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1 Introduction

It has recently been shown that General Relativity with negative cosmological constant

in three spacetime dimensions admits a new class of stationary black holes that are not

necessarily spherically symmetric and do not fulfill the Brown-Henneaux boundary condi-

tions [1]. A consistent set of boundary conditions that accommodates this class of solutions

was then constructed, from which it can be seen that the generic black flower configuration

is endowed with an infinite number of affine û (1) charges that commute with the total

Hamiltonian. These charges then correspond to soft hair in the sense of Hawking, Perry

and Strominger [2]. It was also shown in [1] that the precise levels of the û (1) generators

are such that the Virasoro algebra with the Brown-Henneaux central extension [3] natu-

rally emerges as a composite one through a twisted Sugawara construction. An additional

remarkable feature of the boundary conditions aforementioned is that the spectrum, given

by the space of solutions that fulfill them, is such that regularity of the configurations at

the horizon holds independently of the global charges.

One of our main goals is to extend these results to the case of gravity on AdS3 coupled to

bosonic higher spin fields [4–6]. In this case, it is known that the infinite tower of fields can
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be consistently truncated so as to describe a finite number of interacting nonpropagating

fields of spin s = 2, 3, · · · , N , see e.g. [7, 8]. The theory can then be generically described

in terms of the difference of two Chern-Simons actions for independent gauge fields A±

that take values in sl (N,R), so that the action reads

I = ICS

[
A+
]
− ICS

[
A−
]
, (1.1)

with

ICS[A] =
kN
4π

∫
tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (1.2)

where tr (· · · ) stands for the trace in the fundamental representation of sl (N,R) (see ap-

pendix A). The level in (1.2) relates to the Newton constant and the AdS radius according

to kN = k
2εN

= `
8GεN

, whose normalization is determined by εN = N(N2−1)
12 .

The gauge fields are related to a suitable generalization of the dreibein and the spin

connection, defined through

A± = ω ± e

`
(1.3)

and hence, the spacetime metric and the higher spin fields can be reconstructed from

gµν =
1

εN
tr(eµeν) Φµ1...µs =

1

ε
(s)
N

tr(e(µ1 . . . eµs)) (1.4)

being manifestly invariant under an extension of the local Lorentz group described by the

diagonal subgroup of SL (N,R) ⊗ SL (N,R). Diffeomorphisms and higher spin transfor-

mations are then related to the remaining gauge symmetries. The parentheses around

the subscripts denote symmetrization and the spin-3 field in our sl(3,R) calculations is

normalized such that ε
(3)
3 = 3!.

This paper is organized as follows. In section 2 we present our boundary conditions

for the spin-3 case in diagonal gauge and derive the asymptotic symmetry algebra as well

as higher spin soft hair. In section 3 we map our boundary conditions into highest weight

gauge variables and exhibit the twisted Sugawara-like construction. In section 4 we focus on

higher spin black holes with soft hair, which we call “higher spin black flowers”. We derive

their entropy and find that it depends only on our purely gravitational zero modes; in fact,

it is linear in them, exactly as in General Relativity. However, if expressed in terms of W -

algebra currents we recover well-known expressions that involve non-polynomial expressions

of spin-2 and spin-3 charges. We further demonstrate that our boundary conditions ensure

that all states in our theory are compatible with the regularity conditions. In section 5

we address higher spin black flowers in the metric formalism and achieve full consistency

with previous results. In section 6 we generalize some of the main results to spin-N , based

on sl(N,R) Chern-Simons theories (with principally embedded sl(2,R)). In section 7 we

conclude with a discussion and future research directions.

2 Asymptotic structure

The asymptotic structure of AdS gravity coupled to higher spin fields in three-dimensional

spacetimes was investigated in [7, 8], where it was shown that the asymptotic symmetries
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are spanned by two chiral copies of W algebras (see also [9–11]). In order to accommodate

the different higher spin black hole solutions in [12, 13], and [14, 15], the asymptotic

behaviour has to be extended so as to incorporate chemical potentials associated to the

global charges. In this sense, alternative proposals have been constructed. The one in [12,

16] successfully accommodates the black hole solution with higher spin fields of [12], while

the set of boundary conditions in [14, 15] does for the higher spin black holes described

therein. It is worth pointing out that the asymptotic symmetries of both sets are different.

