆m → ∆n.
Then composing with φ defines a map Ñn → Ñm, so Ñ is a semi-simplicial set.

Proposition 3.3.12. For n ≥ 0 let NnC ⊂ Ñn consist of x such that

(xikl, xijk) = αijkl(xijl, xjkl).
Then NC = (NnC)n≥0 is a semi-simplicial subset in Ñ . It is 2-Segal.
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Proof. Both statements follow from the Mac Lane coherence argument (the transitivity of
the bijections fT ,T ′ above).

We call NC the nerve of the µ-semi-category C.
Further, let F ∶ C → D be a functor of µ-semicategories. Note that the datum F̃2 in F

contains the same information as a map F2 making the following diagram commutative:

C1 ×C0
C1

F1×F0F1

��

N2 Coo

F2

��

// C1

F1

��
D1 ×D0

D1 N2Doo // D1

This implies that F gies rise to a morphism of semi-simplicial sets NF ∶ NC→ ND. Therefore
we have a functor from µSCat to the category of 2-Segal semi-simplicial spaces. It is now
straightforward to verify that the two functors are inverse to each other, thus finishing the
proof of part (a) of Theorem 3.3.6.

To prove part (b), assume that X is a unital 2-Segal simplicial set. We then make
C = C(X) into a µ-category as follows. The map e ∶ C0 → C1 is defined to be the degeneracy
map s0 ∶ X0 → X1. To construct the isomorphism λ, notice that µ ○ (et, Id), is, by definition,
the span X1 ← W → X1 at the bottom of the following diagram obtained by forming a
Cartesian square:

(3.3.13) X1 ×X0
X1 X2

(∂0,∂2)oo ∂1 // X1

X1

(s0∂0,Id)

OO

Woo

u

OO >>⑤⑤⑤⑤⑤⑤⑤⑤

We claim that W = X1, i.e., that the square

X1 ×X0
X1 X2

(∂0,∂2)oo

X1

(s0∂0,Id)

OO

X1
Idoo

s0

OO

is Cartesian. But this follows at once from the Cartesianity of the square

X1 X2
∂0oo

X0

s0

OO

X1
∂0

oo

s0

OO

which is the instance n = 2, i = 1 of the square (2.5.1) in the definition of “unital”. This
defines λ. The construction of ρ is similar, by using the instance n = 2, i = 0 of the square
(2.5.1). Further, the condition (µC6) follows by considering the instance n = 3, i = 1 of the
same square.
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Conversely, let C be a µ-category. We then make N = NC into a simplicial set as follows.
We define s0 ∶ N0 → N1 to be e and s0, s1 ∶ N1 → N2 to be given by the inverses of λ and ρ
respectively. More precisely, µ ○ (et, Id) is given by the correspondence a the bottom of the
diagram (3.3.13) with Xi = Ni, so λ gives a bijection λ ∶ W → N1, and we put s0 = uλ−1.
Similarly for s1 and ρ. This makes (Np)p≤2 into a functor on the full subcategory ∆[0,2] ⊂ ∆
on objects isomorphic to [0], [1], [2]. Further, Ñn can be identified with the limit

lim←Ð{∆p→∆n}p≤2
Np

taken over all, not necessarily injective morphisms, using the functoriality on ∆[0,2]. This
makes (Ñn)n≥0 into a simplicial set and N = (Nn)n≥0 is a simplicial subset so it inherits the
structure.

We now prove that 2-Segal simplicial set N is unital, i.e., the square (2.5.1) for X = N is
Cartesian for any n ≥ 2 and any i = 0, ..., n − 1. For n = 2 this is true because λ and ρ are
isomorphisms of spans. Let n > 2 and x ∈ Nn be such that the 1-face ∂{i,i+1}(x) is degenerate.
Then every 2-face ∂{j,i,i+1}(x), j < i or ∂{i,i+1,j}, j > i+1, is degenerate by the case n = 2 above.
Now, by construction, x is determined by the collection of its 2-faces, and we conclude that
x is itself in the image of si ∶ Nn−1 → Nn.

This concludes the proof of Theorem 3.3.6.
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3.4 The Hall algebra of a discrete 2-Segal space

The multivalued category C(X) associated to a 2-Segal set X , can often be “linearized” to
yield a linear category in the usual sense.

Let k be a field. For a set B let F0(B) be the set of all functions B → k with finite
support. For a map of sets φ ∶ B → B′ we have the pushforward map

φ∗ ∶ F0(B)Ð→ F0(B′), (φ∗f)(b′) = ∑
φ(b)=b′

f(b).
Call φ proper, if it has finite fibers. For a proper φ we also have the pullback map φ∗ ∶
F0(B′)→ F0(B). Any span σ in Set as in (3.3.1) with s proper, gives a linear map

(3.4.1) σ∗ = p∗s∗ ∶ F0(Z)Ð→ F0(Z ′).
Spans with the property that s is proper, are closed under composition. Moreover, compo-
sition of such spans gives rise to the composition of the corresponding linear maps.

Let X be a semi-simplicial set. For any a, a′ ∈ X0 we put

(3.4.2) Ba′

a = {b ∈ X1 ∶ ∂1(b) = a, ∂0(b) = a′} = { a b // a′ }
to be the set of 1-simplices going from a to a′. For any b, b′, b′′ ∈X1 we put

Cb′′

bb′ = {c ∈X2 ∶ ∂0(c) = b, ∂2(c) = b′, ∂1(c) = b′′}
to be the set of triangles in X with edges b, b′, b′′. A necessary condition for Cb′′

bb′ ≠ ∅ is that(b, b′, b′′) form a ∂∆2-triple, i.e., there are a, a′, a′′ ∈X0 such that b ∈ Ba′′

a′ , b
′ ∈ Ba′

a , b
′′ ∈ Ba′′

a :

a′

b

  ❆
❆❆

❆❆
❆❆

❆

a

b′
??⑧⑧⑧⑧⑧⑧⑧⑧

b′′
// a′′

In this case Cb′′

bb′ is contained in the set

Ka′

aa′′ = {c ∈ X2∣∂{0}(c) = a, ∂{1}(c) = a′, ∂{2}(c) = a′′}
of 2-simplices of X with vertices a, a′, a′′.

The following is a consequence of the construction of the associator map α from (3.3.8).

Corollary 3.4.3. Assume that X is 2-Segal, and let

z t
poo

w

��
y

u

OO

x
voo

be any system of 0- and 1-simplices of X with endpoints as indicated. Then α defines a
bijection of sets

αpuvw ∶ ∐
x
r
Ð→z

Cr
uv ×Cp

rw Ð→ ∐
t
s
Ð→y

Cp
us ×Cs

vw.

51



Assume now that X is a unital simplicial 2-Segal set such that the 1-Segal map f2 in
(3.3.7) is proper. This implies that each

cb
′′

bb′ ∶= ∣Cb′′

bb′ ∣ ∈ Z+
is a finite number. Moreover, for each b, b′ there are only finitely many b′′ such that cb

′′

bb′ ≠ 0.
In this situation we can associate to X a k-linear category H(X), which we call the Hall

category of X . By definition, objects of H(X) are vertices of X , i.e., elements of X0. The
abelian group HomH(X)(a, a′) is the k-vector space spanned by edges (1-simplices) b ∈ Ba′

a .
We denote by 1b the basis vector correspond to the edge u. The composition of morphisms
is given by “counting triangles”:

(3.4.4) 1b ∗ 1b′ =∑
b′′
cb
′′

bb′ ⋅ 1b′′ .

Alternatively, for a, a′, a′′ ∈ X0 consider the part of the fundamental correspondence (3.3.7)
dealing with simplices with vertices among a, a′, a′′:

(3.4.5) µa
′

aa′′ = {Ba′′

a′ ×Ba′

a

f2←ÐKa′

aa′′
∂1Ð→ Ba′′

a }.
Note that HomH(X)(a, a′) = F0(Ba′

a ) as a vector space. The composition in H(X) can be
written as follows:

F0(Ba′′

a′ )⊗F0(Ba′

a ) = F0(Ba′′

a′ ×Ba′

a ) (µ
a′

aa′′
)∗

Ð→ F0(Ba′′

a ),
where (µa′aa′′)∗ (action of a correspondence on functions) is defined by (3.4.1).

Proposition 3.4.6. The composition law (3.4.4) is associative and makes H(X) into a
k-linear category, with the unit morphism of a ∈ X0 = Ob(H(X)) given by 1s0(a), where
s0 ∶ X0 →X1 is the degeneration map.

Proof. The associativity of composition follows from Corollary 3.4.3 . The fact that 1s0(a) is
the unit morphism of a follows from Theorem 3.3.6 (b), since s0 ∶ X0 →X1 is the unit of the
µ-category C(X).
Remarks 3.4.7. (a) The particular case when X is 1-Segal corresponds to the map f2 being
not just proper but a bijection. In this case X is the nerve of a category C, and H(X) is the
k-linear envelope of C.

(b) If X is a 2-Segal semi-simplicial set, the above construction defines a k-linear semi-
categoryH(X): we still have vector spaces HomH(X)(a, a′) and associative composition maps
among them, but may not have identity morphisms.

Example 3.4.8 (The Hall algebra).For any vertex a ∈X0 we have therefore the associa-
tive algebra

H(X,a) = EndH(X)(a),
which we call the Hall algebra of a. In the case when X0 = pt the category H(X) is reduced
to this algebra which we then denote H(X) and call the Hall algebra of X itself.
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Example 3.4.9 (Algebra of factorizations).Let M be a monoid (semigroup with unit),
considered as a category with one object. By Theorem 3.2.3, the cyclic nerve NC(M) is a 2-
Segal simplicial set. Suppose that ∣M ∣ <∞. Then NC(M) satisfies the properness condition
and its Hall category H(NC(M)) is defined. Objects of this category, i.e., vertices of NC(S),
are elements of M . So for each w ∈M we have an associative algebra

Φw = H(NC(M),w),
which we call the algebra of factorizations of w. Its k-basis is labelled by edges of NC(M)
beginning and ending at w, i.e., by pairs (A,B) ∈M2 such that AB = BA = w (“factorizations
of w”). We denote by 1A,B the basis element corresponding to such a pair. Similarly, 2-
simplices with all three vertices equal to w correspond to “ triple factorizations”, i.e., triples

(α,β, γ) ∈M3, αβγ = βγα = γαβ = w,

with the face maps given by

∂0(α,β, γ) = (γα,β), ∂1(α,β, γ) = (α,βγ), ∂2(α,β, γ) = (αβ, γ).
Therefore the structure constants in the product

1A,B ∗ 1C,D = ∑
E,F

cEFABCD1E,F

are easily found to be given by

cEFABCD =
⎧⎪⎪⎨⎪⎪⎩
1, if ED = A,BE = C,DB = F ;
0, otherwise.

This means that
1A,B ∗ 1C,D = ∑

E∶ED=A,BE=C

1E,DB.
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3.5 The bicategory point of view.

The linearlization of the multivalued category C(X) described in §3.4 involves some loss of
information. Here we describe a related construction which avoids this loss and allows us
to “identify” 2-Segal sets with some particular 2-categorical structures in a more traditional
sense.

A. Action of correspondences on sheaves Let B be a set. By SetB we denote the
category of sets over B. Thus, an object of SetB consists of a set F and a map p ∶ F → B.
In particular, any b ∈ B gives rise to the one-element set {b} ∈ SetB.

One can view an object of SetB as a sheaf of sets on B as a discrete topological space.
The category SetB can therefore serve as a categorical analog of the vector space of functions
on B.

Any map of sets φ ∶ B → B′ gives rise to the pullback and pushforward functors

φ∗ ∶ SetB′ Ð→ SetB, φ∗{F ′ p′

Ð→ B′} = {F ×B′ B prBÐ→ B},
φ∗ ∶ SetB Ð→ SetB′ , φ∗{F p

Ð→ B} = {F φ○p
Ð→ B′}.

Any span in Set

σ = {Z s←ÐW
p
Ð→ Z ′}

gives a functor
σ∗ = p∗s∗ ∶ F0(Z)Ð→ F0(Z ′).

Proposition 3.5.1. For any two composable spans in Set

Z
σ ///o/o/o Z ′

σ′ ///o/o/o Z ′′

we have a natural isomorphism of functors

(σ′ ○ σ)∗ ⇒ σ′∗ ○ σ∗ ∶ F0(Z)Ð→ F0(Z ′′).
More precisely, these isomorphisms make the correspondence Z ↦ F0(Z), σ ↦ σ∗ into a
2-functor from the bicategory SpanSet into the bicategory Cat of categories.

Proof. Follows from the base change isomorphism for the pullbacks and pushforwards func-
tors corresponding to a Cartesian square of sets.

B. The Hall 2-category As in Example A.1, by a semi-bicategory we mean a structure
similar to a bicategory but without the requirements of existence of unit 1-morphisms.

Let X be a 2-Segal semi-simplicial set. We associate to X a semi-bicategory H = H(X)
(called the Hall 2-category of X) as follows. We put Ob(H) = X0. For a, a′ ∈ X0 we define
the category

HomH(a, a′) = SetBa′a .
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Here Ba′

a is defined by (3.4.2). The composition functors ⊗ are defined by

SetBa′′
a′
× SetBa′a

×Ð→ SetBa′′
a′
×Ba′a

(µa
′

aa′′
)∗

Ð→ SetBa′′a .

Here the partial fundamental correspondence µa
′

aa′′ is defined by (3.4.5) For example, on
one-element sets the composition has the form

{b}⊗ {b′} = ∐
b′′∈Ba′′a

Cb′′

bb′ × {b′′}, b ∈ Ba′′

a′ , b
′ ∈ Ba′

a ,

compare with the formula (3.4.4) for the Hall category. In other words, the sets Cb′′

bb′ appear
as Clebsch-Gordan multiplicity sets.

Further, the associator α for the fundamental correspondence µ, see (3.3.8), defines as-
sociativity isomorphisms

αF,G,H ∶ (F ⊗G)⊗H Ð→ F ⊗ (G⊗H).
Proposition 3.5.2. (a) For any 2-Segal semi-simplicial set X the functors ⊗ and the asso-
ciators αF,G,H make H(X) into a semi-bicategory.

(b) Let X be a unital 2-Segal simplicial set. Then the semi-bicategory H(X) is a bicate-
gory, with the unit 1-morphism of any object a ∈X0 being {s0(a)} ∈ SetBaa .
Proof. This is a direct consequence of Theorem 3.3.6 and of Proposition 3.5.1.

Example 3.5.3 (Hall monoidal categories). (a) Each 2-Segal semi-simplicial set X and
each vertex a ∈X0 gives rise therefore to a monoidal category

H(X,a) = (HomH(X)(a, a),⊗),
which has a unit object s0(a) if X is unital simplicial.

(b) Consider the case when X0 = pt. In this case the semi-bicategory H(X) is reduced
to the above monoidal category which we still denote H(X). As a category, H(X) = SetB,
where B = X1. This category has a final object: B itself (with the identity map to B). Note
that we have identifications

X0 = pt,X1 = B,X2 = B ⊗B,⋯,Xn = B⊗n,⋯

In other words, B⊗n ∈ SetB is identified with Xn

∂{0,n}
Ð→ X1 = B. More precisely, each tensor

power B⊗n should, strictly speaking, be understood with respect to some particular brack-
eting. Such bracketings correspond to triangulations T of the (n+1)-gon Pn. The bracketed
tensor product corresponding to T , is precisely XT

∂{0,n}
Ð→ X1 = B, which is identified with Xn

via the 2-Segal map fT .
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C. ⊔-semisimple bicategories We now want to characterize semi-bicategories appear-
ing as H(X) for 2-Segal semi-simplicial sets X .

A category V equivalent to SetB for some B, will be called ⊔-semisimple, and an object
of V isomorphic to (the image under such an equivalence of) an object of the form {b}, will
be called simple. We denote by ∥V∥ the set of isomorphism classes of simple objects of V.

A functor F ∶ V → W between ⊔-semisimple categories will be called additive, if it pre-
serves coproducts. An additive functor is called simple additive if, in addition, it takes
simple objects to simple objects. We denote by Cat⊔ the bicategory formed by ⊔-semisimple
categories, their additive functors and their natural transformation. Let also Cat⊔! be the
sub-bicategory on the same objects, simple additive functors and their natural transforma-
tions. Proposition 3.5.1 admits the following refinement.

Proposition 3.5.4. (a) For any span of sets Z
σ ///o/o/o Z ′ the functor σ∗ ∶ SetZ → SetZ′ is

additive. The correspondence Z ↦ SetZ, σ ↦ σ∗ extends to a 2-equivalence of bicategories
SpanSet → Cat⊔, the inverse 2-equivalence taking V to ∥V∥.

(b) Under the equivalence in (a), the category Set itself becomes 2-equivalent to the bi-
category Cat⊔!.

Proof. The main point in (a) is that any additive functor F ∶ SetZ → SetZ′ is isomorphic to

a functor of the form σ∗ for some span σ = {Z s← W
p
→ Z ′}. For this, we note that s−1(z),

z ∈ Z, is recovered as F ({z}). Part (b) is obvious.
Definition 3.5.5.A semi-bicategory C will be called ⊔-semisimple, if:

(1) Ob(C) is a set.

(2) Each category HomC(x, y) is ⊔-semisimple.

(3) The composition functors

⊗ ∶ HomC(y, z) ×HomC(x, y)Ð→ HomC(x, z)
are additive in each variable.

Next, we describe what kind of “morphisms” between ⊔-semisimple bicategories we want to
consider.

Recall, first of all, that a lax 2-functor Φ ∶ C→ D between two semi-bicategories consists
of a map Φ ∶ Ob(C)→ Ob(D), a collection of usual functors

Φ = Φc,c′ ∶HomC(c, c′)Ð→ HomD(Φ(c),Φ(c′))
and of natural morphisms (not required to be isomorphisms!)

ΦF,F
′ ∶ Φc,c′′(F ⊗F ′)Ð→ Φc′,c′′(F )⊗Φc,c′(F ′), F ∈HomC(c′, c′′), F ′ ∈ HomC(c, c′)

which commute with the associativity isomorphisms in C and D.
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Definition 3.5.6. (a) A lax 2-functor Φ between ⊔-semisimple semi-bicategories is called
admissible, if each functor Φx,y is simple additive.

(b) Two admissible 2-functors Φ,Ψ ∶ C→ D are called equivalent, if:

(1) We have Φ(c) = Ψ(c) for each c ∈ Ob(C).
(2) There exist equivalences of categories Tc,c′ and isomorphisms of functors Uc,c′,

given for all c, c′ ∈ Ob(C), of the form

HomD(Φ(c),Φ(c′))

Tc,c′

��

HomC(c, c′)
Φc,c′

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Ψc,c′ ))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

✤✤ ✤✤
�� Uc,c′

HomD(Ψ(c),Ψ(c′))
which commute with the ΦF,F

′
and ΨF,F ′ as well as with the associativity isomor-

phisms.

Remark 3.5.7.Assume that D is a bicategory, i.e., it has unit 1-morphisms. Then lax 2-
functors from C to D form themselves a bicategory Lax(C,D), cf. [Bén67]. The condition (2)
of Definition 3.5.6(b) can be reformulated in this case by saying that Φ and Ψ are equivalent
as objects of the bicategory Lax(C,D).

Let C be a ⊔-semisimple bicategory, so C has unit objects 1a ∈ HomC(a, a) for each
a ∈ Ob(C). We say that C has simple units, if each 1a is a simple object of HomC(a, a).
Theorem 3.5.8. The following categories are equivalent:

(i) The category of 2-Segal semi-simplicial sets (resp. unital 2-Segal simplicial sets).

(ii) The category of ⊔-semisimple semi-bicategories (resp. ⊔-semisimple bicategories with
simple units), with morphisms being equivalence classes of admissible lax 2-functors.

The equivalence takes a 2-Segal set X into its Hall 2-category H(X).
Proof. This is a consequence of Proposition 3.5.4 and Theorem 3.3.6. Indeed, a ⊔-semisimple
semicategory C gives rise to a µ-semicategory C = C(C) with

C0 = Ob(C), C1 = ∐
x,y∈Ob(C)

∥HomC(x, y)∥,
and µ obtained from ⊗ by applying Proposition 3.5.4(a). We leave further details to the
reader.
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Example 3.5.9 (The Clebsch-Gordan nerve).Let C be a ⊔-semisimple semi-bicategory.
The 2-Segal semi-simplicial set corresponding to C can be described as the nerve of the
µ-semicategory C(C), see Proposition 3.3.12. In terms of C itself, this means the following.

For any a, a′ ∈ Ob(C), choose a set (Eb) of simple generators of the ⊔-semisimple category
HomC(a, a′). Here b runs in some index set which we denote Ba′

a . By a Clebsch-Gordan
triangle we mean a 2-morphism (triangle) in C of the form

a′

Eb

  ❆
❆❆

❆❆
❆❆

❆

a
Eb′′

//

Eb′

u⇑

??⑧⑧⑧⑧⑧⑧⑧⑧
a′′

for some a, a′, a′′ ∈ Ob(C) and b ∈ Ba′′

a′ , b
′ ∈ Ba′

a , b
′′ ∈ Ba′′

a .
Let NC be the semi-simplicial nerve of C, so Nn C consists of commutative n-simplices

in C (Example A.1). Such a simplex will be called a Clebsch-Gordan n-simplex, if all its
2-faces are Clebsch-Gordan triangles. Defining CGNn(C) to be the set of Clebsch-Gordan
n-simplices, we get a semi-simplicial subset CGN(C) ⊂ NC which we call the Clebsch-Gordan
nerve of C. Then N(C(C)) = CGN(C). In particular, the Clebsch-Gordan nerve is 2-Segal.
Note that the nerve of a bicategory, even of a strict one, is not, in general, 2-Segal. It is the
requirement that all edges be labelled by simple objects that ensures the 2-Segal property.

D. Non-simple units We now discuss how to extend Theorem 3.5.8 to the case when
C has unit 1-morphisms but they are not simple. Note, first of all, that any ⊔-semisimple
bicategory C gives rise to a ⊔-semisimple monoidal category Mat(C) with

Ob(Mat(C)) = ∏
a,a′∈Ob(C)

HomC(a, a′).
Thus an object of Mat(C) can be seen as a matrix E = (Eaa′ ∶ a → a′) of 1-morphisms in C.
The monoidal operation ⊗ on Mat(C) is given by mimicking matrix multiplication

(E ⊗ F )aa′′ = ⊔
a′∈Ob(C)

Eaa′ ⊗Fa′a′′ .

The object 1 ∈ Mat(C) with 1aa = 1a and 1aa′ = ∅ for a ≠ a′, is a unit object but it is not
simple.

Proposition 3.5.10. Any ⊔-semisimple monoidal category (A,⊗) with a unit object 1 is
equivalent to Mat(C) where C is a ⊔-semisimple bicategory with simple units.

Proof. We assume A = SetB as a category. Let 1 = ⊔b∈B Ib × {b} for some sets Ib. Let A ⊂ B
be the set of b such that Ib ≠ ∅. Let a ∈ A. We claim that ∣Ia∣ = 1. Note that there is a′ ∈ A
such that {a}⊗ {a′} ≠ ∅, otherwise {a}⊗ 1 ≃ {a} is impossible. But then 1⊗ {a′} contains
Ia × ({a}⊗ {a′}) and cannot be isomorphic to a simple object {a′}, if ∣Ia∣ > 1.
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We have therefore 1 = ⊔a∈A{a}. By writing 1 ⊗ 1 ≃ 1, we see that the {a}, a ∈ A, are
orthogonal idempotents with respect to ⊗:

{a}⊗ {a′} = ⎧⎪⎪⎨⎪⎪⎩
∅, a ≠ a′;
{a}, a = a′.

Therefore, if we put
Ba′

a = {b ∈ B∣{a′}⊗ {b} ≃ {b}⊗ {a} ≃ {b}},
we get B = ⊔a,a′∈ABa′

a . Further, the monoidal structure ⊗ restricted to the subcategories
SetBa′a ⊂ SetB, gives functors

⊗ ∶ SetBa′′
a′
× SetBa′a Ð→ SetBa′′a ,

i.e., defines a bicategory C with the set of objects A and HomC(a, a′) = SetBa′a . The object
1a ∶= {a} ∈ SetBaa is then the unit 1-morphism of the object a. This proves the proposition.

More generally, let C be a ⊔-semisimple bicategory and ρ ∶ Ob(C)→D be a surjection of
sets. We then define a bicategory Matρ(C) with set of objects D and

HomMatρ(C)(d, d′) = ∏
ρ(a)=d,ρ(a′)=d′

HomC(a, a′).
This is again a ⊔-semisimple bicategory.

Proposition 3.5.11. Any ⊔-semisimple bicategory D is equivalent to Matρ(C) for some
⊔-semisimple bicategory C with simple units.

Proof. We apply Proposition 3.5.10 to each monoidal category HomD(d, d) to get the set
A(d). We then split the composition in D to construct a bicategory on the set of objects
A = ⊔d∈Ob(D)A(d). The details are straightforward.

Summarizing, we can say that unital 2-Segal simplicial sets are “the same as” ⊔-semisimple
bicategories.
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3.6 The operadic point of view

In this section we show that 2-Segal simplicial sets X with X0 = pt can be identified with
certain operads. We recall a version of the concept known variously under the names of
colored operads [Moe10], pseudo-tensor categories [BD04] and multilinear categories [Lin71].

Definition 3.6.1.Let (M,⊗,1) be a symmetric monoidal category. An M-valued (colored)
operad O consists of the folllowing data:

(OP1) A set B, whose elements are called colors.

(OP2) Objects O(b1, ..., bn∣b0) ∈M given for all choices of n ≥ 0 and b0, ..., bn ∈ B.

(OP3) The “composition” morphisms

O(b1, ..., bn∣b0)⊗O(b11, ..., b1m1
∣b1)⊗⋯⊗O(bn1 , ..., bnmn ∣bn)Ð→

Ð→O(b11, ..., b1m1
,⋯, bn1 , ..., bnmn ∣b0)

given for each b0, ..., bn, bij ∈ B as described.

(OP4) The “unit” morphisms Idb ∶ 1→ O(b∣b) given for each b ∈ B.

These data are required to satisfy the standard associativity and unit axioms, cf. [Moe10,
§1.2]. Dually, anM-valued cooperad is the same as an operad with values inMop. A cooperad
Q has cocomposition and counit morphisms going in the directions opposite to those in (OP3)
and (OP4).

Remarks and Examples 3.6.2. (a) Note that we do not require any data involving per-
mutations of the arguments, i.e., relating O(b1, ..., bn∣b0) with O(bw(1), ..., bw(n)∣b0), w ∈ Sn.
So our concept can be more precisely called a non-symmetric colored operad. In fact, for
Definition 3.6.1 to make sense, it is enough that (M,⊗) be a braided, not necessarily a
symmetric monoidal category, but we will not use this generality.
(b) Let (B,⊠, I) be anM-enriched monoidal category (not assumed braided or symmetric).

Then for any subset of objects B ⊂ Ob(B) we have an M-valued operad O with the set of
colors B and

O(b1, ..., bn∣b0) = HomB(b1 ⊠⋯⊠ bn, b0).
Here, the empty ⊠-product for n = 0 is set to be I. Similarly to (a), notice that to speak of
M-enrichment, it is enough that M be a braided monoidal category, see [JS93].
(c) If B = {pt} consists of one element, then the data in O reduce to the objects O(n) =
O(pt, ...,pt) (n times) and we get a more familiar concept of a (non-symmetric) operad. The
operadic composition and unit maps can then be written as

νm1,...,mn ∶ O(n)⊗ (O(m1)⊗⋯⊗O(mn))Ð→ O(m1 + ... +mn), Id ∶ 1→O(1).
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(d) Let M = Set with ⊗ given by the Cartesian product. For a B-colored operad O in(Set,×) the elements of O(b1, ..., bn∣b0) are called n-ary operations in O. We put

O(n) = ∐
b0,...,bn∈B

O(b1, ..., bn∣b0)
to be the set of all possible n-ary operations. Then the colorings define maps πi ∶ O(n) →
B, i = 0, ..., n. The operadic composition maps can then be simultaneously written as

νm1,...,mn ∶ O(n)(π1,...,πn) ×(π0,...,π0)Bn
(O(m1) ×⋯ ×O(mn))Ð→ O(m1 + ... +mn).

As the fiber product is a subset in the full product, the O(n) do not, in general, form a
1-colored operad, unless ∣B∣ = 1.
(e) For a B-colored cooperad Q in (Set,×) we define the sets Q(n) and projections πi ∶
Q(n) → B in the same way as in (d). Then the cooperadic cocomposition maps in Q give
rise to the maps in the direction opposite from these in (c):

(3.6.3) fm1,...,mn ∶ Q(m1 + ... +mn)Ð→ Q(n)(π1,...,πn) ×(π0,...,π0)Bn
(Q(m1) ×⋯×Q(mn)).

Note that the fm1,...,mn can now be seen as taking values in the full Cartesian product and
thus the Q(n) always form a 1-colored cooperad. The structure of a B-colored cooperad in(Set,×) is thus a refinement of a structure of a 1-colored cooperad.

Example 3.6.4 (Standard simplices as an operad).Let M = S = Set∆ be the category
of simplicial sets. Equip S with the symmetric monoidal structure given by ⊔, the disjoint
union. Remarkably, the collection (∆n) of standard simplices forms a (1-colored) operad in(S,⊔). The operadic composition maps

νm1,...,mn ∶ ∆n ⊔ (∆m1 ⊔⋯⊔∆mn)Ð→ ∆m1+...+mn

are defined as follows. The ith vertex of ∆n is mapped into the vertex of ∆m1+...+mn with
number m1 + ... +mi (which is set up to be 0 for i = 0). The jth vertex of ∆mi is mapped
into the vertex of ∆m1+...+mn with number m1 + ... +mi−1 + j. The unit maps are the unique
embeddings of ∅ which is the unit object for ⊔. The verification of the operad axioms is
straightforward. This example is important for the 2-Segal point of view on simplicial sets.

Example 3.6.5 (Simplicial sets as cooperads).Let X be a simplicial set, so that
Xn = Hom(∆n,X) is the set of n-simplices of X . Applying the previous example and the
adjunction between ⊔ and ×, we conclude that the collection of sets (Xn) forms a (1-colored)
cooperad in (Set,×). The cocomposition map

fm1,...,mn ∶Xm1+...+mn Ð→ Xn × (Xm1
×⋯ ×Xmn)

is the 2-Segal map corresponding to the polygonal subdivision P of Pm1+...+mn consisting
of one polygon with vertices 0,m1,m1 +m2, ...,m1 + ... +mn) and n polygons with vertices
mi−1,mi−1 + 1, ...,mi for i = 1, ..., n.
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Moreover, for any b1, ..., bn ∈X1 put

QX(b1, ..., bn∣b0) = {x ∈Xn∣ ∂{1,2}(x) = b1, ∂{2,3}(x) = b2, ..., ∂{n−1,n}(x) = bn, ∂{0,n}(x) = b0}.
Then the fm1,...,mn give rise to the cooperadic cocompositions, making QX into a X1-colored
cooperad in (Set,×).
Proposition 3.6.6. Let B be a set. Then the correspondence X ↦ QX gives a fully faithful
functor Q from the category of simplicial sets X with X1 = B (and their morphisms identical
on B) to the category of B-colored cooperads in (Set,×).
Proof. Call a morphism φ ∶ [n] → [q] in ∆ wide, if φ(0) = 0 and φ(n) = q. Let Wid be the
class of all wide morphisms. It is closed under composition, contains all degeneration maps
σni ∶ [n + 1]→ [n], as well as all the face maps δni ∶ [n − 1]→ [n] for i = 1, ..., n − 1.

Call φ narrow, if φ identifies [n] with an interval {a, a+1, ..., a+n} ⊂ [q]. Let Nar be the
class of all narrow morphisms. It is closed under composition and contains the face maps
δn0 , δ

n
n ∶ [n − 1]→ [n].
Since Wid and Nar contain all the identity maps, we can consider them as subcategories

in ∆ with the full set of objects. By the above, these categories together generate all
(morphisms) of ∆. Note also that Nar∩Wid consists only of isomorphisms in ∆ (i.e., only
of identity morphisms among the standard objects [n]).

Look now at the morphism νm1,...,mn from Example 3.6.4. The first component of νm1,...,mn

(i.e., its restriction to ∆n) is a wide morphism, and all wide morphisms are obtained in this
way. The other components (restrictions to the ∆mi) of νm1,...,mn are narrow morphisms, and
all narrow morphisms are found in this way.

This implies that the functor Q is fully faithful. Indeed, for two simplicial sets X,Y with
X1 = Y1 = B, a morphism of colored cooperads u ∶ QX → QY consists of maps un ∶ Xn → Yn
for all n which, by the above, commute with the actions of morphisms from Wid and Nar
and therefore with all morphisms of ∆, so u is a morphism of simplicial sets.

Definition 3.6.7.Let B be a set. A B-colored cooperad Q (resp. a B-colored operad O) in(Set,×) is called invertible, if:

(1) For each b ∈ B the counit map Q(b∣b)→ pt (resp. the unit map pt→ O(b∣b)) is bijective.
(2) For eachm1, ...,mn the cocomposition map fm1,...,mn from (3.6.3) (resp. the composition

map νm1,...,mn from Example 3.6.2(c)) is bijective.

Theorem 3.6.8. Let B be a set. The following categories are equivalent:

(i) 2-Segal simplicial sets with X0 = pt and X1 = B (with morphisms identical on 1-
simplices).

(ii) Invertible B-colored cooperads in (Set,×).
(iii) Invertible B-colored operads in (Set,×).
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Proof. For an invertible B-colored cooperad Q we can invert the fm1,...,mn, getting an invert-
ible B-colored operad Q−1 in (Set,×) with Q−1(n) = Q(n) and

νm1,...,mn = f−1m1,...,mn
.

This establishes an equivalence (ii)⇔(iii). Further, because the functor Q in Proposition
3.6.6 is fully faithful, the equivalence (i)⇔(ii) reduces to the following.

Proposition 3.6.9. (a) Let X be a simplicial set with X0 = pt. Then X is 2-Segal, if and
only if the cooperad QX is invertible.

(b) Let Q be an invertible B-colored cooperad. Then Q ≃ QX for some simplicial set X
with X0 = pt,X1 = B.

Proof of Proposition 3.6.9: (a) Let m1, ...,mn be given. The cocomposition map fm1,...,mn

for QX , see (3.6.3), is nothing but the 2-Segal map fPm1,...,mn
,X for a particular polygonal

subdivision Pm1,...,mn of the polygon Pm1+...+mn. Explicitly, Pm1,...,mn consists of the following
polygons (indicated by their sets of vertices):

{0,m1,m1 +m2,m1 +m2 +m3, ...,m1 + ... +mn},
{m1 + ... +mi,m1 + ... +mi + 1,⋯,m1 + ... +mi +mi+1}, i = 0, ..., n − 1.

So the 2-Segal property of X implies that the cooperad QX is invertible. Conversely, suppose
that QX is invertible, i.e., that all the 2-Segal maps fPm1,...,mn

,X are invertible. Then X is
2-Segal in virtue of Proposition 2.3.2 ((4)).

(b) Let Q be given. Consider the span of sets

B ×B (π1,π2)←Ð Q(2) π0Ð→ B.

Using this span, we define a functor

⊗ = π0∗(π1, π2)∗ ∶ SetB × SetB Ð→ SetB.

We claim that ⊗ makes SetB into a (⊔-semisimple) monoidal category. Indeed, the associa-
tivity isomorphism

α ∶ ⊗ ○ (⊗ × Id)⇒ ⊗ ○ (Id×⊗)
is obtained from the bijections

Q(2) ×(π0,π1)B Q(2) f2,1←Ð Q(3) f1,2Ð→ Q(2) ×(π0,π2)B Q(2).
We thus define X as the Clebsch-Gordan nerve of (SetB,⊗), and our statement follows from
Theorem 3.5.8. We leave further details to the reader.
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Invertible B-colored operads can be seen as providing a set-theoretic analog of the concept
of a quadratic operad in the category (Vectk,⊗) of vector spaces over a field k, as introduced
in [GK94]. Let us explain this point of view in more detail, recalling analogs of necessary
constructions from loc. cit.

Let B be a set. We denote by BinB the set of isomorphism classes of plane rooted binary
trees with all the edges (including the outer edges) labelled (“colored”) by elements of B.
Thus, a tree T ∈ BinB has a certain number n + 1 ≥ 3 outer edges (called tails), of which one
is designated as the “root” (or output) tail, and the remaining n tails are totally ordered
by the plane embedding, and are called the inputs of T . For b0, ..., bn ∈ B we denote by
BinB(b1, ..., bn∣b0) ⊂ BinB the set of T which have b0 as the color of the output and b1, ..., bn
as the colors of the input tails, in the order given by the plane embedding. Further, for
T ∈ BinB we denote by Vert(T ) the set of vertices of T . A vertex v ∈ Vert(T ) has two input
edges in′(v), in′′(v) (order fixed by the plane embedding) and one output edge out(v).

Let E = {E(b1, b2∣b0)b0,b1,b2∈B} be a collection of sets labelled by triples of elements of B.
We think of elements of E(b1, b2∣b0) as formal binary operations from b1 ⊗ b2 to b0. In this
situation, we have the free B-colored (non-symmetric) operad FE in (Set,×) generated by E .
It consists of sets

FE(b1, ..., bn∣b0) = ∐
T ∈BinB(b1,...,bn∣b0)

∏
v∈Vert(T )

E(in′(v), in′′(v)∣out(v)).
The composition maps are given by grafting of trees. A B-colored operad O in (Set,×) is
called binary generated if there exists an E as above and a surjection of operads FE → O. In
this case E is recovered as the set of binary operations in O, i.e., E(b1, b2∣b0) = O(b1, b2∣b0).

Among binary generated operads O we are interested in those for which all the relations
among generators in E = O(2) follow from those holding already in O(3). More precisely, let
Bin = Binpt be the set of topological types of binary rooted trees, and let Bin(n) be the set
of such trees with n inputs. We have then the projection (forgetting the coloring)

π ∶ BinB(b1, ..., bn∣b0)Ð→ Bin(n).
For τ ∈ Bin(n) we denote BinB,τ(b1, ..., bn∣b0) the set of colored trees of topological type τ ,
i.e., the preimage π−1(τ).
Definition 3.6.10.A B-colored operad O in (Set,×) is called quadratic, if for any τ ∈ Bin(n),
the map

ν
(b1,...,bn∣b0)
τ ∶ ∐

T ∈BinB,τ (b1,...,bn∣b0)

∏
v∈Vert(T )

O(in′(v), in′′(v)∣out(v))Ð→ O(b1, ..., bn∣b0)
induced by the composition in O, is a bijection.

Proposition 3.6.11. A B-colored operad O is quadratic, if and only if it is invertible.
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Proof. Note that the set Bin(n) is identified with the set of triangulations of Pn by associating
to a triangulation its Poincaré dual tree:

0

2

1

3

4

5

● ●

●

●

2

1

3

0

4

5

So a quadratic operad is directly translated into a 2-Segal simplicial set, and thus the state-
ment follows from Theorem 3.6.8.

Remark 3.6.12.Any quadratic operad is clearly binary generated. Further, note that
Bin(3) consists of two elements τ1 and τ2 represented by the following trees:

1

��❃
❃❃

❃❃
❃❃

❃ 2

����
��
��
��

3

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎

●

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

●
��
0

1

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴ 2

��❃
❃❃

❃❃
❃❃

❃ 3

����
��
��
��

●

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦

●
��
0

For a quadratic operad O the identifications

∐
T ∈BinB,τ1(b1,b2,b3∣b0)

∏
v∈Vert(T )

O(in′(v), in′′(v)∣out(v)) Ð→ O(b1, b2∣b0)←Ð
←Ð ∐

T ∈BinB,τ2(b1,b2,b3∣b0)

∏
v∈Vert(T )

O(in′(v), in′′(v)∣out(v))
can be seen as quadratic relations among the binary generators of O. Furthermore, any
two triangulations of any Pn are obtained from each other by a series of flips on 4-gons.
Equivalently, any two elements of any Bin(n) can be obtained from each other by applying
local modifications consisting in replacing a subtree of form τ1 by a subtree of form τ2 or the
other way around. This means that all identifications (relations) among formal compositions
of binary generators which hold in the O(n), n ≥ 3, follow from those holding already in
O(3).
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3.7 Set-theoretic solutions of the pentagon equation

Let us illustrate the results of §3.5 on an extreme (but still nontrivial) class of 2-Segal sets.
Let X be a 2-Segal semi-simplicial set such that X0 =X1 = pt, and let C =X2. Theorem

3.5.8 associates to X a distributive monoidal structure ⊗ on the category Set, which is given
by

(3.7.1) F ⊗F ′ = C × F × F ′.
Note that ⊗ does not have a unit object, unless ∣C ∣ = 1. The associativity isomorphisms

αF,F ′,F ′′ ∶ (F ⊗ F ′)⊗F ′′ Ð→ F ⊗ (F ′ ⊗ F ′′)
for this structure all reduce to the case when F = F ′ = F ′′ = pt, i.e., to one bijection

(3.7.2) α ∶ C ×C Ð→ C ×C.
The Mac Lane pentagon condition for this α now reads as the equality

(3.7.3) α23 ○ α13 ○α12 = α12 ○ α23

of self-maps of C3 = C × C × C. Here, for instance, α23 means the transformation of C3

which acts as α on the 2nd and 3rd coordinates and leaves the first coordinate intact. A
datum consisting of a set C and a bijection α as in (3.7.2), satisfying (3.7.3), is known as a
set-theoretic solution of the pentagon equation [KS98, KR07]. So Theorem 3.5.8 specializes,
in our case, to the following:

Corollary 3.7.4. Let C be a set. The following categories are equivalent:

(i) The category 2Seg(pt,pt,C) formed by 2-Segal semi-simplicial sets X with X0 = X1 =
pt, X2 = C and their morphisms identical on C.

(ii) The set of set-theoretic solutions α ∶ C2 → C2 of the pentagon equation.

That is, the category 2Seg(pt,pt,C) is discrete and isomorphism classes of its objects are
in bijection with solutions α as in (ii).

We will call 2-Segal set X corresponding to a solution (C,α) the nerve of (C,α) and
denote by N(C,α). The bar-construction description of X in Example 3.5.3(b) specializes,
in our case, to the following. We have B = X1 = pt, the 1-element set, so by the form (3.7.1)
of the monoidal operation, we have

(3.7.5) Nn(C,α) = B⊗n ∶= (⋯(B ⊗B)⊗⋯)⊗B) = Cn−1, n ≥ 1, N0(C,α) = pt .
Alternatively, the Clebsch-Gordan nerve construction (Example 3.5.9) identifies Nn(C,α),
n ≥ 2, with the set of systems x = (xijk ∈ C)0≤i<j<k≤n, satisfying the following “nonabelian
2-cocycle condition” for each 4-tuple 0 ≤ i < j < k < l ≤ n:

(xikl, xijk) = α(xijl, xjkl).
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As pointed out in [KS98, KR07], the map α can be written in terms of two binary
operations on M :

α(x, y) = (x ● y, x ∗ y),
or, pictorially:

3 0oo

x

��
2

OO

1
yoo

^^❂❂❂❂❂❂❂

3 0
x∗y
oo

��✁✁
✁✁
✁✁
✁

x●y

��
2

OO

1oo

That is, given x, y ∈ C = X2, we find the unique 3-simplex d(x, y) whose even 2-faces are x
and y, and then x ● y and x ∗ y are found as the odd 2-faces of d(x, y), as indicated.

Further, one can rewrite the pentagon equation as three identities satisfied by these
operations, of which we note the remarkable fact that ● is associative:

(3.7.6)

(x ● y) ● z = x ● (y ● z),
(x ∗ y) ● ((x ● y) ∗ z) = x ∗ (y ● z),
(x ∗ y) ∗ ((x ● y) ∗ z) = y ∗ z.

Thus α gives rise, in particular, to a semigroup structure on C. See Example 6.4.4 below for
a conceptual explanation of this associativity.

Example 3.7.7.Let G be a group. Then α ∶ G2 → G2 given by

α(x, y) = (xy, y), x ● y = xy,x ∗ y = y,
is a solution of the pentagon equation, seee [Kas96, KS98]. For example, if G = Z, then
α ∶ Z2 → Z2 is the elementary matrix

α = e12 = (1 1
0 1
) ∈ SL2(Z),

and the pentagon relation incarnates as the Steinberg relation among the elementary matri-
ces:

e12e23 = e23e13e12 ∈ SL3(Z).
It was shown in loc. cit. that any solution (G,α) for which x ● y makes G into a group, is
obtained in this way, i.e., has x ∗ y = y.

In particular, any group G gives rise to a 2-Segal semi-simplicial set N(G) = N(G,α)
with Nn(G) = Gn−1 for n ≥ 1 and N0(G) = pt. Denoting by [g1, ..., gn−1] ∈Nn(G) the element
corresponding to (g1, ..., gn−1) by (3.7.5), we find the face operations to be:

∂i[g1, ..., gn−1] =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[g2, ..., gn−1], i = 0;
[g2, ..., gn−1], i = 1;
[g1, ..., gi−1gi, ..., gn−1], i = 2, ..., n − 1;
[g1, ..., gn−2], i = n.
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Note that ∂1, ..., ∂n−1 are, up to shift, given by the same formulas as the faces in Nn−1(G),
the (n − 1)st level of the usual nerve of G, while ∂0 repeats ∂1. This means that the 2-Segal
semi-simplicial set N(G) (and thus the above solution of the pentagon equation) is obtained
from the 1-Segal simplicial set N(G) by a semi-simplicial version of taking the suspension.
See Proposition 6.4.8 below for more details.

Example 3.7.8.Let V be a 2-dimensional oriented R-vector space. Let

V
⊕(n+1)

↺
= {(v0, ..., vn) ∈ V ⊕(n+1)∣vi ≠ 0,arg(v0) < arg(v1) < ⋯ < arg(vn) < arg(v0)}

be the space of tuples of nonzero vectors whose arguments are in the strict anti-clockwise
order with respect to the chosen orientation. Let

Conf+n = GL+(V )/V ⊕(n+1)↺
, GL+(V ) = {g ∈ GL(V )∣det(g) > 0},

be the corresponding configuration space. Thus Conf+n = pt for n = 0,1. Further, Conf+2 is
identified with R2

>0 with coordinates λ0, λ2 by associating to (v0, v1, v2) the coefficients in
the expansion v1 = λ0v0 + λ2v2. For n ≥ 2 one sees easily that Conf+n is a topological space
homeomorphic to R2n−2.