Here we construct an inequivalent set of boundary conditions, which reduces to the

one recently introduced in [1] when the higher spin fields are switched off. The asymptotic

behaviour of the sl (3,R) gauge fields is proposed to be given by

A± = b−1
±
(
d+ a±

)
b± (2.1)

so that the dependence on the radial coordinate is completely contained in the group

elements

b± = exp

(
± 1

`ζ±
L1

)
· exp

(
±ρ

2
L−1

)
. (2.2)

The auxiliary connection reads

a± =
(
±J ± dϕ+ ζ± dt

)
L0 +

(
±J ±(3) dϕ+ ζ±(3) dt

)
W0 (2.3)

where Li, Wn, with i = −1, 0, 1, and n = −2,−1, 0, 1, 2, span the sl (3,R) algebra. Fol-

lowing [14], it can be seen that J ± and J ±(3) stand for arbitrary functions of (advanced)

time and the angular coordinate that correspond to the dynamical fields, while ζ± and

ζ±(3) describe their associated Lagrange multipliers that can be assumed to be fixed at the

boundary without variation (δζ± = δζ±(3) = 0). We shall refer to ζ±, ζ±(3) as chemical

potentials.

The field equations, implying the local flatness of the gauge fields, then reduce to

J̇ ± = ±ζ ′ J̇ ±(3) = ±ζ ′(3) , (2.4)

where dot and prime denote derivatives with respect to t and ϕ, respectively.

2.1 Asymptotic symmetries and the algebra of the canonical generators

In the canonical approach [17], the variation of the conserved charges

Q[ε+, ε−] = Q+[ε+]−Q−[ε−] (2.5)

associated to gauge symmetries spanned by ε± = ε±i Li + ε±(3)nWn, that maintain the asymp-

totic form of the gauge fields, is determined by

δQ±
[
ε±
]

= ∓ k

4π

∫
dϕ

(
η±δJ ± +

4

3
η±(3)δJ

±
(3)

)
, (2.6)

with η± = ε±0 , and η±(3) = ε±(3)0. According to (2.3), the asymptotic symmetries fulfill

δε±a
± = dε± + [a±, ε±] = O(δa±), provided that the transformation law of the dynamical

fields reads

δJ ± = ±η±′ δJ ±(3) = ±η±′(3) (2.7)
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and the parameters are time-independent (η̇± = η̇±(3) = 0). One has to take the quotient

over the remaining components of ε±, since they just span trivial gauge transformations

that neither appear in the variation of the global charges nor in the transformation law of

the dynamical fields.

The surface integrals that correspond to the conserved charges associated to the asymp-

totic symmetries then readily integrate as

Q±
[
η±, η±(3)

]
= ∓ k

4π

∫
dϕ

(
η± (ϕ)J ± (ϕ) +

4

3
η±(3) (ϕ)J ±(3) (ϕ)

)
, (2.8)

which are manifestly independent of the radial coordinate ρ. Consequently, the boundary

could be located at any fixed value ρ = ρ0. Hereafter, we assume that ρ0 →∞, since this

choice has the clear advantage of making our analysis to cover the entire spacetime in bulk.

The algebra of the global charges can then be directly obtained from the computation

of their Poisson brackets; or as a shortcut, by virtue of δYQ [X] = {Q [X] , Q [Y ]}, from

the variation of the dynamical fields in (2.7). Expanding in Fourier modes

J ± (ϕ) =
2

k

∞∑
n=−∞

J±n e
±inϕ J ±(3) (ϕ) =

3

2k

∞∑
n=−∞

J (3)±
n e±inϕ (2.9)

leads to the asymptotic symmetry algebra which is described by a set of û (1) currents

whose nonvanishing brackets are given by

i
{
J±n , J

±
m

}
=

1

2
knδm+n,0 i

{
J (3)±
n , J (3)±

m

}
=

2

3
knδm+n,0 , (2.10)

with levels 1
2k, and 2

3k, respectively.