The collection Conf+ = (Conf+n)n≥0 forms a semi-simplicial topological space in an obvious
way. Note that repeating a vector would violate the condition of strict increase of the
arguments, so there is no obvious way to make Conf+ simplicial.

Proposition 3.7.9. Conf+ is 2-Segal (as a semi-simplicial set).

Proof. We prove by induction that for any n ≥ 2 and any triangulation T of Pn the map
fT ∶ Conf+n → Conf+T is a bijection (in fact, a homeomorphism). For n = 2 the statement is
obvious. Assume that the statement holds for any n′ < n and any triangulation T ′ of Pn′ .
Let T be a triangulation of Pn and choose the unique i such that {0, i, n} ∈ T . Suppose that
1 < i < n− 1, the cases i ∈ {1, n− 1} are similar. Then the edge {0, i} dissects the (n + 1)-gon
Pn into two polygons P (1) and P (2) with induced triangulations T1 and T2. We have then
the commutative diagram

Conf+n
u //

fT

��

Conf+{0,...,i}×Conf+
{0,i}

Conf+{0,i,i+1,...,n}

fT1×fT2
��

Conf+T
≃ // Conf+T1 ×Conf+

{0,i}
Conf+T2

Its lower horizontal arrow is a homeomorphism since T is composed out of T1 and T2. By
induction, fT1 and fT2 are homeomorphisms. So the same is true for right vertical arrow in
the diagram. It remains to prove the same property for the arrow u. Note that Conf+0,i = pt,
so the fiber products in the diagram are the usual Cartesian products. Given elements, i.e.,
orbits v = GL+(V )(v0, ..., vi) ∈ Conf+{0,...,i} and w = GL+(V )(w0,wi, ...,wn) ∈ Conf+{0,i,...,n},
there is unique g ∈ GL+(V ) taking the basis (v0, vi) to the basis (w0,wi). So we can assume
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that v0 = w0, vi = wi. Then we see there can be at most one element x ∈ Conf+n such that
u(x) = (v,w). This can only be the sequence x = (v0, ..., vi,wi+1, ...,wn). On the other hand,
our assumptions imply that this x indeed satisfies the anti-clockwise argument condition and
so indeed lies in Conf+n.

The 2-Segal semi-simplicial set Conf+ gives rise to a solution of the pentagon equation

α ∶ R2
>0 ×R2

>0

∼Ð→ R2
>0 ×R2

>0,

which is a classical example of a “cluster transformation”, see [Kas98], Eq. (10). To write α
in the explicit form, as a map

α ∶ (λ,µ) = ((λ0, λ2), (µ0, µ2)) z→ ((λ′0, λ′2), (µ′0, µ′2)) = (λ′, µ′), λ, µ,λ′, µ′ ∈ R2
>0,

one has to consider a generic 4-tuple (v0, v1, v2, v3) ∈ Conf+3 and to compare two sets of linear
relations corresponding to the two triangulations of P3:

3 0oo

λ
��

2

OO

1
µoo

^^❂❂❂❂❂❂❂

3 0
λ′

oo

��✁✁
✁✁
✁✁
✁
µ′

��
2

OO

1oo

v1 = λ0v0 + λ2v3, v1 = λ′0v0 + λ′2v2

v2 = µ0v1 + µ2v3 v2 = µ′0v0 + µ′2v2,
cf. [DS11], Eqs. (4.7-8), whose approach is the closest to our 2-Segal point of view. This
gives

(3.7.10)

⎧⎪⎪⎨⎪⎪⎩
λ′0 = (1 + λ2µ−12 µ0)−1λ0
λ′2 = (1 + λ2µ−12 µ0)−1λ2µ−12 ,

⎧⎪⎪⎨⎪⎪⎩
µ′0 = µ0λ0

µ′2 = µ0λ2 + µ2.

Note that the second column of formulas describes, in agreement with (3.7.6), an associative

binary operation on R2
>0. This operation is given by multiplying matrices of the form (λ0 0

λ2 1
),

λi > 0, and makes R2
>0 into a semigroup but not a group.
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3.8 Pseudo-holomorphic polygons as a 2-Segal space

In this section we describe a large class of discrete 2-Segal spaces associated to almost
complex manifolds.

We start with an interpretation of the 2-Segal space Conf+ from Example 3.7.8 in terms
of the decorated Teichmüller spaces of Penner [Pen12]. Let H be the Lobachevsky plane
with the group of motions SL2(R). We can realize H inside the complex plane C in one of
the two classical ways:

(1) As the upper half plane {Im(z) > 0}, with SL2(R) acting by fractional linear transfor-
mations. It is equipped with the Riemannian metric

ds2 =
dxdx

y2
, z = x + iy

of constant curvature (−1).
(2) As the unit disk {∣z∣ < 1}, obtained as the image of the upper half plane under the

fractional linear transformation w = (z − i)/(z + i).
The absolute (or ideal) boundary ∂H of H is identified with RP 1, the real projective line.

In the realization (1) the identification of ∂H with R ∪ {∞} = RP 1 is immediate; in the
relalization (2), ∂H is identified with the unit circle which is more convenient for drawing
pictures. We equip H with the orientation coming from the complex structure. This defines
a canonical orientation of ∂H which we will refer to as the counterclockwise orientation. This
is indeed counterclockwise in the realization (2).

Geodesics in H are represented, in either realization, by circle arcs (or straight lines)
meeting the absolute at the right angles. Any two distinct points x,x′ ∈ H give rise to a
geodesic arc [x,x′] ⊂ H. Further, any two distinct ponts b, b′ ∈ ∂H give rise to an infinite
geodesic (b, b′) with limit positions b, b′. We equip it with the orientation going from b to
b′. Note that the intrinsic geometry on (b, b′) (coming from the Riemannian metric above)
is that of a torsor over the additive group R. A choice of a base point x ∈ (b, b′) identifies(b, b′) with R.

By an ideal polygon in H we mean a geodesic polygon P with vertices b0, ..., bn lying on the
absolute and numbered in the counterclockwise order. Such a polygon as above is uniquely
determined by the choice of the bi and will be denoted by P (b0, ..., bn). Here we assume that
n ≥ 1. For n = 1, an ideal 2-gon is understood to be a geodesic P (b0, b1) = (b0, b1).

Two ideal polygons P,P ′ are called congruent if there is a rigid motion taking P to P ′ and
preserving the numeration of vertices. Thus, denoting by Tn the set of congruence classes of
ideal (n + 1)-gons, we have

Tn ≃ SL2(R)/(RP 1)n
↺
,

where (RP 1)n
↺
⊂ (RP 1)n is the set of tuples of points (b0, ..., bn) going in the counterclockwise

order (in particular, distinct from each other). Note that Tn can be regarded as the simplest
Teichmüller space: the set of hyperbolic structures (identiffications with an ideal polygon)
on the standard (n + 1)-gon Pn from §2.3.
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For x, y ∈ H we denote d(x, y) the geodesic distance from x to y. For r ∈ R+ we denote
by Sr(x) the geodesic circle with center x and radius r. By a horocycle in H one means an
orbit of a subgroup conjugate to

(1 t

0 1
) ⊂ SL2(R).

It is convenient to think of horocycles as “circles of infinite radius” with center at the
boundary, i.e., as limit positions of geodesic circles Sr(x) when x → b ∈ ∂H and r → ∞.
Thus, a horocycle ξ has a center b ∈ ∂H and consists, informally, of points y lying at a fixed
(but infinite) distance from b. One can refine this picture by saying that a horocycle ξ with
center b has a radius which is not a number but an element of a certain torsor Horb over the
additive group R, and writing

d(b, y) ∈ Horb, y ∈ ξ.

Thus for y, y′ ∈ H the “infinite distances” d(b, y), d(b, y′) ∈ Horb can be compared, i.e., we
have a well defined (“finite”) real number d(b, y)−d(b, y′) ∈ R. In a formal set-theoretic way,
one can say that Horb consists of horocycles with center b. The following obvious fact will
be useful.

Proposition 3.8.1. Let b ∈ ∂H. Then for any b′ ∈ ∂H different from b the geodesic (b, b′),
considered as an R-torsor, is canonically identified with Horb.

Proof. Every horocycle with center b meets (b, b′) in a unique point.

Let n ≥ 1. By a decorated ideal (n+1)-gon we will mean, following [Pen12, Ch. 2, §1.1], a
datum consisting of an ideal (n+1)-gon P = P (b0, ..., bn) and a choice of a horocycle ξi ∈ Horbi
around each vertex. Two decorated ideal (n + 1)-gons

(P (b0, ..., bn), ξ0, ..., ξn)) and (P (b′0, ..., b′n), ξ′0, ..., ξ′n)
are called similar, if there exist g ∈ SL2(R) and a ∈ R such that

g(bi) = b′i, g(ξi) = ξ′i + a, i = 0, ..., n,

where addition with a is understood in the sense of the R-torsor structure on Horb′i . We

denote by T̃n the set of similarity classes of decorated (n+1)-gons. For n = 0 we put T̃1 = pt.

Example 3.8.2. (a) Consider an ideal 2-gon, i.e., an oriented geodesic (b0, b1). A decoration
of (ξ9, ξ1), i.e., a choice of horocycles ξi ∈ Horbi , produces two intersection points xi = ξi ∩(b0, b1) and their midpoint ω(ξ0, ξ1). As (b0, b1) is naturally an R-torsor, the choice of
ω(ξ0, ξ1) as the origin defines an identification of (b0, b1) with R, i.e., a coordinate system on(b0, b1). Note that after addition of any a ∈ R, we have

ω(ξ0 + a, ξ1 + a) = ω(ξ0, ξ1),

71



so the corresponding coordinate remains unchanged. Thus T̃2 is the set of congruence classes
of geodesics together with a choice of affine coordinate, and so T̃2 = pt as well.

(b) We conclude that for a decorated polygon (P (b0, ..., bn), ξ0, ..., ξn) each “diagonal”,
i.e., each geodesic (bi, bj) has a canonical coordinate, and similarity transformations preserve
these canonical coordinates.

If φ ∶ [m] → [n] is a monotone embedding, then we have a map φ∗ ∶ T̃n → T̃m associating
to a decorated polygon on vertices (b0, ..., bn) its subpolygon on vertices bφ(0), ..., bφ(m) with

the corresponding horocycles. This makes T̃ = (T̃n)n≥0 into a semi-simplicial space.

Proposition 3.8.3. T̃ is isomorphic to the semi-simplicial space Conf+ from Example 3.7.8.

Proof. The space of all horocycles in H is

(1 t

0 1
)/SL2(R) = R2 − {0}.

Under this identification, the action of a ∈ R on the horocycle torsors corresponds to the
action of the scalar matrix ea ⋅ 1 ∈ GL2(R) on R2 − {0}. Thus the set of all decorated

(n + 1)-gons is (R2)⊕(n+1)
↺

, and the group of similarity transformations acting on this set is

(R×+ ⋅ 1) ⋅ SL2(R) = GL+2(R),
making the comparison with Conf+n immediate.

Remark 3.8.4.Note that the 2-Segal condition for T̃ is much more obvious than for Conf+.
Indeed, suppose we have a triangulation T of the standard polygon Pn, and decorated hy-
perbolic structures on all the triangles P ∈ T , compatible (up to similarity) on their common
sides. By Example 3.8.2, each of these common sides acquires a well-defined coordinate
(identification with R). This allows us to glue the hyperbolic structures together in a unique
way.

Let now M be an almost complex manifold, i.e., a C∞-manifold of even dimension 2d
with a smooth field J of complex structures in the fibers of the tangent bundle TM , see
[MS04]. In particular, M can be a complex manifold in the usual sense, in which case J is
called integrable.

Morphisms of almost complex manifolds are called pseudo-holomorphic maps. In partic-
ular, by a pseudo-holomorphic function, resp. pseudo-holomorphic curve on M one means
a (locally defined) morphism of almost complex manifolds M → C, resp. C → M . If J is
non-integrable, M may have very few pseudo-holomorphic functions but still has a large
supply of pseudo-holomorphic curves. In particular, an ideal polygon P can be regarded
as a 1–dimensional complex manifold with boundary and so can be takes as a source of
pseudo-holomorphic maps into M .

Definition 3.8.5.Let M be an almost complex manifold. We put T̃0(M) = M . For n ≥ 1
we define T̃n(M) to be the set of equivalence of the data consisting of:
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(1) A decorated ideal (n + 1)-gon (P = P (b0, ..., bn), ξ0, ..., ξn).
(2) A continuous map γ ∶ P →M which is pseudo-holomorphic on the interior of P . Here

we assume that P is compact, so it contains all the ideal vertices.

These data are considered up to similarity of decorated ideal (n + 1)-gons in the source.

For example, T̃1(M) is simply the path space of M . More precisely, it is the space of
continuous maps [−∞,+∞] →M , where [−∞,+∞] is the interval obtained by compactifying
R by two points at infinity.

We make T̃(M) = (T̃n(M))n≥0 into a semi-simplicial set as follows. The maps ∂0, ∂1 ∶
T̃1(M) → T̃0(M) = M are defined to be the evaluation maps of paths as above at (+∞)
and (−∞) respectively. For m ≥ 1 and a monotone embedding φ ∶ [m] → [n] the map
φ∗ ∶ T̃n(M) → T̃m(M) is defined by forming the subpolygon in P (b0, ..., bn) on the vertices
bφ(i), with the induced decoration and map into M . We call T̃(M) the space of pseudo-
holomorphic polygons on M .

Proposition 3.8.6. For any almost complex manifold M , the semi-simplicial set T̃(M) is
2-Segal.

Proof. Suppose given a triangulation T of the standard polygon Pn. Let us prove that the
2-Segal map

fT ∶ T̃n(M) Ð→ T̃T (M)
is a bijection. An element of the target of fT is a system Σ of decorated hyperbolic structures
on all the triangles P ∈ T and maps γP ∶ P → M , compatible on the common sides. As in
Remark 3.8.4, these common sides acquire canonical coordinates and so can be identified
with each other, thus producing an identification of Pn with a decorated ideal (n + 1)-gon
P = P (b0, ..., bn) for some b0, ..., bn. We can then view T as a triangulation of P into ideal
triangles. Further, the maps γP , being compatible on the sides of these triangles, define
a continuous map γ ∶ P → M which is pseudo-holomorphic in the interior of each triangle
of the triangulation. Now, it is a fundamental property of the Cauchy-Riemann equations
defining pseudo-holomorphic curves that such a map is pseudo-holomorphic everywhere in
the interior of P . We therefore obtain a (necessarily unique) datum (P, ξ0, ..., ξn, γ) ∈ T̃n(M)
lifting Σ.

Remark 3.8.7.We have therefore two large classes of 2-Segal spaces:

(a) Waldhausen spaces, encoding homological algebra data in exact categories (and, more
generally, dg- and ∞-categorical enhancements of triangulated categories, see §7.3 be-
low).

(b) Spaces T̃(M) encoding geometry of pseudo-holomorphic polygons.

It is tempting to conjecture some kind of “homological mirror symmetry” relation between
these two classes of spaces,
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3.9 Birationally 1- and 2-Segal semi-simplicial schemes

Let F be a field. By a scheme in this section we will mean a F-scheme. Let Sch be the
category of such schemes. This category has finite limits, so for any semi-simplicial scheme
X ∈ Sch∆inj

and any triangulation T of the polygon Pn we have the scheme XT and the
morphism of schemes fT ∶Xn → XT .

A morphism g ∶ S → S′ in Sch will be called birational, if there are open, Zariski dense
subschemes U ⊂ S,U ′ ⊂ S′ such that g induces an isomorphism U → U ′.

Definition 3.9.1.Let X ∈ Sch∆inj
be a semi-simplicial scheme.

(a) We say that X is birationally 1-Segal, if for any n ≥ 2 the morphism of schemes

fn ∶Xn Ð→ X1 ×X0
X1 ×X0

⋯×X0
X1 (n times)

is birational.
(b) We say that X is birationally 2-Segal, if for any n ≥ 2 and any triangulation T of Pn,

the morphism fT is birational.

Remark 3.9.2.For a birationally 2-Segal scheme X and any two triangulations T ,T ′ of Pn
we get not a regular, but a rational map of schemes

fT ,T ′ = fT ′ ○ f−1T ∶XT Ð→XT ′

which form a transitive system of birational isomorphisms. Such transitive systems appear
in the theory of cluster algebras (see [FZ03] [FG06] [GSV10]). If, in addition, X0 = X1 = pt ,
then, taking n = 3 and T ,T ′ to be the two triangulations of P3, we get a birational solution
of the pentagon equation, α = fT ,T ′ ∶ X2

2 → X2
2 . Such birational solutions are important in

applications [KS98] and are somewhat more abundant than solutions that are everywhere
defined (regular). This motivates the study of birationally 2-Segal schemes.

One can get examples of birationally 1- and 2-Segal semi-simplicial schemes by modifying
the construction of the Hecke-Waldhausen space from §2.6.

Let E be an irreducible quasi-projective variety and G an algebraic group acting on E.
We say that the G-action on E is generically free is there is dense Zariski open G-invariant
subset U ⊂ E on which the action in free. In this case we have the variety G/U . Note that if
the diagonal G-action on some Em is generically free, then the action on each Em′ ,m′ ≥ m,
is generically free as well.

Theorem 3.9.3. (a) Suppose that the G-action on E is generically free. Then there are
G-invariant open sets Un ⊂ En+1, n ≥ 0, with free G-action such that putting Xn = Gn/Un
defines a birationally 1-Segal semi-simplicial scheme X.

(b) Suppose that the G-action on E2 is generically free. Then there are G-invariant open
sets Un ⊂ En+1, n ≥ 1, with free G-action such that putting

X0 = pt, Xn = Gn/Un, n ≥ 1,
defines a birationally 2-Segal semi-simplicial scheme X.

74



Proof. The conceptually easiest proof is by lifting of the Hecke-Waldhausen construction
into the setting of algebraic stacks, see [LMB00]. That is, for each n ≥ 0 we consider the
quotient stack [Sn(G,E)] = [G//En+1] of the scheme En+1 by the action of G, For example,
if F is algebraically closed, the groupoid of F-points of this stack is the quotient groupoid
Sn(G(F),E(F)). Taken together, these stacks form a simplicial stack [S●(G,E)]. Propo-
sition 2.6.3 applied to various groupoids of points implies that [S●(G,E)] is 1-Segal in the
sense of stacks. This means that for each n the morphism of stacks

f
[S]
n ∶ [Sn(G,E)] Ð→ [S1(G,E)] ×(2)[S0(G,E)]⋯×(2)[S0(G,E)] [S1(G,E)],

(with ×(2) being the fiber product of stacks), is an equivalence of stacks. Now, if we are in
the situation of part (a) of the theorem, we can choose (inductively) open dense G-invariant
subsets Un ⊂ En+1, n ≥ 0, with free G-action such that the face maps (coordinate projections)
take each Un inside Un−1. Then for each n we get a scheme Xn = G/Un which is an open
sense subscheme in the stack [Sn(G,E)] so that X = (Xn) is a semi-simplicial scheme. So
the morphism of schemes

fXn ∶ Xn Ð→ X1 ×X0
⋯×X0

X1

becomes an open dense sub-morphism of the equivalence of stacks f
[S]
n . Therefore it is

birational.
Suppose now that we are in the situation of part (b) of the theorem. We then use

Proposition 2.3.3 which implies (either directly, by applying it to various groupoids of points,
or by imitating the proof) that [S●(G,E)] is 2-Segal as a stack. In other words, for any
triangulation T of the polytope Pn the morphism of stacks

f
[S]
T ∶ [Sn(G,E)] Ð→ [ST (G,E)] = 2 lim←Ð{∆p↪∆T }p=1,2

[Sp(G,E)]
is an equivalence of stacks. Here 2 lim←Ð is the projective 2-limit of stacks, and it is enough to
take this limit only over the embeddings of edges and triangles of T . On the other hand, if
the G-action on En+1, n ≥ 1 is free, we can choose as before, open dense G-invariant subsets
Un ⊂ En+1, n ≥ 1 with free G-action such that the face maps take each Un, n ≥ 2, inside Un−1.
Then for each n ≥ 1 we get a scheme Xn = G/Un which is an open dense subscheme in the
stack [Sn(G,E)], and augmenting this by X0 = pt, we get a semi-simplicial scheme. To see
now that X is birationally 2-Segal, we notice, as before, that the 2-Segal morphism for X

fXT ∶Xn Ð→ XT = lim←Ð{∆p↪∆T }p=1,2
Xp

is an open dense sub-morphism of the equivalence of stacks f
[S]
T , so it is birational.

Examples 3.9.4. (a) Let G be a split semisimple algebraic group, T ⊂ B ⊂ G a maximal
torus and a Borel subgroup, and N = [B,B] the unipotent radical. Let also W be the Weyl
group of T . Take E = G/N , so we have a principal T -bundle p ∶ E → G/B. As well known
(Bruhat decomposition), G-orbits on (G/B)2 are parametrized by elements of W and we
denote by (G/B)2gen the unique open orbit. We say that two points b, b′ ∈ G/B are in general
position, if (b, b′) ∈ (G/B)2gen. In this case the stabilizer of (b, b′) in G is a conjugate of T .
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We say that x,x′ ∈ E are in general position, if p(x), p(x′) ∈ G/B are in general position.
Let En+1

gen ⊂ En+1 be the open subvariety formed by (x0, ..., xn) which are pairwise in general
position. It follows that for n ≥ 1 the G-action on En+1

gen is free, so we are in the situation of
part (b) of Theorem 3.9.3 and the semi-simplicial algebraic variety X defined by

X0 = pt, Xn = G/En+1
gen

is birationally 2-Segal. Note that X1 = T is identified with the torus. The birational trans-
formations fT ′ ○ f−1T ∶ XT → XT ′ for different pairs of triangulations T ,T ′ of Pn are in this
case, cluster coordinate transformations studied by Fock and Goncharov [FG06].

(b) Let V be a 2-dimensional F-vector space and G = GL(V ) considered as an algebraic

group. Put E = V considered as an algebraic variety and let V
⊕(n+1)
gen be the open part

formed by (v0, ..., vn) such that each subset of cardinality ≤ 2 is linearly independent. For

n ≥ 1 the group G acts on V
⊕(n+1)
gen freely, so the semi-simplicial variety Conf defined by

Confn = GL(V )/V ⊕(n+1)gen , is birationally 2-Segal. Note that both Conf0 and Conf1 reduce to
one point, while Conf2 is identified with the 2-dimensional algebraic torus G2

m, by associating
to (v0, v1, v2) the coefficients of the expansion v1 = λ0v0 + λ2v2, similarly to Example 3.7.8.
Therefore Conf gives rise to a birational solution of the pentagon equation

α ∶ G2
m ×G2

m Ð→ G2
m ×G2

m.

It is given by the same formulas as in (3.7.10), see [Kas98] as well as [DS11] which considers
a more general situation allowing F to be a noncommutative division ring.

(c) More generally, a symmetric factorization of an algebraic group G in the sense of
[KR07] gives a closed subgroup K such that the diagonal action of G on (G/K)2 contains
an open orbit isomorphic to G. Therefore taking E = G/K we get, by Theorem 3.9.3(b), a
birationally 2-Segal semi-simplicial set X with X0 =X1 = pt. It corresponds to the birational
solution of the pentagon equation found in loc. cit.

Example 3.9.5.Completely different classes of examples of birationally 2-Segal simplicial
schemes can be extracted from the theory of “N -valued groups” as studied in [BR97, BD10].
Let us express, in our language, one such class: that of orbit spaces.

Let G be an algebraic group, and Γ ⊂ Aut(G) be a finite subgroup, ∣Γ∣ = N . The orbit
space Γ/G is then a (typically singular) algebraic variety. It is not a group, but the group
structure on G gives rise to an “N -valued composition law” on Γ/G which is represented by
the span

µ = {(Γ/G) × (Γ/G) s←Ð Γ/(G ×G) mÐ→ Γ/G},
where m is induced by the multiplication in G, and s is generically N -to-1. The associativity
of G implies then that the two spans

µ ○ (µ × Id), µ ○ (Id×µ) ∶ (Γ/G)3 ///o/o/o Γ/G
are identified over the generic point, i.e., are connected by a birational isomorphism α sat-
isfying the pentagon condition. Alternatively, Γ acts by automorphisms of NG, the nerve
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of G considered as a simplicial algebraic variety and so gives rise to the quotient simplicial
variety X = Γ/(NG) = (Γ/Gn)n≥0 with the simplicial maps induced by those in NG. This
simplicial variety is birationally 2-Segal.

Remark 3.9.6.An interesting particular case is when G is an abelian surface over F, and Γ ={Id, σ}, where σ is the involution a ↦ (−a). In this case Γ/G is a (singular)Kummer surface, a
special type of a K3 surface. While K3 surfaces are often regarded as “quaternionic” analogs
of elliptic curves, they do not carry any group operation in the usual sense. The above
example shows that at least in the Kummer case they carry a 2-valued operation. We do
not know whether such operations exist for more general K3 surfaces.
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4 Model categories and Bousfield localization

4.1 Concepts from model category theory

For a systematic study of 2-Segal spaces it is convenient to work in the more general frame-
work of model categories. In this section we summarize its main features, referring for more
details to [Hov99] as well as [Lur09a, Appendix 2].

Let C be a category and f ∶ A → B, g ∶ C → D morphisms in C. We write f ⊥ g, if for
any commutative square

A

f
��

// C

g

��
B

>>

// D

there exists a dotted arrow making the two triangles commutative. The standard terminology
is that f has the left lifting property with respect to g, and g has the right lifting property
with respect to f . For a class of morphisms S ⊂ Mor(C) we denote 1 by ⊥S, resp. S⊥ the
classes formed by morphisms g such that g ⊥ f , resp. f ⊥ g for any f ∈ S.

Recall that a model structure on a category C is given by specifying three classes of
morphisms: W (weak equivalences), C (cofibrations), and F (fibrations), satifying the axioms
of Quillen [Hov99, Def. 1.1.3], in particular the lifting axioms:

F = (W ∩ C)⊥, C =⊥ (W ∩ F).
Note that a category can have several model structures. Morphisms in W ∩C (resp. W ∩F)
are called trivial cofibrations (resp. trivial fibrations).

A category with a model structure is called a model category, if it has small limits and
colimits. By hC we denote the homotopy category of C obtained by formally inverting weak
equivalences. The following examples will be important for us.

Example 4.1.1 (Trivial model structures).Any category C with small limits and col-
imits becomes a model category with respect to the trivial model structure for which C = F =
Mor(C), and W consists of all isomorphisms.

Example 4.1.2 (Topological spaces).The category Top of compactly generated Hausdorff
spaces is a model category with respect to the model structure described in [Hov99, §2.4].
For this structure, W consists of weak equivalences as defined in §1.3, F consists of Serre
fibrations, and C contains all embeddings of CW-subcomplexes into CW-complexes.

Example 4.1.3 (Simplicial sets).The category S of simplicial sets is equipped with the
classical Kan model structure, see, e.g., [Lur09a], §A.2.7, which is given by the following
data.

1 This convention, naturally suggested by the notation f ⊥ g, is opposite to that of [Lur09a, A.1.2] where
this notation is not used. Note that orthogonality connotation suggested by f ⊥ g is quite in line with
categorical interpretation of orthogonality as absense of nontrivial morphisms. Indeed, viewing f and g as
two-term chain complexes, the lifting property can be read as “each morphism from f to g is null-homotopic”.
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(W) A morphism f ∶ X → Y of simplicial sets is a weak equivalence if the induced map∣f ∣ ∶ ∣X ∣→ ∣Y ∣ of geometric realizations is a homotopy equivalence of topological spaces.

(C) f is a cofibration if the induced maps of sets fn ∶ Xn → Yn are injective for all n ≥ 0. In
particular, every object is cofibrant.

(F) f is a Kan fibration if it has the right lifting property with respect to the maps Λni → ∆n,
i = 0, ..., n. Here Λni denotes the ith horn of ∆n.

Example 4.1.4 (Groupoids and categories).The category Gr has the Bousfield model
structure [Bou89], which is given by the following data.

(W) A functor F ∶ G → G′ is a weak equivalence if it is an equivalence of categories.

(C) F is a cofibration if it induces an injection of sets Ob(G)→ Ob(G′).
(F) F is a fibration if, for every object x ∈ G and every isomorphism h ∶ F (x) → y in G′,

there exists an isomorphism g ∶ x → x′ in G such that F (g) = h.
The Bousfield model structure on Gr can be extended to a model structure on the category
Cat of small categories. This is explained in detail in [Rez96].

We will freely use the basic concepts of Quillen adjunctions, left and right Quillen func-
tors, and Quillen equivalences of model categories, see e.g., [Hov99].

Example 4.1.5.The category S of simplicial sets equipped with the Kan model structure
is Quillen equivalent to the model category Top.

Example 4.1.6.The model category Gr is Quillen equivalent to the full subcategory in S

formed by simplicial sets X with π≥2(∣X ∣, x) = 0 for every x ∈X0.

We will further use the concept of a combinatorial model category due to J. Smith, which
intuitively means “a model category of algebraic nature”. See [Lur09a, A.2.6] for more
details.

Definition 4.1.7.A model category C is called combinatorial if

(1) The category C is presentable, i.e. there is a set (not a class) of objects C ⊂ Ob(C)
such that every object of C is a colimit of a diagram formed by objects in C.

(2) There exists a set I ⊂ C such that C =⊥ (I⊥).
(3) There exists a set J ⊂ (W ∩ C) such that W ∩ C =⊥ (J⊥).

Elements of I (resp. J) are called generating cofibrations (resp. generating trivial cofibra-
tions).

For example, the model categories S and Gr are combinatorial. One of the main ad-
vantages of combinatorial model categories is the existence of natural model structures on
diagram categories.
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Proposition 4.1.8 ([Lur09a], Prop. A.2.8.2). Let A be a small category and C a combina-
torial model category. Then the following data define a combinatorial model structure on the
category CA of A-indexed diagrams in C, called the injective model structure.

(W) The class W consists of f ∶ (Xa)a∈A → (Ya)a∈A such that, for every a ∈ A, the map
fa ∶Xa → Ya is a weak equivalence in C.

(C) The class C consists of morphisms f such that, for every a ∈ A, fa is a cofibration in
C.

(F) The class F is defined as (W ∩ C)⊥.
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4.2 Enriched model categories

We recall basic definitions of enriched model categories. For detailed expositions see [Hov99],
[Lur09a, A.3.1].

Definition 4.2.1.We define a symmetric monoidal model category to be a symmetric monoidal
category C which carries a model structure satisfying the following compatibility conditions:

(1) The tensor product functor ⊗ ∶C ×C→ C is a left Quillen bifunctor.

(2) The unit 1 ∈C is cofibrant.

(3) The monoidal structure on C is closed, i.e. for each C,C ′ ∈ C there is an object
MapC(C,C ′) with natural isomorphisms

HomC(C ′′ ⊗C,C ′) ≅ HomC(C ′′,MapC(C,C ′)).
Let C be a symmetric monoidal model category and D a C-enriched category, so we have

objects Map
D
(D,D′) ∈ C for any D,D′ ∈ D together with the usual composition and unit

morphisms among them. Then D can be considered as a category in the usual sense via

HomD(D,D′) = HomC(1,MapD(D,D′)).
Definition 4.2.2.A C-enriched model category is a C-enriched category D whose underly-
ing category carries a model structure satisfying:

(1) The category D is tensored and cotensored over C, i.e. for any C ∈C, D ∈D there are
objects D ⊗C and DC ∈D together with isomorphisms

MapD(D′,DC) ≅MapC(C,MapD(D′,D))
and

Map
D
(D ⊗C,D′) ≅Map

C
(C,Map

D
(D,D′))

which are natural in D′.

(2) The resulting functor ⊗ ∶D ×C→D is a left Quillen bifunctor.

Note that (2) implies that the functor

MapD ∶Dop ×DÐ→C

is a right Quillen functor in each variable separately. Here, we equip Dop with the opposite
model structure. For objects D, D′ of D, we define the derived mapping object

(4.2.3) RMap
D
(D,D′) =Map

D
(Q(D), F (D′)) ∈ hC

where Q and F denote the cofibrant and fibrant replacement functors of D, respectively. An
analogous statement holds for the functor given by the association (C,D)↦DC .
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Example 4.2.4 (Simplicial model categories and the Dwyer-Kan localization).
(a) The category S of simplicial sets equipped with the Kan model structure and the Carte-

sian monoidal structure is a symmetric monoidal model category. An S-enriched model cate-
gory D is called simplicial model category. By a result of Dugger [Dug01], any combinatorial
model category is Quillen equivalent to a combinatorial simplicial model category.
(b) On the other hand, for any category E and any set (not class of morphisms S ⊂Mor(E)

one can form the classical localization E[S−1] of E along S. This is a category with the same
objects as E , and morphisms obtained from those in E by formally adding the inverses of
morphisms from S and their iterated compositions with morphisms of E , modulo obvious
relations, see, e.g., [Sch70, §19.1]. A morphism in E[S−1] from x to y is thus an equivalence
class of “zig-zags”, i.e., diagrams

x←Ð a1 Ð→ a2 ←Ð a3 Ð→⋯ ←Ð an Ð→ y, n ≥ 0,

with left-going arrows belonging to S. Note that S is not required to satisfy any Ore-type
condition.
(c) If E is itself small, Dwyer and Kan [DK80b] constructed a category LS(E) enriched in

S, with the same objects as E such that

π0MapLS(E)
(x, y) = HomE[S−1](x, y).

The space MapLS(E)
(x, y) can be seen as a kind of nerve of the category of zigzags, so LS(E)

serves as a non-Abelian derived functor of the classical localization.
(d) Let now D be a simplicial model category. It was shown in [DK80b] that the simplicial

set RMapD(D,D′) is weakly equivalent to MapLS(E)
(D,D′) where E ⊂D is any sufficiently

large small full subcategory and S =Mor(E) ∩W. This provides more canonical models for
the derived mapping spaces RMap and shows that they depend only on the class W of weak
equivalences, not on the full model structure.

Example 4.2.5.The category Gr of groupoids admits the structure of a simplicial model
category as follows. The S-enrichment is given by

MapGr(G,G′) = N(Fun(G,G′)) ∈ S.
The actions of a simplicial set C ∈ S are given by

G ⊗C = G ×Π1(C), Map(C,G) = N(Fun(Π1(C),G))
where Π1(C) is the combinatorial fundamental groupoid of C, with the set of objects C0

and morphisms being homotopy classes of edge paths. This S-enrichment is compatible with
the model structure from Example 4.1.4. Again, this S-enrichment can be extended to the
model category of small categories Cat.
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Example 4.2.6 (Category of diagrams: homotopical enrichment).Let C be a sym-
metric monoidal model category, and A be a small category. We assume that C is combina-
torial and equip CA with the injective model structure. Then CA can be equipped with the
structure of a C-enriched model category as follows. For objects X,Y ∈CA, we put

Map
CA
(X,Y ) = ∫

a∈A
Map

C
(X(a), Y (a))

where the end on the right-hand side exists since C admits small limits. For C ∈ C we
denote by C ∈ CA the constant functor with value C. The category CA provided with this
enrichment is tensored and cotensored where, for X ∈CA and C ∈C, we have

(X ⊗C)(a) =X(a)⊗C, a ∈ A,

and
XC =MapCA(C,X) ≅MapC

(C, lim←ÐC

a∈A
X(a)).

We will call this enrichment of CA the homotopical enrichment.

Example 4.2.7 (Category of diagrams: structural enrichment).For any category C,
we construct an enrichment of CA over the symmetric monoidal category SetA, which we
call the structural enrichment. Given objects X,Y of CA, we define Map

CA
(X,Y ) ∈ SetA by

(4.2.8) MapCA(X,Y )(a) ∶= HomC(a/A)(X ∣a/A, Y ∣a/A),
where a/A is the undercategory of a whose objects are arrows a→ b with source a. If C has
products and coproducts, then C, equipped with the structural enrichment, is tensored and
cotensored over SetA. For X ∈CA and S ∈ SetA we have

(X ⊠ S)(a) = ∐
S(a)

X(a), a ∈ A,

and
XS(a) = ∫

{a→b}∈(a/A)
∏
S(b)

X(b), a ∈ A.

Here we use the notation ⊠ for the tensor product to distinguish the structural enrichment
from the homotopical enrichment.

Let C be a combinatorial symmetric monoidal model category. Then CA has two en-
richments: the homotopical and the structural one. Note that, even though the category C
carries a model structure, the structural enrichment does not make any reference to it.

For S ∈ SetA, we introduce

(4.2.9) ≺S≻ ∶= 1 ⊠ S ∈CA.

Note that, in comparison, for C ∈ C, we have C ≅ 1⊗C ∈ CA. Further, for an object a ∈ A,
we define the representable functor

ha ∶ AÐ→ Set, a′ ↦ HomA(a, a′).
We will need the following enriched version of the Yoneda lemma.
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Lemma 4.2.10. For objects a ∈ A, X ∈CA, we have a natural isomorphism in C

MapCA(≺ha≻,X) ≅X(a).
Proof. Equivalently, we show that for objects a ∈ A, C ∈ C and X ∈ CA, there exists a
natural bijection

HomCA(≺ha≻⊗C,X) ≅ HomC(C,X(a)).
Using the ordinary Yoneda lemma and the formula (4.2.8), we obtain natural bijections

HomCA(≺ha≻⊗C,X) ≅ HomCA(C ⊠ ha,X)
≅ HomSetA(ha,HomCA(C,X))
≅HomCA(C,X)(a)
≅ HomC(C,X(a)).

Example 4.2.11 (Combinatorial simplicial spaces).Consider C = S, equipped with the
Kan model structure and the Cartesian monoidal (model) structure. Setting A = ∆op, we have
CA = S∆ which can be identified with the category of bisimplicial sets. We will refer to the
objects ofCA as combinatorial simplicial spaces and often drop the adjective “combinatorial”.
The injective model structure on S∆ coincides with the Reedy model structure.

The homotopical and structural enrichments of the category S∆ both provide enrichments
over the category S and correspond to two ways of slicing a bisimplicial set as a simplicial
object in the category S. For a simplicial set D ∈ S, the object ≺D≻ ∈ S∆ is called the
discrete simplicial space, while D ∈ S∆ is called the constant simplicial space corresponding
to D. Thus, viewing a simplicial space as a bisimplicial set X●●, the two simplicial directions
have very different significance for us. The first direction is “structural” (we are interested
in the structural relevance of the face and degeneracy maps), while the second direction is
purely homotopical (each Xn● is thought of, primarily, in terms of its geometric realization).
This is, essentially, the point of view of Rezk [Rez01] and Joyal-Tierney [JT07] in their work
on 1-Segal spaces.
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4.3 Enriched Bousfield localization

Let C be a symmetric monoidal model category and let D be a C-enriched model category,
so, for objects X,Y of D, we have a derived mapping object RMapD(X,Y ) in hC. Enriched
Bousfield localization theory, developed in [Bar10], starts with the following definition.

Definition 4.3.1.Let S be a set of morphisms in D.

(i) An object Z ∈D is called S-local if, for every morphism f ∶ X → Y in S, the induced
morphism

RMapD(Y,Z)Ð→ RMapD(X,Z)
is an isomorphism in hC.

(ii) A morphism f ∶ X → Y in D is called S-equivalence if, for every S-local object Z in
D, the induced morphism

RMapD(Y,Z)Ð→ RMapD(X,Z)
is an isomorphism in hC.

Note that all weak equivalences in D are S-equivalences. The goal is to introduce a new
model structure on D with weak equivalences given by all S-equivalences. This is possible
under additional assumptions on C and D which we now recall.

Definition 4.3.2.Let C be a model category.

(a) ([Bar10], Def. 1.21) We say C is tractable if C is combinatorial, and the morphisms in
the sets I and J in Definition 4.1.7 can be chosen to have cofibrant domain.

(b) We sayC is left proper if weak equivalences are stable under pushout along cofibrations.

Example 4.3.3.A combinatorial model category in which all objects are cofibrant, is
tractable by definition and left proper by [Lur09a, Proposition A 2.4.2]. This is the case
for the model categories S and Gr.

Proposition 4.3.4. Let C be a tractable model category, and let A be a small category. Then
the category CA, equipped with the injective model structure, is a tractable model category.

Proof. The proof of the fact that CA is combinatorial in [Lur09a, Proposition A.2.8.2].
(specifically in the proof of Lemma A.3.3.3 of loc. cit.) also implies that CA is tractable:
The set of generating cofibrations for CA can be chosen to consist of morphisms X → Y in
CA such that, for each a ∈ A, the morphism X(a) → Y (a) is a generating cofibration of C.
The analogous statement is true for the trivial cofibrations.

We recall the main result of [Bar10] (Th. 3.18). Here, we leave the choice of a Grothendieck
universe U implicit and assume that all categories and sets involved are U -small. We denote
by (W,F,C) the model structure on D.
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Theorem 4.3.5. Let S be a set of morphisms in D and assume that

(1) C is tractable.

(2) D is left proper and tractable.

Then there exists a unique combinatorial model structure (WS,FS,CS) on the category un-
derlying D with the following properties:

(W) The class of weak equivalences WS is given by the class of S-equivalences.

(C) CS = C, i.e., the class of cofibrations remains unchanged.

(F) The fibrant objects are the S-local objects which are fibrant w.r.t. F.

The model category (D,WS,FS,CS) together with the given C-enrichment of D, is a C-
enriched model category.

We give several examples of S-enriched Bousfield localization.

Examples 4.3.6 (Stacks of groupoids).
(a) Let U be a small Grothendieck site. The category Gr

U
of stacks of (small) groupoids

on U has the Joyal-Tierney model structure [JT91]. With respect to this structure, weak
equivalences are equivalences of stacks, cofibrations are functors injective on objects (and
fibrations are defined by F = (W ∩ C)⊥). The simplicial structure is given by a pointwise
variant of Example 4.2.5.
On the other hand, pre-stacks of groupoids on U , understood as contravariant functors
U → Gr, form a simplicial model category GrU , which is combinatorial by Proposition 4.1.8.
It is a particular case of results of [TV05], §3.4, that Gr

U
is Quillen equivalent to an S-

enriched Bousfield localization of GrU with respect to an appropriate set S of morphisms. In
particular, FS-fibrant objects of GrU lie in Gr

U
, i.e., are stacks. An important corollary is

that Gr
U
is a combinatorial model category.

An explicit choice of S can be obtained by considering hypercoverings in U . A hypercovering
can be viewed as a morphism U● → U from a simplicial object U● ∈ U∆ to an ordinary
(=constant simpicial) object U ∈ U . By passing to representable functors, a hypercovering
gives rise to a morphism hU● → hU of contravariant functors U → Set∆. By passing to
fundamental groupoids, we obtain a morphism of prestacks of groupoids

Π(hU●)Ð→ Π(hU) = hU ,
the prestack on the right being discrete. We take S to consist of such morphisms for a
sufficiently representative set of hypercoverings U● → U . Then a morphism of prestacks will
be an S-equivalence, iff it induces an equivalence of associated stacks.
(b) Let k is a field, Algℵ0

k
be the category of at most countably generated commutative

k-algebras, and Affk the opposite category (affine k-schemes of countable type). Then
U is essentially small, so the constructions from (a) apply, and we get a combinatorial
simplicial model category containing the algebro-geometric category of Artin stacks over k,
see [LMB00].
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Example 4.3.7 (∞-Stacks).For a small Grothendieck site U let SU be the category of
presheaves of simplicial sets on U . The Kan model structure on S gives rise to the injective
model structure on SU .

A presheaf S ∈ SU is called an ∞-stack (or “a sheaf up to homotopy”), if for any hyper-
covering U● → U as above, the induced morphism of simplicial sets

S(U)Ð→ holim←Ð
S
∆opS(U●)

is a weak equivalence, see [GJ09]. By an n-stack we will mean an ∞-stack taking values in
simplicial sets with π>n = 0. Thus, a 0-stack is the same as a sheaf of sets, and a 1-stack is
essentially the same as a stack of groupoids in the usual sense.

Similarly to Example 4.3.6, Bousfield localization allows one to construct a new combi-
natorial simplicial model structure (WS,FS,CS) on SU whose fibrant objects are ∞-stacks.
Explicitly, S can be chosen to consists of morphisms hU● → hU for a sufficiently large set of
hypercoverings U● → U . See [TV05], Thm. 4.6.1. We denote this localized model category

SU = (SU ,WS,FS,CS).
When U = Affk, the category SU will be denoted by Sk. In this case there are important

classes of ∞-stacks on U (and their morphisms) of algebro-geometric nature, of which we
note the following, referring to [TV08, Ch. 2.1] and [Toë05] for more details:

● m-geometric stacks and m-representable morphisms of stacks, concepts defined induc-
tively in m, starting from (−1)-geometric stacks being affine schemes (representable
functors U → Set). In particular, an m-geometric ∞-stack G has an atlas which is an(m − 1)-representable morphism of stacks ∏i Si → G, where each Si is an affine scheme
in U (identified with the corresponding representable sheaf of sets).

● Artin n-stacks which are n-stacks which are m-geometric for some m.

● Artin n-stacks locally of finite presentation defined by the condition that each Si above
is an affine scheme of finite type over k.

● Artin n-stacks of finite presentation defined by an additional condition of quasi-compactness.

Example 4.3.8 (Derived stacks).Let k be a field. The category of derived stacks over k,
introduced by Toen-Vezzossi [TV08] and denoted byD−Aff∼,étk , is constructed by a Bousfield
localization procedure similar to Example 4.3.7. In particular, it is a combinatorial simplicial
model category.

More precisely,2 let U = D−Affk be the opposite category to the category (Algℵ0k )∆ of
simplicial objects in Algℵ0k (so objects of U can be thought of as affine cosimplicial schemes
of countable type). Then U is essentially small, has a natural model structure and a model
analog of a Grothendieck topology (étale coverings of affine dg-schemes), see [TV08] §1.3.1

2We are grateful to B. Toën for indicating this elementary way of handling the set-theoretical issues
arising in this and the previous examples, instead of using universes as in [TV08].
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and 2.2.2. The model category D−Aff∼,étk is the Bousfield localization of SU with respect to
an appropriate set S of morphisms (homotopy hypercoverings).

While the entire model category D−Aff∼,étk (whose objects are thus arbitrary simplicial
presheaves on U) is referred to as “the category of derived stacks”, the term derived stack
is usually reserved for fibrant objects of this category (w.r.t. the Bousfield localized model
structure) or, what is the same, objects in the essential image of the localization (fibrant
replacement) functor. See [TV08, Def. 1.3.2.1].