2.2 (Higher spin) soft hair

Following the spin-2 construction [1], we consider now all vacuum descendants |ψ(q)〉 la-

belled by a set q of non-negative integers N±, N±(3), n
±
i , n

(3)±
i , m±i and m

(3)±
i

∣∣ψ(q)〉 = N(q)

N±∏
i=1

(
J±−n±i

)m±i N±
(3)∏
i=1

(
J

(3)±
−n(3)±

i

)m(3)±
i ∣∣0〉 . (2.11)

Here N(q) is some normalization constant such that 〈ψ(q)|ψ(q)〉 = 1 and the vacuum state1

is defined through highest weight conditions, J±n |0〉 = J
(3)±
n |0〉 = 0 for non-negative n.

We want to check now if all vacuum descendants |ψ(q)〉 have the same energy as the

vacuum and are thus soft hair (our discussion easily generalizes from soft hair descendants

of the vacuum to soft hair descendants of any higher spin black hole state). To this end

we consider the surface integral associated with the generator in time, given by

H := Q (∂t) =
k

4π

∫
dϕ

(
ζ+J + + ζ−J − +

4

3
ζ+

(3)J
+
(3) +

4

3
ζ−(3)J

−
(3)

)
. (2.12)

1The vacuum state corresponds to a massless BTZ black hole. Note that global AdS is not included in

the Lorentzian spectrum, since it is gapped by an imaginary amount of the zero mode charges from the

vacuum state considered here.
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For constant chemical potentials ζ±, ζ±(3) the field equations (2.4) imply that the dynamical

fields become time-independent, and the total Hamiltonian reduces to

H = ζ+J+
0 + ζ−J−0 + ζ+

(3)J
(3)+
0 + ζ−(3)J

(3)−
0 , (2.13)

which clearly commutes with the whole set of asymptotic symmetry generators spanned

by J±n and J
(3)±
m . One then concludes that for an arbitrary fixed value of the total energy,

configurations endowed with different sets of nonvanishing û (1) charges turn out to be

inequivalent, because they can not be related to each other through a pure gauge trans-

formation. Since excitations (2.11) associated with the generators J±n , J
(3)±
m preserve the

total energy and cannot be gauged away, they are (higher spin) soft hair in the sense of

Hawking, Perry and Strominger [2].

3 Highest weight gauge and the emergence of composite W3 symmetries

Quite remarkably, it can be seen that spin-2 and spin-3 charges naturally emerge as com-

posite currents constructed out from the û(1) ones. Actually, the full set of generators

of the W3 algebra arises from suitable composite operators of the û(1) charges through a

twisted Sugawara construction. Here we show this explicitly through the comparison of

the new set of boundary conditions proposed in the previous section with the ones that

accommodate the higher spin black holes in [14, 15], whose asymptotic symmetries are

described by two copies of the W3 algebra. In order to carry out this task it is necessary

to express both sets in terms of the same variables. The asymptotic behaviour described

by (2.1) and (2.3) is formulated so that the auxiliary connections a± are written in the di-

agonal gauge, while the set in [14, 15] was formulated in the so-called highest weight gauge.

Consequently, what we look for can be unveiled once the gauge fields in (2.1) and (2.3) are

expressed in terms of the variables that are naturally adapted to the gauge fields Â± in

the highest weight gauge.

For a generic choice of Lagrange multipliers, which are still unspecified, the asymptotic

form of the gauge fields in the highest weight gauge reads [14, 15]

Â± = b̂−1
± (d+ â±)b̂± , (3.1)

where the radial dependence can be captured by the choice b̂± = e±ρL0 , and

â±ϕ = L±1 −
2π

k
L±L∓1 −

π

2k
W±W∓2 â±t = Λ± [µ±, ν±] , (3.2)

with

Λ± [µ±, ν±] = ±
[
µ±L±1 + ν±W±2 ∓ µ′±L0 ∓ ν ′±W±1 +

1

2

(
µ′′± −

4π

k
µ±L± +

8π

k
W±ν±

)
L∓1

−
(
π

2k
W±µ± +

7π

6k
L′±ν ′± +

π

3k
ν±L′′± +

4π

3κ
L±ν ′′± −

4π2

k2
L2
±ν± −

1

24
ν ′′′′±

)
W∓2

+
1

2

(
ν ′′± −

8π

k
L±ν±

)
W0 ∓

1

6

(
ν ′′′± −

8π

k
ν±L′± −

20π

k
L±ν ′±

)
W∓1

]
, (3.3)

where L±, W± and µ±, ν± stand for arbitrary functions of t, ϕ.

– 5 –



J
H
E
P
1
0
(
2
0
1
6
)
1
1
9

One then needs to find suitable permissible gauge transformations spanned by group

elements g±, for which â± = g−1
± (d+ a±) g±. These group elements indeed exist, and they

are given by g± = g
(1)
± g

(2)
± , with

g
(1)
± = exp [x±L±1 + y±W±1 + z±W±2]

g
(2)
± = exp

[
−1

2
J ±L∓1 −

1

3
J ±(3)W∓1 ±

1

6

(
J ±J ±(3) +

1

2
J ±′(3)

)
W∓2

]
, (3.4)

where x±, y± and z± are arbitrary functions of t, ϕ that fulfill the following conditions:

x′± = 1 + J ±x± + 2J ±(3)y±

y′± = 2J ±(3)x± + J ±y± (3.5)

z′± = 2J ±z± ∓
1

2
y± ,

with

µ± = −x±ζ± − 2y±ζ
±
(3) ± ẋ± ±

4

3
ν±J ±(3)

ν± = −2ζ±z± ±
(
x2
± − y2

±
)
ζ±(3) +

1

2
(y±ẋ± − x±ẏ± ± 2ż±) . (3.6)

Consistency of eqs. (3.5) and (3.6) on-shell implies that the Lagrange multipliers in the

highest weight gauge, µ±, ν±, depend not only on the Lagrange multipliers in the diagonal

gauge, ζ±, ζ±(3), but also on their corresponding global charges J ±, J ±(3), according to

±2

3
J ±(3)ν

′
± ∓

8

3

(
J ±J ±(3) +

1

2
J ±′(3)

)
ν± + µ′± − µ±J ± = −ζ± (3.7)

1

2
ν ′′± −

3

2
J±ν ′± +

((
J ±
)2 − 4

3

(
J ±(3)

)2
− J ±′

)
ν± ± µ±J ±(3) = ±ζ±(3) . (3.8)

The gauge fields a± and â± are then mapped to each other provided

L± = ± k

4π

(
1

2

(
J ±
)2

+
2

3

(
J ±(3)

)2
+ J ±′

)
(3.9)

W± = ∓ k

6π

(
−8

9

(
J ±(3)

)3
+ 2

(
J ±
)2 J ±(3) + J ±(3)J

±′ + 3J ±J ±′(3) + J ±′′(3)

)
(3.10)

from which one recognizes the Miura transformation between the variables, see e.g. [18].

In sum, our proposal for boundary conditions once expressed in the highest weight

gauge, is such that the Lagrange multipliers µ± and ν± depend on the dynamical variables

according to (3.7) and (3.8), where ζ± and ζ±(3) are assumed to be fixed without variation

(δζ± = δζ±(3) = 0). Note that the functions L±, W±, that are naturally defined in the

highest weight gauge, depend on the global charges J ±, J ±(3) as in eqs. (3.9), (3.10).
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Indeed, for a generic choice of Lagrange multipliers in the highest weight gauge, the

field equations read [15]

L̇± = ±2L±µ′± ± µ±L′± ∓
k

4π
µ′′′± ∓ 2ν±W ′± ∓ 3W±ν ′± (3.11)