Each derived stack S has the classical truncation τ≤0S which is the ∞-stack on Affk
obtained by restricting S to constant simplicial algebras (corresponding to usual commutative
k-algebras). For the definition of geometric derived stacks we refer to [TV08, §1.3.3] and note
that the classical truncation of a geometric derived stack is a geometric ∞-stack.
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4.4 Homotopy limits in model categories

In §1.3, we introduced homotopy limits of diagrams of spaces and 2-limits of diagrams of
categories by ad hoc constructions. In fact, these constructions are instances of the general
notion of a homotopy limit in a simplicial model category which we introduce now. For
details, we refer the reader to [DHKS04, Shu06] and references therein.

Let (C,W,F,C) be a model category and A a small category. Since C admits small
limits, we have a limit functor

lim←Ð ∶ CA Ð→C.

In general, the diagram category CA may not admit a natural model structure, but it is
always equipped with a class of weak equivalences given by morphisms X → Y in CA such
that, for each a ∈ A, the induced map F (a)→ G(a) in C is a weak equivalence. The functor
lim←Ð does not generally preserve weak equivalences.

Definition 4.4.1.Consider the localization functor l ∶ C → Ho(C). We define the derived
limit functor (R lim←Ð, δ) to be an initial object of the category of pairs (f, η) consisting of

• a functor f ∶CA → Ho(C) which maps weak equivalences to isomorphisms,

• a natural transformation η ∶ l ○ lim←Ð→ f .

Informally, the derived limit functor is the best possible approximation to lim←Ð which does
preserve weak equivalences. Note that, by construction, a derived limit functor is unique up
to canonical isomorphism if it exists.

Example 4.4.2.Let C be a model category and assume that CA admits a model structure
such that the functor lim←Ð is a right Quillen functor. We can construct a derived limit functor

by setting R lim←Ð = l○lim←Ð ○F where F is a fibrant replacement functor ofCA. For example, ifC
carries a combinatorial model structure, then we can always use the injective model structure
on the diagram category CA to derive the limit functor. However, as shown in [DHKS04],
derived limit functors always exist: any model category is homotopically complete (and
cocomplete).

As shown in [DHKS04], derived limits can be explicitly calculated as homotopy limits.
The formalism of homotopy limits is greatly simplified if the categoryC can be equipped with
a simplicial model structure. Since all examples of our interest are simplicially enriched, we
will work in the context of simplicial model categories. Note that a simplicial model category
C is in particular cotensored over S (see Definition 4.2.2): for objects K ∈ S and Y ∈ C, we
have an object Y K ∈ C and a natural isomorphism

MapS(K,Map
C
(−, Y )) ≅Map

C
(−, Y K).

Given a diagram X ∈ CA we define the cosimplicial cobar construction Ω●(pt,A,X) in C∆

via
Ωn(pt,A,X) ∶= ∏

α∶[n]→A

X(αn)
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with the apparent coface and codegeneracy maps. Further, we define the cobar construction
Ω(pt,A,X) of X as the end of the functor

∆op ×∆→ C, ([n], [m]) ↦ Ωm(pt,A,X)∆n
so that

Ω(pt,A,X) = lim←Ð
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏
[n]∈∆

Ωn(pt,A,X)∆n //// ∏
[n]→[m]∈∆

Ωm(∗,A,X)∆n
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The homotopy limit of X is defined to be the object

holim←Ð
CX ∶= Ω(pt,A,FX)

of Ho(C), where F denotes the fibrant replacement functor of the model category C which
we apply pointwise to the diagram X .

Theorem 4.4.3 ([DHKS04]). Let C be a simplicial model category and A a small category.
Then the functor holim←Ð

C is a derived limit functor.

Example 4.4.4.Consider the category Set of sets equipped with the trivial model structure,
such that the weak equivalences are given by isomorphisms and every morphism is both a
fibration and a cofibration. The category Set is enriched over S by regarding the set of maps
between two sets as a discrete simplicial set. The homotopy limit recovers the ordinary limit
of sets. This example generalizes to any category C which admits small limits and colimits,
equipped with the trivial model structure.

Example 4.4.5.Consider the category Top of compactly generated Hausdorff topological
spaces equipped with the Quillen simplicial model structure. The homotopy limit recovers
precisely the homotopy limit of spaces introduced in §1.3. Note that, since any topological
space is fibrant, the definition of the homotopy limit does not involve the model structure
on Top; it only depends on the simplicial enrichment.

Example 4.4.6.Consider the subcategory Gr ⊂ Cat of small groupoids with its simplicial
model structure defined in Example 4.2.5. Comparing the bar-construction in this case with
Definition 1.3.6, we conclude that homotopy limits in Gr coincide with the 2-limits as defined
there. More generally, let U be a small Grothendieck site. We then have the concept of the
2-limit of a diagram of stacks of groupoids on U , defined in a similar way. As before, it is
identified with the homotopy limit in the simplicial combinatorial model category Gr

U
of

stacks.

Remark 4.4.7.Let C be a combinatorial simplicial model category. Then can compute
derived limit functors in two ways. On the one hand, we can utilize the injective model
structure on CA to derive the limit functor as explained in Example 4.4.2. On the other
hand, we can express the derived limit functor as a homotopy limit. Starting from §5 we
will utilize this additional flexibility. Since the category Top is not combinatorial, it has to
be replaced by the Quillen equivalent category § of simplicial sets, equipped with the Kan
model structure.
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We collect some consequences of the above, to be used below.

Proposition 4.4.8. (a) If (Xa → Ya)a∈A is a weak equivalence of A-diagrams in Top, then
the induced map

holim←Ða∈AXa Ð→ holim←Ða∈AYa

is a weak equivalence in Top.

(b) Let (Da)a∈A be an A-diagram of simplicial sets. Then we have a weak equivalence in
Top ∣R lim←Ð

S

a∈A
Da∣ ≃ holim←Ða∈A∣Da∣,

where R lim←Ð
S is the derived limit functor constructed using the injective model structure

on SA as in Example 4.4.2.

Proof. Assertion (a) follows since a derived limit functor takes weak equivalence of diagrams
to isomorphisms in the homotopy category. Part (b) follows from the Quillen equivalence
between the model categories S and Top.

Remark 4.4.9.Following the general custom, we will usually write holim←Ð for the derived

limit functor even if the underlying model category does not carry a simplicial structure.
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5 The 1-Segal and 2-Segal model structures

In this chapter, we introduce the notions of 1-Segal and 2-Segal objects in a combinatorial
model category C. If further C admits the structure of a left proper, tractable, symmetric
monoidal model category, then we introduce model structures for 1-Segal and 2-Segal objects
which arise as enriched Bousfield localizations of the injective model structure on C∆. For
C = S, the model structure for 1-Segal objects in S recovers the Rezk model structure for
1-Segal spaces introduced in [Rez01].

5.1 Yoneda extensions and membrane spaces

The construction of membrane spaces from §2.2, can be viewed as an instance of the general
Kan extension formalism. In this section we summarize some aspects of this formalism, to
be used later.

Let A be a small category and C a category with small limits and colimits. Consider the
category P(A) = Fun(Aop,Set) of presheaves on A and the corresponding Yoneda embedding

Υ ∶ A→ P(A), a↦ ha.

Since C admits small limits, we have an adjunction

(5.1.1) Υ∗ ∶CP(A) ←→ CA ∶ Υ∗,
where Υ∗ denotes the pullback functor and Υ∗ the functor of right Kan extension along Υ.
We call Υ∗ the Yoneda extension functor. For an object X ∈ CA and K ∈ P(A), the value
of Υ∗X on K will be denoted by (K,X) and called the space of K-membranes in X . The
general formula for Kan extensions in terms of limits implies

(5.1.2) (K,X) = Υ∗X(K) ≅ lim←ÐC

{ha→K}
Xa.

Example 5.1.3.The previous definition of the membrane spaces in (2.2.1) is recovered when
A = ∆op and C = Top, with h{[n]} being the standard simplex ∆n.

We recall the following standard result ([KS06a]).

Proposition 5.1.4. The functor Υ∗ ∶ CA → CP(A) establishes an equivalence between CA

and the full subcategory of CP(A) consisting of functors which map colimits in P(A) to limits
in C. The inverse of this equivalence is given by Υ∗.

Let f ∶ A → A′ be a functor of small categories. We consider the pullback along f of both
C-valued and Set-valued functors on A and A′ and, in each case, the corresponding left Kan
extension functor, so that we have adjunctions

f! ∶ CA ←→CA′ ∶ f∗, f! ∶ P(A)←→ P(A′) ∶ f∗
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We use the notations f∗, f! in both cases, since it will be clear from the context which functor
is meant. Note that we have a 2-commutative square

A
f //

ΥA

��

A′

ΥA
′

��
P(A) f! // P(A′).

Proposition 5.1.5. For X ∈ CA′ and K ∈ P(A), we have a natural isomorphism in C

(K,f∗X) ≅ (f!K,X).
Proof. We show that there is an isomorphism in CP(A) between the functors (ΥA′

∗ X) ○ f!
and ΥA

∗ (f∗X). Both functors map colimits in P(A) to limits in C. The pullbacks of both
functors under ΥA are isomorphic to f∗X , thus, by Proposition 5.1.4, we conclude that the
functors themselves are isomorphic.

Assume now that C be a combinatorial model category. We equip the functor categories
CA and CP(A) with the injective model structures so that the adjunction (5.1.1) becomes a
Quillen adjunction. We then introduce the homotopy Yoneda extension functor RΥ∗ as the
right derived functor of Υ∗. The value of RΥ∗X at K ∈ P(A) will be denoted by (K,X)R
and called the derived space of K-membranes in X . Thus we have (K,X)R = (K,F (X))
where F (X) is an injectively fibrant replacement of X . Further, we have the identification

(5.1.6) (K,X)R ≃ R lim←Ð
C

{ha→K}
Xa,

obtained from the pointwise formula for homotopy Kan extensions (see [Lur09a, A.2.8.9]).

Remark 5.1.7.Let C be a simplicial combinatorial model category. We can compute the
derived limit Y = R lim←Ð

C

{ha→K}
Xa in two ways. By the above discussion, we have the formula

R lim←Ð
C

{ha→K}
Xa ≃ lim←Ð

C

{ha→K}
F (X)a,

where F (X) is an injectively fibrant replacement of X . Alternatively, we can utilize the
simplicial enrichment to compute

R lim←Ð
C

{ha→K}
Xa ≃ holim←Ð

C

{ha→K}
Xa,

where the right-hand side denotes the homotopy limit introduced in §4.4. In view of Propo-
sition 4.4.8, this shows that the formalism introduced in this section is compatible with the
notion of membrane spaces introduced in §2.2.

Proposition 5.1.8. Assume that the functor f∗ ∶ CA′ → CA preserves injectively fibrant
objects. Then, for X ∈CA′ and K ∈ P(A), we have a natural weak equivalence

(K,f∗X)R ≃ (f!K,X)R.
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Proof. The statement follows immediately from Proposition 5.1.5.

Let C be a symmetric monoidal model category in the sense of Definition 4.2.1. We
equip the model category CA with the homotopical enrichment from Example 4.2.6. In
this situation, we have the following formula for Yoneda extensions in terms of C-enriched
mapping spaces.

Proposition 5.1.9. Let X ∈CA.

(a) There exists a natural isomorphism

Υ∗X ≅MapCA
(≺−≻,X)

of functors P(A)op →C.

(b) There exists a natural weak equivalence

RΥ∗X ≃ RMap
CA
(≺−≻,X)

of functors P(A)op →C.

Proof. (a) Both functors commute with colimits in A (or, more precisely, limits in Aop).
Since any object D ∈ P(A) can be expressed as a colimit of representable functors ha, it
suffices to check that their restrictions to Aop are naturally isomorphic (Proposition 5.1.4).
This follows from Lemma 4.2.10 and formula (5.1.2) for the Yoneda extension.

(b) The derived mapping space is obtained by forming the ordinary mapping space of an
injectively fibrant replacement F (X) of X . Indeed, for any D ∈ P(A), the object ≺D≻ is
cofibrant and does not have to be replaced. This follows since ≺D≻(a) =∐Da 1 and 1 ∈C is
by definition cofibrant. On the other hand, the homotopy Kan extension can be calculated
by applying the functor Υ∗ to an injectively fibrant replacement of X . The statement thus
follows from (a).

Let A,B be small categories. Recall that a diagram K ∶ B → SetA is called acyclic if, for
every a ∈ A, the natural map

holimÐ→bK(a)Ð→ limÐ→bK(a)
is a weak homotopy equivalence of spaces. Here, K(a) ∶ B → Set denotes the diagram
obtained from K by evaluating at a, interpreted as a diagram of discrete topological spaces.

Proposition 5.1.10. Let A, T be small categories, (Kb)b∈B a B-indexed diagram in the
category P(A), and X ∈ CA. Then the following hold:

(a) We have a natural isomorphism in C

(limÐ→P(A)

b∈B
Kb,X) ≅ lim←ÐC

b∈B
(Kb,X).
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(b) If the diagram (Kb)b∈B is acyclic, then we have a natural weak equivalence

(limÐ→P(A)

b∈B
Kb,X)R ≃ holim←ÐC

b∈B(Kb,X)R.
Proof. Let S = limÐ→b∈BKt. Consider the diagram of categories

(5.1.11) A/S f
Ð→ SetA/S g

←Ð B,

where f is induced by the Yoneda embedding and g maps an object b ∈ B to the canonical
map (Kb → S). Let f/g denote the comma category associated to (5.1.11). An object of
f/g is given by a triple (x, b,α) where x and b are objects of A/S and B, respectively, and
α ∶ f(x)→ g(b) is a morphism in SetA/S. We consider the functors

F1 ∶ Bop →C, b↦ (Kb,X)
F2 ∶ (f/g)op →C, (ha → S, b,α) ↦ Xa

F3 ∶ (A/S)op →C, (ha → S)↦Xa.

We claim that we have natural isomorphisms in C

lim←ÐF1 ≅ lim←ÐF2 ≅ lim←ÐF3.

We consider the natural projection functor q ∶ (f/g)op → Bop. Note that any limit functor
is a right Kan extension along the constant functor, and hence, by the functoriality of Kan
extensions, we have an isomorphism of functors

lim←Ð{Bop}
○q∗ ≅ lim←Ð{(f/g)op} .

This implies the identification lim←ÐF1 ≅ lim←ÐF2 since, by definition, the functor F1 is a right
Kan extension of F2 along q. The isomorphism lim←ÐF2 ≅ lim←ÐF3 is obtained by noting that F2

is the pullback of F3 along the initial functor p ∶ (f/g)op → (A/S)op. This proves (1).
To show (2), we replace the functor F1 by b ↦ (Kb,X)R. We claim to have a chain of

natural isomorphisms in Ho(C)
R lim←ÐF1 ≃ R lim←ÐF2 ≃ R lim←ÐF3.

Again, from the definition of the derived membrane space, the functor F1 is a right homotopy
Kan extension of F2 along the functor q ∶ (f/g)op → Bop, which implies the identification
R lim←ÐF1 ≃ R lim←ÐF2. To obtain the weak equivalence R lim←ÐF2 ≃ R lim←ÐF3, it suffices to show

that the functor p ∶ (f/g)op → (A/S)op is homotopy initial ([Hir03, 19.6]), i.e., p preserves
homotopy limits. We have to show that, for every object ha → S of (A/S)op, the overcategory
p/(ha → S) has a weakly contractible nerve. But this statement is easily seen to be equivalent
to the assumption that the diagram (Kb) is acyclic. Here, we use the fact that p/(ha → S)
is weakly equivalent to the strict fiber p−1(ha → S) since the map pop is a Grothendieck
fibration.
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Remark 5.1.12. In the case when C is a simplicial combinatorial model category, we can
alternatively prove Proposition 5.1.10 by the exact argument of Proposition 2.2.6, utilizing
the cotensor structure of C∆ over S∆.

Note that, by Proposition 5.1.10, all formulas regarding manipulations of derived mem-
brane spaces proven in §2.2 for (semi-)simplicial topological spaces extend to the context of
(semi-)simplicial objects in the combinatorial model category C by setting A =∆ (A =∆inj).
In what follows, we will use these statements freely.
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5.2 1-Segal and 2-Segal objects

Consider the classes of morphisms in S

S1 = {∆In ↪ ∆n∣ n ≥ 2} ,
S2 = {∆T ↪ ∆n∣ n ≥ 3, T is a triangulation of the polygon Pn} .(5.2.1)

Here In ⊂ 2[n] denotes the collection of subsets from Example 2.2.14, so that ∆In is the
union of n composable oriented edges. The morphisms in Sd will be called d-Segal coverings.
We apply the formalism of §5.1 in the case A = ∆. In particular, we consider the Yoneda
embedding Υ ∶ ∆ → S and the corresponding derived Yoneda extension functor RΥ∗ ∶ C∆ →
CS.

Definition 5.2.2.Let C be a combinatorial model category and X a simplicial object in C.
We say that X is a d-Segal object in C if its homotopy Yoneda extension RΥ∗X ∈CS maps
d-Segal coverings to weak equivalences in C.

Remark 5.2.3. It is convenient to think of Sd as defining the rudiment of a Grothendieck
topology on S. In this context, the d-Segal condition on X is analogous to a (homotopy)
descent condition for the C-valued presheaf RΥ∗X on S.

Remarks 5.2.4. (a) As in Chapter 2, Definition 5.2.2 can be modified to define d-Segal
semi-simplicial objects in a combinatorial model category C. We leave the details to the
reader.
(b) Similarly, the definition of a unital 2-Segal object in C is identical to Definition 2.5.2.

Remark 5.2.5.As announced in the introduction, there is a natural way to extend Definition
5.2.2 to d ∈ N, using an analogous descent condition involving triangulations of d-dimensional
cyclic polytopes. These higher Segal spaces will be the subject of future work.

Proposition 5.2.6. Every 1-Segal object in C is a 2-Segal object.

Proof. Completely analogous to the argument of Proposition 2.3.3.

Examples 5.2.7. (a) Let C = Set with the trivial model structure. The d-Segal objects in
C are the discrete d-Segal spaces studied in Chapter 3. More generally, if C is any category
with limits and colimits equipped with the trivial model structure, we recover the concept
of non-homotopical d-Segal objects from Chapter 3. In fact, the existence of colimits is not
necessary to formulate the d-Segal condition in this context.
(b) Let C = S equipped with the Kan model structure. We call the d-Segal objects in S

combinatorial d-Segal spaces. All examples of topological d-Segal spaces studied in Chapters
2 and 3 are in fact obtained from combinatorial d-Segal spaces by levelwise application of
geometric realization. By Proposition 4.4.8 and the fact that the model categories Top and
S are Quillen equivalent, the theory of combinatorial d-Segal spaces is essentially equiva-
lent to the theory of topological d-Segal spaces. However, since the model category S is
combinatorial, it has technical advantages.
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Example 5.2.8. (a) Let E be a proto-exact category. Then the Waldhausen construction
gives a 2-Segal simplicial object SE in Gr and its nerve N(SE) is a 2-Segal simplicial object
in S.
(b) Similarly, let G be a group acting on a set E. Then S●(G,E) is a 1-Segal object in Gr.

Example 5.2.9 (Waldhausen stacks). (a) Let U be a small Grothendieck site. A stack
of proto-exact categories on U is a stack E of categories E(U), U ∈ Ob(U) such that each
E(U) is made into a proto-exact category with classes M(U),E(U), and these classes are
of local nature, i.e., closed under restrictions as well as under gluing in coverings forming
the Grothendieck topology. Then U ↦ Sn(E(U)) is a stack of groupoids on U , so we obtain
a simpicial object S(E) in the category Gr

U
if stacks of groupoids over U . This simplicial

object is 2-Segal. The proof is the same as in Proposition 2.4.8.
In particular, let F be a field and U = AffF be the étale site of affine F-schemes of at
most countable type, as in Example 4.3.6. The following Waldhausen stacks on AffF are
important, since they provide examples of 2-Segal objects of algebro-geometric nature.
(b) Let R be a finitely generated associative F-algebra. We then have the stack of exact

categories R −Mod on AffF. By definition, R −Mod(U) is the category of sheaves of left
OU ⊗F R-modules which are locally free of finite rank as O-modules. In particular, for
U = Spec(F) we recover the abelian category R−Mod of finite-dimensional R-modules. The
Waldhausen stack S(R −Mod) is thus an algebro-geometric extension of the single simplicial
groupoid S(R−Mod), the Waldhausen space of the category of finite-dimensional R-modules.
(c) Let V be a projective algebraic variety over F. Then we have the abelian categoryCoh(V ) of coherent sheaves and the exact category Bun(V ) of vector bundles on V . They

extend in a standard way to stacks of exact categories Coh(V ) and Bun(V ) on AffF. For
instance, Coh(V )(U) is formed by quasi-coherent sheaves on V ×U , flat with respect to the
projection V ×U → V and whose restriction to each geometric fiber of this projection is co-
herent. Therefore we get 2-Segal simplicial stacks of groupoids S(Coh(V )) and S(Bun(V )).
(d) Let G be an algebraic group and E be an algebraic variety, both over F, with G acting

on E. Then the stack quotients Sn(G,E) = [G//En+1]n≥0 form a simplicial object S●(G,E)
in the category of Artin stacks over F (which is a subcategory in the category Gr

AffF
). This

simplicial object, which is the algebro-geometric version of the Hecke-Waldhausen space from
§2.6 is 1-Segal. The proof is the same as given in that section.
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5.3 1-Segal and 2-Segal model structures

In Remark 5.2.3 we expressed the d-Segal condition as a descent condition with respect
to d-Segal coverings. In this section, we use Proposition 5.1.9 to reinterpret these descent
conditions as locality conditions: a simplicial object X ∈C∆ is a d-Segal object, if and only if
it is Sd-local in the C-enriched sense. This enables us to apply the general theory of enriched
Bousfield localization to introduce model structures for 1-Segal and 2-Segal objects.

Let C be a left proper, tractable, symmetric monoidal model category and d ∈ {1,2}.
We consider the category C∆ with its injective model structure and the homotopical C-
enrichment, see Example 4.2.6. We further use the notation RMap

C∆
(X,Y ) to denote

the corresponding hC-enriched derived mapping spaces as defined in (4.2.3). Let ≺Sd≻ ⊂
Mor(C∆) be the image of Sd under the discrete object functor defined in (4.2.9).

Proposition 5.3.1. A simplicial object X ∈C∆ is d-Segal if and only if it is ≺Sd≻-local in
the C-enriched sense.

Proof. This is immediate from Proposition 5.1.9.

Theorem 5.3.2. There exists a C-enriched combinatorial model structure Segd on C∆ with
the following properties:

(W) The weak equivalences are given by the ≺Sd≻-equivalences.

(C) The cofibrations are the injective cofibrations.

(F) The fibrant objects are the injectively fibrant d-Segal objects.

Proof. This follows from Theorem 4.3.5, Proposition 4.3.4 and Proposition 5.3.1.

We call Segd the model structure for d-Segal objects in C. We further denote the injective
model structure on C∆ by I .

Corollary 5.3.3. We have inclusions

WI ⊂WSeg2 ⊂WSeg1 ,

FI ⊃ FSeg2 ⊃ FSeg1 ,
CI = CSeg2 = CSeg1,

so that the identity functors induce Quillen adjunctions

(C∆,I) Id←→ (C∆,Seg2) Id←→ (C∆,Seg1).
Proof. The equality of the C-classes is clear from Theorem 5.3.2. The inclusion of the W-
classes follow from the theorem together with the fact that, by Proposition 5.2.6, every
1-Segal object is 2-Segal. The opposite inclusion of the F-classes follows from the axiom
F = (W ∩ C)⊥ of model categories.
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Note that, as part of the model structure Segd, we have a functorial fibrant replacement
functor: for every X in C∆, we obtain a d-Segal object Sd(X) and a canonical d-Segal weak
equivalence

X Ð→Sd(X),
functorial in X . We refer to this map as the d-Segal envelope of X .

Passing to homotopy categories, Corollary 5.3.3 gives a chain of inclusions of full subcat-
egories

(5.3.4) Ho(C∆,I) ⊃ Ho(C∆,Seg2) ⊃ Ho(C∆,Seg1).
That is, Ho(C∆,Segd) is identified with the full subcategory in Ho(C∆,I) formed by in-
jectively fibrant d-Segal objects in C∆. Further, the d-Segal envelope functors induce left
adjoint functors to the inclusions of homotopy categories:

Ho(C∆,I)
S1

--

S2

// Ho(C∆,Seg2) S2,1

// Ho(C∆,Seg1),
with S2,1 being the restriction of S1 to the subcategory of 2-Segal objects.

Examples 5.3.5 (Free categories). (a) Let C = Set with trivial model structure. Then
the injective model structure on Set∆ is also trivial, so Ho(Set∆,I) = Set∆ is the category of
simplicial sets. This means that the subcategories in (5.3.4) are simply the full subcategories
formed by d-Segal simplicial sets, d = 1,2:

Set∆ ⊃ Set2−Seg∆ ⊃ Set1−Seg∆ .

In particular, since any 1-Segal simplicial set is isomorphic to the nerve of a small category,
the composite embedding Ho(Set∆,Seg1) ⊂ Ho(Set∆,I) is identified with the nerve functor
N ∶ Cat→ Set∆. Therefore the functor of 1-Segal envelope S1 is, in this case the left adjoint
of the N in the ordinary sense. This is the functor

FC ∶ Set∆ Ð→ Cat, D ↦ FC(D),
where FC(D) is the free category generated by D. Explicitly, Ob(FC(D)) = D0 is the set of
vertices of the simplicial set D, while HomFC(D)(x, y) is the set of oriented edge paths from
x to y modulo identifications given by the 2-simplices.
(b) Let C = S with the Kan model structure. We then have an embedding Set∆ → S∆

takind a simplicial set D to the discrete simplicial space ≺D≻. The functors of d-Segal
envelope in S∆, denote them SS

d, can be compared with the corresponding functors in Set∆
from (a), denote then SSet

d
. In fact, they are compactible:

SS
d(≺D≻) ≃ ≺SSet

d (D)≻.
To see this, note that model structure Segd on S∆ is combinatorial and therefore cofibrantly
generated. Thus, by the small object argument (e.g., [Lur09a, A.1.2]), we may build fibrant
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replacements by forming iterated (transfinite) compositions of pushouts along generating
trivial cofibrations. The generating trivial cofibrations consist of two types of morphisms.
First, the injective model structure itself is generated by a certain set of embeddings of
simplicial spaces giving weak equivalences at each level. Second, we have the embeddings
from the set ≺Sd≻ from (5.2.1). Since the discrete simplicial space ≺D≻ is already injec-
tively fibrant, it suffices to form pushouts only along maps in ≺Sd≻. Doing so will produce
≺SSet

d (D)≻.

101



6 The path space criterion for 2-Segal spaces

The main result of this chapter is Theorem 6.3.2 which expresses the 2-Segal condition for a
simplicial object X in terms of 1-Segal conditions for simplicial analogs of the path space of
X , as defined by Illusie.

6.1 Augmented simplicial objects

We define the category ∆+ to be the category of all finite ordinals, including the empty set.
An augmented simplicial object of a category C is a functor X ∶ ∆+op → C. We denote by
C∆+ = Fun(∆+op,S) the category of such objects. Explicitly, an augmented simplicial object
is the same as an ordinary simplicial object X● ∈ C∆ together with an object X−1 = X(∅)
and an augmentation morphism ∂ ∶ X0 →X−1 such that ∂∂0 = ∂∂1 ∶ X1 →X−1.

Let C be a category with finite limits and colimits. The inclusion functor j ∶ ∆ → ∆+

induces two adjunctions
j! ∶ C∆ ←→C∆+ ∶ j∗
j∗ ∶ C∆+ ←→C∆ ∶ j∗.

While the pullback functor j∗ simply forgets the augmentation, its left and right adjoints j!, j∗
provide two natural ways to equip a simplicial object with an augmentation. For X ∈ C∆

we will use the abbreviations

X♣ ∶= j!(X), X+ ∶= j∗(X).
Explicitly, we have

(6.1.1) X♣−1 = Π0(X), X+−1 = pt, and X♣n = X+n =Xn, n ≥ 0.

Here pt denotes the final object of C and

Π0(X) ∶= limÐ→C { X1

∂0 //

∂1

//X0 }
denotes the internal space of connected components.

Remark 6.1.2.An augmented semi-simplicial object in C is a functor X ∶ ∆+opinj →C, where
∆+inj ⊂ ∆+ is the subcategory formed by injective morphisms of all finite ordinals. As in

the simplicial case, we have the embedding j̄ ∶ ∆inj → ∆+opinj which gives rise to the pullback
functor j̄∗ and its two adjoints j̄! ∶ X ↦ X♣, j̄∗ ∶ X ↦ X+, which are again given by the
formulas of (6.1.1).
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6.2 Path space adjunctions

We now recall the construction of simplicial path spaces, due originally to Illusie ([Ill72], Ch.
VI) who calls them “les décalés d’un objet simplicial”.

Given two ordinals I, I ′, their join is defined to be the ordinal I ⋆ I ′ ∶= I∐ I ′ where each
element of I is declared to be smaller than each element of I ′. Let C be a category with
small limits and colimits. The functors

i ∶∆+ Ð→ ∆, I ↦ [0] ⋆ I
f ∶∆+ Ð→ ∆, I ↦ I ⋆ [0]

induce adjunctions
i! ∶ C∆+ ←→C∆ ∶ i∗
f! ∶ C∆+ ←→C∆ ∶ f∗.

We further consider the inclusion functor j ∶∆→ ∆+ and the induced adjunction

j! ∶ C∆ ←→C∆+ ∶ j∗

from §6.1. We call the functors j∗○i∗ and j∗○f∗ the initial and final path space functors, and
i! ○ j! and f! ○ j! the left and right cone functors, respectively. To emphasize this terminology,
we will use the notation

P◁ = j∗ ○ i∗, P▷ = j∗ ○ f∗ C◁ = i! ○ j!, C▷ = f! ○ j!.
We give explicit descriptions of the path space and cone functors. For the path space

functors, note that P◁(X)n = P▷(X)n =Xn+1, n ≥ 0, the face morphisms are given by

(6.2.1)
{∂ni ∶ P◁+ (X)n → P◁+ (X)n−1} = {∂n+1i+1 ∶ Xn+1 → Xn}, i = 0, ..., n;

{∂ni ∶ P▷+ (X)n → P▷+ (X)n−1} = {∂n+1i ∶ Xn+1 → Xn}, i = 0, ..., n,

and similarly for the degeneracies.
For augmented simplicial objects X ′,X ′′ ∈ C∆+ , we define the join X ′ ⋆X ′′ ∈ C∆ by the

formula

(6.2.2) (X ′ ⋆X ′′)(J) ∶= ∐
I ′∪I ′′=J
I ′<I ′′

X ′(I ′) ×X ′′(I ′′),

for a finite nonempty ordinal J . Here the coproduct is taken over all ordered pairs (I ′, I ′′)
of possibly empty subsets of J satisfying the conditions as stated. For instance, (J,∅) and(∅, J) give two different summands. This formula is then extended to morphisms by taking
preimages of disjoint decompositions.

Proposition 6.2.3. Let pt denote the final object of C∆+ so that pt assigns the final object of
C to every finite ordinal. For an augmented simplicial object X ∈ C∆+ we have the formulas

i!(X) ≅ pt⋆X, f!(X) ≅X ⋆ pt .
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Proof. We treat the statement for the functor i!, the argument for f! is analogous. By the
pointwise formula for left Kan extensions, we have

i!X(J) ≅ limÐ→{J→[0]⋆I}∈(J/∆+)op XI .

The objects of the category (J/∆+)op are maps α ∶ J → [0] ⋆ I in ∆ while a morphism
from such α to α′ ∶ J → [0] ⋆ I ′ is a monotone map I ′ → I making the triangle commute.
Now notice that (J/∆+)op is the disjoint union of subcategories each having a final object.
These subcategories are labelled by disjoint decompositions J = I ′ ⊔ I ′′ as in (6.2.2). The
subcategory corresponding to (I ′, I ′′) consists of maps α such that I ′ is the preimage of the
new minimal element 0 ∈ [0]∗I, and the final object is given by the map I → I/I ′. Therefore,
we have an isomorphism

limÐ→{J→[0]⋆I}∈J/∆+ XI ≅∐I ′⊔I ′′=J
I ′<I ′′

X(I ′′),
which implies the claimed formula.

Remark 6.2.4.Let K be a simplicial set and set K−1 = Π0(K). We deduce from the
proposition the explicit formula

C▷(K)n ≅Kn ∐Kn−1 ∐ ⋅ ⋅ ⋅ ∐K−1, n ≥ 0,

with the summand Km corresponding to I ′ = {0,1, ...,m} in (6.2.2). Denoting by (x,m)n
the element of C▷(X)n corresponding to x ∈ Xm, we find the face maps by the formula

∂ni (x,m)n =
⎧⎪⎪⎨⎪⎪⎩
(∂mi (x),m − 1)n−1, if i ≤m,
(x,m)n−1, if i >m.

and similarly for degeneracies.
The right cone C▷(K) is obtained by adding a new vertex v for each connected compo-

nent v ∈ Π0(K), then an oriented edge from each v to each vertex of the connected component
v, then a triangle with one vertex v for each 1-simplex in v and so on. So the geometric real-
ization ∣C▷(K)∣ is the disjoint union of the geometric cones over the connected components
of ∣K ∣. The left cone can be understood similarly but with different orientation of the edges,
triangles, etc.

Example 6.2.5.Let I be a collection of subsets of [n] and ∆I be the corresponding simplicial
subset of ∆n, see (2.2.12). We assume that ∆I is connected, i.e., Π0(∆I) ≅ pt. Define the
collection I◁ of subsets of {0,0, . . . , n} ≅ [n + 1] by appending the element 0 to each set in
I . Then we have a natural isomorphism

C◁(∆I) ≅ ∆I◁.
We apply this observation to the collection In = {{0,1},{1,2},⋯,{n − 1, n}}. The collection
I◁n , considered as a subset of 2[n+1], corresponds to the special triangulation of a convex(n+ 2)-gon in which all triangles have the common vertex {0} . Using analogous definitions
for the right cone, we obtain that I▷n corresponds to the special triangulation in which all
triangles have the common vertex {n + 1}.
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The following proposition, which is the central result of this section, tells us how the path
space and cone functors interact with the C-enriched membrane spaces defined in §5.1.

Proposition 6.2.6. Let C be a combinatorial model category. Let X ∈C∆ and K ∈ Set∆.

(a) We have natural isomorphisms in C

(K,P◁(X)) ≅ (C◁(K),X), (K,P▷(X)) ≅ (C▷(K),X).
(b) Assume further that each connected component of ∣K ∣ is weakly contractible. Then we

have natural isomorphisms in hC

(K,P◁(X))R ≃ (C◁(K),X)R, (K,P▷(X))R ≃ (C▷(K),X)R.
Proof. Assertion (a) follows immediately from Proposition 5.1.5. Part (b) is a consequence
of Lemma 6.2.7 and Lemma 6.2.8 below.

Lemma 6.2.7. Let C be a combinatorial model category. For every X ∈ C∆ and M ∈ Set∆+
we have natural isomorphisms

(M,i∗X)R ≃ (i!M,X)R, (M,f∗X)R ≃ (f!M,X)R
in Ho(C).
Proof. We reduce the statement to Proposition 5.1.8 by showing that i∗ and f∗ preserve
injective fibrations. Equivalently, we can show that the left adjoints i! and f! preserve triv-
ial injective cofibrations. This follows from the formulas of Proposition 6.2.3, since trivial
injective cofibrations are defined pointwise, and trivial cofibrations are stable under coprod-
ucts.

Lemma 6.2.8. Let K be a weakly contractible simplicial set. Then, for every Y ∈ C∆+, there
is a natural weak equivalence (K,j∗Y )R ≃ (j!K,Y )R
in Ho(C).
Proof. We have the formulas

(j!K,Y )R = holim←Ð{∆+/j!K}Y ′
and (K,j∗Y )R = holim←Ð{∆/K}Y ′′
where Y ′ and Y ′′ denote the functors induced by Y on the categories (∆+/j!K)op and(∆/K)op, respectively. The functor j! induces a natural embedding

k ∶ ∆/K Ð→ ∆+/j!K
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such that (kop)∗Y ′ = Y ′′. Thus, it suffices to show that k is homotopy final ([Hir03, 19.6]).
Since the functor k is fully faithful, we only have to verify the contractibility of the under-
categories of objects in ∆+/j!K which are not in the essential image of k. The only such
objects are given by maps of the form

c ∶ h∅ → j!K,

which are in natural bijective correspondence with the set Π0(K) of connected components
of ∣K ∣. The slice category c/k is isomorphic to the category ∆/Kc where Kc ⊂ K denotes
the connected component classified by c. By assumption, each connected component Kc is
weakly contractible. Therefore, it suffices to show that, for any weakly contractible simplicial
set S, the simplicial set N(∆/S) is weakly contractible. Consider the inclusion

i ∶ N(∆inj/S) ⊂ N(∆/S),
where ∆inj ⊂ ∆ denotes the subcategory of monomorphisms. Using Quillen’s Theorem A
([Qui73]), it is easy to verify that i is a weak homotopy equivalence. The geometric realization∣N(∆inj/S)∣ can be identified with the barycentric subdivision of ∣S∣. Hence we have a natural
homeomorphism ∣N(∆inj/S)∣ ≅ ∣S∣ which concludes our argument since ∣S∣ is by assumption
weakly contractible.

Remark 6.2.9.Assume that ∣K ∣ is connected. In this case, we have j!K ≅ j∗K and therefore
the cones C◁(K) and C▷(K) are the “usual” cones over K obtained by adding a single initial
or final vertex, respectively.
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6.3 The path space criterion

Let C be a combinatorial simplicial model category. We equip the category C∆ with the
injective model structure. Given a map f ∶K →K ′ of simplicial sets, we say that an object
X ∈C∆ is f -local, if the map

(RΥ∗X)(f) ∶ (K ′,X)R Ð→ (K,X)R
induced by f is a weak equivalence in C.

Proposition 6.3.1. Let X ∈ C∆ be a simplicial object and f ∶ K → K ′ a morphism of
weakly contractible simplicial sets. Then P◁X (resp. P▷X) is f -local if and only if X is
C◁(f)-local (resp. C▷(f)-local).
Proof. This follows from Proposition 6.2.6.

Note that applying C◁ and C▷ to the 1-Segal coverings ∆In → ∆n we get some partic-
ular 2-Segal coverings (Example 6.2.5(b)). This suggests that the path space constructions
mediate between 1-Segal and 2-Segal conditions. Indeed, we have the following result.

Theorem 6.3.2 (Path Space Criterion). Let X be a simplicial object in C. Then the
following conditions are equivalent:

(i) X is a 2-Segal object.

(ii) Both path spaces P◁X and P▷X are 1-Segal objects.

Proof. The implication (i)⇒(ii) follows by applying Proposition 6.3.1 to Example 6.2.5 (b).
To obtain (ii)⇒(i), let X be a simplicial object with P◁X and P▷X being 1-Segal objects.
By Proposition 2.1.3, a 1-Segal object is in fact local with respect to maps ∆I → ∆n with I
being any collection of the form

I = {{0,1, . . . , i1},{i1, i1 + 1, . . . , i2}, . . . ,{ik, ik + 1, . . . , n}}.
We now argue by induction on n. Assume that for each n′ < n and for each triangulation
T ′ of the (n′ + 1)-gon, the 2-Segal map fT ′ ∶ Xn′ → RXT ′ , is a weak equivalence. Let T be a
triangulation of the (n+1)-gon Pn. Note, that at least one of the following cases must hold:

(1) The triangulation T contains an internal edge with vertices {0, i} where 1 < i < n.

(2) The triangulation T contains an internal edge with vertices {i, n} where 0 < i < n − 1.
Assume (1) holds. Let I ′ = {{0,1, . . . , i},{0, i, i + 1, . . . , n}} and note that I ′ is obtained as
the left cone of the collection {{1, . . . , i},{i, i + 1, . . . , n}}. Since by assumption the initial
path space P◁X is a 1-Segal object, we apply Proposition 6.3.1 to deduce that the map

g ∶ Xn Ð→ RXI′ = X{0,1,...,i} ×RX{0,i} X{0,i,i+1,...,n}
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is a weak equivalence. The edge {0, i} decomposes the polygon Pn into two subpolygons:
the (i + 1)-gon P (1) with vertices {0,1, . . . , i} and the (n − i + 2)-gon P (2) with vertices{0, i, i + 1, . . . , n}. Since {0, i} is an internal edge of the triangulation T , we obtain induced
triangulations T1 of P (1) and T2 of P (2) . By induction, both 2-Segal maps fT1 and fT2
corresponding to these triangulations are weak equivalences. Further, by Proposition 2.2.18,
we have a natural weak equivalence

RXT
≃Ð→ RXT1 ×RX{0,i} RXT2 .

We assemble the constructed maps to form the commutative diagram

Xn

f

��

g // X{0,1,...,i} ×RX{0,i} X{0,i,i+1,...,n}
(fT1 ,fT2)

��
RXT

≃ // RXT1 ×RX{0,i} RXT2
from which we deduce, by the two out of three property, that the 2-Segal map f is a weak
equivalence. In the case (2), we argue similarly using that P▷X is a 1-Segal object.

Example 6.3.3.Let E be a proto-exact category (Definition 2.4.2), with the classes M,E
of admissible mono- and epi-morphisms, which we consider as subcategories in E . Let S●(E)
be the Waldhausen simplicial groupoid of E . Lemma 2.4.9 identifies both P◁S●(E) and
P▷S●(E). More precisely, P◁S●(E) is equivalent, as a simplicial groupoid, to the categorified
nerve of M, while P▷S●(E) is equivalent to the categorified nerve of E. As the categorified
nerve of any category is a 1-Segal simplicial groupoid, invoking Theorem 6.3.2 provides an
alternative proof of the fact that S●(E) is 2-Segal.
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6.4 The path space criterion: semi-simplicial case

Since many interesting examples of 2-Segal spaces live in the semi-simplicial world, we briefly
discuss the corresponding modification of the path space criterion.

We denote by ∆+inj ⊂∆+ the category of all (possibly empty) finite ordinals and monotone
injective maps. An augmented semi-simplicial object in a category C is a contravariant
functor X ∶ ∆+inj → C. The category of such functors will be denoted C∆+

inj
. For n ≥ −1,

we have the nth “augmented semi-simplex” ∆+ninj which is the functor represented by [n] on
∆+inj. Note that unlike the simplicial case, ∆+0inj is not the final object of Set∆+

inj
:

(∆+0inj)n =
⎧⎪⎪⎨⎪⎪⎩
pt, n = −1,0,
∅, n > 0.

The final object is the augmented semi-simplicial set F with Fn = pt for all n ≥ −1. The
join X ⋆ Y of two augmented semi-simplicial sets X and Y is defined in the same way as in
(6.2.2).

As before, we have the functors

j̄ ∶∆inj ↪∆+inj, I ↦ I (embedding)

ī ∶∆+inj ↪∆inj, I ↦ [0] ∗ I
f̄ ∶∆+inj ↪∆inj, I ↦ I ∗ [0].

The adjoint functors
j̄∗ ∶X ↦ X+, j̄! ∶ X ↦ X♣

to j̄ are given by the same formulas as in (6.1.1). Similarly, the pullback functors ī∗, f̄∗ are
given by the same formulas as (6.2.1) and we set

P◁ = j̄∗ ○ ī∗, P▷ = j̄∗ ○ f̄∗ C◁ = ī! ○ j̄!, C▷ = f̄! ○ j̄!.
We have the following modification of Proposition 6.2.3.

Proposition 6.4.1. We have

ī!(X) =∆+0inj ⋆X, f̄!(X) = X ⋆∆+0inj.
Example 6.4.2.Comparing to Remark 6.2.4, in the semi-simplicial case we have

C▷(X)n =Xn ⊔Xn−1, n ≥ 0

with faces given by the same formula as in in that example, but restricted to m ∈ {n,n − 1}.
Similarly for C◁.

We have the following semi-simplicial variant of the path space criterion.

Theorem 6.4.3 (Path Space Criterion). Let C be a combinatorial model category and X a
semi-simplicial object in C. Then the following conditions are equivalent:
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(i) X is 2-Segal

(ii) Both P◁X and P▷X are 1-Segal.

Proof. The proof is analogous to that of Theorem 6.3.2 and is left to the reader.

Example 6.4.4.Let C = Set (with trivial model and simplicial structures) and let X be a
2-Segal semi-simplicial object in Set with X0 = X1 = pt. We denote C = X2. By Corollary
3.7.4, X corresponds to a set-theoretic solution

α ∶ C2 Ð→ C2, α(x, y) = (x ● y, x ∗ y)
of the pentagon equation. The initial path space P◁(X) is, by Theorem 6.4.3, a 1-Segal
semi-simplicial set. Since P◁(X)0 = X1 = pt, we see that P◁(X) must be the nerve of
a semigroup. This semigroup is nothing but C with operation ● which is associative by
(3.7.6). The path space criterion therefore provides a conceptual explanation of the suprising
fact (observed in [KS98, KR07]) that the first component of a pentagon solution gives an
associative operation.

For any semi-simplicial set Z let Zop be the semi-simplicial set induced from Z by the
self-equivalence

∆inj Ð→∆inj, I ↦ Iop

Then the final path space P▷(X) can be identified with (P◁(Xop))op. If X corresponds to
a solution α of the pentagon equation, then Xop corresponds to the new solution

α∗ = P12 ○ α−1 ○P12,

where P12 ∶ C2 → C2 is the permutation. Therefore P▷(X) is the nerve of the semigroup
opposite to that given by the first component of α∗.

Example 6.4.5 (Semi-simplicial suspension). In the semi-simplicial case (unlike the
simplicial one) the path space functors have right inverses.

For a nonempty finite ordinal I let I− ⊂ I be the subset obtained by removing the maximal
element. Note that any monotone injection I → J defines a monotone injection I− → J−.
Indeed, no element of I other than max(I) can possibly map into max(J). Similarly for
−I ⊂ I, the subset obtained by removing the minimal element. We have therefore the functors

I z→ −I, I−, ∆inj Ð→ ∆+inj.