Ẇ± = ±3W±µ′± ± µ±W ′± ±
2

3
ν±

(
L′′′± −

16π

k
L2′
±

)
± 3

(
L′′± −

64π

9k
L2
±

)
ν ′±

± 5ν ′′±L′± ±
10

3
L±ν ′′′± ∓

k

12π
ν

(5)
± , (3.12)

which by virtue of the definition of our boundary conditions, in eqs. (3.7), (3.8) and (3.9),

(3.10), reduce to the remarkably simple ones, given by J̇ ± = ±ζ ′, J̇ ±(3) = ±ζ ′(3), which were

directly obtained in the diagonal gauge (see eq. (2.4)).

It is also worth highlighting that eqs. (3.9), (3.10) can be regarded as the higher spin

gravity version of the twisted Sugawara construction. In fact, we show now that the currents

L±, W± fulfill the W3 algebra. Let us recall that according to (2.7), the transformation

law of the dynamical fields under the û (1) asymptotic symmetries reads δJ ± = ±η±′,
δJ ±(3) = ±η±′(3). Besides, the relationship for the Lagrange multipliers in (3.7), (3.8) implies

that the corresponding one for the parameters in the highest weight gauge, defined as

ε±, χ±, with the Lagrange multipliers and their associated charges as formulated in the

diagonal gauge, given by η±, η±(3), and J ±, J ±(3), respectively, reads

±2

3
J ±(3)χ

′
± ∓

8

3

(
J ±J ±(3) +

1

2
J ±′(3)

)
χ± + ε′± − ε±J ± = −η±

1

2
χ′′± −

3

2
J±χ′± +

((
J ±
)2 − 4

3

(
J ±(3)

)2
− J ±′

)
χ± ± ε±J ±(3) = ±η±(3) . (3.13)

Therefore, the transformation laws for L± and W± can be directly read from (3.9), (3.10),

which reduce to

δL± = ±2L±ε′± ± ε±L′± ∓
k

4π
ε′′′± ∓ 2χ±W ′± ∓ 3W±χ′± (3.14)

δW± = ±3W±ε′± ± ε±W ′± ±
2

3
χ±

(
L′′′± −

16π

k
L2′
±

)
± 3

(
L′′± −

64π

9k
L2
±

)
χ′±

± 5χ′′±L′± ±
10

3
L±χ′′′± ∓

k

12π
χ

(5)
± . (3.15)

It is then apparent that L± and W± turn out to be composite anomalous spin-2 and spin-

3 currents, respectively. In other words, the asymptotic W3 algebra obtained in [14, 15]

for a different set of boundary conditions, being defined through requiring the Lagrange

multipliers in the highest weight gauge to be fixed without variation (δµ± = δν± = 0), is

recovered as a composite one that emerges from the û (1) currents.

Despite of the fact that the spin-2 and spin-3 currents L±, W± fulfill the W3 algebra,

their associated global charges generate the û (1) current algebras discussed in section 2.

This is so because, by virtue of eqs. in (3.13) and (3.9), (3.10) the variation of the global

– 7 –
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charges readily reduces to

δQ± = ∓
∫
dϕ (ε±δL± − χ±δW±) = ∓ k

4π

∫
dϕ

(
η±δJ ± +

4

3
η±(3)δJ

±
(3)

)
, (3.16)

so that they satisfy the current algebras in (2.10). Indeed, this result just reflects the fact

that the gauge transformation that maps our asymptotic conditions in the highest weight

and diagonal gauges, spanned by the group element defined through (3.4), is a permissible

one in the sense of [15]. Therefore, the global charges associated to our asymptotic condi-

tions, although written in the highest weight gauge as in eqs. (3.7), (3.8) and (3.9), (3.10),

manifestly do not fulfill the W3 algebra. This is because the Lagrange multipliers µ±, ν±,

are not chosen to be fixed at infinity without variation as in [14, 15], but instead, here

they explicitly depend on the global charges. What is actually kept fixed at the boundary

without variation is the set of Lagrange multipliers that is naturally defined in the diagonal

gauge (δζ± = δζ±(3) = 0).

4 Higher spin black holes with soft hair

In this section we discuss higher spin black hole solutions with soft hair, address their

regularity and calculate their entropy. In section 4.1 we present our results in diagonal

gauge, which is most suitable for our boundary conditions. In section 4.2 we discuss our

results in highest weight gauge that is used traditionally in higher spin theories.

4.1 Regularity and black hole entropy in diagonal gauge

As shown in section 2.2, the simpler subset of our boundary conditions, obtained by choos-

ing the Lagrange multipliers ζ±, ζ±(3) to be constants, possesses the noticeable property of

making the global charges J±n , J
(3)±
m to behave as (higher spin) soft hair. An additional

remarkable feature that also occurs in this case is the fact that regularity of the whole

spectrum of Euclidean solutions that fulfill our boundary conditions holds everywhere,

regardless the value of the global charges.

The entire space of solutions of the field equations (2.4) that satisfies our boundary

conditions in this case is given by J ± = J ± (ϕ), J ±(3) = J ±(3) (ϕ), which generically describes

stationary non spherically symmetric higher spin black flowers endowed with all the possible

left and right û (1) charges. In order to see this explicitly, we assume that the topology of the

Euclidean manifold is the one of a solid torus, where the Euclidean time coordinate τ = it

corresponds to the contractible cycle. As explained in [14, 15], the Lagrange multipliers

correspond to the chemical potentials associated to the global charges (see below), and

since in our case they are all switched on, the range of the coordinates can be fixed once

and for all. Here we assume that the boundary of the solid torus is described by a trivial

modular parameter, so that 0 ≤ ϕ < 2π, 0 ≤ τ < β, where β = T−1 is the inverse of the

Hawking temperature.

Regularity of the Euclidean solution then requires the holonomy of the gauge fields

along any contractible cycle C to be trivial, which reads

HC = Pe
∫
C a = 1 . (4.1)
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Since the general solution is naturally formulated in the diagonal gauge, as in (2.3), the

regularity condition (4.1) is trivially solved by

ζ± =
2πn

β
+

2

3
ζ±(3) ζ±(3) =

3

2

π

β
m , (4.2)

with m, n being integers. Hence, regularity holds regardless the value of the global charges.

The generic regular solution then carries the entire set of û (1) charges spanned by

J±n , J
(3)±
m . Therefore, by virtue of the map between the û (1) and W3 currents, defined

through (3.9), (3.10), this class of solutions is endowed with nontrivial spin-2 and spin-3

(composite) charges.

This class of static non-spherically symmetric solutions are higher spin black flowers,

whose ripples cannot be gauged away because they are characterized by their corresponding

(higher spin) soft hair charges.

The simplest case in which the solution is only endowed with the zero-modes charges

J±0 , J
(3)±
0 , reduces to the stationary spherically symmetric higher spin black hole solution

discussed in [14, 15].

Generic higher spin black holes with soft hair can be obtained from the spherically

symmetric one aforementioned by acting on it with an arbitrary soft boost, which corre-

sponds to applying a generic element of the asymptotic symmetry group globally. Thus, as

explained in section 2.2, the action of the û (1) generators does not change the total energy,

and noteworthy, the generic solution obtained through this procedure remains regular. This

is a peculiar feature of our boundary conditions, which does not hold for different choices of

Lagrange multipliers. Indeed, for the choice in [14, 15], in which the Lagrange multipliers

in the highest weight gauge are chosen to be constant, if one applies the same procedure

starting from a spherically symmetric solution, one finds that under the action of the W3

symmetries not only the energy changes, but the regularity of the W3-boosted solution is

generically spoiled. This reflects the fact that the additional W3 charges of the boosted

solution do not correspond to soft hair, since they do not commute with the Hamiltonian.