The induced pullback functors on semi-simplicial objects will be called the (augmented)
semi-simplicial suspension functors

Σ◁+ ,Σ
▷
+ ∶C∆+

inj
Ð→ C∆inj

,

Σ◁+ (X)I = X−I , Σ▷+ (X) =XI− .

Thus, for instance,
Σ◁+ (X)n = Xn−1, n ≥ 0,
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while the face operators are given by

∂
n,Σ◁+ (X)
i =

⎧⎪⎪⎨⎪⎪⎩
∂
n−1,X
0 , i = 0;
∂
n−1,X
i−1 , i ≥ 1.

Thus the operator ∂n−1,X0 is repeated twice. Similarly for Σ▷+ , where ∂
n−1,X
n−1 is repeated twice.

We also define the unaugmented suspensions of X by applying the above to the one-point
augmentation X+ of X :

Σ◁(X) = Σ◁+ (X+), Σ▷(X) = Σ▷+ (X+).
Proposition 6.4.6. We have isomorphisms

P◁Σ◁(X) =X = P▷Σ▷(X).
Proof. Follows from the canonical identifications

−([0] ∗ I) = I = (I ∗ [0])−.

Therefore, if X is 1-Segal, then Σ◁(X) (as well as Σ▷(X)) automatically satisfies one
half of the conditions needed for it to be 2-Segal.

Definition 6.4.7.Let C be a semi-category (i.e., possibly without unit morphisms). We say
that C is left divisible, if for any objects x, y, z ∈C and moprhisms f ∶ y → z, h ∶ x → z there
is a unique morphism g ∶ x → y such that h = fg. We say that C is right divisible, if Cop is
left divisible.

Thus a category (with unit morphisms) is left or right divisible, if and only if it is a
groupoid.

Proposition 6.4.8. Let C be a small semi-category. Then Σ◁(NC) is 2-Segal if and only
if C is left divisible.

It follows that Σ▷(NC) is 2-Segal if and only if C is right divisible.

Proof. Let X = NC. We first prove the “if” part. Suppose that C is left divisible. To
prove that Σ◁(X) is 2-Segal, it suffices, by the above, to verify that P▷Σ◁(X) is 1-Segal.
By definition, P▷Σ◁(X)I = X−(I∗[0]). Identifying −([n] ∗ [0]) with [n], we can write that
P▷Σ◁(X) has the same components P▷Σ◁(X)n = Xn as X , but equipped with new face
operators ∂′i ∶ Xn →Xn−1, i = 0, ..., n given by

∂′0 = ∂0, ∂′1 = ∂0, ∂′2 = ∂1, ..., ∂′n = ∂n−1.

Let us view Xn = NnC as the set of commutative n-simplices in C, i.e., of systems of objects
and morphisms (xi, uij ∶ xi → xj)0≤i<j≤n, uik = ujkuij, i < j < k.
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The n-fold fiber product X1 ×X0
⋯×X0

X1 defined with respect to the new face operators ∂′i,
consists of systems of objects and morphisms

x0, ..., xn, vin ∶ xi → xn, i = 0, ..., n − 1.
The 1-Segal map (for the new face operators)

f ′n ∶Xn Ð→ X1 ×X0
⋯×X0

X1

sends a system (xi, uij) as above, to the subset formed by morphisms uin ∶ xi → xn for
i = 0, ..., n − 1. If C is left divisible, then we can uniquely complete any given system of
morphisms (uin ∶ xi → xn) to a full commutative simplex (uij) by succesive left divisions.
This proves the “if” part. The “only if” part follows from considering the particular case
n = 2: bijectivity of f ′2 is precisely the left division property.

Example 6.4.9.When C = G a group, the proposition claims that Σ◁(NG) is 2-Segal.
This 2-Segal semi-simplicial set corresponds to the solution of the pentagon equation from
Example 3.7.7. The 1-Segal semi-simplicial set P▷Σ◁(NG) is isomorphic to the nerve of
the semigroup formed by G with the operation ∗ defined by g ∗ h = h. This operation is
associative but has no unit. Of course, Σ▷(NG) is 2-Segal as well.
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7 2-Segal spaces from higher categories

All simplicial spaces in this section will be combinatorial, i.e., objects of S∆.

7.1 Quasi-categories vs. complete 1-Segal spaces

Quasi-categories of and complete 1-Segal spaces provide two equivalent approaches to for-
malizing the intuitive concept of (∞,1)-categories. In this section we recall a correspondence
between the two models, as given in [JT07].

Let X ∈ S∆ be a 1-Segal space. For vertices x, y of the simplicial set X0, we have a natural
map {x} ×X0

X1 ×X0
{y}→ {x} ×RX0

X1 ×RX0
{y} = mapX(x, y)

Recall that π0mapX(x, y) forms the set of morphisms of the homotopy category hX of X .
Suppose f ∈ X1 with ∂1(f) = x and ∂0(f) = y. Its image [f] ∈ π0MapX(x, y) is a morphism
in hX . We call f an equivalence if [f] is an isomorphism in hX . Denote by δ ∶ X0 → X1 the
degeneracy map corresponding to the unique map of ordinals [1]→ [0]. For a vertex x ∈ X0,
the vertex δ(x) = idx is an equivalence.

Definition 7.1.1.Let X be a 1-Segal space and let Xequiv
1 ⊂ X1 denote the simplicial subset

spanned by those vertices which are equivalences. We say X is complete if the map δ ∶X0 →
X

equiv
1 is a weak homotopy equivalence of simplicial sets.

Example 7.1.2.Let C be a small category, and C● be the categorified nerve of C, which is
the simplicial groupoid defined in Example 2.1.4(a). The simplicial space

N(C●) = (N(Cn))n≥0,
obtained by taking the nerve of each Cn, is a complete 1-Segal space (see [Rez01]). Note that
the discrete nerve ≺N(C)≻ from Example 2.1.4(b) is 1-Segal but generally not complete.

We recall the following result of [Rez01].

Theorem 7.1.3 (Rezk). There exists a left proper combinatorial simplicial model structure
on S∆ with the following properties:

(W) The weak equivalences are the maps f such that RMapS∆
(f,X) is a weak equivalence

of simplicial sets for any complete 1-Segal space X.

(C) The cofibrations are the monomorphisms.

(F) The fibrant objects are the Reedy fibrant complete 1-Segal spaces.

Proof. Consider the fat 1-simplex (∆1)′ from Example 1.2.4(a), given by the nerve of the
groupoid completion of the category [1]. By Theorem 6.2 of [Rez01], a Reedy fibrant 1-Segal
space X is complete if and only if it is local with respect to the unique map ≺(∆1)′≻→ ≺∆0≻.
Thus the statement follows from the general formalism of simplicial Bousfield localization
(e.g., Theorem 4.3.5 with C = S).

113



On the other hand, Joyal constructed a model structure J on S whose fibrant objects are
precisely the quasi-categories ([Joy02], also [Lur09a, 2.2.5]). In [JT07], the authors construct
a Quillen equivalence of model categories

(7.1.4) t! ∶ (S∆,R) ←→ (S,J ) ∶ t!,
which we call the Joyal-Tierney equivalence. Here, the totalization functor t! ∶ S∆ → S is
uniquely described by the formula

t!(≺∆n≻ ×∆m) =∆n × (∆m)′
and the requirement that it commutes with colimits. The functor t! is defined as the right
adjoint of t!. Consequently, for a simplicial set K, we have

(t!K)mn = HomS(∆n × (∆m)′,K).
We point out a few aspects of the Joyal-Tierney equivalence which are relevant for our
discussion. An immediate consequence of (7.1.4) is that any complete 1-Segal space X is
weakly equivalent to a space of the form t!C where C is a quasi-category. In the examples
below we fix a quasi-category C and set X = t!C. Note that, since C is Joyal fibrant, X is a
Reedy fibrant complete 1-Segal space.

Example 7.1.5 (Homotopy coherent diagrams).Consider a simplicial set D ∈ S. A
D-diagram in X is defined to be a map of simplicial spaces p ∶ ≺D≻ →X . We further define
the classifying space of D-diagrams in X to be the simplicial set MapS∆

(≺D≻,X), which
in the terminology of Sections 2.2 and 5.1, is the space (D,X) of membranes in X of type
D. By a D-diagram in C we will mean a morphism of simplicial sets D → C. Using the
equivalence (7.1.4) and [JT07, 1.20], we obtain a natural weak equivalence

MapS∆
(≺D≻,X) ≃Ð→MapS(D,C)Kan

where (−)Kan is the functor from [JT07, 1.16] which maps a quasi-category C to its largest
Kan subcomplex CKan ⊂ C. In particular, we obtain, for each n ≥ 0, a weak equivalence

Xn
≃Ð→MapS(∆n,C)Kan.

If D = N(A) is the nerve of a small category A, then a D-diagram in X (resp. in C) will also
be called a homotopy coherent A-diagram in X (resp. in C).

Example 7.1.6 (Mapping spaces; limits and colimits).Fix elements x, y ∈ C0(= X00).
By Example 7.1.5, we have a weak equivalence

X1
≃Ð→MapS(∆1,C)Kan,

which induces a weak equivalence

{x} ×X0
X1 ×X0

{y} ≃Ð→ {x} ×C MapS(∆1,C) ×C {y},
114



where the expression {x} denotes the simplicial set ∆0 with vertex labeled by x. As ex-
plained in Section 2.1, the simplicial set on the left hand side represents the mapping space
mapX(x, y) of the (∞,1)-category modelled by X . By [Lur09a, 4.2.1.8], the simplicial set
on the right hand side represents the corresponding mapping space of the (∞,1)-category
modelled by C. Consequently, any concept in the theory of (∞,1)-categories which can be
expressed in terms of mapping spaces will lead to equivalent concepts in both models. In
particular:

• The homotopy categories associated to C and X are equivalent.

• We have a theory of homotopy limits and colimits of homotopy coherent diagrams in
X , and the matching theory of quasi-categorical limits and colimits in C. This includes,
in particular, the quasi-categorial concepts of initial and final objects, Cartesian and
coCartesian squares etc.
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7.2 Exact ∞-categories

In this and the following sections we generalize the formalism of §2.4 from ordinary categories
to quasi-categories. We will follow [Lur09a] and use the term∞-category for a quasi-category.

We recall some basic definitions. An equivalence in an ∞-category C is a morphism (1-
simplex) in C which becomes an isomorphism in hC. An ∞-category C is called pointed if
it has a zero object 0, i.e. an object (0-simplex) which is both initial and final. Consider a
square

x
g //

��

y

f

��
0 // z

in C where 0 ∈ C is a zero object. If the square is Cartesian, then we call g a kernel of f . If
it is coCartesion, we call f a cokernel of g. In the following definition, we use the notion of
a subcategory C′ of an ∞-category C as defined in [Lur09a, 1.2.11]. Namely C′ is part of a
Cartesian square of simplicial sets

C′ //

��

C

��
N(hC′) // N(hC),

where hC′ ⊂ hC is a subcategory.

Definition 7.2.1.Let C be a pointed ∞-category. A pair (M,E) of subcategories of C is
called an exact structure on C, if the following conditions hold:

(E1) The subcategories M and E contain all equivalences of C. In particular, M and E

contain all objects of C.

(E2) (i) Morphisms in M admit pushouts along arbitrary morphisms in C and M is
stable under pushouts.

(ii) Morphisms in E admit pullbacks along arbitrary morphisms in C and E is stable
under pullbacks.

(E3) For any square of the form

x
g //

��

y

f

��
0 // z

in C, we have

(i) If g ∈M1 and the square is coCartesian, then f ∈ E1 and the square is Cartesian.

(ii) If f ∈ E1 and the square is Cartesian, then g ∈M1 and the square is coCartesian.
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A triple (C,M,E) satisfying these conditions is called an exact ∞-category. We often leave
the choice of subcategories implicit, referring to C as an exact ∞-category.

Remark 7.2.2.Let C be an exact ∞-category. Then for any object x of C, all morphisms
0 → x are contained in M, and all morphisms x → 0 are contained in E. This follows since
we can obtain these morphisms as kernel and cokernel of the identity morphism x → x.

Example 7.2.3.Let (E ,M,E) be a proto-exact category (Definition 2.4.2). Passing to
nerves, we obtain an exact∞-category (N(E),N(M),N(E)), as in this case the∞-categorical
concepts of (co)Cartesian squares reduce to the ordinary categorical ones.

Example 7.2.4.Let C be a stable∞-category ([Lur11, §1.1]). Then (C,C,C) forms an exact
∞-category. For example, the derived categories of abelian categories ([Lur11, §1.3]) and the
∞-category of spectra ([Lur11, 1.4.3]) can be considered as exact ∞-categories in this way.

Proposition 7.2.5. Let C be an exact ∞-category. Consider a square

(7.2.6) a
g //

f

��

b

f ′

��
c

g′ // d.

Then the following hold:

(a) Assume that g ∈M1, f ∈ E1 and the square is coCartesian. Then g′ ∈M1, f ′ ∈ E1 and
the square is Cartesian.

(b) Assume that g′ ∈ M1, f ′ ∈ E1 and the square is Cartesian. Then g ∈ M1, f ∈ E1 and
the square is coCartesian.

Proof. We provide a proof of (b). Since f ′ ∈ E1, we have f ∈ E1 by (E2). By (E2), there
exists a Cartesian square of the form

(7.2.7) k
i //

��

a

f

��
0 // c.

By (E3), we have i ∈M1 and the square (7.2.7) is coCartesian. We obtain a square

(7.2.8) k
g○i //

��

b

f ′

��
0 // d.

which is Cartesian by the dual statement of [Lur09a, Proposition 4.4.2.1]. Here, g ○ i is a
chosen composition of g and i (which is unique up to homotopy). Therefore, by (E3), we have

117



g○i ∈M1 and the square is coCartesian. Since the squares (7.2.7) and (7.2.8) are coCartesian,
we conclude that the square (7.2.6) is coCartesian as well by [Lur09a, Proposition 4.4.2.1].
It remains to show that g ∈M1. This follows from considering the square which is obtained
by pasting (7.2.6) with a coCartesian square

c
g′ //

��

d

��
0 // e,

which exists by (E2).
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7.3 The Waldhausen S-construction of an exact ∞-category

We recall our notation for the category Tn = Fun([1], [n]) from §2.4. Thus, objects of Tn
can be identified with pairs of integers (i, j) satisfying 0 ≤ i ≤ j ≤ n. Given an ∞-category C

we will consider homotopy coherent Tn-diagrams in C by which we mean, following Example
7.1.5, morphisms of simplicial sets N(Tn)→ C.

For 0 ≤ a ≤ b ≤ n, we consider the interval [a, b] ⊂ [n] as a poset and therefore as a
category. For each a ∈ [n] we have the embeddings

ha ∶ [a,n] ↪ Tn, j z→ (a, j), va ∶ [0, a] ↪ Tn, iz→ (i, a),
which we call the horizontal and vertical embeddings corresponding to a. Given a Tn-diagram
F ∶ N(Tn) → C, the induced [a,n]-diagrams F ○ ha will be called the rows of F , while the[0, a]-diagrams F ○ va will be called the columns of F .

Definition 7.3.1.Let (C,M,E) be an exact ∞-category. We define

SnC ⊂MapS(N(Tn),C)Kan

to be the simplicial subset given by those simplices whose vertices are Tn-diagrams F satis-
fying the following conditions:

(WS1) For all 0 ≤ i ≤ n, the object F (i, i) is a zero object in C.

(WS2) All rows of F take values in M ⊂ C, all columns of F take values in E ⊂ C.

(WS3) For any 0 ≤ j ≤ k ≤ n, the square

F (0, j) //

��

F (0, k)
��

F (j, j) // F (j, k)
in C is coCartesian.

By construction, SnC is functorial in [n] and defines a simplicial space SC, which we call the
Waldhausen S-construction or Waldhausen space of C.

Remark 7.3.2.By [Lur09a, Proposition 4.4.2.1], condition (WS3) implies that, for any
commutative square (i, j) //

��

(i, l)
��(k, j) // (k, l)
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in Tn, the corresponding square

F (i, j) //

��

F (i, l)
��

F (k, j) // F (k, l)
in C is coCartesian. Further, by (WS2) and Proposition 7.2.5, this square is in fact biCarte-
sian.

Theorem 7.3.3. Let (C,M,E) be an exact∞-category. Then the Waldhausen S-construction
SC of C is a unital 2-Segal space.

Proof. We first show that SC is a 2-Segal space. To this end, we use the Joyal-Tierney
equivalence t! to introduce the complete 1-Segal spaces X , M and E, corresponding to the
quasi-categories C, M and E, respectively. For n ≥ 1, consider the shifted embeddings

fh ∶ [n − 1]↪ Tn, j z→ (0, j + 1), fv ∶ [n − 1]↪ Tn, iz→ (i, n),
which, after passing to nerves, induce the pullback maps

f∗h ∶ Fun(N(Tn),C)Kan Ð→ Fun(∆n−1,C)Kan ≃Xn−1,

f∗v ∶ Fun(N(Tn),C)Kan Ð→ Fun(∆n−1,C)Kan ≃Xn−1,

where the weak equivalence
Fun(∆n−1,C)Kan ≃ Xn−1

is explained in Example 7.1.5. By (WS2), the functor f∗h takes values in Mn−1, while the
functor f∗v takes values in En−1. In fact, we obtain maps of simplicial spaces

P◁(SC) ≃Ð→M, P▷(SC) ≃Ð→ E

which, by Proposition 7.3.6 below, are weak equivalences. Since both M and E are 1-Segal
spaces, the Waldhausen space SC is a 2-Segal space by the path space criterion (Theorem
6.3.2).

It remains to show that SC is unital. Given n ≥ 2 and 0 ≤ i ≤ n− 1, we have to show that
the square

(7.3.4) Sn−1C //

��

S{i}C

��
SnC // S{i,i+1}C

is homotopy Cartesian. We assume i > 0. The restriction map ρ ∶ Fun(N(Tn),C)Kan →
Fun(N(T{i,i+1}),C)Kan induced by {i, i + 1}→ [n] can be identified with the map

ρ ∶Map♯(N(Tn)♭,C♮)→Map♯(N(T{i,i+1})♭,C♮)
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of simplicial mapping spaces of marked simplicial sets. Hence, by [Lur09a, 3.1.3.6], the
map ρ is a Kan fibration. Since the conditions (WS1), (WS2) and (WS3) are stable under
equivalences, it follows that the map SnC → S{i,i+1}C, which is obtained by restricting ρ,
is a Kan fibration as well. Therefore, the statement that the square (7.3.4) is homotopy
Cartesian is equivalent to the assertion that the map

(7.3.5) Sn−1CÐ→ SnC ×S{i,i+1}C S{i}C
is a weak equivalence, where the right-hand side is an ordinary fiber product in the category
Set∆. Analyzing the equivalence

SnC ≃ Fun(∆n−1,M)Kan

of the proof of Proposition 7.3.6 below, we observe that the subspace

SnC ×S{i,i+1}C S{i}C ⊂ SnC
gets identified with the full simplicial subset K ⊂ Fun(∆n−1,M)Kan spanned by those functors
f such that the edge f({i})→ f({i+1}) in M is an equivalence. Using Proposition 7.3.6, the
assertion that the map (7.3.5) is a weak equivalence is therefore equivalent to the assertion
that the ith degeneracy map induces a weak equivalence

Fun(∆n−2,M)Kan
≃Ð→K ⊂ Fun(∆n−1,M)Kan.

Using that M is a 1-Segal space, we reduce to the statement that the degeneracy map

Fun(∆0,M)Kan Ð→ Fun(∆1,M)Kan

induces a weak equivalence onto the full simplicial subset of Fun(∆1,M)Kan spanned by the
equivalences in M. But this follows from the completeness of the 1-Segal space M . The
case i = 0, follows from a similar argument involving the complete 1-Segal space E instead
of M .

Proposition 7.3.6. Let (C,M,E) be an exact ∞-category. Let M = t!M and E = t!E denote
the complete 1-Segal spaces corresponding to M and E. Then

(1) For each n ≥ 1, the restriction of the functor f∗h to SnC induces a weak equivalence

SnC
≃Ð→Mn−1.

(2) For each n ≥ 1, the restriction of the functor f∗v to SnC induces a weak equivalence

SnC
≃Ð→ En−1.

Proof. The proof of (1) is essentially the argument of [Lur11, Lemma 1.2.2.4]. We decompose
the functor fh ∶ [n − 1]→ Tn into

U1
f1Ð→ U2

f2Ð→ U3
f3Ð→ Tn

where the functors fi are inclusions of full subcategories Ui ⊂ Tn defined as follows:
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• obU1 = {(0, j)∣ 1 ≤ j ≤ n}
• obU2 = {(0, j)∣ 0 ≤ j ≤ n}
• obU3 = {(i, j)∣ 0 ≤ i ≤ j ≤ n and (i = 0 or i = j)}

Using the pointwise criterion for ∞-categorical Kan extensions (see [Lur09a, 4.3.2]), one
easily verifies the following statements.

• A functor F ∶ N(U2)→ C satisfies the condition that F (0,0) is an initial object (hence
zero object) of C if and only if F is a left Kan extension of F∣N(U1).

• A functor F ∶ N(U3) → C satisfies the condition that, for every 1 ≤ i ≤ n, the object
F (i, i) is a final object (hence zero object) of C if and only if F is a right Kan extension
of F∣N(U1).

• A functor F ∶ N(Tn) → C satisfies condition (WS3) if and only if F is a left Kan
extension of F∣N(U2).

• Let F ∶ N(Tn) → C be a functor which satisfies conditions (WS1) and (WS3). Then F
satisfies the conditions (WS2) if and only if F∣N(U1) factors through M ⊂ C.

The result now follows from [Lur09a, 4.3.2.15]. The proof of (2) is obtained by a dual
argument.

Remark 7.3.7. In [Wal85], Waldhausen defines the S-construction for categories which are
nowadays called Waldhausen categories. While part (1) of Proposition 7.3.6 still holds in
this generality, the map of (2) is, in general, not a weak equivalence. In particular, Theorem
7.3.3 does not hold for general Waldhausen categories.
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7.4 Application: Derived Waldhausen stacks

In this section, we use Theorem 7.3.3 to construct 2-Segal simplicial objects in model cate-
gories of algebro-geometric nature. More precisely, these objects are given by certain derived
moduli spaces of objects in dg categories as constructed by Toën and Vaquié [TV07]. We
recall their formalism from a point of view convenient for us.

Let F be a field. We denote by C(F), resp. C≤0(F), the category of all, resp. non-
positively graded, cochain complexes of vector spaces over F, equipped with the usual sym-
metric monoidal structure (tensor product of complexes). A morphism f ∶ M → N of com-
plexes is called a quasi-isomorphism if, for every i ∈ Z, the induced map H i(M) →H i(N) is
an isomorphism of vector spaces. A F-linear differential graded category, often abbreviated
to dg category, is defined to be a C(F)-enriched category. Let A be a dg category. For
objects a, a′, we denote by A(a, a′) the cochain complex of maps between a and a′ given by
the enriched Hom-object in C(F). As in any enriched category, the spaces

HomA(a, a′) = HomC(F)(F,A(a, a′))
define a usual F-linear category with the same objects as A, which we call the underlying
ordinary category of A and denote by A. Explicitly, HomA(a, a′) consists of 0-cocycles in
the complex A(a, a′).

Further, we define the homotopy category of A, denoted by H0A, to be the F-linear
category with the same objects as A and morphisms given by

HomH0A(a, a′) =H0A(a, a′).
Thus we have a functor A → H0A, identical on objects. A morphism in A is called a
homotopy equivalence, if it is taken into an isomorphism in H0A. We denote by H = HA the
class of homotopy equivalences in A.

A dg functor F ∶ A → B between dg categories is defined to be a C(F)-enriched func-
tor. We denote by dgcatF the category given by small dg categories with dg functors as
morphisms. A dg functor F ∶ A→ B is called a quasi-equivalence if

(1) the induced functor of homotopy categories H0A→ H0B is an equivalence of ordinary
categories, and

(2) for every pair a, a′ of objects in A, the induced map

A(a, a′)Ð→ B(F (a), F (a′))
is a quasi-isomorphism of complexes.

Recall [Tab05] that dgcatF carries a combinatorial model structure in which weak equiva-
lences are quasi-equivalences and fibrations are objectwise surjective dg transformations of
dg functors. Note that dgcatF contains the category dgalgF of associative dg algebras over
F, understood as dg categories with one object.

123



In order to apply Theorem 7.3.3, it will be useful for us to understand dg categories from
the ∞-categorical point of view. To this end, we use the following construction introduced
in [Lur11, §1.3.1], to which we refer the reader for details. We associate to the n-simplex
∆n a dg category dg(∆n) with objects given by the set [n]. The graded F-linear category
underlying dg(∆n) is freely generated by morphisms

fI ∈ dg(∆n)(i−, i+)−m
where I runs over the subsets {i− < im < im−1 < ⋅ ⋅ ⋅ < i1 < i+} ⊂ [n], m ≥ 0. The differential is
given on generators by the formula

dfI = ∑
1≤j≤m

(−1)j(fI∖{ij} − f{ij<⋅⋅⋅<im<i+} ○ f{i−<i1<⋅⋅⋅<ij})
and extended by the F-linear Leibniz rule to compositions of the generators. One verifies
that d2 = 0 on generators and therefore on all morphisms. Further, it is straightforward to
see that the dg categories dg(∆n), n ≥ 0, assemble to form a cosimplicial object in dgcatF.

Definition 7.4.1.We define the dg nerve Ndg(A) of a small dg categoryA to be the simplicial
set with n-simplices given by

Ndg(A)n = HomdgcatF(dg(∆n),A),
and simplicial maps obtained from the cosimplicial structure of dg(∆●).

Thus, vertices of Ndg(A) are given by the objects of A and edges by morphisms of A.
A triangle in Ndg(A) is given by objects a, a′, a′′ of A, morphisms f1 ∶ a → a′, f2 ∶ a′ → a′′,
g ∶ a→ a′′ in A, and a homotopy h ∈ A(a, a′′)−1 such that

dh = g − f2 ○ f1.
It is shown in [Lur11, 1.3.1.10] that Ndg(A) is in fact an ∞-category. Let us list some
consequences of this fact.

Corollary 7.4.2. (a) We have a natural equivalence of homotopy categoriesH0A ≃ hNdg(A).
(b) The simplicial subset Ndg(A)Kan ⊂ Ndg(A) is given by those simplices for which all

edges lie in HA.

(c) For every object a of A, we have identifications

π1(∣Ndg(A)Kan∣, a) ≅ AutH0A(a), πi(∣Ndg(A)Kan∣, a) ≅H1−i(A(a, a)), i ≥ 2.
Proof. Part (a) is obvious, and (b) follows from the general properties of ∞-categories:
the Kan subcomplex is given by those edges which become isomorphisms in the homotopy
category. Let us prove (c) for i ≥ 2 (the case i = 1 follows from (a)). As with any Kan
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complex, πi(∣Ndg(A)Kan∣, a) can be identified with the set of of elementary i-spheres (i-
simplices with all faces given by degenerations of the 0-simplex a) modulo the relation of
elementary homotopy (see, e.g.,[Wei94, §8.3] for details). By the very definition of Ndg(A),
an elementary i-sphere corresponds to an element f ∈ A(a, a)1−i such that df = 0. Further,
the elementary homotopy relation translates into the cohomology relation: f − f ′ = d(h)
where f, f ′ ∈ A(a, a′)1−i and h ∈ A(a, a′)−i.
Remark 7.4.3.The cosimplicial dg category dg(∆●) from Definition 7.4.1 is a Reedy-
cofibrant replacement (with respect to Tabuada’s model structure) of the cosimplicial dg
category formed by the k-linear envelopes of the categories [n], n ≥ 0. This parallels the
construction of the simplicial nerve of a simplicial category ([Lur09a, 1.1.5.5]) where the
cosimplicial simplicial category C[∆●] is a Reedy-cofibrant replacement of the cosimplicial
object given by the discrete categories [n], n ≥ 0.

For any simplicial set K we define a dg category dg(K) by amalgamation:

dg(K) = limÐ→dgcat
F

{σ∶∆p→K}
dg(∆p).

This gives an adjunction

(7.4.4) dg ∶ Set∆ ←→ dgcatF ∶ Ndg

which, as is shown in [Lur11, 1.3.1.20], is in fact a Quillen adjunction with respect to
Tabuada’s model structure on dgcatF and Joyal’s model structure on Set∆. In particu-
lar, since any object in dgcatF is fibrant, the functor Ndg maps quasi-equivalences of dg
categories to equivalences of ∞-categories.

For dg categories A,B, we define their tensor product A⊗B to be the dg category with

Ob(A⊗B) = Ob(A) ×Ob(B),
(A⊗B)((a, b), (a′, b′)) = A(a, a′)⊗F B(b, b′).

Let A be a small dg category. The category ModA of dg functors Aop → C(F), which we
also call Aop-modules, has a natural C(F)-enrichment and can hence itself be considered as
a dg category. Note that C(F) itself is recovered as ModF where F is considered as the final
(one object) dg category.

Example 7.4.5.Let A be a dg category. Given an object a of A, we define the Aop-module

ha ∶ Aop → C(F), a′ ↦ A(a′, a).
This construction can be promoted to a dg functor

h ∶ AÐ→ModA, a ↦ ha,

called the C(F)-enriched Yoneda embedding. The dg functor h is fully faithful in the C(F)-
enriched sense. Those Aop-modules which lie in the essential image of the induced functor
H0h ∶ H0A→H0ModA are called quasi-representable.
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Example 7.4.6.Let A be a dg category. We have the diagonal module Aδ in ModA⊗Aop

given by
Aδ ∶ Aop ⊗AÐ→ C(F), (a, a′)↦ A(a, a′),

This module is important in the derived Morita theory of dg categories [Toë07] where it
represents the identity functor on A.

Recall [Hin97, §2.2] that ModA carries the projective model structure in which fibrations
are pointwise surjective morphisms and weak equivalences are pointwise quasi-isomorphisms.
This model structure is compatible with the projective model structure on C(F) ≅ ModF,
making ModA a C(F)-enriched model category (§4.2). Further, the model category ModA is
stable and therefore the homotopy category Ho(ModA) is triangulated.

Let Mod○A ⊂ModA denote the full dg subcategory spanned by objects which are cofibrant
(all objects of ModA are fibrant). We have a natural equivalence of categories

H0(Mod○A) ≃ Ho(ModA).
Let PerfA be the full subcategory in ModA, whose objects are perfect Aop-modules, i.e.,
objects which are homotopically finitely presented in the model category ModA, see [TV07,
§2.1]. We denote by Perf○A ⊂ PerfA the full subcategory spanned by those objects which are
cofibrant in ModA. The categories PerfA and Perf○A inherit C(k)-enrichments from ModA and
can hence be considered as dg categories. Note that H0(Perf○A) ≃ Ho(PerfA) is a triangulated
subcategory in Ho(ModA).
Example 7.4.7.A complexM in C(F) =ModF is perfect, if and only if the total cohomology
H●(M) is a finite dimensional F-vector space.

Remark 7.4.8.Let P be one of the dg-categories Mod○A, Perf
○
A. It can be shown by argu-

ments similar to [Lur11, 1.3.2] that the dg nerve Ndg(P) of P is a stable ∞-category. As
explained in [Lur11, 1.1.2], the homotopy category of any stable∞-category carries a natural
triangulated structure. This gives an alternative construction of the triangulated structure
on H0P via the identification

hNdg(P) ≃ H0P

from Corollary 7.4.2. Therefore, we can say that the dg nerve Ndg(P) provides an ∞-
categorical enhancement of the triangulated category H0P. It seems likely that a similar
comparison holds for any pre-triangulated dg category P in the sense of [BK90].

Definition 7.4.9.A dg category A is called smooth, if the diagonal Aop ⊗A-module Aδ is
perfect. A is called proper if, for all objects a, a′, the mapping complex A(a, a′) is perfect in
ModF, and the triangulated category Ho(ModA) has a compact generator.

Remark 7.4.10.As emphasized in [KS06b], smooth and proper dg categories can be seen
as noncommutative analogs of smooth and proper varieties over F. In particular, let V be a
smooth and proper varierty over F, and let AV the dg category formed by finite complexes of
injective quasi-coherent OV -modules with coherent cohomology sheaves. Then AV is smooth
and proper, and H0AV is equivalent to Db(Coh(V )), derived category of coherent sheaves
on V .
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Let U be the model site of simplicial commutative F-algebras and C = D−Aff∼,étF be
the model category of derived stacks over F, obtained by localizing the model category of
simplicial presheaves on U , see Example 4.3.8. For a simplicial commutative algebra Λ ∈ U
we denote by N∗(Λ) the normalized chain complex of Λ, which is an associative dg algebra
with grading situated in degrees ≤ 0. Here is the main result of [TV07] (stated in a lesser
generality, sufficient for our purposes).

Theorem 7.4.11. Let A be a smooth and proper dg category. For a simplicial commutative
F-algebra Λ define MA(Λ) = RMap(Aop,PerfN∗(Λ)).
Here RMap is the derived mapping space in the model category dgcatF. Then Λ ↦MA(Λ),
considered as a simplicial presheaf MA on U , is a derived stack, i.e., a fibrant object in C.
This derived stack is locally geometric and locally of finite presentation.

We need a general comparison statement.

Proposition 7.4.12. Let M be a C(F)-enriched model category, and let M○ be the subcate-
gory of fibrant and cofibrant objects. Let Ndg(M○) be the dg nerve of Definition 7.4.1. There
is a weak homotopy equivalence of simplicial sets

(7.4.13) Ndg(M○)Kan ≃ N(W),
where W denotes the subcategory in M formed by weak equivalences.

We call the homotopy type in (7.4.13) the classifying space of objects in M.

Proof. Let A denote the dg category M○. We will deduce the statement from a more general
comparison between the mapping spaces of the∞-category Ndg(A) with the mapping spaces
of the Dwyer-Kan simplicial localization LW(M) of M along its weak equivalences W (see
Example 4.2.4 and [DK80c]). First note that, by [Lur11, 1.3.1.12], for objects a, b of A, we
have a weak equivalence

(7.4.14) HomR
Ndg(A)

(a, b) ≃ DK(τ≤0A(a, b))
where the functor τ≤0 is the cohomological truncation of complexes in degrees ≤ 0 (the right
adjoint to the inclusion C≤0(F) ⊂ C(F)) and DK denotes the Dold-Kan correspondence.
Note that we use cohomological grading and so DK is defined on C≤0(F).

On the other hand, using [DK80b, 4.4], we may compute the mapping spaces of the
simplicial localization in terms of a cosimplicial resolution of the object a, i.e., a Reedy
cofibrant replacement of the constant cosimplicial object a in M∆. To this end, we define

a● ∶∆ Ð→M, [n] ↦N∗(F[∆n])⊗ a
where N∗(F[∆n]) denotes the normalized cochain complex of the F-linear envelope of ∆n,
and ⊗ denotes the C(F)-action on M. The object a● is easily verified to define a cosimplicial
resolution of a, and hence, by [DK80b, 4.4], we obtain a weak equivalence of simplicial sets

MapLW(M)
(a, b) ≃ HomA(a●, b).
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But by the defining adjunctions of the involved functors, we have, for each n ≥ 0, an isomor-
phism

HomA(N∗(F[∆n])⊗ a, b) ≅ DK(τ≤0A(a, b)),
natural in [n]. Therefore, combining with (7.4.14), we obtain the desired weak equivalence

(7.4.15) HomR
Ndg(M○)(a, b) ≃MapLW(M)

(a, b).
We now deduce (7.4.13) by passing on both sides of (7.4.15) to the connected components
given by equivalences, and applying [DK80a, 6.4] and [DK80c, 5.5].

Corollary 7.4.16. Let A be any dg category, and HA be the class of homotopy equivalences
in A. Then we have a weak equivalence

Ndg(A)Kan ≃ N(HA).
In particular, the homotopy groups of N(HA) are found by Corollary 7.4.2(c). For ex-

ample, given a C(F)-model category M with underlying dg category A = M○, we have
W ∩A = HA, so Corollary 7.4.2(c) describes the homotopy groups of N(W), thus recovering
the formulas of [Toë06].

Proof. The Yoneda embedding A → ModA provides a C(F)-fully faithful embedding of A
into a C(F)-model category. Since further, the images of objects of A in ModA are cofibrant
and fibrant, we can apply Proposition 7.4.12 to obtain the desired weak equivalence.

We now proceed to realize the derived stack MA from Theorem 7.4.11 as the first level
of a Waldhausen-type simplicial object in the category C. Using Proposition 7.4.12 and the
computation of the derived mapping spaces of dg categories in [Toë07], we obtain a weak
equivalence

(7.4.17) MA(Λ) ≃ N(WPerf
A⊗N∗(Λ)op

) ≃ Ndg(Perf○A⊗N∗(Λ)op)Kan.

Therefore, MA(Λ) can be identified with the space of 1-simplices in the Waldhausen S-
construction of the stable ∞-category Ndg(Perf○A⊗N∗(Λ)op). Varying the dg algebra Λ, we
obtain, for each n ≥ 0, a simplicial presheaf Sn(PerfA) on U by defining

Sn(PerfA)(Λ) = Sn(Ndg(Perf○A⊗N∗(Λ)op))
to be the nth component of the Waldhausen space of the stable ∞-category Perf○A⊗N∗(Λ)op .
The simplicial presheaves Sn(PerfA), n ≥ 0, assemble to define a simplicial object S(PerfA)
which we call the derived Waldhausen stack of perfect A-modules. In particular, when A = AV

for a smooth and proper F-variety V , see Remark 7.4.10, then S(PerfA) can be seen as the
derived Waldhausen stack of objects of Db(Coh(V )).
Proposition 7.4.18. Let A be a smooth and proper dg category. Then:

(a) Each Sn(PerfA) is a derived stack, locally geometric and locally of finite presentation.
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(b) S(PerfA) is a 2-Segal object in the model category C of derived stacks.

Proof. (a) The case n = 0 is obvious and, for n = 1, the statement follows from Theorem
7.4.11 and the identification

S1(PerfA)(Λ) ≃MA(Λ)
of (7.4.17). The case n > 1, reduces to n = 1 by Lemma 7.4.19 below because dg(∆n−1) is
smooth and proper and therefore so is A ⊗ dg(∆n−1). This reduction is analogous to the
trick used in [Toë06], Proof of Lemma 3.2.

(b) This follows from Theorem 7.3.3 applied to each stable ∞-category Perf○A⊗N∗(Λ)op .
Indeed, homotopy limits in C, appearing in the 2-Segal conditions can be calculated object-
wise for each object Λ ∈ U .

Lemma 7.4.19. We have an equivalence of derived stacks Sn(PerfA) ≃ S1(PerfA⊗dg(∆n−1)).
Proof. Proposition 7.3.6 and the weak equivalence (7.4.13) give a weak equivalence of sim-
plicial sets

Sn(PerfA)(Λ) ≃ (Fun(∆n−1,Ndg(Perf○A⊗N∗(Λ)op))Kan.

Here, Fun stands for the ∞-category of functors between two ∞-categories given by the
mapping simplicial set between two simplicial sets. Now, it follows from [JT07, Proposition
1.20] that for any ∞-category C the simplicial set CKan is weakly equivalent to the simplicial
set C′ defined by

C′p = HomS((∆p)′,C)
where (∆p)′ is the fat simplex from Example 1.2.4. Using the adjunction (7.4.4), we deduce
that Sn(PerfA)(Λ) is weakly equivalent to the simplicial set

(7.4.20) HomdgcatF(dg(∆n−1 × (∆●)′),Ndg(Perf○A⊗N∗(Λ)op)).
Note that the cosimplicial object ∆n−1 × (∆●)′ is a Reedy-cofibrant replacement of the con-
stant object ∆n−1 with respect to the Joyal model structure on Set∆. Since (7.4.4) is a Quillen
adjunction, the object dg(∆n−1 × (∆●)′) is a Reedy-cofibrant replacement of dg(∆n−1), and
hence a cosimplicial resolution in the sense of [DK80b, §4]. Therefore, the simplicial set
(7.4.20) is weakly equivalent to the simplicial mapping space MapdgcatF

(dg(∆n−1),Perf○A⊗N∗(Λ)op)
defined via the Dwyer-Kan localization of dgcatF with respect to quasi-equivalences of dg
categories. Let us first analyze the bigger space MapdgcatF

(dg(∆n−1),Mod○A⊗N∗(Λ)op) consist-
ing of maps into the category of all dg modules, perfect or not. By [Toë07, Th. 1.1] this
space is equivalent to the nerve of the category of weak equivalences in the model category
of dg functors between dg(∆n−1) and Mod○A⊗N∗(Λ)op . Such dg functors can be identified with
dg modules over A⊗ dg(∆n−1)⊗N∗(Λ)op. We finally notice that dg functors taking values
in the subcategory of perfect modules correspond correspond to perfect (compact) objects of
the category of dg-modules over A⊗dg(∆n−1)⊗N∗(Λ)op. In the terminology of [TV07] this
corresponds to the statement that, since the dg category dg(∆n−1) is smooth and proper,
the notions of pseudo-perfect and perfect modules coincide ([TV07, Lemma 2.8]).
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7.5 The cyclic bar construction of an ∞-category

In this section we define the cyclic bar construction of an ∞-category C and show that it is
a 2-Segal space.

Recall the adjunction

(7.5.1) FC ∶ S←→ Cat ∶ N,
from Example 5.3.5(a), given by the nerve N and its left adjoint FC, which associates to a
simplicial set D the free category FC(D) generated by D. For n ≥ 0, we define the simplicial
set

Kn ∶= (∆{0,1}∐
{1}

∆{1,2}∐
{2}

⋯ ∐
{n−1}

∆{n−1,n}) ∐
{n}∐{0}

∆{n,0}.

Let Cn = FC(Kn). The geometric realization ofKn is a closed chain of n+1 oriented intervals
and hence homeomorphic to the unit circle S1 = {∣z∣ = 1} ⊂ C.
Remark 7.5.2.Let µn+1 ⊂ S1 be the set of (n + 1)st roots of unity. Then the category Cn

can be identified with the subcategory in the fundamental groupoid Π1(S1, µn+1) with the
same set of objects µn+1 and morphisms being homotopy classes of counterclockwise oriented
paths (cf. [Dri04, §2]).

The system (Cn)n≥0 forms a cosimplicial category. The face maps are given by compo-
sition of morphisms, the degeneracies by filling in identity maps. By Example 5.3.5(b), the
unit of the adjunction (7.5.1) provides us with a canonical map Kn → N(Cn) exhibiting
≺N(Cn)≻ as a 1-Segal replacement of ≺Kn≻ in S∆. Further, since the category Cn has no
nontrivial isomorphisms, the 1-Segal space ≺N(Cn)≻ is complete.

Definition 7.5.3. (a) Let X be a Reedy fibrant 1-Segal space. We define the cyclic bar
construction of X to be the simplicial space

NC(X) ∶ ∆op Ð→ S, [n] ↦Map(≺N(Cn)≻,X).
(b) Let C be a ∞-category. We define the cyclic bar construction of C as the cyclic nerve

of the complete 1-Segal space t!C and denote it by NC∞(C). Explicitly. this amounts
to the formula

NC∞(C) ∶∆op Ð→ S, [n]↦ Fun(N(Cn),C)Kan.

Example 7.5.4.Applying the cyclic bar construction of Definition 7.5.3 to the discrete 1-
Segal space X given by the discrete nerve of an ordinary category C, we recover the cyclic
nerve from Section 3.2. More precisely, we have NC(X) = ≺NC(C)≻.

Note, however, that X is, in general, not complete. Therefore, X is equivalent to t!C and
consequently NC∞(C) and NC(C) are different. In fact, NC∞(C) is expressed in terms of the
categorified nerve C● from Example 2.1.4, which is the complete 1-Segal space corresponding
to C.
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Theorem 7.5.5. Let X be a Reedy fibrant 1-Segal space. Then the cyclic bar construction
NC∞(X) is a 2-Segal space.

Proof. Using the path space criterion (Theorem 6.3.2), it suffices to show that both path
spaces associated to NC∞(X) are 1-Segal spaces. We provide a proof for the initial path
space Y = P◁NC∞(X), the argument for the final path space is analogous.

Recall, that, for every n ≥ 0, we have Yn = NC∞(X)n+1 and the face maps are given by
omitting ∂0. Consider the simplicial set

K̃n = ∆{0,...,n+1} ∐
∆{0}∐∆{n+1}

∆{0}.

Note that K̃n can be obtained from Kn by attaching the simplex ∆{0,...,n+1}. This simplex
can be identified with the simplex in N(Cn) corresonding to the chain of n + 1 composable
morphisms in Cn given by ∆{0,1}, . . . ,∆{n−1,n},∆{n,0}. Thus, the canonical map Kn →N(Cn)
factors over the inclusion Kn ↪ K̃n providing a commutative diagram

K̃n
gn // N(Cn)

Kn,

OO ;;✇✇✇✇✇✇✇✇✇

in which, by Example 5.3.5(b), the map gn exhibits ≺N(Cn)≻ as a 1-Segal replacement of
≺K̃n≻. Therefore, pulling back along gn+1, we obtain a weak equivalence of mapping spaces

Yn =Map(≺N(Cn+1)≻,X) ≃Ð→Map(≺K̃n+1≻,X) ≅Xn+2 ×X0×X0
X0.

The pullback maps along {gn ∣ n ≥ 0} assemble to provide a weak equivalence of simplicial
spaces

g∗ ∶ Y →X●+2 ×X0×X0
X0.

Here, the simplicial structure on the right-hand side is provided by identifying X●+2 with the
pullback of X along the functor

ϕ ∶∆op →∆op, [n]↦ [0] ⋆ [n] ⋆ [0].
Using the terminology of Section 6.2, we have ϕ∗X = P◁P▷X . Further, we have a commu-
tative square

(7.5.6) Yn

fn

��

g∗n

≅
// Xn+2 ×X0×X0

X0

f̃n×id
��

Y1 ×Y0 Y1 ×Y0 ⋅ ⋅ ⋅ ×Y0 Y1 ≅
// (X3 ×X2

X3 ×X2
⋅ ⋅ ⋅ ×X2

X3) ×X0×X0
X0,

where both horizontal maps are isomorphisms, and fn and f̃n denote the nth 1-Segal map
associated with the simplicial spaces Y and ϕ∗X , respectively. Using that X is, by assump-
tion, Reedy fibrant, it follows that all fiber products in (7.5.6) are in fact homotopy fiber
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products. Hence, to show that fn is a weak equivalence, it suffices to show that f̃n is a weak
equivalence. By Proposition 2.3.3, the 1-Segal space X is a 2-Segal space. Thus, by Theorem
6.3.2, the simplicial space P▷X is 1-Segal. Reiterating this argument once implies that ϕ∗X
is 1-Segal and hence f̃n is a weak equivalence.
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8 Hall algebras associated to 2-Segal spaces

In this chapter, we explain how to extract associative algebras from 2-Segal objects by means
of theories with transfer. This procedure, applied to Waldhausen spaces, recovers various
variants of Hall algebras, such as classical Hall algebras, derived Hall algebras, and motivic
Hall algebras. Applying a theory with transfer to other 2-Segal spaces, we obtain classically
known algebras, such as Hecke algebras, but also new algebras, such as the ones associated
to the cyclic nerve of a category.