As shown in [19, 20], the correct expression for the black hole entropy in the context

of higher spin gravity can be obtained from

δS = βδH = −kN
π

Im

(
β

∫
dϕtr [aτδaϕ]

)
. (4.3)

Under certain reasonable assumptions, which are fulfilled by our set of boundary condi-

tions expressed in the diagonal gauge, according to [15, 21], the variation of the entropy

integrates as

S = −kN
π

Im

(
β

∫
dϕtr [aτaϕ]

)
. (4.4)

The entropy of a generic higher spin black flower can then be readily obtained from (4.4),

which by virtue of (2.3) and (4.2), in the Lorentzian case reads

S = π
[
(2n+m)

(
J+

0 + J−0
)

+ 3m
(
J

(3)+
0 + J

(3)−
0

)]
. (4.5)
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Note that the entropy in (4.5) only captures the electric-like zero-mode charges, and hence

it does not depend on (higher spin) soft hair.

An interesting effect occurs for the branch of higher spin black flowers that is continu-

ously connected to the BTZ black hole [22, 23], corresponding to m = 0, n = 1. Indeed, for

this branch the entropy (4.5) is found to depend just on the zero modes of the electric-like

û (1) charges of the purely gravitational sector, i.e.,

S = 2π
(
J+

0 + J−0
)
. (4.6)

Nonetheless, the information about the presence of the higher spin fields is subtlety hidden

within the purely gravitational global charges, as it can be seen from the map between the

û (1) and W3 currents. In fact, for the spherically symmetric higher spin black hole, by

virtue of (3.9), (3.10), the relationship between the zero modes of the purely gravitational

û (1) charges and the zero modes of the W3 ones reads

J±0 =
√

2πkL± cos

[
1

3
arcsin

(
3

8

√
3k

2πL3
±
W±

)]
. (4.7)

Therefore, replacing (4.7) into (4.6) one recovers the following expression for the higher

spin black hole entropy in terms of the spin-2 and spin-3 charges, which reads

S = 2π
√

2πk

(√
L+ cos

[
1

3
arcsin

(
3

8

√
3k

2πL3
+

W+

)]

+
√
L− cos

[
1

3
arcsin

(
3

8

√
3k

2πL3
−
W−

)])
, (4.8)

in full agreement with the result obtained in [15].

4.2 Remarks on regularity and entropy in highest weight gauge

As explained in section 3, our boundary conditions can be expressed in terms of the natural

variables of the highest weight gauge by choosing the Lagrange multipliers µ±, ν± according

to (3.7), (3.8), as well as mapping the W3 currents L±, W± in terms of the û (1) ones as

in (3.9), (3.10). Despite that the formulation of our boundary conditions in the highest

weight gauge is certainly more involved than in the diagonal one, it is worth mentioning that

the computations related to regularity of the Euclidean higher spin black flowers and their

entropy can be carried out anyway, by taking into account certain refinements. Indeed, in

the highest weight gauge, the left hand side of the regularity condition (4.1) cannot be so

easily exponentiated. Nevertheless, the regularity condition can be alternatively written as

β2tr
[
â2
τ

]
= −8π2

(
m2 +mn+ n2

)
β3det [âτ ] = 8π3i (m+ n)mn , (4.9)

where âτ stands for the Euclidean continuation of â±t in (3.2), with Λ± [µ±, ν±] given

by (3.3). The latter equations actually become extremely convoluted, since tr
[
â2
τ

]
and
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det [âτ ] evaluate as

tr
[
â2
τ

]
=

48π

k

(
νW − 1

3
µL+

k

12π
µ′′
)
µ− 29π2

3k2

[(
L2 − k

16π
L′′
)
ν (4.10)

− 5k

25π

(
ν ′L′ + 2ν ′′L − k

20π
ν ′′′′
)]