8.1 Theories with transfer and associated Hall algebras

We introduce an abstraction of basic functoriality properties of a “cohomology theory”,
motivated by [FM81, Voe00]. Usually, a cohomology theory has contravariant functoriality
with respect to most maps and a covariant (Gysin, or transfer) functoriality with respect to
some other, typically more restricted, class of maps. We axiomatize this situation as follows.

Definition 8.1.1.Let C be a model category. A transfer structure on C is a datum of
two classes of morphisms S ,P ⊂Mor(C), called smooth and proper morphisms, respectively,
which satisfy the following conditions:

(TS1) The classes S ,P are closed under composition.

(TS2) Let

X
s //

p

��

Y

q

��
X ′

s′ // Y ′

be a homotopy Cartesian square in C with q ∈ P and s′ ∈ S . Then p ∈ P and s ∈ S .

Note that, in view of (TS1), we can identify the classes S and P with subcategories of C
containing all objects.

Let (V,⊗,1) be a monoidal category. For convenience, we will use the term “associative
algebra in V” to signify a semigroup object in V, i.e., an object A together with a morphism
µ ∶ A ⊗A → A satisfying associativity. A unital associative algebra is a monoid object, i.e.,
A as above together with a morphism e ∶ 1 → A satisfying the unit axioms with respect
to µ. Given an associative algebra A in V, there is a natural notion of (left, right, and
bi) A-modules in V . By a lax monoidal functor F ∶ (W ,⊠,1W) → (V,⊗,1V) between two
monoidal categories we mean a functor F ∶W → V, equipped with

• a morphism 1V → F (1W),
• for any objects x, y ∈ W , a morphism F (x)⊗ F (y)→ F (x ⊠ y), natural in x and y,
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satisfying the standard associativity and unitality constraints. Here, the adjective lax means
that these morphisms are not required to be isomorphisms.

Note that a lax monoidal functor F transfers algebra structures: if A is an associative
algebra in W , then F (A) is an associative algebra in V which will be unital, if A is unital.

Definition 8.1.2.Let C be a combinatorial model category, and (V,⊗,1) a monoidal cate-
gory. A V-valued theory with transfer on C is a datum h consisting of:

(TT1) A transfer structure (S ,P) on C.

(TT2) A covariant functor P → V and a contravariant functor S → V, coinciding on objects
and both denoted by h. The value of h on s ∶ X → Y from S is denoted by s∗ ∶
h(Y )→ h(X). The value of h on p ∶ Z →W from P is denoted by p∗ ∶ h(Z)→ h(W ).
Both functors are required to take weak equivalences in C to isomorphisms in V.

(TT3) Multiplicativity data on h, i.e., morphisms mX,Y ∶ h(X)⊗h(Y )→ h(X ×Y ), natural
with respect to morphisms in S , as well as an isomorphism h(pt) ≅ 1. These
morphisms are required to satisfy the usual associativity and unit conditions.

These data are required to satisfy the following base change property:

(TT4) For any homotopy Cartesian square as in (TS2), we have an equality p∗○s∗ = (s′)∗○q∗
as morphisms from h(Y ) to h(X ′).

Remark 8.1.3.Assume that V is a symmetric monoidal category and h respects the sym-
metry. If X ∈ C is such that the canonical morphisms X → X ×X , X → pt belong to S ,
then the object h(X) has a structure of a unital commutative algebra in V. This structure
is obtained by applying the contravariant functoriality of h to these morphisms.

Example 8.1.4.The simplest example of a theory with transfer is obtained as follows. Let
C = Set be the category of sets with the trivial model structure where weak equivalences are
isomorphisms. Let k be a field and V = Vectk the category of k-vector spaces. For a set S,
let F(S) be the space of all functions φ ∶ S → k, and F0(S) the subspace of functions with
finite support. A map f ∶ S′ → S induces the inverse and direct image maps

f∗ ∶ F(S)Ð→ F(S′), f∗ ∶ F0(S′)Ð→ F0(S),
(f∗φ)(x′) = φ(f(x′)), (f∗ψ)(x) = ∑

x′∈f−1(x)

ψ(x′).
We say f is proper if, for any x ∈ S, the fiber f−1(x) is a finite set. Let P denote the class
of all proper maps of sets. For f ∈ P, we have

f∗ ∶ F0(S)Ð→ F0(S′) f∗ ∶ F(S′)Ð→ F(S),
defined as above. The data provided makes F a Vectk-valued theory with transfer on Set

with respect to the transfer structure (Mor(Set),P). Similarly, F0 is theory with transfer
with respect to the structure (P,Mor(Set)).
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Example 8.1.5 (Universal theory with transfer).A universal example can be obtained
in the spirit of Grothendieck’s construction of the category of motives by using correspon-
dences. Let C be a combinatorial model category, and let (S ,P) be a transfer structure on
C. Recall (§3.3) the bicategory SpanC with the same objects as C, 1-morphisms being span
diagrams

σ = {Z s←ÐW
p
Ð→ Z ′}

and composition of 1-morphisms given by forming the fiber product. To keep the notation
straight, we denote by [Z] the object of Span

C
corresponding to the object Z ∈ C. We call

σ an (S ,P)-span, if s ∈ S and p ∈ P. Axiom (TS2) implies that the class of (S ,P)-spans
is closed under composition and thus gives rise to a sub-bicategory SpanC(S ,P) in SpanC.
Two 1-morphisms in Span

C
(S ,P) from [Z] to [Z ′] are equivalent, if there exists a diagram

W1
//

��

Z ′

Y

≃
``❇❇❇❇❇❇❇❇

≃

  ❇
❇❇

❇❇
❇❇

❇

Z W2
oo

OO ,

which is commutative in the homotopy category Ho(C) and in which the diagonal maps are
weak equivalences. Let hSpanC(S ,P) be the ordinary category with the same objects [Z]
as the bicategory Span

C
(S ,P), and morphisms being equivalence classes of 1-morphisms in

SpanC(S ,P). The Cartesian product on C makes hSpanC(S ,P) a monoidal category, by
defining [X]⊗ [Y ] ∶= [X × Y ]. By construction, we have a contravariant functor

hun ∶ S Ð→ Span(S ,P),{ X ↦ [X],
X

s→ Y ↦ s∗ = {Y s←ÐX
IdÐ→ X}

Further, if p ∈ P, we have the morphism

p∗ = {X Id←ÐX
p
Ð→ Y } ∶ [X]→ [Y ].

The association X ↦ hun(X), equipped with the contravariant and covariant functoriality
specified above, defines a hSpan

C
(S ,P)-valued theory with transfer on C with respect to

the transfer structure (S ,P).
Proposition 8.1.6. Let C be a combinatorial model category with transfer structure (S ,P),
and let V be a monoidal category. Then V-valued theories with transfer on C with respect to(S ,P) are in bijective correspondence with lax monoidal functors hSpanC(S ,P)→ V.

In light of Proposition 8.1.6, we call the theory hun from Example 8.1.5 the universal
theory with transfer associated to the transfer structure (S ,P) on the model category C.
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Let C be a combinatorial model category with a transfer structure (S ,P), and let X ∈C∆

be a 2-Segal object. Consider the spans

µ = {X1 ×X1

(∂2,∂0)←Ð X2
∂1Ð→X1},

ǫ = {pt ←ÐX0
s0Ð→X1},

where ∂i and s0 denote face and degeneration maps of X . We say that X is (S ,P)-admissible
if µ is an (S ,P)-span. We say that X is (S ,P)-unital if X is further a unital 2-Segal object
(Definition 2.5.2, Remark 5.2.4) and ǫ is an (S ,P)-span.
Proposition 8.1.7. Let X be an (S ,P)-admissible 2-Segal object, and let H(X) = [X1]
be the object of Span(S ,P) represented by X1. The morphism m ∶ H(X)⊗H(X) → H(X),
represented by the span µ, makes H(X) an associative algebra in Span(S ,P). If X is (S ,P)-
unital, then the morphism e ∶ 1→X, represented by the span ǫ, is a unit for H(X).
Proof. Similar argument to that in Theorem 3.3.6, using homotopy Cartesian squares instead
of ordinary Cartesian squares. We leave the details to the reader.

We call H(X) the universal Hall algebra of X with respect to the transfer structure(S ,P).
Definition 8.1.8.Let C be a model category with a transfer structure (S ,P), and let h be
a V-valued theory with transfer on C. Let Fh ∶ Span(S ,P)→ V be the lax monoidal functor
from Proposition 8.1.6 that represents h. For any (S ,P)-admissible 2-Segal object X ∈ C,
the Hall algebra of X with coefficients in h is defined as

H(X,h) ∶= Fh(H(X)) = h(X1) ∈ V
with the associative algebra structure transferred from the universal Hall algebra H(X)
along Fh.

Note that the Hall algebra H(X,h) is unital if the 2-Segal object X is (S ,P)-unital.
Explicitly, the multiplication on H(X,h) is obtained as the composite

h(X1)⊗ h(X1) mX1,X1Ð→ h(X1 ×X1) (∂0,∂2)∗Ð→ h(X2) (∂1)∗Ð→ h(X1).
Remark 8.1.9.When the object X0 is not a final object in C, then we can refine the
construction of the universal Hall algebra to give a monad in a certain (3,2)-category of
bispans. We will not make this statement precise here as it will reappear in the context of(∞,2)-categories in §11.

An alternative construction which takes into account X0 is given as follows. Suppose we
are in the situation of Remark 8.1.3, so that h(X0) is a commutative algebra in V. Suppose
also that the boundary morphisms

X0
∂0←Ð X1

∂1Ð→ X0
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belong to S . In this case they endow H(X,h) = h(X1) with two (commuting) structures of
an h(X0)-module, i.e., make it into an (h(X0),h(X0))-bimodule. Thus the left h(X0)-action
is induced by ∂0, while the right action is induced by ∂1.

Proposition 8.1.10. Under the above assumptions, the multiplication m on H(X,h) is
h(X0)-bilinear, i.e., we have a commutative diagram in V:

h(X1)⊗ h(X0)⊗ h(X1) Id⊗λ //

ρ⊗Id
��

h(X1)⊗ h(X1)
m

��
h(X1)⊗ h(X1) m // h(X1)

Here λ and ρ are the left and right action maps of h(X0) on h(X1).
Proof. Straightforward, left to the reader.
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8.2 Groupoids: Classical Hall and Hecke algebras

Let C = Gr be the category of small groupoids with the Bousfield model structure from
Example 4.1.4. Recall that, for a groupoid G ∈ Gr, the set of isomorphism classes of objects
in G is denoted π0(G). The concept of a theory with transfer on various subcategories of
Gr is closely related with that of a global Mackey functor, cf. [Web93]. We start with some
examples.

Fix a field k, and let V = Vectk be the category of k-vector spaces. For a groupoid G ∈ Gr,
we denote by F(G) the space of k-valued functions on π0(G). In other words, F(G) consists
of functions φ ∶ Ob(G) → k such that φ(x) = φ(y) whenever x is isomorphic to y. A functor
f ∶ G′ → G of groupoids defines the pullback map f∗ ∶ F(G) → F(G′). This contravariant
functoriality, together with the obvious multiplicativity maps F(G) ⊗ F(G′) → F(G × G′),
extends, in various ways, to the structure of a theory with transfer on F, which we now
describe.

We say that a groupoid G is locally finite (resp. discrete) if, for any x ∈ G, the group
AutG(x) is finite (resp. trivial). A groupoid G is called finite, if G is locally finite and π0(G)
is a finite set. If G is finite and char(k) = 0, then we have the orbifold integral map

(8.2.1) ∫
G
∶ F(G)Ð→ k, ∫

G
φ = ∑

[x]∈π0(G)

φ(x)
∣AutG(x)∣ ∈ k.

Here x is any object in the isomorphism class [x]. If G is finite and discrete, then ∫G is
defined without any assumptions on k.

For a functor f ∶ G′ → G of groupoids, we recall the definiton of the 2-fiber of f over an
object x ∈ G (Definition 1.3.6), given by

Rf−1(x) = 2 lim←Ð{{x}Ð→ G f
←Ð G′}, x ∈ Ob(G).

We introduce several classes of functors.

Definition 8.2.2.A functor f ∶ G′ → G of groupoids is called

• weakly proper if the map π0(G′)→ π0(G) is finite-to-one,
• π0-proper if each 2-fiber of f has finitely many isomorphism classes,

• proper if each 2-fiber of f is finite,

• absolutely proper if each 2-fiber of f is finite and discrete.

The last three classes, being defined in terms of 2-fibers, are stable under arbitrary 2-
pullbacks and therefore each of them forms, together with Mor(Gr), a transfer structure.

Proposition 8.2.3. A functor f ∶ G′ → G of groupoids is
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(1) π0-proper, if and only if f is weakly proper and, for every x′ ∈ G′, the homomorphism
of groups

fx′ ∶ AutG′(x′)Ð→ AutG(f(x′)), x′ ∈ Ob(G′),
has finite cokernel.

(2) proper, if and only if f is π0-proper and, for every x′ ∈ G′, the homomorphism fx′ has
finite kernel.

(3) absolutely proper, if and only if f is π0-proper and, for every x′ ∈ G′, the homomorphism
fx′ is injective.

Proof. The statements reduce to the case when both G′ and G have one object, which we
denote ●′ and ●, respectively. Then f reduces to a homomorphism of groups f ∶ G′ → G. In
this situation G′ acts on G on the left via (g′, g)↦ f(g′)g, and we find that the 2-fiber of f

Rf−1(●) = G′//G
is the corresponding action groupoid. Isomorphism classes of objects of this groupoid corre-
spond to right cosets of G by Im(f), and the automorphism group of any object is Ker(f).
The statements follow directly from these observations.

Given an absolutely proper functor f ∶ G′ → G of small groupoids, we define the orbifold
direct image map

f∗ ∶ F(G′)Ð→ F(G), (f∗φ)(x) = ∫
Rf−1(x)

φ∣Rf−1(x).

If char(k) = 0, then f∗ is defined for any proper functor.

Example 8.2.4. Suppose G′ and G have one object each, so f reduces to a homomorphism of
groups f ∶ G′ → G. By the above, f being proper means that Ker(f) and Coker(f) are finite.
In this case, denoting 1G′ the element of F(G′) = k corresponding to 1 ∈ k, and similarly for
G, we have

f∗(1G′) = ∣Coker(f)∣∣Ker(f)∣ ⋅ 1G .
Proposition 8.2.5. (a) Let k be any field. Then the orbifold direct image makes F into

a theory with transfer on Gr, contravariant with respect to all functors and covariant
with respect to absolutely proper functors.

(b) If k is a field of characteristic 0, then F becomes a theory with transfer covariant with
respect to all proper functors.

Proof. The fact that orbifold direct image is compatible with composition, i.e., (f ○ g)∗ =
f∗○g∗ for (absolutely) proper f and g, reduces to the case of functors between groupoids with
one object, in which case it follows from Example 8.2.4. The base change for a 2-Cartesian
square of groupoids follows, in a standard way, from the identification of 2-fibers.
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We say that a functor f ∶ G′ → G is locally proper (resp. locally absolutely proper), if the
restriction of f to any isomorphism class in G′ is proper (resp. absolutely proper). Such
functors are characterized by the condition that, for every x′ ∈ G′, the homomorphism fx′

from Proposition 8.2.3 has finite kernel and cokernel (resp. trivial kernel and finite cokernel).
A groupoid G is called an orbifold, if the constant functor G → pt is a locally proper functor,
i.e., for every x ∈ G, the automorphism group AutG(x) is finite. Thus a functor of groupoids
is locally proper if and only if all its 2-fibers are orbifolds. In particular, any functor of
orbifolds is locally proper.

Let k be a field of characteristic 0. For a groupoid G, let F0(G) ⊂ F(G) be the subspace
formed by functions π0(G) → k with finite support. Note that formula (8.2.1) defines the
map ∫G ∶ F0(G)→ k for any orbifold G, and thus we can define

(8.2.6) f∗ ∶ F0(G′)Ð→ F0(G)
for any locally proper functor f ∶ G′ → G. Note, that we have the contravariant functoriality

f∗ ∶ F0(G)Ð→ F0(G′)
for weakly proper functors of orbifolds.

Lemma 8.2.7. The classes of weakly proper and locally proper functors form a transfer
structure on Gr. The same is true for the classes of weakly proper and locally absolutely
proper functors.

Proof. Let

G2
f //

u2

��

G1
u1

��
G′2

f ′ // G′1
be a 2-Cartesian square of groupoids such that the functor u1 is weakly proper, and f ′ is
locally (absolutely) proper. We need to prove that u2 is again weakly proper and f is locally
(absolutely) proper. The statement about f follows from identification of 2-fibers in a 2-
pullback. Let us prove that u2 is weakly proper. As the 2-fiber product is additive w.r.t.
disjoint union of groupoids in each argument, the statement about u2 reduces to the case
when G1,G′1,G2 each have one object, i.e., the corresponding part of the above square comes
from a diagram of groups and homomorphisms

G2
f ′

Ð→ G′1
u1←Ð G1

with u1 having finite kernel and cokernel (resp. being injective with finite cokernel). The
groupoid G2 is then equivalent to the action groupoid

G2 ≃ (G′2 ×Gop
1 )//G′1,
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where G′2 ×Gop
1 acts on the set G′1 by

(g′2, g1) ⋅ g′1 = f ′(g′2)g′1u1(g1).
Since u1 has finite cokernel, the action of G′1 alone already has finitely many orbits. This
implies that the action groupoid above has finite π0 and so u2 is weakly proper.

Proposition 8.2.8. Let k be a field of characteristic 0 (resp. of arbitrary characteristic).
The correspondence G ↦ F0(G) gives rise to a Vectk-valued theory with transfer on Gr,
contravariant with respect to weakly proper functors and covariant with respect to locally
proper (resp. locally absolutely proper) functors.

Proof. Once the required functorialities are in place, the argument is similar to that of
Proposition 8.2.5.

Example 8.2.9 (Classical Hall algebras).Let E be an exact category in the sense of
Quillen, and let S(E) be its Waldhausen space, considered as a 2-Segal object in Gr as in
§2.4. We say that E is finitary, if

(1) the category E is essentially small,

(2) for all objects A,B ∈ E and every i ≥ 0, the groups ExtiE(A,B) are finite and

(3) for i≫ 0, ExtiE(A,B) ≅ 0.
Here the Ext-groups are calculated in the abelian envelope of E . An example of a finitary
exact category is provided by the category Coh(X/Fq) of coherent sheaves on a smooth
projective variety X over a finite field.

If E is finitary, then each groupoid Sn(E) is an orbifold and, moreover, the functor (∂2, ∂0)
in the diagram

(8.2.10) S1(E) × S1(E) (∂2,∂0)←Ð S2(E) ∂1Ð→ S1(E),
is proper. Indeed, S2(E) is the groupoid formed by admissible short exact sequences

0→ A′ Ð→ AÐ→ A′′ → 0

in E and their isomorphisms. The functor (∂2, ∂0) associates to such a sequence its two
extreme terms, so it is finite-to-one on π0 because of finiteness of Ext1. Note that (∂2, ∂0) is
in general not absolutely proper. The functor ∂1 is always locally absolutely proper. Indeed,
it is injective on morphisms since an automorphism of a short exact sequence is determined
by its action on the middle term.

Therefore, we can form the associative k-algebra H(S(E),F0). This is nothing but the
classical Hall algebra Hall(E) of E defined as follows (cf. [Sch06]). It has a k-basis {eA},
where A runs over all isomorphism classes of objects of A. The multiplication, denoted ∗, is
given by the formula

eA ∗ eB =∑
C

gCABeC ,
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where gCAB ∈ Z+ is the number of subobjects A′ ⊂ C such that A′ ≃ A and C/A′ ≃ B. This
number is finite because of the finiteness of the Hom and Ext1-groups in E . The identification
Hall(E) ≅ H(S(E),F0) is obtained by mapping eA to 1A ∈ F0(S1(E)), the characteristic
function of the isomorphism class of A.

We say that E is cofinitary, if any object has only finitely many subobjects. An example
is provided by the category of Fq-representations of a finite quiver. If E is both finitary

and cofinitary, the algebra structure extends to Ĥall(E), the completion of the vector space
Hall(E) formed by all infinite formal linear combinations of the eA. On the other case, in this
case the functor ∂1 in (8.2.10) is absolutely proper (as its action on π0 will be finite-to-one).
Therefore, the algebra H(S(E),F) is defined for any field k. This algebra is isomorphic to
Ĥall(E).

We have a similar interpretation of the Hall algebras of set-theoretic representations of
quivers and semigroups considered by Szczesny [Szc10, Szc12]. They can be obtained from
the Waldhausen spaces of the (nonlinear) proto-exact categories formed by such representa-
tions, see Example 2.4.4.

Example 8.2.11 (Classical Hecke algebras).Let G be a group, K ⊂ G a subgroup, and
let S(G,G/K) be their Hecke-Waldhausen simplicial groupoid from §2.6. It is a 1-Segal
(hence 2-Segal) object in Gr. We say that K is almost normal if the following condition
holds:

(AN) For any g ∈ G the subgroup gKg−1 is commensurate with K, i.e., the intersection
K ∩ (gKg−1) has finite index in each of them.

For instance, any subgroup of a finite group is almost normal. If K is almost normal then,
by Proposition 8.2.12 below, we can apply the theory with transfer F0 on Gr, contravariant
along weakly proper maps and covariant along locally proper maps, to form the Hall algebra

H(S(G,G/K),F0) = F0(S1(G,G/K)) = F0(K/G/K).
This nothing but the classical Hecke algebra Heck(G,K) of the pair (G,K) (see, e.g., [Shi71,
§3.1]).

Proposition 8.2.12. Given a group G and a subgroup K ⊂ G, consider the diagram

(8.2.13) S1(G,G/K) × S1(G,G/K) (∂2,∂0)←Ð S2(G,G/K) ∂1Ð→ S1(G,G/K).
If K is almost normal, then the functor (∂2, ∂0) is weakly proper, and ∂1 is locally absolutely
proper. If G is finite, then ∂1 is absolutely proper.

Proof. The conjugates of K are precisely the stabilizers of various points of G/K. The
condition (AN) implies that the intersection of any finite number of such stabilizers has
finite index in each of them. For any object of S2(G,G/K), i.e., an ordered pair of points(x, y) ∈ (G/K)2, we denote by d(x, y) ∈ G/(G/K)2 =K/G/K the corresponding G-orbit, i.e.,
the class of (x, y) in π0S2(G,G/K).
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To prove that (∂2, ∂0) is weakly proper means to prove that for any α,β ∈ K/G/K the
set of triples (x, y, z) ∈ (G/K)3 such that d(x, y) = α and d(y, z) = β, splits into finitely
many G-orbits. For this, it suffices to fix x and y such that d(x, y) = α, look at all z
such that d(y, z) = β and prove that the set Z of such z splits into finitely many orbits of
Stab(x) ∩ Stab(y). But Z is one orbit of Stab(y), and (AN) implies that Stab(x) ∩ Stab(y)
is a finite index subgroup there, whence the statement.

The statement that ∂1 is locally absolutely proper, means that for any (x, y, z) ∈ (G/K)3
the homomorphism Stab(x, y, z) → Stab(x, z) is an embedding of a subgroup of finite index.
But Stab(x, z) is the intersection of Stab(x) and Stab(z), and Stab(x, y, z) is the triple
intersection. So the “embedding” part is obvious, and the “finite index” part follows from
(AN).
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8.3 Groupoids: Generalized Hall and Hecke algebras

We now survey some other theories with transfer on the category of groupoids. Each such
theory gives rise to a generalization of classical Hall and Hecke algebras.

A. Groupoid cohomology. Let k be a field and consider the functor F ∶ Gr → Vectk
from §8.2. Note that, for a groupoid G, the vector space F(G) can be identified with the
0th cohomology group H0(BG,k), where BG denotes the classifying space of G. In this
paragraph, we show that the transfer theories of §8.2 can be extended to full cohomology
functors. To this end, we will use an explicit model for the cohomology of BG given by
groupoid cohomology.

We consider the functor

lim←Ð ∶ Fun(G,Vectk)Ð→ Vectk, F ↦ lim←ÐF

mapping a G-indexed diagram in Vectk to its projective limit. For convenience, we will
simply write lim for this functor. Given a diagram F ∈ Fun(G,Vectk), we can explicitly
describe limF as the subspace of ∏x∈G F (x) given by those sequences (vx)x∈G such that, for
every morphism f ∶ x→ y in G, we have vy = F (f)(vx).
Example 8.3.1.Let G be a group considered as a groupoid G. Then a G-diagram in Vectk
corresponds to a representation of the group G and the functor lim takes a representation
V to the the space V G of G-invariants.

Example 8.3.2.Let G be a groupoid and consider the constant diagram k. Then limk can
be identified with the space F(G) of k-valued functions on π0(G).

As a right adjoint, the functor lim is left exact. For i ≥ 0, the right derived functor

Ri lim ∶ Fun(G,Vectk)Ð→ Vectk

is called the ith groupoid cohomology functor associated to G. Given a G-diagram F , we will
also write H i(G, F ) for Ri lim(F ).
Example 8.3.3.Let G be a group considered as a groupoid G. Then groupoid cohomology
coincides with group cohomology. The groupoid cohomology of a general groupoid G can
always be identified with a direct sum of group cohomology groups associated to the various
automorphism groups of objects in G.

Let ϕ ∶ H → G be a functor of groupoids. Note that, for formal reasons, we have a
canonical natural transformation

(8.3.4) lim
G
Ð→ lim

H
○ ϕ∗.

Assume now, that ϕ is absolutely proper, so that the 2-fibers of ϕ are finite and discrete.
Then, we have a transfer map

(8.3.5) τϕ ∶ lim
H
○ ϕ∗ Ð→ lim

G
,
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which, given a diagram F ∈ Fun(G,Vectk), is defined as follows. As explained above, we may
identify limϕ∗F and limF with subspaces of ∏y∈H F (ϕ(y)) and ∏x∈G F (x), respectively.
The map τϕ is then obtained by sending a sequence (wy)y∈H to the sequence (vx)x∈G given
by the formula

vx = ∑
[(y,f ∶ϕ(y)→x)]∈π0(Rϕ−1(x))

F (f)(wy) ∈ F (x).
Here the sum is taken over isomorphism classes of objects of the 2-fiber of ϕ over x, and one
easily verifies that the summand F (f)(wy) does not depend on the choice of a representative
of the class [(y, f ∶ ϕ(y) → x)] ∈ π0(Rϕ−1(x)). Note that, due to the assumption that ϕ is
absolutely proper, the sum on the right-hand side is actually finite.

Example 8.3.6.Let H ⊂ G be a subgroup of finite index. Then the functor of corresponding
groupoids ϕ ∶ H → G is absolutely proper. Given a representation V of G, the (well-known)
transfer map τϕ(V ) corresponds to the map between invariant subspaces given by

V H Ð→ V G, v ↦ ∑
gH∈[G∶H]

gv.

Example 8.3.7.Let ϕ ∶ H → G be an absolutely proper map of groupoids. Let k be the
constant G-diagram. Then the transfer map τϕ(k) corresponds to a map F(H)→ F(G) which
coincides with the orbifold direct image of §8.2.

Remark 8.3.8.We give a more conceptual perspective on the existence of the transfer
map. Let ϕ ∶ H → G be an absolutely proper functor of groupoids. Then the pullback
functor ϕ∗ ∶ Fun(G,Vectk) → Fun(H,Vectk) admits left and right adjoints ϕ! and ϕ∗, given
by left and right Kan extensions, respectively. Remarkably, under our assumptions on ϕ,
the functors ϕ! and ϕ∗ are isomorphic: The pointwise formula for Kan extensions, together
with the assumption that the 2-fibers of ϕ are finite and discrete, reduces our claim to the
statement that, in any abelian category, finite coproducts and finite products coincide. Thus,
there exists a trace map

ϕ∗ ○ ϕ∗ → id,

exhibiting ϕ∗ as the left adjoint of ϕ∗. Composing the trace map with the pushforward along
the constant functor G → pt, we recover the transfer map.

By Grothendieck’s characterization of derived functors as universal δ-functors (see e.g.
[Wei94, §2]), the transfer map τϕ induces a unique map of graded vector spaces

τ ●ϕ(F ) ∶H●(H, ϕ∗F )Ð→ H●(G, F ).
Let ϕ ∶ H → G be an absolutely proper functor of groupoids. We denote by k the trivial
G-diagram with value k. Then we obtain a map

τ ●ϕ(k) ∶ H●(H,k)Ð→ H●(G,k),
which we will denote by ϕ⊛. Note that we further have a pullback map

ϕ⊛ ∶ H●(H,k) Ð→H●(G,k),
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obtained by deriving (8.3.4). Let VectZk be the monoidal category of Z-graded k-vector
spaces, with the usual graded tensor product.

Proposition 8.3.9. The association

H● ∶ Gr Ð→ VectZk, G ↦H●(G,k)
gives rise to a VectZk -valued theory with transfer on Gr contravariant, via ϕ ↦ ϕ⊛, along
arbitrary functors and covariant, via ϕ↦ ϕ⊛, along absolutely proper functors.

Proof. The functoriality of the association ϕ ↦ ϕ⊛ follows from the following statement:
Given absolutely proper functors ϕ ∶ H → G and ψ ∶ K → H of groupoids, and let F be a
G-diagram in Vectk, we have an equality

τϕ(F ) ○ τψ(ϕ∗F ) = τϕ○ψ(F )
of maps limKψ∗ϕ∗F → limG F . This statement follows directly from the definition of the
transfer map. It remains to verify property (TS2) of Definition 8.1.1. To this end, we claim
that, given a 2-Cartesian square

H ϕ //

p

��

G
q

��
H′ ψ // G′

and a G′-diagram F , the two natural maps limH′ ψ∗F → limG q∗F given by the composites of

lim
H′
ψ∗F

τψ
Ð→ lim

G′
F Ð→ lim

G
q∗F

and
lim
H′
ψ∗F Ð→ lim

H
p∗ψ∗F

≅Ð→ lim
H
ϕ∗q∗F

τϕ
Ð→ lim

G
q∗F,

respectively. This claim can easily be reduced to the case when the 2-Cartesian square is a
2-fiber square. In this case, the statement follows directly from the definition of τ .

Remark 8.3.10.We can vary the construction of the theory with transfer H● to provide
a homological theory with transfer H● which is covariant along arbitrary functors and con-
travariant along absolutely proper functors. This theory admits an explicit description in
terms of groupoid homology which is obtained by deriving the inductive limit functor. Fur-
ther, we can define a theory with transfer H●c of compactly supported cohomology which is
contravariant along weakly proper functors and covariant along locally absolutely proper
functors. We leave the details of these constructions to the reader.

Example 8.3.11 (Group-cohomological Hall algebras).Let E be a finitary exact cate-
gory. Then the functor (∂2, ∂0) in (8.2.10) is weakly proper, and ∂1 is absolutely proper, so
we can form the Hall algebra with coefficients in H●c which is the graded vector space

(8.3.12) H(S(E),H●c ) = H●c (BS1(E),k) ≅ ⊕
[A]∈π0(E)

H●(Aut(A),k)
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with multiplication given by the map ∂1∗ ○ (∂2, ∂0)∗ obtained from (8.2.10). Note that we
can not use the theory with transfer H●, since (∂2, ∂0) is proper but not absolutely proper.
If E is also cofinitary, then we can apply the theory H● which will give the direct product
instead of the direct sum in (8.3.12).

The groups Aut(A) are all finite, so for char(k) = 0 their higher cohomology vanishes
and the above algebra reduces to the completion of the classical Hall algebra from Example
8.2.9. On the other hand, if k has finite characteristic, then this algebra is quite large and
potentially very interesting. The simplest example is obtained by taking E = VectfdFq to be
the category of finite-dimensional vector spaces over a finite field. In this case, we obtain
the algebra

H(S(E),H●c ) =⊕
n≥0

H●(GLn(Fq),k),
with multiplication of the mth and nth factors coming from the diagram of groups

GLm ×GLn πm,n←Ð (GLm ∗
0 GLn

) im,nÐ→ GLm+n

obtained by pull back along πm,n, and transfer along im,n. The algebra H(S(E),H●c ) resem-
bles an algebra studied by Quillen [Qui72] which is given by

HQ =⊕
n≥0

H●(GLn(Fq),k)
with multiplication induced by the embedding GLm ×GLn → GLm+n.

Example 8.3.13 (Group-cohomological Hecke algebras).Let G be a group, and K ⊂ G
an almost normal subgroup. By Proposition 8.2.12, the functor (∂2, ∂0) in the diagram
(8.2.13) is weakly proper, and the functor ∂1 is locally absolutely proper. Therefore we can
apply the theory with transfer H●c , to obtain the algebra

≅ HeckH(G,K) =H●c (BS1(G,G/K),k) ≅ ⊕
(KgK)∈K/G/K

H●(K ∩ (gKg−1),k).
We call HeckH(G,K) the group-cohomological Hecke algebra of G with respect to K.

Restricting to degree 0 cohomology, we recover the classical Hecke algebra Heck(G,K).
As in the previous example, if K is finite and char(k) = 0, then HeckH(G,K) = Heck(G,K).
A potentially interesting class of examples is provided by pairs of arithmetic groups (G,K)
where Heck(G,K) is well known by a version of the Satake isomorphism [Gro98], for example

G = GLn(Z[1/p]),K = GLn(Z), Heck(G,K) ≃ k[t±11 , ..., t±1n ]Sn.
B. Generalized cohomology. More generally, let h● be any multiplicative generalized

cohomology theory on the category of CW-complexes, such as K-theory, cobordism, etc.
Then h● is contravariant with respect to arbitrary maps and admits transfer with respect
to finite unramified coverings, see [KP72], or, for more general transfers, [BG75]. We define
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the functor h●c for disconnected CW-complexes by taking the direct sum. Then h●c, like
H●c , is a theory with transfer covariant with respect to locally absolutely proper functors
and contravariant with respect to weakly proper functors. This theory takes values in the
monoidal category of Z-graded abelian groups.

In particular, for any finitary exact category E , we have the Hall algebra with coefficients
in h●c

H(S(E), h●c),= h●c(BS1(E)) = ⊕
[A]∈π0(E)

h●(BAut(A)).
Similarly, for an almost normal subgroup K in a group G we have the Hecke algebra with
coefficients in h●c

Heckh(G,K) = h●c(BS1(G,G/K),k) = ⊕
(KgK)∈K/G/K

h●(B(K ∩ (gKg−1))).
In several classical examples, applying h● to the classifying space of a finite groupoid G gives
in fact the completion of a more direct algebraic construction, applicable to G itself. Below
we consider two such cases.

C. Representation rings. Let VectfdC be the category of finite-dimensional complex
vector spaces. By a representation of a groupoid G we mean a covariant functor ρ ∶ G → VectfdC .
Topologically, a representation is the same as a local system (locally constant sheaf of finite-
dimensional C-vector spaces) on BG. Representations form an abelian category Rep(G),
and we denote by R(G) the Grothendieck group of this category. For a finite group G the
topological K-theory of BG is, by Atiyah’s theorem [Ati61], identified with the completion
of R(G) by powers of the kernel ideal of the rank homomorphism R(G) Ð→ Z.

We denote by R0(G) the Grothendieck group of finitely supported representations, i.e.,
functors ρ which are zero on all but finitely many isomorphism classes of G. A functor
f ∶ G′ → G gives rise to the pullback functor

f∗ ∶ Rep(G)Ð→ Rep(G′)
which is exact and therefore gives rise to a pullback functor [f∗] ∶ R(G) → R(G′). If f is
weakly proper, then we also obtain a functor [f∗] ∶R0(G)→R0(G′).

If f is a π0-proper functor, then f∗ has a left adjoint f∗ and a right adjoint f! which can
be defined as Kan extensions along f (§1.1). In particular, for an object ρ′ ∈ Rep(G′), we
have the formulas

(8.3.14) (f∗ρ)(x) = lim←Ð
{f(x′)→x}

ρ(x′), (f!ρ)(x) = limÐ→
{x→f(x′)}

ρ(x′), x ∈ Ob(G).

Note that since G is a groupoid, both comma categories are identified with Rf−1(x). Since
f is π0-proper, each Rf−1(x) is equivalent to a groupoid with finitely many objects, so the
limits above (taken in the category of all C-vector spaces) result in finite-dimensional vector
spaces.
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Example 8.3.15. If f ∶ G′ → G is an embedding of a subgroup of finite index, then f∗ is the
functor of taking the induced representation. If f ∶ G′ → {1}, then f∗ is the functor of taking
invariants. Similarly for f!, we obtain coinduced representation and coinvariants.

Assume that f is proper, so that each Rf−1(x) is equivalent to a finite groupoid. Since
higher (co)homology of a finite group with coefficients in a complex representation vanishes,
for a proper f the limits above and hence f∗ and f! are exact functors and therefore induce
maps of Grothendieck groups. Since for a representation of a finite group the space of
coinvariants can be identified with the space of invariants, the two functors induce the same
map [f∗] ∶R(G′)Ð→R(G). If f is only assumed to be locally proper, then f∗ still gives rise
to a map [f∗] ∶R0(G′)→R0(G). In this context, we have the following general base change
property for Kan extensions.

Proposition 8.3.16. Let C be a category with small inductive and projective limits. Then,
for any 2-Cartesian square of small groupoids

H ϕ //

p

��

G
q

��H′ ψ // G′,
we have natural isomorphisms of functors

ϕ! ○ p∗ ≃ q∗ ○ ψ!

ϕ∗ ○ p∗ ≃ q∗ ○ ψ∗.
Proof. The statement is easily reduced to the case when the diagram is a 2-fiber diagram.
In this case, it follows from the pointwise formula for Kan extensions.

Therefore, condition (TT3) of Definition 8.1.2 is satisfied and we have the following
statement.

Proposition 8.3.17. (a) The functor R ∶ Gr → Ab defines a theory with transfer, con-
travariant with respect to all functors and covariant with respect to proper functors.

(b) The functor R0 ∶ Gr → Ab defines a theory with transfer, contravariant with respect to
weakly proper functors and covariant with respect to locally proper functors.

Example 8.3.18 (Representation ring version of Hall algebras).For a finitary exact
category E , we can define the representation ring Hall algebra

H(S(E),R0) = ⊕
[A]∈π0(E)

R(Aut(A)).
Here each Aut(A) is a finite group, so R(Aut(A))⊗Q is identified with the ring of Q-valued
class functions on Aut(A). The simplest example is obtained by taking E = VectfdFq . In this
case, the algebra

H(S(VectfdFq),R0)⊗Q =⊕
n≥0

R(GLn(Fq))⊗Q.
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was studied by Green [Gre55] and, later, in spirit closer to our approach, by Zelevinsky
[Zel81]. Both authors show that this algebra is commutative and isomorphic to a polynomial
algebra on infinitely many generators, which correspond to the cuspidal representations of
all groups GLn(Fq).
Example 8.3.19 (Representation ring version of Hecke algebras).Let K ⊂ G be an
almost normal subgroup. We obtain the ring

H(S(G,K),R) ≅ ⊕
(KgK)∈K/G/K

R(K ∩ (gKg−1)).
Note that here the groupsK∩(gKg−1) may be infinite. The multiplication involves induction
with respect to finite index embeddings of possibly infinite subgroups.

D. Burnside rings. Let FSet be the category of finite sets. For a groupoid G, letAct(G) = Fun(G,FSet) be the category of set-theoretic representations of G. This category
has objectwise operations ⊔,× of disjoint union and Cartesian product. The set of isomor-
phism classes of objects of Act(G) is a commutative monoid under ⊔, and taking the group
completion, we get a group (in fact a commutative ring under ×) called the Burnside ring ofG and denotedB(G). See [Dre69, DS88] for more background on Burnside rings of (pro)finite
groups.

As above, each functor f ∶ G′ → G of groupoids gives rise to the pullback functor f∗ ∶Act(G)→ Act(G′), which commutes with disjoint unions and hence induces a homomorphism
f∗ ∶ B(G) → B(G′). As in the representation-theoretic setting above, for a π0-proper f the
functor f∗ has left and right adjoints f! and f∗ defined by the same formulas as in (8.3.14)
but with limits taken in Set. Note that these functors commute with disjoint unions, so they
induce two homomorphisms

f∗, f! ∶B(G′)Ð→B(G).
These homomorphisms can be quite different, since for a group G acting on a finite set
E the set of invariants EG and coinvariants (orbits) G/E are, in general, different. If,
however, the functor f is absolutely proper, then we have f∗ = f!, since in this case the
only procedures involved in forming the Kan extensions are induction and coinduction with
respect to embedding of finite index subgroups, and these procedures coincide. As before,
Proposition 8.3.16 implies that (f∗, f∗) and (f∗, f!) satisfy condition (TT3), hence leading
to the following statement.

Proposition 8.3.20. (a) The data (f∗, f∗) and (f∗, f!) both extend B to a theory with
transfer on Gr, contravariant with respect to all functors and covariant with respect to
π0-proper functors.

(b) Similarly, we can extend B0 to a theory with transfer on Gr, contravariant with respect
to weakly proper functors and covariant with respect to locally π0-proper functors.
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8.4 ∞-groupoids: Derived Hall algebras

Let C = Top be the category of compactly generated Hausdorff topological spaces equipped
with the Quillen model structure, and let k be a field of characteristic 0. For Y ∈ Top, we
denote by Fh(Y ) the space of functions π0(Y )→ k, which we may identify with locally con-
stant functions on Y . It is clear that the correspondence Y ↦ Fh(Y ) provides a contravariant
functor Top → Vectk. In this section, we extend this functor to a Vectk-valued theory and
study Hall algebras with coefficients in Fh. The material of this section is an interpretation
of the results of [Toë06, §2, §3], using the terminology of theories with transfer.

We call a space Y locally homotopy finite if

(1) for every y ∈ Y and i ≥ 1, the homotopy group πi(Y, y) is finite, and
(2) πi(Y, y) = 0 for i≫ 0.

If, in addition, the space Y has finitely many connected components, then we say that Y
is homotopy finite. We denote by Top<∞ the full subcategory in Top formed by homotopy
finite spaces. For a homotopy finite space Y , we define its homotopy cardinality to be the
rational number

(8.4.1) ∣Y ∣h = ∑
[y]∈π0(Y )

∏
i≥1

∣πi(Y, y)∣(−1)i ∈ Q ⊂ k.
As far as we know, formula (8.4.1), as well as Proposition 8.4.2 below, first appeared in
the literature in work of J. Baez and J. Dolan [BD01]. Similar ideas were earlier proposed
(orally) by J.-L. Loday, who was motivated by constructions of homotopy finite spaces in
[Lod82].

Proposition 8.4.2. (a) The category Top<∞ is closed under disjoint unions and Cartesian
products, and we have

∣Y ⊔Z ∣h = ∣Y ∣h + ∣Z ∣h, ∣Y ×Z ∣h = ∣Y ∣h ⋅ ∣Z ∣h.
(b) Let

F

��

// E

��
pt // B

be a homotopy Cartesian square with B connected. If any two of the three spaces
F,E,B are homotopy finite, then so is the third. If all three are homotopy finite, then
we have ∣E∣h = ∣F ∣h ⋅ ∣B∣h.

Proof. The first part is obvious and (b) follows from the long exact sequence of homotopy
groups.

We give some examples which illustrate the meaning of homotopy cardinality in various
contexts.
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Example 8.4.3.Let X be a finite set, interpreted as a discrete topological space. Then X
is homotopy finite and the homotopy cardinality of X is simply the cardinality of X .

Example 8.4.4.Let G be a finite groupoid as introduced in §8.2. Then the classifying space
BG is homotopy finite and we have the formula

∣BG∣h = ∑
[C]∈π0(G)

1

∣Aut(C)∣
for the homotopy cardinality of BG. Hence, we obtain the relation

∣BG∣h = ∫
G
1,

expressing the homotopy cardinality in terms of the orbifold integral from §8.2.
The following simplest example in this context suggests a mysterious relation between the

concepts of homotopy cardinality and Euler characteristic. Consider a finite group G of order
g. Then its classifying space BG is homotopy finite and has homotopy cardinality 1/g. On the
other hand, the simplicial set NG has exactly (g−1)n non-degenerate simplices in dimension
n. So, naively writing the formula for the Euler characteristic as the alternating sum of the
numbers of non-degenerate simplices of all dimensions, we get, by formally summing the
geometric series:

∣BG∣h = ∞∑
n=0

(−1)n(g − 1)n “ = ”
1

1 − (1 − g) =
1

g
.

This example shows that it is natural to view the homotopy cardinality as a “regularization”
of the Euler characteristic. See [BL08] for further examples of this kind.

Example 8.4.5.Let C be an ∞-category. We call C locally finite if, for every pair of objects
x, y of C, and every i ≥ 1, the topological mapping space ∣MapC(x, y)∣ is homotopy finite. If,
in addition, the homotopy category hC of C has only finitely many isomorphism classes of
objects, then we call C finite. As above, we denote by K = CKan the largest Kan complex
contained in C which, in the language of ∞-categories, is the ∞-groupoid of equivalences in
C. We call the topological space X = ∣K ∣ the classifying space of objects in C. With this
notation, we have

• π0(X) ≅ π0(hC),
• for every object x of C, we have the formula

π1(X,x) ≅ AuthC(x) ⊂ π0(MapC(x,x)),
• for every object x of C and i ≥ 2, we have the formula

πi(X,x) ≅ πi−1(MapC(x,x), idx).
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These statements can, for example, be obtained as follows: On the one hand, [Lur09a,
4.2.1.8] implies that the Kan complex {x} ×K K∆1 ×K {x} is a model for the mapping space
MapK(x,x). On the other hand, the homotopy Cartesian square

{x} ×K K∆1 ×K {x} //

��

K∆1

��{x} × {x} // K ×K,

exhibits {x} ×K K∆1 ×K {x} as a simplicial model for the space of loops in X based at x.
This implies the above formulas for the homotopy groups of the space X . In particular, if
C is finite, then its classifying space of objects is homotopy finite and we obtain an explicit
formula for its homotopy cardinality. Assume that C is a stable ∞-category. For objects x, y
of C, we have an weak equivalence

MapC(Σx, y) ≃ ΩMapC(x, y),
where Σ denotes the suspension functor and Ω signifies the loop space based at the zero map
([Lur11, 1.1]). Therefore, for i ≥ 1, we have

πi(MapC(x, y),0) ≅ Ext−ihC(x, y) ∶= HomhC(Σix, y).
Further, since the suspension functor is invertible, the mapping space MapC(x, y) is an infinite
loop space and hence its homotopy groups are independent of the choice of basepoint. Thus,
we have the formula

∣X ∣h = ∑
[x]∈π0(hC)

∏i≥2 ∣Ext1−ihC (x,x)∣(−1)i ,∣AuthC(x)∣
expressing the homotopy cardinality of X completely in terms of the triangulated structure
on the homotopy category hC.

Remark 8.4.6. In light of Examples 8.4.4 and 8.4.5, the theory developed in this section
can be regarded as a generalization of the transfer theory for ordinary groupoids developed
in §8.2 to ∞-groupoids, modelled by topological spaces.

Remark 8.4.7.Example 8.4.4 exhibits a connection between homotopy cardinality and
ordinary Euler characteristic. Thus we have two Euler characteristic-type invariants defined
on two different subcategories of Top:

(1) The usual Euler characteristic χ, defined on the category Top<∞ of spaces weakly equiv-
alent to a finite CW-complex and taking values in Z.

(2) The homotopy cardinality, defined on the category Top<∞ of homotopy finite spaces
and taking values in Q.
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This raises a natural question (posed by J. Baez) of whether one can obtain both invariants
as restrictions of a single invariant defined on a category containing both Top<∞ and Top<∞

and satisfying both additivity and multiplicativity properties. We are not aware of any result
in this direction.

If Y is homotopy finite, and φ ∈ Fh(Y ), we define the homotopy integral of φ to be

∫
h

Y
φ = ∑

[y]∈π0(Y )

φ([y]) ⋅ ∣Cy∣h ∈ k,
where Cy denotes the connected component of Y containing y ∈ Y . Compare with [Vir88]
which treats similar “integrals” over the usual Euler characteristic.

Definition 8.4.8.Let f ∶ Y ′ → Y be a morphism in Top. We say that f is:

• weakly proper, if the induced map π0(Y ′)→ π0(Y ) is finite-to-one,
• homotopy proper, if each homotopy fiber Rf−1(y), y ∈ Y0, is a homotopy finite space,

• locally homotopy proper, if the restriction of f to each connected component of Y ′ is
homotopy proper.

It is clear that the class of homotopy proper maps is closed under homotopy pullbacks.
Therefore, together with the class of all maps, the homotopy proper maps form a transfer
structure on Top. Further, the pair formed by weakly proper and locally homotopy proper
maps gives another transfer structure. If f is homotopy proper and φ ∈ Fh(Y ′), we define
the locally constant function f∗φ ∈ Fh(Y ) by the formula

(f∗φ)(y) = ∫ h

Rf−1(y)
φ∣Rf−1(y).

Remark 8.4.9. In [FM81], a similar construction based on the usual Euler characteristic is
applied to constructible functions on complex algebraic varieties.

Let Fh0(Y ) ⊂ Fh(Y ) be the subspace of functions supported on finitely many connected
components of Y . Such functions can be pulled back along weakly proper maps f ∶ Y ′ → Y ,
giving f∗ ∶ Fh0(Y )→ Fh0(Y ′). In a similar way, to form the pushforward f∗ ∶ Fh0(Y ′)→ Fh0(Y ),
it suffices that f is locally homotopy proper.

Proposition 8.4.10. (a) The assignment Y ↦ Fh(Y ), equipped with the above functori-
alities, defines a Vectk-valued theory with transfer on Top, contravariant with respect
to all maps and covariant with respect to homotopy proper maps.

(b) Similarly, the association Y ↦ Fh0(Y ) extends to a theory with transfer, contravariant
with respect to weakly proper maps and covariant with respect to locally homotopy
proper maps.
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Proof. Corollary 2.4 and Lemma 2.6 in [Toë06].

Example 8.4.11.Note that the theories with transfer Gr → Vectk from §8.2 are recovered
from Proposition 8.4.10 by precomposing with the lax monoidal functor

B ∶ Gr → Top, G ↦ BG
given by the classifying space construction. Moreover, for an admissible 2-Segal groupoidG●, we have a natural isomorphism

H(G●,F) ≅H(BG●,Fh),
and similarly for the theory F0. Thus all Hall algebras with coefficients defined in §8.2 can
alternatively be obtained as Hall algebras with coefficients in the theories Fh and Fh0 .

Proposition 8.4.12. Let C be a locally finite stable ∞-category, and let S(C) denote its
Waldhausen S-construction.

(1) For every n ≥ 0, the topological space ∣Sn(C)∣ is locally homotopy finite.

(2) The topological 2-Segal space given by [n]↦ ∣Sn(C)∣ is admissible for the transfer theory
given by the pair (weakly proper maps, locally proper maps) on Top.

Proof. We first prove (1). We say that a Kan complex is (locally) homotopy finite if its
geometric realization is (locally) homotopy finite. Similarly, we use the terminology of Def-
inition 8.4.8 for Kan complexes in virtue of the geometric realization functor. The Kan
complex S0(C) is contractible, hence homotopy finite. Further, by assumption, the Kan
complex S1(C) is locally homotopy finite. We utilize the marked model structure on Set∆ of
[Lur09a, §3.1], and freely use the musical notation introduced there. For example, we denote
by C♮ the marked simplicial set obtained by marking all edges which are equivalences in the
∞-category C. Recall from Proposition 7.3.6 that, for each n ≥ 0, we have a weak equivalence
of Kan complexes

Sn(C) ≃Ð→ Fun(∆n,C)Kan.

Directly from the definition, we obtain an isomorphism

Fun(∆n,C)Kan ≅Map♯((∆n)♭,C♮),
providing a description in terms of simplicial mapping spaces with respect to the marked
model structure on Set∆. Therefore, it suffices to show that Map♯((∆n)♭,C♮) is locally
homotopy finite. Since the inclusion of simplicial sets

i ∶ ∆n−1 ∐
{n−1}

∆{n−1,n} ⊂∆n

is inner anodyne, the corresponding marked map i♭ is marked anodyne, and we obtain a
weak equivalence

Map♯((∆n)♭,C♮) ≃Ð→Map♯((∆n−1)♭,C♮) ×Map♯({n−1}♭,C♮)Map♯((∆{n−1,n})♭,C♮),
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where the right-hand side fiber product is a homotopy fiber product. Therefore, by an induc-
tion using Proposition 8.4.2, we can reduce to showing that the Kan complex Map♯((∆1)♭,C♮)
is locally homotopy finite. To this end, note that, for objects x, y of C, we a pullback square
of simplicial sets

(8.4.13) {x} ×C (C∆1)Kan ×C {y}
��

// (C∆1)Kan

s×t

��{x} × {y} // CKan × CKan.

This square is in fact homotopy Cartesian, since the projection s × t is a Kan fibration.
This can, for example, be deduced by interpreting s × t as the map of simplicial mapping
spaces, induced by the inclusion {0}♭ × {1}♭ ⊂ (∆1)♭ of marked simplicial sets. Since, by
[Lur09a, 4.2.1.8], the Kan complex {x} ×C (C∆1)Kan ×C {y} ≅ {x} ×C C∆1 ×C {y} is a model
for the mapping space MapC(x, y) of C, we can again use Proposition 8.4.2 to reduce to the
statement that CKan is locally homotopy finite.

To show (2), we have to verify that, in the diagram

S1(C) × S1(C) (∂2,∂0)←Ð S2(C) ∂1Ð→ S1(C),
the map (∂2, ∂0) is weakly proper, and ∂1 is locally proper. The fact that every connected
component of S1(C) and S2(C) is a homotopy finite space, implies that any morphism
S2(C) → S1(C), in particular ∂1, is locally proper. To show that the map (∂2, ∂0) is weakly
proper, we have to verify that, for objects a, a′ of C, the subspace Y of S2(C), lying above the
connected component of S1(C)×S1(C) represented by the pair (a, a′), has finitely many con-
nected components. Using the homotopy Cartesian square (8.4.13), with x = a′ and y = Σa,
it is easy to see that we have a surjection π0(MapC(a′,Σa)) → π0(Y ). Hence, the statement
follows from the local finiteness of the ∞-category C.

Example 8.4.14.Let C be a locally finite stable ∞-category. By Proposition 8.4.12, we can
form the Hall algebra H(S(C),Fh0) with coefficients in Fh0 . This recovers the derived Hall
algebra defined in [Ber09].

Example 8.4.15.Let F be a finite field, and let A be a dg category over F, see §7.4 for
conventions. We say that A is locally finite if, for every pair of objects a, b of T , the total
cohomology space of the mapping complex A(a, b) is a finite dimensional F-vector space. Let
C = Ndg(Perf○A) be the dg nerve of the dg category of cofibrant, perfect A-modules. Using
[Lur11, 1.3], one shows that the∞-category C is locally finite and stable. The Hall algebra of
S(C) with coefficients in Fh0 recovers Toën’s derived Hall algebra associated to A constructed
in [Toë06].
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8.5 Stacks: Motivic Hall algebras

Motivic Hall algebras were introduced by Joyce [Joy07] and Kontsevich-Soibelman [KS08],
see also [Bri10] for a transparent introduction using the work of Toën [Toë05] on Grothendieck
groups of Artin stacks. From our point of view, the existence of these algebras is a reflection
of the 2-Segal property of the Waldhausen stacks from Example 5.2.9.

More precisely, we consider the situation of Example 4.3.6. That is, let F be a field, and
U = F − Aff be the category of affine F-schemes of at most countable type, made into a
Grothendieck site via the étale topology. Let C = Gr

U
be the category of stacks of groupoids

on U , with the Joyal-Street model structure. Objects of C will be simply referred to as
stacks. Inside C we have the subcategory Art of Artin stacks. Recall that by a geometric
point of a stack G one means an object of the groupoid G(K) ∶= S(SpecK), where K is an
algebraically closed field containing F (here assumed at most countably generated over F so
that Spec(K) ∈ U). Following [Toë05] (also cf. [Bri10]), we give the following definition.

Definition 8.5.1.A stack S is called special, if it is an Artin stack of finite type over F,
and if the stabilizer of any geometric point is an affine algebraic group. A morphism of
stacks φ ∶ G′ → G in Gr

U
is called special, if for any morphism of stacks ψ ∶ S → G with S a

special stack, the 2-fiber product S ×(2)G G′ is a special stack. We denote by Sp the class of
special morphisms of stacks. A morphism φ ∶ G′ → G is called a geometric bijection, if for any
algebraically closed field K ⊃ F as above, the induced functor of groupoids G′(K)→ G(K) is
an equivalence.

For example any morphism of special stacks is special. We then obtain easily:

Proposition 8.5.2. The pair (Sp,Mor(Gr
U
)) forms a transfer structure on the model cat-

egory Gr
U
.

The following is an adaptation of [Bri10, Def. 3.10].

Definition 8.5.3.Let G be a stack. The group f(G) of motivic functions on G is the abelian

group generated by the symbols [S s→ G] for all special stacks S over G, subject to the
following relations:

(1) Additivity in disjoint unions:

[S1 ⊔ S2 s1⊔s2Ð→ G] = [S1 s1→ G] + [S2 s2→ G].
(2) If φ ∶ S1 → S2 is a geometric bijection of special stacks, and si ∶ Si → G are such that

s1 = s2 ○ φ, then [S1 s1→ G] = [S2 s2→ G].
(3) Let Si

si→ S , i = 1,2, be two morphisms of special stacks with the same target. Assume
that for any scheme S of finite type over F and any morphism p ∶ S → S , the pullbacks
Si ×(2)S S are schemes and the projections to S are locally trivial Zariski fibrations with
equivalent fiber. Then, for any morphism s ∶ S → G, we impose the relation

[S1 s○s1Ð→ G] = [S2 s○s2Ð→ G].
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Example 8.5.4.The group f(F) ∶= f(Spec(F)) is a ring, known as the Grothendieck ring
of special F-stacks, with multipliciation induced by the Cartesian product. The reason for
restricting to special stacks in Definition 8.5.3 is that it allows f(F) to be identified with
an explicit localization of a similar but more “elementary” Grothendieck ring Λ formed by
F-schemes (not stacks) of finite type. More precisely,

f(F) = Λ[L−1,Ln − 1, n ≥ 1],
where L is the class of the affine line over F, see Lemma 3.9 of [Bri10].

Let φ ∶ G′ → G be a morphism of stacks. Then we have the pushforward functor

φ∗ ∶ f(G′)Ð→ f(G), [S ′ s′→ G′]↦ [S ′ φ○s′Ð→ G].
If φ is a special morphism of stacks, we also have the pullback functor

φ∗ ∶ f(G)Ð→ f(G′), [S s→ G′]↦ [S ×(2)G′ G → G].
Proposition 8.5.5. The above functorialities make f a theory with transfer on the model
category Gr

U
with respect to the transfer structure (Sp,Mor(Gr

U
)).

Proof. The multiplicativity f(G)⊗ f(G′)→ f(G × G′) is given by Cartesian product of stacks.
The base change for a 2-Cartesian square as in Definition 8.1.1 with s1, s2 special, is tauto-
logical, by definition of the functorialities of f.

Therefore (Definition 8.1.8), each 2-Segal simplicial object X in Gr
U
which is admissible

with respect to (Sp,Mor(Gr
U
)), gives rise to the Hall algebra H(X, f) = f(X1) which can be

called the motivic Hall algebra of X . This includes the following examples.

Examples 8.5.6. (a) Let R be a finitely generated associative F-algebra, and X be the
Waldhausen stack of finite-dimensional left R-modules, see Example 5.2.9(b). Then each
Xn is an Artin stack (locally of finite type), and which is, moreover, locally special. Indeed,
for any field extension K ⊃ F, the stabilizer (automorphism group) of any finite dimensional
R ⊗F K-module is clearly an affine algebraic group over K. It follows that the morphism(∂2, ∂0) ∶ X2 → X1 is special, so X is an (Sp,Mor(Gr

U
))-admissible 2-Segal simplicial object.

(b) Let V be a projective algebraic variety over F. Then S(Coh(V )) and S(Bun(V )) are
2-Segal simplicial objects in Gr

U
. As before, we see that they are (Sp,Mor(Gr

U
))-admissible.

Remark 8.5.7. In [Bri10, §4.1], Bridgeland emphasizes that the reason for associativity of
the Hall algebra lies in a “certain duality” between the stacks parametrizing flags of subob-
jects (monomorphisms) and quotient objects (epimorphisms). From our point of view, this
corresponds to Lemma 2.4.9 and Proposition 7.3.6: the nth component of the Waldhausen
space is weak equivalent to both types of flag spaces. This is indeed the key element in the
proof of the 2-Segal property for general ∞-categorical Waldhausen spaces (Theorem 7.3.3),
via the path space criterion (Theorem 6.3.2).
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Finally, let us point out that the formalism of this section admits an extension to the
model category SF of ∞-stacks on AffF, see Example 4.3.7. This generalization proceeds
by generalizing to ∞-stacks all the relevant concepts used to construct the theory f (special
∞-stacks, geometric equivalences and Zariski fibrations of ∞-stacks). See [Toë05] for these
generalizations. This leads to a theory with transfer f on SF defined similarly to Definition
8.5.3.

An important example to which the theory f can be applied, is the Waldhausen ∞-stack
τ≤0S(PerfA) for a smooth and proper dg-category A. It is defined as the classical trunca-
tion (restriction from simplicial commutative algebras to ordinary commutative algebras) of
the derived Waldhausen stack S(PerfA) of perfect A-modules, see Proposition 7.4.18. As
S(PerfA) is 2-Segal, τ≤0S(PerfA) is in turn a 2-Segal simplicial object in SF. Applying f to
τ≤0S1(PerfA) = MA gives then the derived motivic Hall algebra of perfect A-modules. Al-
gebras of these type were first considered by Kontsevich and Soibelman [KS08] by directly
introducing the motivic analogs of the Baez-Dolan homotopy cardinality into the multipli-
cation rules. Their construction applies, in particular, to A = AV , the dg enhancement
of the bounded derived category of a smooth projective variety V , see Remark 7.4.10. A
generalization to the non-smooth projective case was proposed by P. Lowrey [Low11].
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9 Hall (∞, 2)-categories
In this chapter we lift the Hall algebra construction to the ∞-categorical level, generalizing
the elementary considerations of §3.5. Our approach is based on associating to a space B ∈ S
the model category as well as the ∞-category of all spaces over B. Such categories play
the role of the space of functions on a set (or groupoid) B in the classical approach to Hall
algebras.

9.1 Hall monoidal structures

Let X ∈ Top∆ be a unital 2-Segal topological space with weakly contratible space of 0-
simplices. Replacing, if necessary, X by a weakly equivalent simplicial space, we can and
will assume that X is Reedy fibrant and satisfies X0 = pt.

The category Top/X1 of topological spaces over X1 carries a unique model structure such
that the forgetful functor preserves weak equivalences, fibrations and cofibrations. As a
first step, we will construct a monoidal structure on the homotopy category of Top/X1. We
denote the resulting monoidal category by hH(X). As the notation suggests, the monoidal
category hH(X) is in fact the homotopy category of a monoidal ∞-category H(X) which
will be constructed in §9.3.

We set C = Top/X1 and denote an object A → X1 of C by its total space A. For each
pair of objects A,B in C, we choose a pullback square

(9.1.1)

A⊗B //

��

X{0,1,2}

��
A ×B //X{0,1} ×X{1,2},

and interpret the composition

A⊗B // X{0,1,2} // X{0,2}

as an object of C. Note that, since X is Reedy fibrant, the above square is in fact homotopy
Cartesian. These choices extend to define a functor

⊗ ∶ Ho(C) ×Ho(C)→ Ho(C), (A,B) ↦ A⊗B.
We define the unit object 1 of Ho(C) to be given by the degeneracy map X0 → X1. For
B = 1, the square (9.1.1) can be refined to a diagram

(9.1.2)

A⊗ 1 //

��

X{0,1} //

��

X{0,1,2}

��
A //X{0,1} // X{0,1} ×X{1,2},
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where the right square is homotopy Cartesian by the unitality of X (Definition 2.5.2). This
implies that the vertical map A⊗1→ A is a weak equivalence and hence induces a functorial
isomorphism

αA ∶ A⊗ 1→ A

in Ho(C). Similarly, one obtains a functorial isomorphism

βA ∶ 1⊗A→ A.

For each tripel of objects A,B,C ∈ C, we choose a pullback square

(9.1.3)

A⊗B ⊗C //

��

X{0,1,2,3}

��
A ×B ×C // X{0,1} ×X{1,2} ×X{2,3},

and interpret the composite

A⊗B ⊗C // X{0,1,2,3} // X{0,3}

as an object of C. We claim that these choices uniquely determine a functorial isomorphism

ηA,B,C ∶ (A⊗B)⊗C → A⊗ (B ⊗C)
in Ho(C). Indeed, from the defining Cartesian squares (9.1.1) of ⊗ we obtain a canonical
Cartesian square (A⊗B)⊗C //

��

X{0,1,2} ×X{0,2} X{0,2,3}

��
A ×B ×C // X{0,1} ×X{1,2} ×X{2,3}

which, using (9.1.3), can be extended to the diagram

A⊗B ⊗C //

''❖
❖❖❖❖❖❖

&&

X{0,1,2,3}

≃

��(A⊗B)⊗C //

��

X{0,1,2} ×X{0,2} X{0,2,3}

��
A ×B ×C // X{0,1} ×X{1,2} ×X{2,3}

where the dashed arrow is canonical and further a weak equivalence. By an analogous
statement for A⊗ (B ⊗C), we obtain a canonical diagram

(A⊗B)⊗C A⊗B ⊗C≃oo ≃ // A⊗ (B ⊗C)
which induces the desired isomorphism ηA,B,C in Ho(C). It is easy to verify that ηA,B,C is
functorial in its arguments.
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Theorem 9.1.4. The data (Ho(C),⊗, α, β, η) forms a monoidal category.

Proof. We verify MacLane’s pentagon relation leaving the remaining compatibilities to the
reader (they will also follow from §9.3). For each quadrupel A,B,C,D of objects in C we
choose a pullback square

(9.1.5)

A⊗B ⊗C ⊗D //

��

X{0,1,2,3,4}

��
A ×B ×C ×D // X{0,1} ×X{1,2} ×X{2,3} ×X{3,4},

Using the universal properties of the chosen squares (9.1.1), (9.1.3), (9.1.5), we can construct
a canonical diagram

(9.1.6)

A⊗B ⊗C ⊗D //

f

��
g○f

((

X{0,1,2,3,4}

≃ f ′

��(A⊗B ⊗C)⊗D //

g

��

X{0,1,2,3} ×X{1,3} X{1,3,4}
≃ g′

��((A⊗B)⊗C)⊗D //

��

X{0,1,2} ×X{1,2} X{0,2,3} ×X{3,4} X{0,3,4}

��
A ×B ×C ×D // X{0,1} ×X{1,2} ×X{2,3} ×X{3,4}.

The maps f ′ and g′ are 2-Segal maps and hence weak equivalences. By Definition, all squares
in the diagram are Cartesian. Therefore, the maps f , g and g○f are weak equivalences which
are uniquely determined by universal properties. The analogous diagrams for all possible
bracketings of the expressions A⊗B⊗C⊗D assemble to form the diagram depicted in Figure
1 in which all triangles commute (the labeled triangle corresponds to (9.1.6)). Passing to
the homotopy category Ho(C) we deduce the commutativity of MacLane’s pentagon.

Remark 9.1.7.Note that the construction of the monoidal category hH(X) only involves
the 4-skeleton of the 2-Segal space X . In §9.3, we refine Theorem 9.1.4 by constructing a
monoidal ∞-category H(X) whose homotopy category is given by the monoidal category
hH(X). The construction of H(X) will utilize the full simplicial structure of X .

Finally, we describe the relation of the monoidal structure on hH(X) to the derived
Hall algebras of §8.4 (whose construction only involves the 3-skeleton of X). The following
Proposition is immediately verified.

Proposition 9.1.8. Let X be a Reedy fibrant, unital 2-Segal topological space which is ad-
missible with respect to the transfer structure (weakly proper maps, locally proper maps).
Assume further that X satisfies X0 = pt. Consider the full subcategory hH(X)hf ⊂ hH(X)
spanned by those maps Y →X1 such that Y is homotopy finite. Then the monoidal structure
on hH(X) restricts to a monoidal structure on the category hH(X)hf .
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A⊗B ⊗C ⊗D ((A⊗B)⊗C)⊗D

(A⊗ (B ⊗C))⊗D

A⊗ ((B ⊗C)⊗D)

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

(A⊗B ⊗C)⊗D

A⊗ (B ⊗C)⊗D

A⊗ (B ⊗C ⊗D)

A⊗B ⊗ (C ⊗D)

(A⊗B)⊗C ⊗D

f

g ○ f

g

Figure 1: MacLane’s pentagon for hH(X)
In the situation of Proposition 9.1.8, denote by M the monoid of isomorphism classes of

objects in hH(X)hf . We form the semigroup algebra Q[M]. For x ∈X1, let Cx ⊂X1 denote
the connected component represented by x. The isomorphism class of Cx ⊂ X1, considered
as an object of hH(X)hf(X) provides an element of M which we denote by [x]. Then there
exists a natural surjective homomorphism of Q-algebras

π ∶ Q[M] Ð→ H(X,Fh0), (Y f
→X1)↦ ∑

[x]∈π0(X1)

∣Rf−1(x)∣h[x],
where H(X,Fh0) denotes the Hall algebra from §8.4. This shows that the derived Hall algebra
H(X,Fh0) can be recovered from the monoidal structure on hH(X).
9.2 Segal fibrations and (∞, 2)-categories
In analogy to the situation for (∞,1)-categories, there are various models for the notion of
an (∞,2)-category. To describe the bicategorical structures appearing in this work, we will
use Segal fibrations. In fact, we will also use the dual notion of a coSegal fibration. These
and other models for (∞,2)-categories, as well as their relations, are studied in detail in the
comprehensive treatment [Lur09b].
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Definition 9.2.1.A map p ∶ Y → N(∆) of simplicial sets is called a Segal fibration if it
satisfies the following conditions:

(S1) The map p is a Cartesian fibration.

(S2) For every n ≥ 2, the diagram

Y[n]

�� ,,❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨❨❨❨❨

❨

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥

Y{0,1}
))❙❙❙

❙❙❙
Y{1,2}

uu❦❦❦❦
❦❦

))❙❙❙
❙❙❙

. . . Y{n−1,n}
tt✐✐✐✐✐

✐

Y{1} Y{2} . . . Y{n−1} ,

induced by the functors associated with the Cartesian fibration p, is a limit diagram
in the ∞-category Cat∞.

(S3) The ∞-category Y[0] is a Kan complex.

A Segal fibration p ∶ Y → N(∆) models an (∞,2)-category B with set of objects given
by the vertices of Y[0]. Given objects x, y of B, the ∞-category MapB(x, y) of 1-morphisms
between x and y is defined as the limit of the diagram of ∞-categories

{x}
((◗◗

◗◗◗
◗ Y{0,1}

uu❧❧❧❧
❧❧

))❘❘❘
❘❘❘

{y}
vv♠♠♠♠

♠♠

Y{0} Y{1}

involving the functors associated with the Cartesian fibration p. Further, by using similar
arguments as for 1-Segal spaces, we can use property (S2) to obtain coherently associative
composition functors

MapB(x1, x2) ×MapB(x2, x3) × ⋅ ⋅ ⋅ ×MapB(xn−1, xn)Ð→MapB(x1, xn)
in hCat∞.

Example 9.2.2.Let p ∶ Y → N(∆) be a Segal fibration. We define K ⊂ Y to be the simplicial
subset consisting of those simplices with all edges p-Cartesian. Then the restriction p∣K ∶
K → N(∆) is a right fibration ([Lur09a, 2.4.2.5]) which corresponds under the Grothendieck
construction [Lur09a, 2.2.1.2] to a simplicial space τ≤1(Y ) ∶ ∆op → Set∆. It is easy to verify
that τ≤1(Y ) is a 1-Segal space. The (∞,1)-category corresponding to τ≤1(Y ) is obtained
from the (∞,2)-category modelled by the Segal fibration p by discarding non-invertible 2-
morphisms. Note, however, that the 1-Segal space τ≤1(Y ) is not necessarily complete.

Definition 9.2.3.Let p ∶ Y → N(∆) be Segal fibration. We say p is complete if the 1-Segal
space τ≤1(Y ) from Example 9.2.2 is complete.

Remark 9.2.4.Under the Grothendieck construction [Lur09a, 3.2.0.1], the completeness
condition of Definition 9.2.3 corresponds to the respective condition for Segal objects in
Cat∞ introduced in [Lur09b, §1.2]. As shown in loc. cit., complete Segal fibrations and
complete Segal objects in Cat∞ provide equivalent models for (∞,2)-categories.
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Example 9.2.5.Let p ∶ Y → N(∆) be a Segal fibration and assume that the Kan complex
Y[0] is weakly contractible. In this case, we say p exhibits a monoidal structure on the ∞-
category C = Y[1]. As explained in detail in [Lur07, §1], the Cartesian fibration p equips the
homotopy category hC with a monoidal structure. Beyond that, the functors

Cn Ð→ C, (y1, y2, . . . , yn)↦ y1 ⊗ y2 ⊗ ⋅ ⋅ ⋅ ⊗ yn
associated to the fibration p, where n ≥ 2, encode a coherently associative system of functors
of ∞-categories.

The monoidal structure on hC equips the set π0(hC) of isomorphism classes of objects in
C with the structure of a monoid. Let P ⊂ C be the largest simplicial subset such that

(1) for every vertex x of P , the corresponding class [x] in the monoid π0(hC) is invertible,
(2) every edge in P is an equivalence in C.

The simplicial set P is a Kan complex which models the classifying space of objects in C

which are invertible with respect to ⊗. The Segal fibration p is complete if and only if P is
weakly contractible.

We introduce a notion dual to Definition 9.2.1.

Definition 9.2.6.A map p ∶ Y → N(∆)op of simplicial sets is called a coSegal fibration if the
opposite map pop ∶ Y op → N(∆) is a Segal fibration. Explicitly, this amounts to the following
conditions:

(CS1) The map p is a coCartesian fibration.

(CS2) For every n ≥ 2, the diagram

Y[n]

�� ,,❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨❨❨❨❨

❨

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥

Y{0,1}
))❙❙❙

❙❙❙
Y{1,2}

uu❦❦❦❦
❦❦

))❙❙❙
❙❙❙

. . . Y{n−1,n}
tt✐✐✐✐✐

✐

Y{1} Y{2} . . . Y{n−1} ,

induced by the functors associated with the coCartesian fibration p, is a limit dia-
gram in the ∞-category Cat∞.

(CS3) The ∞-category Y[0] is a Kan complex.

We call a coSegal fibration complete if its opposite map is a complete Segal fibration.

Remark 9.2.7.As for Segal fibrations, given a coSegal fibration p ∶ Y → N(∆)op, we obtain
an (∞,2)-category B with set of objects given by the vertices of Y[0]. For objects x, y, we
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can define the ∞-category of 1-morphisms between x and y as the limit of the diagram of
∞-categories {x}

((◗◗
◗◗◗

◗ Y{0,1}
uu❧❧❧❧

❧❧
))❘❘❘

❘❘❘
{y}

vv♠♠♠♠
♠♠

Y{0} Y{1}

where the functors are now obtained from the coCartesian fibration p. Note, however, that
the (∞,2)-category Bp corresponding to p is not generally equivalent to the (∞,2)-category
Bpop modelled by the opposite Segal fibration pop. Rather, Bpop is the (∞,2)-category
obtained by passing to opposites at all levels of morphisms.

Passing from a given Segal fibration, modelling a certain (∞,2)-category B, to the coSe-
gal fibration which models the same (∞,2)-category is a rather tedious and inexplicit pro-
cess: For example, one can use the functor C ↦ Cop on Cat∞ defined in [Lur07, 1.2.16] in
combination with the Grothendieck construction [Lur09a, 3.2.0.1].

While Segal fibrations and coSegal fibrations furnish equivalent models for (∞,2)-categories,
the models show differences with regard to different notions of lax functors which will be
defined now. A morphism f ∶ [m] → [n] of ordinals is called convex if f is injective and the
image {f(0), . . . , f(m)} ⊂ [n] is a convex subset.

Definition 9.2.8.Let p ∶ Y → N(∆) and q ∶ Y ′ → N(∆) be Segal fibrations. A left lax
functor between p and q is a map of simplicial sets F ∶ Y → Y ′ such that the diagram

Y

p
��✼

✼✼
✼✼

✼✼
F // Y ′

q
��✝✝
✝✝
✝✝
✝

N(∆)
commutes and, for every p-Cartesian edge e of Y such that p(e) is convex, the edge F (e) is
q-Cartesian. A map between coSegal fibrations is called right lax if its opposite is a left lax
functor of Segal fibrations.

Example 9.2.9.Let p ∶ Y → N(∆) and q ∶ Y ′ → N(∆) be Segal fibrations with contractible[0]-fiber. As explained in Example 9.2.5 this means that p and q model monoidal ∞-
categories. Informally, a left lax functor F between Y and Y ′ corresponds to a functor

f ∶ Y[1] → Y ′[1]

of underlying ∞-categories together with a coherent system of maps

f(y1 ⊗ y2 ⊗ ⋅ ⋅ ⋅ ⊗ yn)Ð→ f(y1)⊗ f(y2)⊗ ⋅ ⋅ ⋅ ⊗ f(yn)
which are not required to be equivalences. In contrast, assuming the monoidal ∞-categories
to be modelled by coSegal fibrations, a right lax functor corresponds to a coherent system
of maps

f(y1)⊗ f(y2)⊗ ⋅ ⋅ ⋅ ⊗ f(yn)Ð→ f(y1 ⊗ y2 ⊗ ⋅ ⋅ ⋅ ⊗ yn)
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Remark 9.2.10. Since both complete Segal and coSegal fibrations are models for the notion
of an (∞,2)-category, Definition 9.2.8 provides the collection of (∞,2)-categories with two
different kinds of morphisms: left lax and right lax functors.

In view of Remark 9.2.6, it is not clear how to effectively describe right lax functors using
Segal fibrations, and, vice versa, left lax functors using coSegal fibrations.

We expect the association X ↦ H(X) to be functorial with respect to left lax func-
tors. Since we constructed H(X) as a coSegal fibration, it is unclear how to express this
functoriality in the current context. This problem will be resolved in §11 where we use struc-
tures which are self-dual, so that they can be described both in terms of Segal and coSegal
fibrations.

9.3 The Hall (∞, 2)-category of a 2-Segal space

In this section, we associate to a 2-Segal space X a coSegal fibration H(X)→ N(∆)op, in the
sense of Definition 9.2.6. We call the corresponding (∞,2)-category the Hall (∞,2)-category
of X . To construct H(X), we will first associate to any simplicial space X a coCartesian
fibration H̃(X) → N(∆)op. We will then show that, if X is a 2-Segal space, we can restrict
to a coSegal fibration

H(X) � � //

$$❏❏
❏❏

❏❏
❏❏

❏❏
H̃(X)

��
N(∆)op

.

The starting point of our construction is analogous to the construction of the Cartesian
monoidal structure associated to an ∞-category with finite limits (see [Lur07, §1.2]). We
define a category ∆× as follows:

• The objects ∆× are given by pairs ([n],{i, . . . , j}) where [n] is an object of ∆ and{i, . . . , j} is an interval in {0, . . . , n}.
• A morphism f ∶ ([n],{i, . . . , j}) → ([m],{i, . . . , j}) is given by a morphism f ∶ [n] →[m] in ∆ satisfying f({i, . . . , j}) ⊂ {i′, . . . , j′}.

The forgetful functor (∆×)op → ∆op is a Grothendieck fibration which implies that the in-
duced functor N(∆×)op → N(∆)op is a Cartesian fibration of ∞-categories.

Consider the ∞-category S of spaces, defined as the simplicial nerve of the full simplicial
subcategory in Set∆ spanned by the Kan complexes. We define a map of simplicial sets

q ∶ S̃× → N(∆)op
via the following universal property: For all maps K → N(∆)op, we have a natural bijection

(9.3.1) HomSet∆/N(∆)op(K, S̃×) ≅ HomSet∆(K ×N(∆)op N(∆×)op,S).
For n ≥ 0, the fiber S̃×

[n]
of q over [n] can be identified with the ∞-category of functors

Y ∶ N(I[n])op → S ,
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where I[n] denotes the poset of nonempty intervals of [n]. For example, the objects of S̃×
[2]

correspond to homotopy coherent diagrams in S of the form

Y{0,1,2}
xxqqq &&▼▼▼

Y{0,1}
zz✉✉ &&▼▼

▼
Y{1,2}

xxqqq %%❏❏

Y{0} Y{1} Y{2}.

Proposition 9.3.2. The projection map q ∶ S̃× → N(∆)op is a coCartesian fibration. The
q-coCartesian edges of S̃× covering f ∶ [n] → [m] are those edges Y → Y ′ such that, for all
0 ≤ i ≤ j ≤ n, the induced map Y{f(i),...,f(j)} → Y ′{i,...,j} is an equivalence of spaces.

Proof. [Lur09a, 3.2.2.12]

Let X be a Reedy fibrant simplicial space. The functor of categories

(∆×)op → (Set∆)○, ([n],{i, . . . , j})↦X{i,...,j}

induces a functor N(∆×)op → S of ∞-categories. Evaluating the adjunction (9.3.1) for K =
N(∆)op, we obtain a section

N(∆)op sX //

id !!❈
❈❈

❈❈
❈❈

❈
S̃×

q
��✄✄
✄✄
✄✄
✄✄

N(∆)op
of the map q. We define the simplicial set H̃(X) to be the overcategory (S̃×)/sX relative to
N(∆)op (see [Lur09a, 4.2.2]).

Example 9.3.3.The objects of H̃(X)[2] can be identified with edges in Fun(N(I[2])op,S)
Y{0,1,2}

xxqqq &&▼▼▼

Y{0,1}
zz✉✉ &&▼▼

▼
Y{1,2}

xxqqq $$■■

Y{0} Y{1} Y{2}

Ð→
X{0,1,2}

ww♣♣♣ ''◆◆◆

X{0,1}
yyss ''◆◆

◆
X{1,2}

ww♣♣♣ %%▲▲▲

X{0} X{1} X{2}.

Note, that X{i,...,j} = Xj−i while, for example, the spaces Y{i} and Y{j} are generally unrelated
for i ≠ j.

By the dual statement of [Lur09a, 4.2.2.4], the natural map qX ∶ H̃(X) → N(∆)op is a
coCartesian fibration and an edge of H̃(X) is qX-coCartesian if and only if its image in S̃×
is q-coCartesian.

Definition 9.3.4.We define H(X) ⊂ H̃(X) to be the full simplicial subset spanned by those
vertices Y ∈ H̃(X)[n], n ≥ 0, which satisfy the following conditions:

(H1) For all 0 ≤ i ≤ n, the space Y{i} is contractible.
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(H2) If n > 0 then, for all 0 ≤ i ≤ j ≤ n, the square

Y{i,...,j} //

��

Y{i,i+1} ×Y{i+1} ⋅ ⋅ ⋅ ×Y{j−1} Y{j−1,j}

��
X{i,...,j} //X{i,i+1} ×X{i+1} ⋅ ⋅ ⋅ ×X{j−1} X{j−1,j}

is Cartesian. Here, the fiber products are to be understood as ∞-categorical limits.

Remark 9.3.5. In the context of Definition 9.3.4, if Y ∈ H̃(X)[n] satisfies condition (H1),
then requiring the square in (H2) to be Cartesian is equivalent to requiring the square

Y{i,...,j} //

��

Y{i,i+1} × ⋅ ⋅ ⋅ × Y{j−1,j}

��
X{i,...,j} // X{i,i+1} ×X{i+1} ⋅ ⋅ ⋅ ×X{j−1} X{j−1,j}

to be Cartesian.

Theorem 9.3.6. Let X ∈ S∆ be a Reedy fibrant unital 2-Segal space. Then the map p ∶
H(X)→ N(∆)op, obtained by restricting qX , is a coSegal fibration.

Proof. We have to verify the conditions of Definition 9.2.6. First, note that (CS3) immedi-
ately follows from condition (H1): the ∞-category H(X)[0] is equivalent to the ∞-groupoid
represented by the Kan complex X0.

Since H(X) ⊂ H̃(X) is a full simplicial subset, it is obvious that p is an inner fibration.
To demonstrate condition (CS1), we thus have to prove that every edge f of N(∆)op, cor-
responding to a map f ∶ [n] → [m] in ∆, can be lifted to a p-coCartesian edge in H(X)
with prescribed initial vertex Y ∈ H(X)[m]. Since the projection qX ∶ H̃(X) → N(∆)op is a

coCartesian fibration, there exists a qX -coCartesian edge e ∶ Y → Y ′ in H̃(X) which covers
f . It suffices to verify that Y ′ lies in H(X)[n] ⊂ H̃(X)[n]. As above, we use the notation

Y ′{i,...,j} ∶= Y ′([n], (i, j))
and the analogous notation for Y . Since e is qX-coCartesian, for all 0 ≤ i ≤ j ≤ n, the
associated maps

Y{f(i),...,f(j)} → Y ′{i,...,j}

are equivalences of spaces. In particular, choosing i = j, we deduce that, for each i, the space
Y ′
{i}

is contractible. It remains to show that Y ′ satisfies condition (H2) of Definition 9.3.4.

For each interval {i, . . . , j} in [n], we have a square

Y{f(i),...,f(j)}
≃ //

��

Y ′
{i,...,j}

��
X{f(i),...,f(j)} //X{i,...,j}
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associated to e. Therefore, to show that Y ′ satisfies condition (H2), it suffices to show that,
for each interval {i, . . . , j}, the square

(9.3.7) Y{f(i),...,f(j)} //

��

Y{f(i),...,f(i+1)} × ⋅ ⋅ ⋅ × Y{f(j−1),...,f(j)}

��
X{i,...,j} // X{i,i+1} ×X{i+1} ⋅ ⋅ ⋅ ×X{j−1} X{j−1,j}

is Cartesian. This square can be obtained as the vertical rectangle in the diagram

Y{f(i),...,f(j)} //

��

Z1

��

// Y{f(i),f(i)+1} × ⋅ ⋅ ⋅ × Y{f(j)−1,f(j)}

��
X{f(i),...,f(j)}

��

// Z2

��

// X{f(i),f(i)+1} ×X{f(i)+1} ⋅ ⋅ ⋅ ×X{f(j)−1} X{f(j)−1,f(j)}

X{i,...,j} // X{i,i+1} ×X{i+1} ⋅ ⋅ ⋅ ×X{j−1} X{j−1,j}
with

Z1 = Y{f(i),...,f(i+1)} × ⋅ ⋅ ⋅ × Y{f(j−1),...,f(j)}
and

Z2 =X{f(i),...,f(i+1)} ×X{f(i+1)} ⋅ ⋅ ⋅ ×X{f(j−1)} X{f(j−1),...,f(j)}.
By condition (H2) for Y , the top right square and the horizontal rectangle are Cartesian.
Using [Lur09a, 4.4.2.1], we deduce that the top left square is Cartesian. Since, by assumption,
the simplicial spaceX is a unital 2-Segal space, Proposition 9.3.8 below implies that the lower
square and thus the vertical rectangle is Cartesian.

It remains to verify condition (CS2) of Definition 9.2.6. From [Lur09a, 2.4.7.12], we
conclude that, for each i, the functors H(X){i,i+1} → H(X){i} and H(X){i,i+1} → H(X){i+1}
are coCartesian fibrations of∞-categories. In particular, combining [Lur09a, 2.4.1.5,2.4.6.5],
these maps are categorical fibrations, i.e., fibrations with respect to the Joyal model structure
on Set∆. Since this model structure models the ∞-category Cat∞ of ∞-categories, we can
utilize it to calculate limits in Cat∞. This implies that the ordinary fiber product of simplicial
sets

C =H(X){i,i+1} ×H(X){i+1} ⋅ ⋅ ⋅ ×H(X){n−1} H(X){n−1,n}
is in fact a homotopy fiber product. As above, we use the notation I[n] = [n]×∆∆× such that

the ∞-category H̃(X)[n] is by definition the ∞-category Fun(N(I[n])op,S)/F , where we set
F = sX([n]). Let I≤1

[n]
⊂ I[n] denote the full subcategory spanned by the intervals of length

≤ 1. Then the ∞-category C can be identified with the ∞-category Fun(N(I≤1
[n]
)op,S)/F 0

,

where F 0 is defined to be the restriction of F to N(I≤1
[n]
)op. Now let Y ∈ Fun(N(I[n])op,S)/F ,

satisfying condition (H1), and define Y 0 to be the restriction of Y to N(I≤1
[n]
)op. These
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functors can be assembled into the diagram of ∞-categories

N(I≤1
[n]
)op Y 0

//
� _

��

S∆1

t

��
N(I[n])op F

//

Y

::✈✈✈✈✈✈✈✈✈✈✈
S ,

where t denotes pullback along the inclusion ∆{1} → ∆1. Note that, by the argument already
used above, the map t is a coCartesian fibration and thus a categorical fibration. Now we
observe that Y satisfies condition (H2) if and only if Y is a t-right Kan extension of Y 0 in
the sense of [Lur09a, 4.3.2.2]. Indeed, for an object c = {i, . . . , j} of N(I[n]), the square

N(I≤1
[n]
)op
c/

Y 0
c //

� _

��

S∆1

t

��(N(I≤1
[n]
)op
c/
)◁ //

99tttttttttttt
S ,

exhibits Y (c) as a t-limit of Y 0
c if and only if the corresponding square in condition (H2) is

Cartesian. Note, that we use the assumption that Y satisfies condition (H1). Now we can
apply [Lur09a, 4.3.2.13] and [Lur09a, 4.3.2.15] to deduce that the restriction functor

Fun(N(I[n])op,S)/F → Fun(N(I≤1[n])op,S)/F 0

induces an equivalence of ∞-categories H(X)[n] ≃→ C.

Proposition 9.3.8. Let X ∈ S∆ be a Reedy fibrant simplicial space. For every morphism
f ∶ [n] → [m] in the ordinal category ∆, satisfying f(0) = 0 and f(n) = m, we obtain a
commutative square

(9.3.9) Xm
//

��

X{f(0),...,f(1)} ×Xf(1) X{f(1),...,f(2)} × ⋅ ⋅ ⋅ ×X{f(n−1),...,f(n)}

��
Xn

// X{0,1} ×X{1} X{1,2} × ⋅ ⋅ ⋅ ×X{n−1} X{n−1,n}
where the maps are induced by pullback along the respective maps in the commutative diagram

[m] {f(i), . . . , f(i + 1)}oo

[n]
p

OO

{i, i + 1}.oo

OO

in ∆. Then the following hold.
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(1) The simplicial space X is a 2-Segal space if and only if, for every injective morphism
p as above, the square (9.3.9) is a pullback square.

(2) The simplicial space X is a unital 2-Segal space if and only if, for every morphisms p
as above, the square (9.3.9) is a pullback square.

Proof. We express the morphism f ∶ [n] → [m] as a composition

[n] g
Ð→ [l] hÐ→ [m]

with g surjective and h injective. In the situation of part (1), the map p is already injective,
and so g = id. We obtain a corresponding diagram

(9.3.10) Xm
//

��

X{h(0),...,h(1)} ×X{h(1)} X{h(1),...,h(2)} × ⋅ ⋅ ⋅ ×X{h(l−1),...,h(l)}

��
Xl

��

// X{0,1} ×X{1} X{1,2} ×X{2} ⋅ ⋅ ⋅ ×X{l−1} X{l−1,l}

��
Xn

// X{0,1} ×X{1} X{1,2} ×X{2} ⋅ ⋅ ⋅ ×X{n−1} X{n−1,n}
where the outer rectangle is isomorphic to the sqare 9.3.9. The 2-Segal condition for the
polygonal subdivision of the convex (m+1)-gon described by the collection of subsets of [m]
T = {{h(0), . . . , h(1)},{h(1), . . . , h(2)}, . . . ,{h(l − 1), . . . , h(l)},{h(0), h(1), . . . , h(l)}}

implies that the upper square in (9.3.10) is a homotopy pullback square if X is a 2-Segal
space. This implies the “only if” direction of (1). To show the “only if” direction of (2),
we express the surjective map g as a composition of degeneracy maps. If X is a unital
2-Segal space, we conclude that the lower square in (9.3.10) is a homotopy pullback square
by iteratively using the homotopy pullback square (2.5.1) from Definition 2.5.2. The “if”
directions are easily obtained by making suitable choices for the morphism f .

Corollary 9.3.11. Let X be a Reedy fibrant unital 2-Segal space. Assume the space X0

is contractible. Then the map p ∶ H(X) → N(∆)op is a coSegal fibration which models a
monoidal ∞-category.

Example 9.3.12.Let X be the Waldhausen S-construction of an exact ∞-category C. Then
X is a unital 2-Segal space and the space X0, being the classifying space of zero objects in
C, is contractible. Therefore, in this case, we obtain a monoidal ∞-category H(X) which
we call the Hall monoidal ∞-category associated to C. It is easy to verify that the homotopy
category of H(X) can be identified with the monoidal category from Theorem 9.1.4.

Remark 9.3.13.Theorem 9.3.6 allows us to introduce a completeness condition for 2-Segal
spaces. A Reedy fibrant unital 2-Segal space X is called complete if the associated coSegal
fibration H(X)→ N(∆)op is complete.
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Example 9.3.14.Every complete 1-Segal space is complete as a 2-Segal space. The Wald-
hausen S-construction of a stable ∞-category is complete.

Remark 9.3.15.The construction of this section has a drawback: It is not clear to how
promote the association X ↦ H(X) to a functor. We expect the functoriality to be given
by left lax functors, which are most naturally described in terms of Segal fibrations. In
§10 below, we will provide a functorial construction in the context of an (∞,2)-categorical
theory of spans.
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10 An (∞, 2)-categorical theory of spans

Let C be an ∞-category with pullbacks. In this chapter, we will associate to C a new ∞-
category Span(C), called the∞-category of spans in C, which is an (∞,1)-categorical variant
of the span category introduced in §3.3.

• The vertices of Span(C) are given by vertices of C.

• An edge in Span(C) between vertices x{0} and x{1} corresponds to a diagram in C of
the form

x{0} x{0,1}oo // x{1}

where x{0,1} is a vertex of C.

• A 2-simplex of Span(C) corresponds to a diagram in C

x{1}

x{0,1}

zzttt
tt

99rrrrrr
x{1,2}

%%❏❏
❏❏

❏

ee▲▲▲▲▲▲

x{0} x{0,2}oo

OO

ee▲▲▲▲▲
99rrrrr // x{2}

which is a limit diagram with limit vertex x{0,2}.

• In general, we define the asymmetric subdivision of the standard n-simplex ∆n as

asd(∆n) = N(I[n])op
where I[n] denotes the poset of nonempty intervals in [n]. An n-simplex in Span(C)
is then given by a diagram asd(∆n) → C such that the induced diagram for every
2-subsimplex ∆2 ⊂ ∆n is a limit diagram.

Further, we will generalize the above span construction to a relative framework where
we study families of ∞-categories varying in a Cartesian fibration. The resulting theory will
allow us to enhance the above span construction in various ways:

(1) Given a monoidal∞-category C with pullbacks, the∞-category Span(C) can be equipped
with a natural “pointwise” monoidal structure.

(2) Given an ∞-category C with pullbacks, we can construct an (∞,2)-category of bispans
in C, modelled by a complete Segal fibration BiSpan(C)→ N(∆). This (∞,2)-category
has horizontal spans as 1-morphisms and vertical spans as 2-morphisms. The construc-
tion of BiSpan(C), which is the main result of this section, will proceed in a two-step
process which introduces horizontal spans (§10.3) and vertical spans (§10.2) separately.

The theory developed in this chapter will be used in §11 to describe various higher
bicategorical structures associated to 2-Segal spaces.
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10.1 Spans in Kan complexes

We first study the span construction in the context of Kan complexes. The results will later
be applied to Kan complexes given as mapping spaces in ∞-categories.

Consider the functor

(10.1.1) P ● ∶∆Ð→ Set∆, [n]↦ P n = N(I[n])op
where I[n] denotes the partially ordered set of nonempty intervals {i, j} where 0 ≤ i ≤ j ≤ n.
By forming a left Kan extension along the Yoneda embedding ∆ ⊂ Set∆, we can extend P ●

to a functor
asd ∶ Set∆ Ð→ Set∆,

which is the unique extension of P ● that commutes with colimits. We will refer to the
functor asd as asymmetric subdivision, suggestive of its geometric significance. The functor
asd admits a right adjoint which we denote by Span. We further define the standard simplex

∆● ∶ ∆Ð→ Set∆, [n]↦ ∆n.

The left Kan extension of ∆● to Set∆ is given by the identity functor on Set∆. We have a
natural transformation P ● → ∆● induced by the functors

(I[n])op Ð→ [n], {i, j}↦ i.

Via the functoriality of Kan extension, we obtain a natural transformation

(10.1.2) η ∶ asd Ð→ id

of functors on Set∆.

Proposition 10.1.3. For every simplicial set K, the map η(K) ∶ asd(K) → K is a weak
homotopy equivalence.

Proof. By the inductive argument of [Lur09a, 2.2.2.7] it suffices to verify this for K = ∆n,
n ≥ 0, in which case both asd(∆n) and ∆n are weakly contractible.

Proposition 10.1.4. The adjunction

asd ∶ Set∆ ←→ Set∆ ∶ Span
defines a Quillen self equivalence of Set∆ equipped with the Kan model structure.

Proof. This follows from Proposition 10.1.3 by the argument of [Lur09a, 2.2.2.9].

Corollary 10.1.5. Given a Kan complex K, the simplicial set Span(K) is a Kan complex.
Further, the functor Span preserves weak equivalences between Kan complexes.
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Given a small category J, we define a category Mo(J) as follows. The objects of Mo(J)
are given by morphisms x → y in J. A morphism from x → y to x′ → y′ is given by a
commutative diagram

x

��

// y

x′ // y′

OO

and composition is provided by concatenation of diagrams.

Example 10.1.6.Considering the ordinal [n] as a category, the category Mo([n]) can be
identified with the opposite of the category I[n] corresponding to the partially ordered set
of nonempty intervals in [n]. In other words, we have P n ≅ N(Mo([n])). Proposition 10.1.7
below generalizes this observation.

Proposition 10.1.7. There exists a 2-commutative square of functors

Cat

Mo
��

N // Set∆

asd
��

Cat
N // Set∆,

where Cat denotes the category of small categories.

Proof. We will provide, for each category J, an isomorphism asd(N(J)) → N(Mo(J)), natural
in J. A k-simplex σ of asd(N(J)) can be represented by an n-simplex f ∶ ∆n → N(J) together
with a chain {i0, j0} ⊃ {i1, j1} ⊃ ⋅ ⋅ ⋅ ⊃ {ik, jk} of intervals in [n]. We associate to σ the k-
simplex in N(Mo(J)) given by

f(i0)
��

// f(j0)

f(i1)
��

// f(j1)
OO

⋮

��

⋮

OO

f(ik) // f(jk)
OO

It is straightforward to verify that this association descends to a well defined map asd(N(J)) →
N(Mo(J)) which is an isomorphism of simplicial sets, functorial in J.

Corollary 10.1.8. Let K,L be simplicial sets. The natural map γK,L ∶ asd(K × L) Ð→
asd(K)×asd(L) is an isomorphism of simplicial sets. This provides the functor asd with the
structure of a monoidal functor with respect to the Cartesian monoidal structure on Set∆.
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Proof. Observe that source and target of the map γK,L commute with colimits in both
variables K and L. It therefore suffices to verify the statement in the case K =∆m, L = ∆n

for m,n ≥ 0. We conclude the argument by Proposition 10.1.7, noting that we have a natural
isomorphism of categories

Mo([m] × [n])Ð→Mo([m]) ×Mo([n]).
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10.2 Vertical Spans

In this section, we provide a relative span construction which applies to a family of ∞-
categories parametrized by a Cartesian fibration. The main application we have in mind
is the following. Suppose B is an (∞,2)-category modelled by a complete Segal fibration
Y → N(∆). Under suitable assumptions on B, we will define an (∞,2)-category Span(B) of
vertical spansmodelled by a complete Segal fibration Span(Y )→ N(∆). The (∞,2)-category
Span(B) can be described informally as follows.

• The objects of Span(B) are given by objects of the (∞,2)-category B.

• A 1-morphism between objects x, y of Span(B) is given by a 1-morphism between x

and y in B.

• A 2-morphism between 1-morphisms f ∶ x → y and g ∶ x → y is given by a 2-span
diagram of the form

x

f

��
✤ ✤✤ ✤
KS

AA

g

✤✤ ✤✤
��

h // y

in B.

• The higher morphisms are given by spans, in which both edges are equivalences, of
spans of spans of . . . in C.

Let T be a simplicial set. Given a map K → T of simplicial sets, we define asd(K) → T

to be the composite of the map asd(K) → asd(T ) and the map η(T ) defined in (10.1.2).
This association extends to an adjunction

(10.2.1) asdT ∶ (Set∆)/T Ð→ (Set∆)/T ∶ Span′T .
Note that, for a map Y → T of simplicial sets, we have a pullback square

Span′T (Y ) //

��

Span′(Y )
��

T // Span′(T ),
where the inclusion T → Span′(T ) is adjoint to the map η(T ) ∶ asd(T )→ T .

Definition 10.2.2.Let n ≥ 2. We introduce the notation

Jn =∆{0,1}∐
{1}

∆{1,2}∐
{2}

⋅ ⋅ ⋅ ∐
{n−1}

∆{n−1,n} ⊂∆n,
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where, as usual, we will occasionally use the notation JI ⊂ ∆I for a finite nonempty ordinal
I whenever explicit reference to the vertices of ∆I is needed. We call simplicial set

S(∆n) ∶= {0, n} ⋆ asd(Jn) ⊂ asd(∆n)
the Segal cone in ∆n.

Let Y → T be a map of simplicial sets. A simplex ∆n → Span′T (Y ) corresponds by
definition to a map asd(∆n) → Y which we may restrict to obtain a Segal cone diagram
S(∆n) → Y . A simplex ∆n → Span′T (Y ) is called Segal simplex if, for every subsimplex
∆k ⊂ ∆n with k ≥ 2, the corresponding Segal cone diagram S(∆k) → Y is a p-limit diagram
(see [Lur09a, 4.3.1]). It is easy to verify that the collection of all Segal simplices in Y

assembles to a simplicial subset

SpanT (Y ) ⊂ Span′T (Y ).
Example 10.2.3.Let Y be a Kan complex. Then every simplex of Span′pt(Y ) = Span′(Y )
is a Segal simplex. This follows since, by [Lur09a, 4.4.4.10], any diagram K◁ → Y with K
weakly contractible is a limit diagram.

Proposition 10.2.4. Let p ∶ Y → T be a Cartesian fibration which admits relative pullbacks,
i.e. K-indexed p-limits where K = ∆1∐{1}∆1. Then any diagram asd(Jn) → Y admits a
p-limit.

Proof. Using [Lur09a, 4.3.1.10] and [Lur09a, 4.3.1.11] one reduces to the case T = pt. Now
the statement follows immediately from the dual statement of [Lur09a, 4.4.2.2].

In what follows, we will make use of the Cartesian model structure on the category(Set+∆)/T of marked simplicial sets over T for which we refer the reader to [Lur09a, 3.1.3].
We will freely use the notation introduced in loc. cit. In particular, given a simplicial
set K, we denote by K♭ the marked simplicial set where only the degenerate edges are
marked, and by K♯ the marked simplicial set where all edges are marked. Given a simplicial
subset K ⊂ ∆n, we define the marked simplicial set K♠ = (K,E) where E denotes the set
of all degenerate edges together with the edge {n − 1, n} if {n − 1, n} ⊂ K. Further, given
a Cartesian fibration p ∶ Y → T , we obtain an object Y ♮ → T ♯ of (Set+∆)/T where Y ♯ is the
marked simplicial set obtained by marking all p-Cartesian edges. By [Lur09a, 3.1.4.1], the
objects of (Set+∆)/T arising via this construction are exactly the fibrant objects.

We promote the adjunction (10.2.1) to an adjunction of marked simplicial sets

(10.2.5) asdT ∶ (Set+∆)/T Ð→ (Set+∆)/T ∶ Span′T
by declaring an edge ∆1 → Span′T (Y ) to be marked if both edges of Y determined by
the adjoint map asd(∆1) → Y are marked. We do not distinguish this marked adjunction
notationally. Further, we obtain an induced marked structure on SpanT (Y ) by declaring an
edge to be marked if its image in Span′T (Y ) is marked. Given objects K,Y in (Set+∆)/T , we
define

HomT (asd(K), Y )l ⊂ HomT (asd(K), Y )
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to be the subset consisting of those maps whose adjoint map K → Span′T (Y ) factors through
SpanT (Y ) ⊂ Span′T (Y ). Further, we define

Map♯T (asd(K), Y )l ⊂Map♯T (asd(K), Y )
to be the full simplicial subset spanned by those vertices lying in HomT (asd(K), Y )l.

The following result will be a corollary of a more general statement for Cartesian fibrations
proven in Theorem 10.2.10. Nevertheless, we present a proof since it already illustrates some
of the ideas of the technically more involved argument in the relative situation.

Theorem 10.2.6. Let C be an ∞-category which admits pullbacks. Then the simplicial set
Spanpt(C) is an ∞-category.

Proof. From Proposition 10.2.9 below, it follows that the simplicial sets

Yn =Map♯(asd(∆n)♭,C♮)l,
where n ≥ 0, organize into a Reedy fibrant simplicial space Y . Note that the marked edges
of C♮ are exactly the equivalences in C, hence the simplicial set Map♯(asd(∆n)♭,C♮) coincides
with the largest Kan complex contained in the ∞-category Fun(asd(∆n),C). By [Lur09a,
4.3.2.15], the inclusion asd(Jn)→ asd(∆n) induces a trivial fibration

(10.2.7) Yn
≃Ð→Map♯(asd(Jn)♭,C♮).

Further, we have a canonical indentification

(10.2.8) Map♯(asd(Jn)♭,C♮) ≅ Y{0,1} ×Y{1} Y{1,2} × ⋅ ⋅ ⋅ × Y{n−1,n}.
The composite of the maps in (10.2.7) and (10.2.8) coincides with the natural map

Yn Ð→ Y{0,1} ×Y{1} Y{1,2} × ⋅ ⋅ ⋅ × Y{n−1,n}.
Therefore, we deduce that Y is a Reedy fibrant 1-Segal space. Note that, by the equality

Spanpt(C)n = Hom(asd(∆n),C)l = (Yn)0,
the simplicial set Spanpt(C) coincides with the 0th row of Y . Using Corollary 3.6 in [JT07],
we conclude that Spanpt(C) is an ∞-category.

Proposition 10.2.9. Let T be a simplicial set, and let Y be a fibrant object of (Set+∆)/T .
Then the following assertions hold:

(1) For any object K ∈ (Set+∆)/T , the simplicial set Map♯T (asd(K), Y )l is a Kan complex
which is a union of connected components of Map♯T (asd(K), Y ).

(2) For any cofibration K → L in (Set+∆)/T , the induced restriction map

Map♯T (asd(L), Y )l Ð→Map♯T (asd(K), Y )l
is a Kan fibration.
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(3) Consider a pushout diagram in (Set+∆)/T
K

g //

f
��

L

��
K ′ // L′

where f and g are cofibrations and assume that the restriction map

Map♯T (asd(L), Y )l Ð→Map♯T (asd(K), Y )l
is a weak equivalence. Then the restriction map

Map♯T (asd(L′), Y )l Ð→Map♯T (asd(K ′), Y )l
is a weak equivalence.

Proof. By [Lur09a, 3.1.4.4], the mapping space Map♯T (asd(K), Y ) is a Kan complex. As-
sertion (1) now follows immediately from the fact that relative limit cones are stable under
equivalences (cf. [Lur09a, 4.3.1.5(3)]).

By [Lur09a, 3.1.4.4], the map

Map♯T (asd(L), Y )→Map♯T (asd(K), Y )
is a Kan fibration. The assertion (2) now follows from (1).

To show (3) note that, under the given assumptions, the square

Map♯T (asd(L′), Y ) //

��

Map♯T (asd(K ′), Y )
f∗

��
Map♯T (asd(L), Y ) // Map♯T (asd(K), Y )

is a pullback square. From this we deduce further that the square

Map♯T (asd(L′), Y )l //

��

Map♯T (asd(K ′), Y )l
f∗

��
Map♯T (asd(L), Y )l // Map♯T (asd(K), Y )l

is a pullback square. Since the map f∗ is a Kan fibration, the statement now follows from
the fact that the category of simplicial sets equipped with the Kan model structure is right
proper: pullback along fibrations preserves weak equivalences.

In the remainder of this section, we will generalize Theorem 10.2.6 to the following result.
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Theorem 10.2.10. Let p ∶ Y → T be a Cartesian fibration of ∞-categories which admits
relative pullbacks, and let Y ♮ be the corresponding fibrant object of (Set+∆)/T . Then the
marked simplicial set SpanT (Y ♮) is a fibrant object of (Set+∆)/T . Equivalently, the underlying
map q ∶ SpanT (Y ) → T is a Cartesian fibration and the q-Cartesian edges of SpanT (Y ) are
precisely the marked edges.

For the proof of Theorem 10.2.6, we need some preparatory results. The first result
concerns a slight elaboration on Lemma 3.5 in [JT07], where Lemma 10.2.11(1) is proven in
the case T = pt. Let A be a class of morphisms in a category C. We say A has the right
cancellation property if, for any pair f, g of morphisms in C, we have: If g ∈ A and f ○ g ∈ A
then f ∈ A. The following Lemma is a slight elaboration on Lemma 3.5 in [JT07], where
assertion (1) is proven in the case T = pt.

Lemma 10.2.11. Let T be a simplicial set and let F ∶ (Set+∆)/T → Set+∆ the forgetful functor.
Suppose A be a class of cofibrations in (Set+∆)/T which is closed under composition, pushouts
along cofibrations, and satisfies the right cancellation property. Consider the following sets
of cofibrations in Set+∆:

B1 = {(Jn)♭ ⊂ (∆n)♭ ∣ where n ≥ 2}
M1 = {(Λni )♭ ⊂ (∆n)♭ ∣ where n ≥ 2, 0 < i < n}
B2 = {(Λnn)♠ ⊂ (∆n)♠ ∣ where 1 ≤ n ≤ 2}
M2 = {(Λnn)♠ ⊂ (∆n)♠ ∣ where n ≥ 1}

(1) Assume A contains F −1(B1). Then A contains F −1(M1).
(2) Assume A contains F −1(B1) and F −1(B2). Then A contains F −1(M1) and F −1(M2).

Proof. (1) We first introduce some notation. For a subset T ⊂ [n], we define

ΛnT ∶= ⋃
k∉T

∂k∆
n ⊂∆n

We define another set of cofibrations in Set+∆

M̃1 = {(ΛnT )♭ ⊂ (∆n)♭ ∣ where n ≥ 2, ∅ ≠ T ⊂ {1, . . . , n − 1} }
such that we have M1 ⊂ M̃1. The set M̃1 is better adapted to our inductive argument which
will show the stronger statement that if A contains F −1(B1), then it contains F −1(M̃1).
We start with some preparing comments. We will denote cofibrations in (Set+∆)/T by their
image in Set+∆ under the forgetful functor F . This can be justified by the observation that
all constructions appearing in the proof will only involve maps in (Set+∆)/T whose images
in Set+∆ are inclusions between simplicial subsets of F (∆n → T ) for a fixed object ∆n → T

of (Set+∆)/T . Therefore, the compatibility of these constructions with the structure map to
T is automatically guaranteed. Further, to keep the notation light, we will denote marked
simplicial sets of the form K♭ by their underlying simplicial set K.
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We will now prove assertion (1) by induction on n. For n = 2, the only map in M̃1 is
Λ2
{0,2}
⊂∆2 which coincides with the map J2 → ∆2. Let n > 2 and assume A contains all maps

ΛmT → ∆m in F −1(M̃1) with m < n. Let f ∶ ΛnT →∆n a cofibration contained in F −1(M̃1). To
show that f ∈ A, note that the composite

Jn
hÐ→ Λn{1,...,n−1}

g
Ð→ ΛnT

f
Ð→ ∆n

is contained in A, so it suffices to show that both g and h are contained in A.
To show that h ∈ A, note that we have h = h1 ○ h2 such that h1 and h2 are part of the

pushout diagrams

(10.2.12) J{1,...,n}
h′2 //

��

∆{1,...,n}

��
Jn

h2 // ∂0∆n ∪ Jn
and

∆{1,...,n−1} ∪ J{0,...,n−1} h′1 //

��

∆{0,...,n−1}

��
∂0∆n ∪ Jn h1 // ∂0∆n ∪ ∂n∆n

.

Since h′2 ∈ A, we immediately deduce h2 ∈ A. To show that h′1 is contained in A, we apply
the cancellation property to the composition

J{0,...,n−1} Ð→ ∆{1,...,n−1} ∪ J{0,...,n−1} h′1Ð→ ∆{0,...,n−1}

and then consider the pushout diagram (10.2.12) with {1, . . . , n} replaced by {0, . . . , n − 1}.
This proves h1 ∈ A and hence also h ∈ A.

To show that g ∈ A, we choose a descending chain T0 ⊃ T1 ⊃ ⋅ ⋅ ⋅ ⊃ Tk of subsets of [n] such
that T0 = {1, . . . , n − 1}, Tk = T and, for every 0 ≤ j ≤ k − 1, we have Tj+1 = Tj ∖ {lj} where
1 ≤ lj ≤ n − 1. This chain of subsets induces a sequence of inclusions

ΛnT0
g0Ð→ ΛnT1

g1Ð→ ΛnT2
g2Ð→ . . .

gk−1Ð→ ΛnTk

which composes to g. Now we observe that, for every 0 ≤ j ≤ k−1, we have a pushout square

Λ
[n]∖{lj}

Tj∖{lj}

g′j //

��

∆[n]∖{lj}

��
ΛnTj

gj // Λn
Tj∖{lj}

.

Since, by induction hypothesis, g′j is contained in A, this shows that gj and henceforth g is
contained in A.
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(2) First, we only assume that A contains F −1(B1). We define the set

M ′
2 = {(ΛnT)♭ ⊂ (∆n)♭ ∣ where n ≥ 2, {1, n} ⊂ T ⊂ {1, . . . , n − 2, n} }

of cofibrations in Set+∆. An inductive argument, similar to the one given for the proof of
assertion (1), applied to compositions of the form

Jn Ð→ Λn{1,...,n−2,n} Ð→ ΛnT Ð→∆n,

shows that A contains F −1(M ′
2). As a preparatory observation, note that if a cofibration

K♭ ⊂ (∆n)♭ is contained in A and K contains the final edge {n − 1, n}, then the pushout
square

K♭ //

��

(∆n)♭
��

K♠ // (∆n)♠
shows that A contains the induced map K♠ → (∆n)♠. We will use this observation implicitly
below. We now assume in addition that A contains F −1(B2) and show by induction on n

that A contains F −1(M2). For n = 2, there is nothing to show, since (Λ2
2)♠ → (∆2)♠ is already

contained in B2. Let n > 2 and assume that A contains all maps (Λmm)♠ → (∆m)♠ in F −1(M2)
with m < n. Let f ∶ (Λnn)♠ → (∆n)♠ in F −1(M2). We have to show that f is contained in A.
Because F −1(M ′

2) is contained in A, the composition

(Λn{1,n})♠ g
Ð→ (Λnn)♠ f

Ð→ (∆n)♠
is contained in A, and it hence suffices to prove g ∈ A. To this end, consider the pushout
square

(Λ{0,2,...,n}
{n}

)♠ g′ //

��

(∆{0,2,...,n})♠

��(Λn
{1,n}
)♠ g // (Λnn)♠

and note that g′ is contained in A by induction hypothesis.

We will frequently use the following lemma, which provides a means to compare (relative)
Segal simplices in Span′T (Y ) with (absolute) Segal simplices in the fibers Span′s(Ys), s ∈ T .
Lemma 10.2.13. Let p ∶ Y → T be a Cartesian fibration of ∞-categories. Consider an n-
simplex σ ∶∆n → Span′T (Y ) and let f ∶ asd(∆n)→ Y be the adjoint map. We set L = asd(∆n)
and s0 ∶= p ○ f({0}) ∈ T . Then there exists a homotopy

h ∶ (∆1)♯ ×L♭ Ð→ Y ♮

in (Set+∆)/T with the following properties:
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(1) We have h∣{1} ×L = f and the diagram f ′ ∶= h∣{0} ×L lies completely in the fiber Ys0.

(2) The edge h∣∆1×Ls0 in Fun(Ls0 , Ys0) is degenerate, in particular, we have f ′∣Ls0 = f ∣Ls0.
(3) The following assertions are equivalent:

(a) The simplex σ is a Segal simplex in Span′T (Y ).
(b) The simplex σ′ given by the adjoint of f ′ is a Segal simplex in Span′T (Y ). In

particular, the simplex σ′ is a Segal simplex in the fiber Span′{s0}(Ys0).
(4) Let e be an edge in L. If f(e) is p-Cartesian then f ′(e) is p-Cartesian, and hence an

equivalence in the ∞-category Ys0.

Proof. Consider the diagram

{1}♯ ×L♭ ∐
{1}♯×(Ls0)

♭

(∆1)♯ × (Ls0)♭
� _g

��

f○π○g // Y ♮

��(∆1)♯ ×L♭
h

66❧❧❧❧❧❧❧❧❧❧
p○f○π // T ♯

where π denotes the nerve of the map of partially ordered sets

[1] ×Mo([n])Ð→Mo([n]), (i,{j, k}) ↦ {{0, n} if i = 0,{j, k} if i = 1.

Since the map g is marked anodyne and Y → T is a Cartesian fibration, we can find a map
h solving the specified lifting problem. Assertions (1) and (2) follow immediately from the
construction of h. The map h satisfies the hypothesis of [Lur09a, 4.3.1.9], hence we deduce
that f = h∣{1} × L is a p-limit diagram if and only if the map f ′ ∶= h∣{0} × L is a p-limit
diagram. More generally, we given a subsimplex ∆k → ∆n, we can restrict h to deduce the
analogous statement for L replaced by asd(∆k). Therefore, we obtain the equivalence of the
assertions (a) and (b) by the definition of a Segal simplex. To prove (4), let e = I1 → I2
denote the edge in L under consideration and consider the diagram in Y

f ′(I1) f ′(e) //

♮

��

f ′(I2)
♮

��
f(I1) ♮

f(e)
// f(I2)

induced by h. Here, we indicated those edges which are p-Cartesian by the construction of
h. Applying [Lur09a, 2.4.1.7] twice implies the statement.

Proof of Theorem 10.2.10. Using [Lur09a, 3.1.1.6], we will show that the map SpanT (Y ♮)→
T ♯ has the right lifting property with respect to all marked anodyne maps. For this, it
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suffices to verify the right lifting property with respect to the following sets of cofibrations
in Set+∆:

M1 = {(Λni )♭ ⊂ (∆n)♭ ∣ where n ≥ 2 and 0 < i < n}(1)

M2 = {(Λnn)♠ ⊂ (∆n)♠ ∣ where n ≥ 1}(2)

M3 = {(Λ2
1)♯∐(Λ2

1)
♭(∆2)♭ ⊂ (∆2)♯}(3)

M4 = {K♭ →K♯ ∣ where K is a Kan complex}(4)

(1) For every 0 < i < n and every diagram

(Λni )♭ //

��

SpanT (Y ♮)
��(∆n)♭ //

88r
r

r
r

r

T ♯

in Set+∆, we have to provide the dashed arrow, rendering the diagram commutative. Passing
to adjoints, this lifting problem is equivalent to the surjectivity of the restriction map

HomT (asd(∆n)♭, Y ♮)l → HomT (asd(Λni )♭, Y ♮)l.
We will prove the more general statement that the restriction map of simplicial sets

ρ ∶Map♯T (asd(∆n)♭, Y ♮)l →Map♯T (asd(Λni )♭, Y ♮)l
is a trivial Kan fibration. By 10.2.9, it suffices to show that ρ is a weak homotopy equivalence.
Consider the class A of cofibrations K ⊂ L in (Set+∆)/T such that the induced map

Map♯T (asd(L), Y ♮)l →Map♯T (asd(K), Y ♮)l
is a weak equivalence. The class A is stable under compositions, pushouts along cofibrations
(Proposition 10.2.9), and has the right cancellation property. Hence, by Lemma 10.2.11(1),
it suffices to show that, for every n ≥ 2, any map

(Jn)♭ ⊂ (∆n)♭ → T ♯

in (Set+∆)/T is contained in A, where we recall the notation Jn = ∆{0,1}∐{1} ⋅ ⋅ ⋅∐{n−1}∆{n−1,n}.
Thus, we have to verify that, for C0 = asd(Jn) and C = asd(∆k), the map

(10.2.14) Map♯T (C♭, Y ♮)l →Map♯T ((C0)♭, Y ♮)l
is a weak equivalence. Consider the diagram

C0 �
� // C // T Y.p

oo

Notice that both C0 and C are ∞-categories and C0 ⊂ C is a full subcategory. Further, every
vertex of Map♯T (C♭, Y ♮)l corresponds to a Segal simplex, and hence, to a functor F ∶ C → Y
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which is a p-right Kan extension of F ∣C0. Thus, using [Lur09a, 3.1.3.1], [Lur09a, 4.3.2.15],
and Proposition 10.2.4, we conclude that the restriction map (10.2.14) is a trivial Kan fibra-
tion.

(2) As in the argument for (1), we will prove the more general statement M2 ⊂ A. To this
end, it suffices by Lemma 10.2.11(2) to verify the following assertions:

(i) Any map

(10.2.15) {1}♯ ⊂ (∆1)♯ → T ♯

in (Set+∆)/T belongs to A.

(ii) Any map

(10.2.16) (Λ2
2)♠ ⊂ (∆2)♠ → T ♯

in (Set+∆)/T belongs to A.

We say that a cofibration K → L in (Set+∆)/T is Y -local if the pullback map

Map♯T (L,Y ♮)Ð→Map♯T (K,Y ♮)
is a weak equivalence, and hence a trivial Kan fibration. Note that, by [Lur09a, 3.1.3.4],
any marked anodyne map is Y -local. To show (i), it suffices to show that for any map as in
(10.2.15), the map in (Set+∆)/T

{1}♯ ⊂ asd((∆1)♯)→ T ♯,

obtained by applying the functor asdT , is Y -local. To show this, we first observe that the
inclusion f1 ∶ {1} ⊂ (∆{{0,1},{1}})♯ is marked anodyne, hence Y -local. Therefore, it suffices to
show that restriction along f2 ∶ (∆{{0,1},{1}})♯ ⊂ asd(∆1)♯ is Y -local. Further, since f2 is a
pushout of f3 ∶ {0,1}→ (∆{{0,1},{0}})♯ along a cofibration, it suffices to prove that restriction
along f3 is Y -local. Note, that the image of the edge {0,1} in T is degenerate, so we can
restrict attention to one fiber of Y → T . We reduce to the statement that, for every Kan
complex K, the restriction map

Map(∆1,K)Ð→Map({0},K)
is a weak homotopy equivalence.

We prove (ii). Let
E ∶=∆{{0,2},{0,1}} ⊂ asd(∆2).

We first show that restriction along the cofibration

f ∶ asd((∆2)♠)Ð→ asd((∆2)♠)∐E♭ E
♯
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induces an isomorphism

(10.2.17) Map♯T (asd((∆2)♠)∐
E♭

E♯, Y ♮)Ð→Map♯T (asd((∆2)♠), Y ♮)l.
This assertion is equivalent to the following statement: A 2-simplex in Span′T (Y ), corre-
sponding to a diagram in Y of the form

(10.2.18) x{1}

x{0,1}

zzttt
tt

99rrrrrr
x{1,2}

♮

%%❑❑
❑❑

❑

≃ee▲▲▲▲▲▲

x{0} x{0,2}oo

OO

eee▲▲▲▲▲
99rrrrr // x{2},

is a Segal simplex if and only if the edge e ∶ x{0,2} → x{0,1} is p-Cartesian. Here, we indicate
all p-Cartesian edges by {♮,≃}, distinguishing those p-Cartesian edges which are equivalences
(since they lie over degenerate edges in T ) by {≃}. Note, that since the edge e lies over a
degenerate edge in T , this statement is in turn equivalent to saying that e is an equivalence
in the ∞-category Y 0 given by the fiber of Y over p(x{0}). To show this, we apply Lemma
10.2.13 to the diagram (10.2.18), obtaining a corresponding diagram

(10.2.19) x′
{1}

x{0,1}

||①①
①①
①①

;;✈✈✈✈✈✈✈
x′
{1,2}

≃

##●
●●

●

≃cc❍❍❍❍❍

x{0} x{0,2}oo

OO

ecc❍❍❍❍❍❍
;;✈✈✈✈✈✈ // x′

{2}
,

contained in the fiber of Y 0. The edge e is an equivalence in Y 0 if and only if the subdiagram
of (10.2.19)

x{0,2}

��

e // x{0,1}

��
x′
{1,2}

≃ // x′
{1}

is a pullback diagram in Y 0. But, since every functor of∞-categories preserves equivalences,
we deduce from [Lur09a, 4.3.1.10] that the latter condition is in turn equivalent to the
statement that the diagram (10.2.19) (and hence, by Lemma 10.2.13, the diagram (10.2.18))
represents a Segal simplex in SpanT (Y ).

Since the map (10.2.17) is a weak equivalence, statement (ii) is equivalent to the assertion
that the map

g ∶ asd((Λ2
2)♠) ⊂ asd((∆2)♠)∐E♭ E♯

is Y -local. We can express g as a composite

asd((Λ2
2)♠) g1Ð→ N(Mo([2]) ∖ {0,1})♠ g2Ð→ asd((∆2)♠)∐E♭ E♯
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where g1 is easily seen to be marked anodyne. The cofibration g2 is a pushout of a map
g′2 whose opposite is marked anodyne. This implies that the map g2 is Y -local, since its
only nondegenerate marked edge is {0,2} → {0,1} which maps to the equivalence, hence
p-coCartesian edge, e in Y .

(3) We have to solve the lifting problem

(Λ2
1)♯ ∐
(Λ2

1
)♭

(∆2)♭ //

� _

��

SpanT (Y ♮)
��(∆2)♯ //

77♦
♦

♦
♦

♦
♦

♦

T ♯.

which, passing to adjoints, translates into

asd((Λ2
1)♯) ∐

asd(Λ2
1)
♭

asd(∆2)♭ t //

� _

��

Y ♮

��
asd((∆2)♯) //

t

66♥♥♥♥♥♥♥♥♥

T ♯.

The map t corresponds to a diagram in Y of the form

(10.2.20) x{1}

x{0,1}
≃

zzttt
tt

♮ 99rrrrrr
x{1,2}

♮

%%❑❑
❑❑❑

≃ee▲▲▲▲▲▲

x{0} x{0,2}
loo

OO

ee▲▲▲▲▲
99rrrrr r // x{2},

where as above, we mark p-Cartesian edges and equivalences. Further, we know that (10.2.20)
is a p-limit diagram, since it represents a Segal simplex of Span′T (Y ). We have to show that
a lift t exists, which is equivalent to the assertion that l and r are p-Cartesian edges. We
apply Lemma 10.2.13 to the diagram (10.2.20), obtaining a corresponding limit diagram

(10.2.21) x′
{1}

x{0,1}
≃

||①①
①①
①①

≃ ;;✈✈✈✈✈✈✈
x′
{1,2}

≃

##●
●●

●

≃cc❍❍❍❍❍

x{0} x{0,2}
loo

OO

cc❍❍❍❍❍❍
;;✈✈✈✈✈✈ // x′

{2}
.

Note that the lower left triangle of (10.2.21) coincides by construction of h with the cor-
responding triangle of (10.2.20). As above, we conclude that the edge x{0,2} → x{0,1} of
(10.2.21) (and hence of (10.2.20)) is an equivalence. By multiple applications of [Lur09a,
2.4.1.7], we deduce that every edge in (10.2.20) is p-Cartesian, in particular l and r.
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(4) We have to solve any lifting problem of the form

(10.2.22) K♭ //
� _

��

SpanT (Y ♮)
��

K♯

99s
s

s
s

s
// T ♯,

where K is a Kan complex. From the proof of [Lur09a, 3.1.1.6] it follows that it suffices to
solve the problem for a constant map K → T , hence we may assume that T = pt. In this case,
we deduce from (1) that Span(Y ) is an ∞-category, and an edge of Span(Y ) is q-Cartesian
if and only if it is an equivalence. Therefore, it suffices to show the following statement: If
an edge x → y of Span(Y ) is an equivalence, then the two edges x ← z → y comprising the
adjoint map asd(∆1)→ Y are equivalences in Y . An edge in an∞-category is an equivalence
if and only if it admits an inverse in the associated homotopy category. Assume an edge
f ∶ x → y of Span(Y ) is an equivalence and let f ′ ∶ y → x be a representative of the homotopy
inverse of f . There exist triangles l ∶ ∆{0,1,2} → Span(Y ) with l({0,1}) = f ′, l({1,2}) = f
and l({0,2}) = idx, as well as r ∶ ∆{1,2,3} → Span(Y ) with r({1,2}) = f , r({2,3}) = f ′ and
r({1,3}) = idy. The inclusion

∆{0,1,2} ∐
∆{1,2}

∆{1,2,3} ⊂ ∆{0,1,2,3}

is inner anodyne, which allows us to extend the pair (l, r) of 2-simplices to a 3-simplex

m ∶∆{0,1,2,3} → Span(Y ).
The adjoint map asd(∆{0,1,2,3})→ Y corresponds to a diagram

(10.2.23) w
l1



r1

��

  ❆
❆❆

❆

~~⑥⑥
⑥⑥

y

��❄
❄❄

❄❄

l2
��⑧⑧
⑧⑧

x

r2 ��❄
❄❄

❄

��⑧⑧
⑧⑧
⑧

z′

��❄
❄❄

❄❄

��⑧⑧
⑧⑧
⑧

z
r3

��❄
❄❄

❄❄l3

��⑧⑧
⑧⑧
⑧

z′

  ❆
❆❆

❆❆

��⑧⑧
⑧⑧
⑧

y x y x.

in Y . Since m is a Segal simplex, all rectangles in (10.2.23) are pullback squares. Now we
argue as follows: r1 is a pullback of id ∶ y → y, hence an equivalence. But this implies that
the class of r2 in the homotopy category has a left and right inverse, making r2 itself an
equivalence. Analogously, l1 and l2 are equivalences. An easy argument now implies that in
fact all maps in (10.2.23) are equivalences, in particular the maps l3 and r3.

Remark 10.2.24.Note that, in the case T = pt, Theorem 10.2.10 implies Theorem 10.2.6
and, further, identifies those edges of Span(C) which are equivalences.

The following Proposition studies how the span construction interacts with marked map-
ping spaces. This will be essential for the proof of Theorem 10.2.31.

190



Proposition 10.2.25. Let Y → T be a Cartesian fibration of ∞-categories which admits
relative pullbacks. Then the following assertions hold:

(1) For every object L of (Set+∆)/T , we have an isomorphism of Kan complexes

Map♯T (L,SpanT (Y ♮)) ≅ Span(Map♯T (asd(L), Y ♮)l)
which is functorial in L.

(2) For every object L of (Set∆)/T , we have an isomorphism of ∞-categories

Map♭T (L♯,SpanT (Y ♮)) ≅ Span(Map♭T (asd(L)♯, Y ♮))
which is functorial in L.

The proof of the proposition needs some technical preparation. Let p ∶ Y → T be a
Cartesian fibration of ∞-categories which is classified by a diagram f ∶ T op → Cat∞. Recall
from [Lur09a, 3.3.3] that the limit of f can be identified with the ∞-category Map♭T (T ♯, Y ♮)
of Cartesian sections of p. The following proposition gives a pointwise characterization of
limits in Map♭T (T ♯, Y ♮).
Proposition 10.2.26. Let p ∶ Y → T be a Cartesian fibration of ∞-categories and K be a
simplicial set. Assume that Y admits all K-indexed p-limits. Then

(i) The ∞-category Map♭T (T ♯, Y ♮) admits all K-indexed limits.

(ii) A diagram f ∶K◁ →Map♭T (T ♯, Y ♮) is a limit diagram if and only if, for every vertex
s of T , the corresponding map {s} ×K◁ → Ys is a limit diagram.

Proof. Let K → Map♭T (T ♯, Y ♮) and consider the adjoint map qT ∶ T ×K → Y . By [Lur09a,
5.2.5.4], the map p′ ∶ Y /qT → T is a Cartesian fibration. Since the Cartesian fibration
p ∶ Y → T admits K-indexed p-limits, we deduce by [Lur09a, 4.3.1.10] that, for every vertex
s of T , the fiber Ys admits K-indexed limits and the functors associated to p preserve K-
indexed limits in the fibers of p. This translates into the statement that the fibers of p′ admit
final objects and the functors associated to p′ preserve final objects in the fibers of p′. The
claimed assertions now follow immediately from Lemma 10.2.27 below.

Lemma 10.2.27. Let p ∶ Y → T be a Cartesian fibration of ∞-categories. Assume that for
each vertex s of T , the ∞-category Ys admits a final object. Further, assume that the functors
associated to p preserve final objects in the fibers of p.

(1) Let Y ′ ⊂ Y denote the largest simplicial subset of Y such that each vertex y of Y ′ is a
final object in Yp(y) and each edge of Y ′ is p-Cartesian. Then p∣Y ′ is a trivial fibration
of simplicial sets.

(2) Let C =MapT (T ♯, Y ♮) be the∞-category of Cartesian sections of p. A Cartesian section
f ∶ T → Y is a final object of C if and only if it factors through Y ′.
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Proof. The argument is an adaption of the proof of [Lur09a, 2.4.4.9]. To prove the first
assertion, it suffices to show that, for every n ≥ 0, every lifting problem

(10.2.28) ∂∆n
g0 //

��

Y

p

��
∆n h //

g
==③

③
③

③
T,

such that g0({n}) is a final object in the ∞-category Yh({n}), admits a solution. To solve
this problem, we may replace T by ∆n. By [Lur09a, 4.3.1.10], the vertex g0({n}) is a p-final
object in Y . Since p(g0({n})) = {n} is a final object of T = ∆n, the vertex g0({n}) is a final
object of Y by [Lur09a, 4.3.1.5]. This immediately implies the existence of a solution g of
the above lifting problem.

From (1), we deduce the existence of a section f ∶ T → Y ′ of p. By the uniqueness of final
objects in ∞-categories, to show (2) it suffices to prove that f is a final object in C. To this
end, we have to show that any lifting problem

T × ∂∆n
j //

��

Y

p

��
T ×∆n h //

::✉
✉

✉
✉

✉
T,

with j∣T × {n} = f admits a solution. This solution can be found simplex by simplex using
that (10.2.28) admits a solution.

The following lemma isolates the most technical part of the proof of Proposition 10.2.25.

Lemma 10.2.29. Let Y → T be a Cartesian fibration of ∞-categories which admits relative
pullbacks.

(1) Let L be an object of (Set+∆)/T and K a simplicial set. Let f ∶ asd(L) × asd(K)♯ → Y ♮

be a morphism in (Set+∆)/T . Assume that for each vertex {y} of asd(K), the induced
map fy ∶ asd(L) × {y}♯ → Y ♮ is contained in HomT (asd(L) × {y}♯, Y ♮)l. Then the map
f itself is contained in HomT (asd(L) × asd(K♯), Y ♮)l.

(2) Let L be an object of (Set∆)/T and K a simplicial set. Let f ∶ asd(L♯) × asd(K)♭ → Y ♮

be a morphism in (Set+∆)/T . Assume that for each vertex {y} of asd(L), the induced
map fy ∶ {y}× asd(K)♭ → Y ♮ is contained in HomT ({y}× asd(K)♭, Y ♮)l. Then the map
f itself is contained in HomT (asd(L♯) × asd(K)♭, Y ♮)l.

Proof. (1) We have to show that, under the stated assumption, the adjoint g ∶ L ×K♯ →
Span′T (Y ♮) of the map f ∶ asd(L) × asd(K♯) → Y ♮ factors over SpanT (Y ) ⊂ Span′T (Y ). In
other words, we have to show that, for every n-simplex σ = (σL, σK) of L ×K, the image
g(σ) is a Segal simplex of Span′T (Y ). It suffices to show that the induced composite

sd ∶ T (∆n)↪ asd(∆n) σÐ→ asd(L) × asd(K) f
Ð→ Y

192



is a p-limit diagram. Indeed, the p-limit condition on a subsimplex σ′ ⊂ σ will be obtained
by repeating the same argument with σ replaced by σ′. We consider the composite map

s ∶ asd(∆n) × asd(∆n) (σL,σK)Ð→ asd(L) × asd(K) f
Ð→ Y

on the underlying simplicial sets. Note that sd is obtained from s by restricting along the
diagonal embedding

S(∆n)→ ∆n ×∆n.

Further, we obtain another Segal cone s0 by restricting s along the embedding

S(∆n)→ ∆n × {0}.
Note that, by our assumption, the Segal cone s0 is a p-limit cone. We define a map

h̃ ∶ asd(∆1) × asd(∆n)↪ asd(∆n) × asd(∆n)
as the nerve of the functor

Mo([1]) ×Mo([n])Ð→Mo([n]), (I,{i, j})↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
({i, j},{0}) if I = {0},({i, j},{0, j}) if I = {0,1},({i, j},{i, j}) if I = {1}.

We let

E ∶=∆{{0,1},{0}} ⊂ asd(∆1) F ∶=∆{{0,1},{1}} ⊂ asd(∆1)
denote the two nondegenerate edges of asd(∆1). The map h = s ○ h̃∣asd(∆1) × S(∆n) is a
concatenation of two homotopies h1 = h∣E ×S(∆n) and h2 = h∣F ×S(∆n) with the following
properties:

(1) The Segal cone h1∣{0} × S(∆n) factors as a composition

S(∆n)Ð→ asd(L) × {y} fy
Ð→ Y

and is therefore, by our assumption, a p-limit diagram.

(2) By construction, the Segal cones h1∣{0,1} × S(∆n) and h2∣{0,1} × S(∆n) coincide.
(3) The Segal cone h2∣{1} × S(∆n) coincides with sd.
(4) For every vertex {v} of S(∆n), the edges h1∣E × {v} and h2∣F × {v} are p-Cartesian.

This follows since in the definition of the map f every edge of asd(K) is marked.

(5) The edges h1∣E × {0, n} and h2∣F × {0, n} in Y map to degenerate edges in T .
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Hence, we conclude the argument by [Lur09a, 4.3.1.9] which implies that sd is a p-limit
diagram.

(2) This follows from an argument similar to the one provided in (1).

Proof of Proposition 10.2.25. (1) For every simplicial set K, we have a chain of natural
isomorphisms

Hom(K,Map♯T (L,SpanT (Y ♮))) ≅ HomT (L ×K♯,SpanT (Y ♮))
≅ HomT (asd(L) × asd(K♯), Y ♮)l(I)

≅ HomT (asd(L) × asd(K)♯, Y ♮)l(II)

≅ Hom(asd(K),Map♯T (asd(L), Y ♮)l)(III)

≅ Hom(K,Span(Map♯T (asd(L), Y ♮)l))
The only nontrivial identifications are (I) ≅ (II) and (II) ≅ (III).

To obtain the identification (I) ≅ (II), we will show that the map asd(L) × asd(K♯) →
asd(L)×asd(K)♯ is marked anodyne. By [Lur09a, 3.1.2.3], it suffices to prove that asd(K♯)→
asd(K)♯ is marked anodyne. Arguing simplex by simplex, it suffices to show this in the case
K = ∆n, n ≥ 0. For n > 3, every edge of asd(∆n) is contained in asd(∆3) ⊂ asd(∆n) for some
subsimplex ∆3 ⊂∆n. Therefore, it suffices to prove the statement for 1 ≤ n ≤ 3. For n = 1, the
assertion is trivial, while the cofibrations asd((∆2)♯)→ asd(∆2)♯ and asd((∆3)♯)→ asd(∆3)♯
are easily seen to be iterated pushouts of the marked anodyne morphisms

(Λ2
2)♯ ∐
(Λ2

2)
♭

(∆2)♭ ↪ (∆2)♯
and (Λ2

1)♯ ∐
(Λ2

1
)♭

(∆2)♭ ↪ (∆2)♯.
To show the identification (II) ≅ (III), first note that, by adjunction, we have a natural

isomorphism

HomT (asd(L) × asd(K)♯, Y ♮) ≅ Hom(asd(K),Map♯T (asd(L), Y ♮)).
The claim that this identification descends to (II) ≅ (III) follows immediately from (1) in
Lemma 10.2.29.

(2) For every simplicial set K, we have a chain of natural isomorphisms

Hom(K,Map♭T (L♯,SpanT (Y ♮))) ≅ HomT (L♯ ×K♭,SpanT (Y ♮))
≅ HomT (asd(L♯) × asd(K♭), Y ♮)l(I)

≅ HomT (asd(L)♯ × asd(K♭), Y ♮)l(II)

≅ Hom(asd(K),Map♭T (asd(L)♯, Y ♮))l(III)

≅ Hom(K,Span(Map♭T (asd(L)♯, Y ♮)))
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The identification (I) ≅ (II) follows as in Part (1) from the fact that the map asd(L♯)→
asd(L)♯ is marked anodyne. The isomorphism (II) ≅ (III) follows from (2) in Lemma 10.2.29
and Proposition 10.2.26.

Corollary 10.2.30. Let Y
q
Ð→ Z

p
Ð→ T be maps of ∞-categories. Assume that p and p ○ q

are Cartesian fibrations which admit relative pullbacks. Further assume that q is a Carte-
sian equivalence. Then the induced map Span′T (Y ) → Span′T (Z) descends to a Cartesian
equivalence SpanT (q) ∶ SpanT (Y )→ SpanT (Z).
Proof. Since the objects Y ♮ and Z♮ are fibrant objects of (Set+∆)/T equipped with the Carte-
sian model structure, the map q is a categorical equivalence by [Lur09a, 3.1.5.3]. Hence, by
[Lur09a, 4.3.1.6], the map q preserves relative limits and we obtain a well-defined induced
map SpanT (q) ∶ SpanT (Y )→ SpanT (Z). To show that SpanT (q) is a Cartesian equivalence,
it suffices to show that, for every object L ∈ (Set+∆)/T , the induced map of mapping spaces
Map♯T (L,SpanT (Z♮))→Map♯T (L,SpanT (Y ♮)) is a weak equivalence of Kan complexes. Since
Map♯T (asd(L),Z♮) → Map♯T (asd(L), Y ♮) is a weak equivalence, this follows from [Lur09a,
4.3.1.6], Proposition 10.2.25(1), and Corollary 10.1.5.

Theorem 10.2.31. Let p ∶ Y → N(∆) be a Segal fibration admitting relative pullbacks. Then
the following assertions hold:

(1) The map SpanN(∆)(Y )→ N(∆) is a Segal fibration.

(2) Assume Y → N(∆) is complete. Then the Segal fibration SpanN(∆)(Y ) → N(∆) is
complete.

(3) Assume Y → N(∆) exhibits a monoidal structure on the ∞-category C = Y[0]. Then
SpanN(∆)(Y )→ N(∆) exhibits a monoidal structure on the ∞-category Span′(C).

Proof. To show part (1), we have to verify the conditions of Definition 9.2.1. Condition (S1)
follows immediately from Theorem 10.2.10. To verify condition (S2), let n ≥ 2 and denote by
L▷ the opposite Segal cone S(∆n)op. By [Lur09a, 3.3.3.1] it suffices to show that, for every
n ≥ 2, the map

Map♭N(∆)((L▷)♯,SpanN(∆)(Y ♮))Ð→Map♭N(∆)(L♯,SpanN(∆)(Y ♮))
is an equivalence of ∞-categories. Using Corollary 10.2.30 and Proposition 10.2.25(2), we
reduce to the statement that the map

Map♭N(∆)(asd(L▷)♯, Y ♮)Ð→Map♭N(∆)(asd(L)♯, Y ♮)
is an equivalence of ∞-categories. Using Lemma 10.2.32 below, we reduce further to the
statement that the map

Map♭N(∆)((L▷)♯, Y ♮)Ð→Map♭N(∆)(L♯, Y ♮)
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is an equivalence of ∞-categories which, again by [Lur09a, 3.3.3.1], is equivalent to condition
(S2) for the Segal fibration Y → N(∆). Condition (S3) follows immediately from Proposition
10.1.4 and Example 10.2.3.

We show assertion (2). Consider the functor

f ∶ Y[0] → Y[1]

associated to the unique edge [1] → [0] of N(∆) via the Cartesian fibration Y → N(∆).
The statement that Y → N(∆) is complete, means, by definition, that f induces a weak
equivalence of Kan complexes

Y[0] Ð→ (Y[1])equivKan

where we use the terminology of §7.1. Using Corollary 10.1.5, we obtain a weak equivalence
of Kan complexes

Span(f) ∶ Span(Y[0])Ð→ Span((Y[1])equivKan ).
Using Theorem 10.2.10, we can naturally identify the Kan complex Span((Y[1])equivKan ) with
Span(Y[1])equivKan so that Span(f) is the functor associated to the edge [1] → [0] via the
Cartesian fibration SpanN(∆)(Y ) → N(∆). Hence the Segal fibration SpanN(∆)(Y ) → N(∆)
is complete.

It remains to prove assertion (3). Note that, for a Kan complex K, we have weak
homotopy equivalences

Span(K) asd(Span(K))foo g // K

where f is the weak equivalence from Proposition 10.1.3 and g is the counit map corre-
sponding to the Quillen equivalence of Proposition 10.1.4. Thus, if Y[0] is contractible then
SpanT (Y )[0] ≅ Span′(Y[0]) is contractible as well.

Lemma 10.2.32. Let L be an object of (Set∆)/T and Y → T a Cartesian fibration of ∞-
categories. Then the natural map asd(L)→ L induces an equivalence of ∞-categories

Map♭T (L♯, Y ♮)Ð→Map♭T (asd(L)♯, Y ♮).
Proof. We argue simplex by simplex as in [Lur09a, 2.2.2.7] using Remark [Lur09a, 3.1.4.5].
For a simplex ∆n → T , we argue as follows. The map asd(∆n)→ ∆n admits a section given
by the nerve of the functor

s ∶ [n]Ð→Mo([n]), {k}↦ {k,n}.
Note that N(s) identifies ∆n with a full subcategory of asd(∆n). Further, it is easy to see
that every vertex of

Map♭T (asd(∆n)♯, Y ♮)
is a p-left Kan extension of its restriction to ∆n. Thus, we can apply [Lur09a, 4.3.2.15] to
deduce that the restriction map

Map♭T (asd(∆n)♯, Y ♮) s∗Ð→Map♭T ((∆n)♯, Y ♮)
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is a trivial fibration of simplicial sets, in particular, an equivalence of ∞-categories. The
final statement now follows from the 2-out-of-3 property of weak equivalences for the Joyal
model structure on Set∆.
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10.3 Horizontal Spans

Let C be an∞-category which admits pullbacks. In this section, we associate to C a complete
Segal fibration HSpan(C) → N(∆) which models an (∞,2)-category B, referred to as the(∞,2)-category of horizontal spans in C. Informally, we can describe B as follows:

• The objects of B are given by objects of C.

• A 1-morphisms between objects x and y of B is given by a span diagram x ← z → y in
C. Composition of 1-morphisms is given by forming pullbacks.

• A 2-morphism between 1-morphisms x← z → y and x ← z′ → y is given by a diagram

z

~~⑥⑥
⑥⑥

  ❆
❆❆

❆

��

x y

z′

__❄❄❄❄
??⑧⑧⑧⑧

in C.

• The higher morphisms are given by spans, in which both edges are equivalences, of
spans of spans of . . . in C.

Definition 10.3.1.We define a category ∆∐ as follows.

• The objects of ∆∐ are given by pairs ([n],{i, j}), where [n] is a finite nonempty ordinal
and 0 ≤ i ≤ j ≤ n.

• A morphism between objects ([n],{i, j}) and ([m],{i′, j′}) is given by a morphism
f ∶ [n]→ [m] of underlying ordinals such that f(i) ≤ i′ ≤ j′ ≤ f(j).

The forgetful functor ∆∐ → ∆ is a Grothendieck opfibration which implies that the
induced functor π ∶ N(∆∐)→ N(∆) is a coCartesian fibration of ∞-categories.

Remark 10.3.2.The functor

P ● ∶∆ Ð→ Cat, [n] ↦ I
op
[n]

defined in (10.1.1) induces a functor N(P ●) ∶ N(∆) → Cat∞. This functor classifies the
coCartesian fibration π in the sense of [Lur09a, 3.3.2]. In other words, the functor π is
obtained from P ● via a Grothendieck construction. In comparison, the coCartesian fibration
N(∆×)→ N(∆) from §9.3 corresponds, via the Grothendieck construction, to the functor

∆Ð→ Cat, [n]↦ I[n].
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Remark 10.3.3.The nomenclature for ∆∐ is chosen to be compatible with [Lur07, 1.2.8]
where the Cartesian monoidal structure on an ∞-category C with products is constructed.
Given an∞-category C with coproducts, we can construct the coCartesianmonoidal structure
along the lines of loc. cit, by using the Cartesian fibration N(∆×)op → N(∆)op instead of
the Cartesian fibration πop ∶ N(∆∐)op → N(∆)op. This will result in a coSegal fibration
C∐ → N(∆)op exhibiting the coCartesian monoidal structure on C.

Let Y → N(∆∐) be a map of simplicial sets. We define a map π∗Y → N(∆) characterized
by the universal property

HomN(∆)(K,π∗Y ) ≅ HomN(∆∐)(K ×N(∆) N(∆∐), Y ).
For an ∞-category C, we introduce the notation HSpan′(C) ∶= π∗(N(∆∐) × C).
Definition 10.3.4.Let C be an ∞-category and consider the map p ∶ HSpan′(C) → N(∆).
By the characterizing property of p, for every ordinal [n], the fiber HSpan′(C)[n] can be
identified with the ∞-category of functors Fun(asd(∆n),C).
(A) We call a vertex of HSpan′(C) admissible if the corresponding functor F ∶ asd(∆n)→ C

satisfies the following condition:

• For every subsimplex ∆k → ∆n, with k ≥ 2, the corresponding Segal cone (Defi-

nition 10.2.2) given by the composite S(∆k) → asd(∆n) F→ C is a limit diagram
in C.

(B) An edge e ∶ F → G of HSpan′(C), which lies over an edge f ∶ [n] → [m], is called
admissible if it satisfies the following condition:

• For every 0 ≤ i ≤ n, the edge F ({i}) → G({f(i)}) in C induced by e is an
equivalence.

Using this terminology, we define HSpan(C) ⊂ HSpan′(C) to be the largest simplicial subset
such that every vertex and every edge is admissible.

Theorem 10.3.5. Let C be an ∞-category. Then the following hold:

(1) The map HSpan′(C)→ N(∆) is a Cartesian fibration.

(2) Assume that C admits pullbacks. Then the map HSpan(C)→ N(∆) is a complete Segal
fibration which admits relative pullbacks.

Proof. Assertion (1) follows from the dual statement of [Lur09a, 3.2.2.13]. We show (2).
First note that HSpan(C) → N(∆) is a Cartesian fibration: Condition (A) is preserved
under the functors associated to the Cartesian fibration HSpan′(C) → N(∆) and condition
(B) is immediately checked to be compatible with the respective lifting problems. We let
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Y = HSpan(C). To verify condition (S2) of Definition 9.2.1, we have to show that, for every
n ≥ 2, the Segal cone diagram in Cat∞

(10.3.6) Y[n]

ss❣❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧

||①①
①①
①①
①①

�� ))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲

Y{0} Y{0,1}oo // Y{1} Y{1,2}oo . . . Y{n−1,n} // Y{n}

classifying the Cartesian fibration Y ×N(∆) S(∆n)op → S(∆n)op is a limit diagram in Cat∞.
Recall the notation

Jn =∆{0,1}∐
{1}

⋅ ⋅ ⋅ ∐
{n−1}

∆{n−1,n} ⊂∆n.

Consider the inclusion j ∶ asd(Jn) ⊂ asd(∆n) and the corresponding restriction functor

j∗ ∶ Fun(asd(∆n),C) Ð→ Fun(asd(Jn),C).
Let D ⊂ Fun(asd(∆n),C) denote the full subcategory spanned by the vertices satisfying
condition (A). A vertex F of Fun(asd(∆n),C) lies in D if and only if it is a right Kan
extension of its restriction F ∣asd(Jn). On the other hand, since C admits pullbacks, we
deduce from Proposition 10.2.4 that every vertex of Fun(asd(Jn),C) admits a right Kan
extension along j. By [Lur09a, 4.3.2.15], the induced map

DÐ→ Fun(asd(Jn),C)
is a trivial fibration of simplicial sets. Further, we have a pullback diagram of simplicial sets

Y[n] //

��

D

��
Y{0,1} ×Y{1} Y{1,2} × ⋅ ⋅ ⋅ ×Y{n−1} Y{n−1,n} // Fun(asd(Jn),C)

which shows that the restriction functor j∗ induces a trivial fibration

f ∶ Y[n] Ð→ Y{0,1} ×Y{1} Y{1,2} × ⋅ ⋅ ⋅ ×Y{n−1} Y{n−1,n}.
The equivalence f of ∞-categories induces an equivalence between the Segal cone (10.3.6)
and the Segal cone
(10.3.7)

Y{0,1} ×Y{1} Y{1,2} × ⋅ ⋅ ⋅ ×Y{n−1} Y{n−1,n}

rr❢❢❢❢❢❢
❢❢❢❢❢

❢❢❢❢❢
❢❢❢❢❢

❢❢❢❢❢
❢❢

ss❤❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦

�� ++❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱

,,❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳

Y{0} Y{0,1}oo // Y{1} Y{1,2}oo . . . Y{n−1,n} // Y{n}.

Hence it suffices to show that (10.3.7) is a limit cone. This is equivalent to the statement
that the ordinary fiber product of simplicial sets

Y{0,1} ×Y{1} Y{1,2} × ⋅ ⋅ ⋅ ×Y{n−1} Y{n−1,n}
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is a homotopy fiber product with respect to the Joyal model structure on Set∆ (cf. [Lur09a,
4.2.4.1]). To prove this, it suffices to show that, for every 0 ≤ i ≤ n − 1, the functors
Y{i,i+1} → Y{i} and Y{i,i+1} → Y{i+1} are categorical fibrations which follows immediately from
[Lur09a, 2.4.7.12]. Finally, it is clear that condition (S3) of Definition 9.2.1 is satisfied in
virtue of condition (B).

To show that q ∶ HSpan(C)→ N(∆) admits relative pullbacks, consider the simplicial set

K =∆1∐
{1}

∆1

so that K-indexed limit diagrams are pullback diagrams. We will apply [Lur09a, 4.3.1.11]
to show that q admits relative pullbacks, i.e. K-indexed q-limits. We first show that, for
every n ≥ 0, the∞-category Y[n] admitsK-indexed limits. As above, letD ⊂ Fun(asd(∆n),C)
denote the full subcategory spanned by those vertices satisfying condition (A) from Definition
10.3.4. As above, we consider the adjunction of ∞-categories

j∗ ∶ Fun(asd(∆n),C)←→ Fun(asd(Jn),C) ∶ j∗
where the right Kan extension functor j∗ has essential image D. By [Lur09a, 5.1.2.3], we
conclude that the ∞-category Fun(asd(Jn),C) and hence the equivalent ∞-category D ad-
mits K-indexed limits. Further, j∗ is a right adjoint which, by [Lur09a, 5.2.3.5], preserves
limits. Thus, using [Lur09a, 5.1.2.3](2), we deduce that

(1) The ∞-category D admits K-indexed limits.

(2) A diagram K◁ →D ⊂ Fun(asd(∆n),C) is a limit diagram if and only if, for every vertex
of asd(∆n), the induced diagram K◁ → C is a limit diagram.

Next, we show that the ∞-category Y[n] admits K-indexed limits and, further, the inclusion
i ∶ Y[n] ⊂ D preserves K-indexed limits. Consider f ∶ K → Y[n] and let K◁ → D be a
limit diagram extending i ○ f ∶ K → D. Then it is easy to verify that the limit diagram
K◁ → D factors through Y[n] and is a limit diagram in Y[n]. This shows that the ∞-
category Y[n] admits K-indexed limits. Further, these limits can be calculated pointwise in
Fun(asd(∆n),C). To apply [Lur09a, 4.3.1.11] it remains to verify that the functors associated
to the Cartesian fibration q ∶ Y → N(∆) preserve K-indexed limits in the fibers of q. But
this follows directly from the fact established above that, for every n ≥ 0, K-indexed limits
in Y[n] can be computed pointwise.

It remains to show that the Segal fibration Y → N(∆) is complete. To this end, we have
to verify that the functor of Kan complexes

Y[0] Ð→ (Y[1])equivKan

associated to the edge [1] → [0] of N(∆) via the Cartesian fibration Y → N(∆), is a weak
equivalence. This map can be explicitly identified with the functor

Fun(∆0,CKan)Ð→ Fun(asd(∆1),CKan)
obtained by pullback along the constant map asd(∆1) → ∆0. Since asd(∆1) is weakly
contractible, this latter map is a weak homotopy equivalence, implying our claim.
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Let C be an ∞-category with finite limits. The complete Segal fibration HSpan(C) →
N(∆) models an (∞,2)-category B which we call the (∞,2)-category of horizontal spans
in C. Let pt denote a final object of C, then the (∞,1)-category MapB(pt,pt) carries
a natural monoidal structure given by composition of 1-morphisms. In fact, the (∞,1)-
category MapB(pt,pt) is equivalent to C itself, and the monoidal structure is the Cartesian
monoidal structure on C. This can be seen in the language of Segal fibrations as follows.
Consider the full simplicial subset C× ⊂ HSpan(C) spanned by those vertices such that the
corresponding functor F ∶ asd(∆n)→ C satisfies the following condition:

• For 0 ≤ i ≤ n, the vertex F ({i}) of C is a final object.

With this notation, we have the following statement.

Proposition 10.3.8. Let C be an ∞-category with finite limits. The map C× → N(∆),
obtained by restricting the fibration HSpan(C) → N(∆), is a complete Segal fibration with
contractible [0]-fiber. It exhibits the Cartesian monoidal structure on the ∞-category C.
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10.4 Bispans

Let C be an ∞-category admitting pullbacks. We introduce the simplicial set

BiSpan(C) ∶= SpanN(∆)(HSpan(C))
which, by Theorem 10.2.31 and Theorem 10.3.5, comes equipped with a complete Segal
fibration

q ∶ BiSpan(C)Ð→ N(∆).
We refer to the (∞,2)-category B modelled by q as the (∞,2)-category of bispans in C.
We give an informal description of B allowing for direct comparison with the descriptions of
vertical and horizontal spans.

• The objects of BiSpan(C) are given by objects of C.

• A 1-morphisms between objects x and y of BiSpan(C) is given by a span diagram
x ← z → y in C. Composition of 1-morphisms is given by forming pullbacks (hence we
require the existence of limits).

• A 2-morphism between 1-morphisms x← z → y and x ← z′ → y is given by a diagram

z

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

��❅
❅❅

❅❅
❅❅

❅

x z′′oo //

OO

��

y

z′

__❄❄❄❄❄❄❄❄

??⑧⑧⑧⑧⑧⑧⑧⑧

in C.

• The higher morphisms are given by spans, in which both edges are equivalences, of
spans of spans of . . . in C.

Assume C admits finite limits and consider the Segal fibration C× → N(∆) from Propo-
sition 10.3.8. By Theorem 10.2.31, the Segal fibration SpanN(∆)(C×) → N(∆) exhibits
a monoidal structure on the ∞-category Span′(C) which we call the pointwise Cartesian
monoidal structure on Span′(C).
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11 2-Segal spaces as monads in bispans

We show how 2-Segal spaces can be naturally interpreted in the context of the (∞,2)-
categorical theory of spans developed in §10. More precisely, we will functorially associate to
a unital 2-Segal space X a monad in the (∞,2)-category of bispans in spaces, called higher
Hall monad of X .

11.1 The Higher Hall monad

In this section, we construct a functor which assigns to a unital 2-Segal space X a monad
in the (∞,2)-category of bispans in the ∞-category S of spaces. When considering 2-Segal
spaces with contractible space of 0-simplices, this construction can be simplified to obtain an
algebra object in the ∞-category Span(S) equipped with the pointwise Cartesian monoidal
structure. In the context of Segal fibrations, monads and algebra objects can be defined as
follows (cf. [Lur07]).

Definition 11.1.1.Let p ∶ Y → N(∆)op be a coSegal fibration, and let N(∆)op → N(∆)op be
the coSegal fibration given by the identity map. A monad in Y is defined to be a right lax
functor s ∶ N(∆)op → Y , i.e., a section

Y p
// N(∆)op

s
yy

which maps convex edges in N(∆)op to p-coCartesian edges in Y . We also say that s defines
a monad in the (∞,2)-category modeled by p. Let Y → N(∆)op be a Segal fibration with
contractible [0]-fiber which, hence, exhibits a monoidal structure on the∞-category C = Y[1].
In this situation, a monad in Y is called an algebra object in C. Dually, given a Segal fibration
Z → N(∆), a left lax functor N(∆) → Z is called a comonad in Z or, if Z[0] is contractible,
a coalgebra object in Z[1].

Informally, a monad in an (∞,2)-category B, modelled by a coSegal fibration p ∶ Y →
N(∆)op corresponds, corresponds to the following data:

• an object x of B,

• a 1-morphism F ∶ x→ x,

• a coherently associative collection of 2-morphisms

F n = F ○ F ○ ⋅ ⋅ ⋅ ○ F Ð→ F

where n ≥ 0.

In terms of these data, we can describe the higher Hall monad in the (∞,2)-category B of
bispans in spaces, corresponding to a unital 2-Segal space X , as follows:
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• the object of B is the space X0,

• the 1-morphism F is given by the span

X0 X1
∂1oo ∂0 // X0,

• for every n ≥ 2, we consider the natural 2-morphism in B given by the span

F n ≃ X1 ×X0
X1 ×X0

⋅ ⋅ ⋅ ×X0
X1 Xn

oo // X1.

The 2-Segal conditions satisfied by X are responsible for the fact that this data is coherently
associative. This statement is made precise in Theorem 11.1.6.

Remark 11.1.2.The notion of a monad defined above is a lax variant of the classical concept
of a monad which is typically studied in the context of the strict 2-category Cat of categories:
A classical monad in Cat corresponds to the data of

• a category C,

• an endofunctor F ∶ C→ C,

• natural transformations µ ∶ F ○F → F and η ∶ idC → F ,

such that the diagrams of natural transformations

F ○ F ○F Fµ //

µF

��

F ○ F
µ

��
F ○ F µ // F

F
Fη //

idF ##❋
❋❋

❋❋
❋❋

❋❋
F ○ F

µ

��

F

idF{{①①
①①
①①
①①
①

ηFoo

F

commute (cf. [Str72]).

Remark 11.1.3.The structure of a multivalued category defined in §3.3 can be regarded as
a (3,2)-categorical variant of the notion of a monad considered here.

The following construction lies at the heart of what follows:

Definition 11.1.4.We define a functor

℘ ∶Mo(∆) ×∆ ∆∐ → Set
op
∆

by associating to an object ([m] f→ [n], ([m],{i, j})) the simplicial set

∆{f(i),...,f(i+1)} ∐
{f(i+1)}

∆{f(i+1),...,f(i+2)} ∐
{f(i+2)}

⋅ ⋅ ⋅ ∐
{f(j−1)}

∆{f(j−1),...,f(j)} ⊂∆n.
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Remark 11.1.5.Note that, using Proposition 10.1.7, the nerve of the functor ℘ provides a
map

N(℘) ∶ asd(N(∆)) ×N(∆) N(∆∐)→ N(Set∆)op.
Let C be a simplicial combinatorial model category C in which every object is cofibrant.

For a small category I, we equip the functor category Fun(I,C) with the injective model
structure. We denote by Fun(I,C)○ ⊂ Fun(I,C) the full simplicial subcategory of injectively
fibrant objects. Recall the Yoneda extension functor

Υ∗ ∶ Fun(∆op,C)Ð→ Fun(Setop∆ ,C)
from §5.1, defined as the right adjoint of the pullback functor along the Yoneda embedding
∆op → Set

op
∆ . The functor Υ∗ is a right Quillen functor with respect to the injective model

structures on both functor categories, in particular it preserves injectively fibrant objects.
We obtain a functor of simplicial categories by forming the composite

℘● ∶Mo(∆) ×∆ ∆∐ ×Fun(∆op,C)○ (℘,Υ∗)Ð→ Set
op
∆ × Fun(Setop∆ ,C)○ evÐ→C○.

In particular, for every injectively fibrant object X of Fun(∆op,C), we obtain, after passing
to simplicial nerves, a functor

N(℘X) ∶ asd(N(∆)) ×N(∆) N(∆∐)→ C

where C = N(C○) denotes the∞-category given as the simplicial nerve ofC○. Via the defining
adjunctions of horizontal and vertical spans from §10, the functor N(℘X) corresponds to a
section

N(∆)
id
%%❏

❏❏
❏❏

AX // Span′N(∆)(HSpan′(C))
uu❥❥❥❥

❥❥❥❥
❥

N(∆).
Theorem 11.1.6. Let X be an injectively fibrant object of Fun(∆op,C). Then the following
are equivalent.

(1) The object X is a unital 2-Segal object.

(2) The section AX factors through BiSpan(C) ⊂ Span′N(∆)(HSpan′(C)).
Proof. Assume X is a unital 2-Segal object. We have to verify that AX maps every k-
simplex of N(∆) to a Segal simplex of Span′N(∆)(HSpan(C)). Let p ∶ HSpan(C) → N(∆)
be the (∞,2)-category of horizontal spans in C. We first show that, for every k-simplex
σ ∶ ∆k → N(∆), the corresponding composite

fσ ∶ asd(∆k) asd(σ)
Ð→ asd(N(∆)) AXÐ→ HSpan′(C)

factors through HSpan(C) ⊂ HSpan′(C). To this end we have to show that, for k = 0 and
k = 1, the conditions (A) and (B) of Definition 10.3.4 are satisfied. The vertex {[n]} of N(∆)
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gets associated by fσ to the diagram in HSpan′(C)[n] ⊂ Fun(asd(∆n),C) which is given by
the nerve of the functor

Mo([n])Ð→ C, {i, j}↦ Υ∗X(J{i,...,j})
Using [Lur09a, 4.2.4.1], the limit condition of (A) can now easily be seen to correspond to the
fact that, since X is injectively fibrant, the evaluated right Yoneda extension Υ∗X(J{i,...,j})
can be expressed as a homotopy limit indexed by the category of simplices of the simplicial
set J{i,...,j} (add reference).

For every edge [n] → [m] of N(∆), the corresponding span diagram in HSpan′(C) eval-
uated at {i} ⊂ [n] corresponds to a diagram of the form X0

id← X0
id→ X0. Since both edges

in this diagram are trivially equivalences in C, we deduce that condition (B) is satisfied.
We conclude, that, irrespectively of the 2-Segal condition, the section AX factors through
Span′N(∆)(HSpan(C)).

We show next that, for every k-simplex σ ∶∆k → N(∆), the corresponding Segal cone

gσ ∶ S(∆k)Ð→ asd(∆k) asd(σ)
Ð→ asd(N(∆)) AXÐ→ HSpan(C)

is a p-limit diagram. This will imply that AX factors through BiSpan(C). First note that
the simplex σ corresponds to a composable chain of maps

(11.1.7) [n0] f1Ð→ [n1] f2Ð→ . . .
fkÐ→ [nk].

We apply Lemma 10.2.13 to the map fσ to obtain a homotopy h ∶ ∆1×asd(∆k)→ HSpan(C)
such that h∣{1} × asd(∆k) = fσ and the diagram f ′σ ∶= h∣{0} × asd(∆k) lies in the fiber
HSpan(C)[n0]. By Lemma 10.2.13, the diagram gσ is a p-limit diagram if and only if the
composite

g′σ ∶ S(∆k)Ð→ asd(∆k) f ′σÐ→ HSpan(C)
is a p-limit diagram. In the proof of Theorem 10.3.5, we have seen that all functors associated
with the Cartesian fibration p ∶ HSpan(C) → N(∆) preserve S(∆k)-indexed limit diagrams
in the fibers of p. By [Lur09a, 4.3.1.11] it hence suffices to show that the diagram g′σ induces
a limit diagram in the fiber HSpan(C)[n0].

In the proof of Theorem 10.3.5, we have further seen that a diagram S(∆k)→ HSpan(C)[n0]

is a limit diagram if and only if the composite diagram

g′′σ ∶ S(∆k)→ HSpan(C)[n0] ⊂ Fun(asd(∆n0),C)
is a limit diagram. By [Lur09a, 5.1.2.3], a diagram in Fun(asd(∆n0),C) is a limit diagram
if and only if, for every vertex {i, j} of asd(∆n0), the corresponding diagram in C is a limit
diagram. Further, every vertex in HSpan(C)[n0] ⊂ Fun(asd(∆n0),C) is a right Kan extension
of its restriction along j ∶ asd(Jn0) → asd(∆n0). The right Kan extension functor j∗ is a
right adjoint which, by [Lur09a, 5.2.3.5], preserves limits. Hence it suffices to check that the
evaluation of the diagram g′′σ at every vertex of asd(Jn0) ⊂ asd(∆n0) is a limit diagram in C.
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This is easily verified for the vertices {i} of Jn0 where 0 ≤ i ≤ n0. It remains to verify the
condition for vertices of the form {i, i + 1} where 0 ≤ i < n0. To this end, we introduce the
chain of morphisms

(11.1.8) [n′0] f ′1Ð→ [n′1] f ′2Ð→ . . .
f ′kÐ→ [n′k]

which is obtained by restricting (11.1.7) where [n′0] ≅ {i, i + 1} and [n′j] ≅ {fj ○ fj−1 ○ ⋅ ⋅ ⋅ ○
f1(i), . . . , fj ○ fj−1 ○ ⋅ ⋅ ⋅ ○ f1(i + 1)}. Note that, for every 1 ≤ j ≤ k, we have f ′j(0) = 0 and
f ′j(n′j−1) = n′j . Unraveling the definitions of the functor ℘ and the homotopy h, it follows
that the evaluation of the diagram g′′σ at the vertex {i, i + 1} is equivalent to the simplicial
nerve of the diagram (11.1.12) in Lemma 11.1.11 below. By Lemma 11.1.11 this diagram
is a homotopy limit diagram which, using [Lur09a, 4.2.4.1], concludes our argument for the
implication (1) ⇒ (2).

Assume AX factors through BiSpan(C). To show that X is a 2-Segal object it suffices to
show that, for every n ≥ 2 and every polygonal subdivision

T = {{i, . . . , j},{0, . . . , i, j, . . . , n}}
the diagram

(11.1.9) Xn
//

��

X{i,...,j}

��
X{0,...,i,j,...,n} // X{i,j}

is a homotopy pullback square. Consider the 2-simplex σ in N(∆) given by the chain

{0, n} f1Ð→ {0, . . . , i, j, . . . , n} f2Ð→ [n].
The simplex AX(σ) lies by assumption in BiSpan(X) and is hence a Segal simplex. By
the argumentation in the proof of the implication (1) ⇒ (2) above, the evaluation of the
corresponding diagram g′′σ at the interval {0,1} of [1] ≅ {0, n} is equivalent to the simplicial
nerve of the diagram

(11.1.10) Xn

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦

X{0,...,i,j,...,n}

''❖❖
❖❖❖

❖❖❖
❖❖❖

ww♦♦♦
♦♦♦

♦♦♦
♦♦

XJ{0,...,i} ×X{i} X{i,...,j} ×X{j} XJ{j,...,n}

''❖❖
❖❖❖

❖❖❖
❖❖❖

ww♦♦♦
♦♦♦

♦♦♦
♦♦

X{0,n} XJ{0,...,i} ×X{i} X{i,j} ×X{j} XJ{j,...,n} XJ{0,...,n} .

Hence, by [Lur09a, 4.2.4.1], the diagram (11.1.10) is a homotopy limit diagram which is
easily seen to be equivalent to the assertion that the square (11.1.9) is a homotopy pullback
square.

208



It remains to show that X is unital. Consider the 2-simplex σ in N(∆) given by the
chain {0, n}Ð→ [n] δiÐ→ [n − 1]
where n ≥ 0 and δi denotes the ith degeneracy map. By an analogous argumentation we
conclude that AX(σ) is a Segal simplex if and only if the square

Xn−1
//

��

X{i}

��
Xn

// X{i,i+1}

is a homotopy pullback square, showing that X is unital.

Lemma 11.1.11. Let C be a combinatorial simplicial model category and X an injectively
fibrant 2-Segal object in Fun(∆op,C). Consider a k-simplex σ in N(∆) which corresponds to
a chain of morphisms

[1] f1Ð→ [n1] f2Ð→ . . .
fkÐ→ [nk].

Assume that, for every 1 ≤ i ≤ k, we have fi(0) = 0 and fi(ni−1) = ni. Consider the collections
of subsets

Ei = {{0,1},{1,2}, . . . ,{ni − 1, ni}} ⊂ 2[ni]
Pi = {{fi(0), . . . , fi(1)},{fi(1), . . . , fi(2)}, . . . ,{fi(ni−1 − 1), . . . , fi(ni−1)}} ⊂ 2[ni]

where 1 ≤ i ≤ k and further E0 = {{0,1}}. Then the diagram in C
(11.1.12)

Xnk

��
,,❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧

XP1

""❉
❉❉

❉❉
❉❉

❉

||③③
③③
③③
③③

XP2

||③③
③③
③③
③③

""❉
❉❉

❉❉
❉❉

❉
. . . XPk

""❉
❉❉

❉❉
❉❉

❉

{{①①
①①
①①
①①

XE0
XE1

XE2
. . . XEk−1 XEk

is a homotopy limit diagram with limit vertex Xnk .

Proof. Using induction on k, it is clear that it suffices to prove the stament for k = 2. We
set [m] = [n1], [n] = [n2] and f = f2. If f1 is constant then we have [m] = [n] = [0] and the
statement is trivial. Thus we may assume that f1 is injective. In this case, the statement is
easily seen to be equivalent to the assertion that the square

(11.1.13) Xn
//

��

X{f(0),...,f(1)} ×X{f(1)} X{f(1),...,f(2)} × ⋅ ⋅ ⋅ ×X{f(m−1),...,f(m)}

��
Xm

// X{0,1} ×X{1} X{1,2} ×X{2} ⋅ ⋅ ⋅ ×X{m−1} X{m−1,m}
is a homotopy pullback square. We conclude the argument as in the proof of Proposition
9.3.8.
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Corollary 11.1.14. Let X be an injectively fibrant 2-Segal object in Fun(N(∆),C). Then
the section AX defines a comonad in the Segal fibration BiSpan(C).
Proof. According to Theorem 11.1.6, it remains to show that AX maps convex edges in N(∆)
to Cartesian edges in BiSpan(C). This becomes apparent after unwinding the definition of
℘.

Further, the comonad AX associated to a 2-Segal space X depends functorially on X .
More precisely, the simplicial nerve N(℘●) corresponds via adjunction to a functor

(11.1.15) A ∶ N(Fun(∆op,Set∆)○2−Seg)Ð→ Funlax
N(∆)(N(∆),BiSpan(S))

of ∞-categories. The left-hand side is by definition the ∞-category of 2-Segal spaces.

Remark 11.1.16.Note that, given an ∞-category C with limits, the ∞-category Span(C)
can be identified with its opposite category. This implies, that we can equivalently describe
the (∞,2)-category of bispans as a coCartesian fibration over N(∆)op by passing to the
opposite of the functor BiSpan(C) → N(∆). The comonad AX in BiSpan(C) defines a
section

N(∆)op (AX)
op

//

id ''◆◆
◆◆◆

◆
BiSpan(S)op

vv♠♠♠♠
♠♠♠

N(∆)op
which corresponds to a right lax functor of (∞,2)-categories. Such a functor corresponds to
a monad in the (∞,2)-category of bispans in S .

Remark 11.1.17.By Remark 11.1.16 we can associate to a 2-Segal space X both a monad
and a comonad in the (∞,2)-category of bispans in S . However, note that the functorial
dependence on X given by the functor A defined in (11.1.15) changes when passing from AX
to Aop

X .

Definition 11.1.18.Given an injectively fibrant 2-Segal space X , we call AX the higher
Hall comonad associated to X . Dually, we call (AX)op the higher Hall monad associated to
X .

Let X be a 2-Segal space and assume that X0 ≃ pt. In this case, the above construction
simplifies as follows.

Theorem 11.1.19. Let X be a 2-Segal space with contractible space of 0-simplices. Then
the functor AX factors through SpanN(∆)(C×) defining a coalgebra object in the ∞-category
Span(S) equipped with the pointwise Cartesian monoidal structure.

Remark 11.1.20.As in 11.1.16, the functor (AX)op defines an algebra object in the ∞-
category Span(S).
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A Bicategories

The goal of this appendix is to recall the classical comcepts of bicategories and 2-categories
and to explain their connection to the concept known as quasi-categories or ∞-categories
[Lur09a].

Example A.1 (Classical (2,1)-categories).A (strict) 2-category C can be defined as a
category enriched in Cat, so for any a, b ∈ Ob(C) we have a small category HomC(a, b) and
the composition functors

⊗ ∶ HomC(b, c) ×HomC(a, b) Ð→HomC(a, c),
which are strictly associative. Further, for any a ∈ Ob(C) there is an object 1a ∈ HomC(a, a)
which is a unit with respect to ⊗. Objects of HomC(a, b) are called 1-morphisms in C from
a to b, and we write E ∶ a → b. A morphism u in HomC(x, y) from E to F is called a 2-
morphism in C, and we write u ∶ E ⇒ F . For more details, including those on the geometric
composition (pasting) of 2-morphisms, see [KS74, ML98].

More generally, the concept of a bicategory (or a weak 2-category) C is obtained by relaxing
the condition of strict associativity of ⊗ and of the unit property of the 1a by replacing them
with canonical associativity 2-isomorphisms

αE,F,G ∶ (E ⊗F )⊗G⇒ E ⊗ (F ⊗G), a
G→ b

F→ c
E→ d,

and the unit 2-isomophisms

λE ∶ u⊗ 1a ⇒ E,ρE ∶ 1b ⊗E ⇒ E, u ∶ x → y,

satisfying the coherence conditions, which include the Mac Lane pentagon for the αE,F,G, see
[Bén67].

Even more generally, we will use the term semi-bicategory for a structure similar to a
bicategory but where no unit 1-morphisms are assumed to exist.

To any small bicategory C one can associate its nerve NC, see [Str87, BFB05] for the
strict case and [Dus02] for the general (weak) case. This is a simplicial set with NnC being
he set of the data consisting of:

(0) Objects a0, ..., an;

(1) 1-morphisms Eij ∶ ai → aj, i ≤ j;

(2) 2-morphisms uijk ∶ Eik ⇒ Ejk ⊗Eij , i ≤ j ≤ k, satisfying the compatibility conditions:

(3) For each 0 ≤ i0 ≤ i1 ≤ i2 ≤ i3 ≤ n the tetrahedron formed by the aiν , Eiν ,iν′ and uiν ,iν′ ,iν′′ ,
is 2-commutative. This means that after we paste the two halves of its boundary, we
get two 2-morphisms

Ei0i3 ⇒ (Ei2i3 ⊗Ei1i2)⊗Ei0i1, Ei0i3 ⇒ Ei2i3 ⊗ (Ei1i2 ⊗Ei0i1)
of which the second one is the composition of the first one with the associativity
isomorphism αEi2,i3 ,Ei1,i2 ,Ei0,i1 .
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If C is a semi-bicategory, then the above construction defines a semi-simplicial set NC,
still called the nerve of C.

Definition A.2.A weak (resp. strict) (2,1)-category is a bicategory (resp, a strict 2-category)
C such that each category HomC(x, y) is a groupoid, i.e., all the 2-morphisms in C are
invertible.

The following is then a straightforward application of the formalism of pasting in bicat-
egories.

Proposition A.3. If C is a weak (2,1)-category, then NC is a quasi-category.

Warning A.4. In using the term “∞-categories” for quasi-categories it is important to keep
in mind that a 2-category in the classical sense (even a strict one) does not, in general, give
rise to a ∞-category (unless its 2-morphisms are invertible).

Combined with the Joyal-Tierney equivalence (7.1.4), the proposition implies that X =
τ !NC is a 1-Segal space whenever C is a (2,1)-category. This 1-Segal space can be more
directly described as follows: Xn = B(Cn), where Cn is the category (groupoid) whose objects

are chains of composable 1-morphisms x0
u1Ð→ ⋯ unÐ→ xn, and morphisms are 2-commutative

ladders, i.e., systems of 1- and 2-morphisms as depicted:

x0

⇙

u1 //

��

x1

⇙

u2 //

��

⋯ un−1 // xn−1

⇙

un //

��

xn

��
y0

v1 // y1
v2 // ⋯ vn−1 // yn−1

vn // yn

This reduces to Example 2.1.4(b) when C is a usual category considered as a 2-category with
all 2-morphisms being identities.

Example A.5 (Monoidal categories).A bicategory C with one object pt is the same as
a monoidal category with unit object (A,⊗,1): objects of A correspond to 1-morphisms in
C (from pt to pt), the monoidal structure ⊗ in A gives the composition of 1-morphisms, and
morphisms in A give 2-morphisms in C. A semi-bicategory with one object is the same as a
monoidal category (A,⊗), but possibly without a unit object.

Thus a weak (2,1) category C with one object is the same as a monoidal category (A,⊗,1)
which is a groupoid.

If C is a strict (2,1)-category (i.e., the monoidal structure in A is strictly associative), the
1-Segal space X = τ !NC. can be desrcribed in terms of the monoidal structure, similarly to
the construction of the classifying space of a group.

More precisely, for n ≥ 0 let Barn(A) be the category whose objects are sequences(A1, ...,An) of objects of A and morphisms are sequences of isomorphisms. For n = 0 we putBar0(A) = pt to be the punctual category. For i = 0, ..., n we define the face functors

∂i(A1, ...,An) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(A2, ...,An), if i = 0;
(A1, ...,Ai ⊗Ai+1, ...,An), if i = 1, ..., n − 1;
(A1, ...,An−1), if i = n.
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and define the degeneration functors in the standard way by inserting the unit object 1. This
makes Bar●(A) into a simplicial groupoid. The simplicial space X formed by the realizations
Xn = BBarn(A) is the 1-Segal space corresponding to (A,⊗,1) as above.
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der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000.

[Lod82] J.-L. Loday. Spaces with finitely many nontrivial homotopy groups. J. Pure Appl.
Algebra, 24(2):179–202, 1982.

[Low11] P. E. Lowrey. The moduli stack and the motivic Hall algebra for the bounded
derived category, 2011, arXiv:math/1110.5117.

218



[Lur07] J. Lurie. Derived Algebraic Geometry II: Noncommutative Algebra. ArXiv Math-
ematics e-prints, February 2007, arXiv:math/0702299.

[Lur09a] J. Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Prince-
ton University Press, Princeton, NJ, 2009.

[Lur09b] J. Lurie. (Infinity,2)-Categories and the Goodwillie Calculus I. ArXiv e-prints,
May 2009, 0905.0462.

[Lur09c] J. Lurie. On the Classification of Topological Field Theories, 2009,
arXiv:math/0905.0465.

[Lur11] J. Lurie. Higher Algebra. preprint, May 2011, available at the author’s homepage.

[Man99] Y. I. Manin. Frobenius manifolds, quantum cohomology, and moduli spaces. Collo-
quium Publications. American Mathematical Society (AMS). 47. Providence, RI:
American Mathematical Society (AMS). xiii, 303 p., 1999.

[ML98] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Moe10] I. Moerdijk. Lectures on dendroidal sets. In Simplicial methods for oper-
ads and algebraic geometry, Adv. Courses Math. CRM Barcelona, pages 1–118.
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Sup. (4), 40(3):387–444, 2007.
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