ν − 2

3
ν ′′2 − 2µ′2 +

4

3

(
ν ′′′ − 20π

k
ν ′L
)
ν ′ ,

idet [âτ ] =
27π2

3k2

[
ν2L − 3k

32π

(
µ2 − ν ′2 +

4

3
νν ′′

)][
µW +

2

3
ν

(
L′′ − 12π

k
L2

)
+

7

3
ν ′L′ + 8

3
ν ′′L − k

12π
ν ′′′′
]

+
25π2

3k2

[(
µ− 5

3
ν ′
)
L − 2

(
W +

1

3
L′
)
ν

− k

4π

(
µ− 1

3
ν ′
)′′] [(

µ− ν ′
)(

νL − 3k

8π

(
µ+

1

3
ν ′
)′)

(4.11)

−6ν

((
W − 1

3
L′
)
ν − 1

2

(
µ+

5

3
ν ′
)
L+

k

8π

(
µ+

1

3
ν ′
)′′)]

+
23π

k

(
µ′ − 1

3

(
ν ′′ − 8π

k
νL
))[(

µ+ ν ′
)(

ν

(
W − 1

3
L′
)
− 1

2

(
µ+

5

3
ν ′
)
L

+
k

8π

(
µ+

1

3
ν ′
)′′)

− 24π

32k

(
νL − k

8π
ν ′′
)(

νL − 3k

8π

(
µ+

1

3
ν ′
)′)]

,

respectively. Nonetheless, after some amount of algebraic work, one verifies that the regu-

larity conditions in (4.9) conspire with the expressions that define our boundary conditions

in the highest weight gauge, given by (3.7), (3.8), and (3.9), (3.10), so that regularity

holds provided the equations in (4.2) do, in full agreement with the result that was easily

performed in the diagonal gauge.

The formulation of our boundary conditions in the highest weight gauge is such that

the hypotheses assumed in [15, 21] do not apply, and hence the entropy formula in (4.4)

cannot be used in this case, since it would yield an incorrect result. However, the higher

spin black flower entropy can still be obtained through the original formula in (4.3) [19, 20].

Indeed, replacing â±ϕ and â±t into the variation of the (Lorentzian) entropy, one obtains

δS =
k3

2π
β

∫
dϕ
(

tr
[
â+
τ δâ

+
ϕ

]
− tr

[
â−τ δâ

−
ϕ

] )
=

∫
dϕ (µ+δL+ + µ−δL− − ν+δW+ − ν−δW−) ,

which by virtue of (3.7), (3.8), and (3.9), (3.10), reduces to

δS =
k3

4π
β

∫
dϕ

(
ζ+δJ + + ζ−δJ − +

4

3
ζ+

(3)δJ
+
(3) +

4

3
ζ−(3)δJ

−
(3)

)
. (4.12)

Since, ζ± and ζ±(3) are assumed to be constants, the variation of the entropy readily inte-

grates as

S =
k3

4π
β

∫
dϕ

(
ζ+J + + ζ−J − +

4

3
ζ+

(3)J
+
(3) +

4

3
ζ−(3)J

−
(3)

)
, (4.13)

so that once the regularity conditions in (4.2) are taken into account, the entropy reduces

to the formula in eq. (4.5) which was straightforwardly obtained in the diagonal gauge.
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5 Higher spin black holes with soft hair in the metric formalism

The entropy of the higher spin black flower for the branch that is connected with the BTZ

black hole in eq. (4.6) can also be alternatively recovered in the metric formalism. In order

to deal with non spherically symmetric horizons, the formula proposed in [20] has to be

slightly refined, so that the entropy reads

S =
1

4G

∫
∂Σ+

A cos

[
1

3
arcsin

((√
3
φ

A

)3
)]

dσ , (5.1)

where A and φ stand for the horizon area element and its spin-3 analogue, respectively.

They are naturally defined in terms of the pullback of the metric and the spin-3 field

at the spacelike section of the horizon, so that their integrals become reparametrization

invariant, i.e.,

A =

∫
∂Σ+

A dσ =

∫
∂Σ+

(
gµν

dxµ

dσ

dxν

dσ

)1/2

dσ (5.2)

Φ =

∫
∂Σ+

φdσ =

∫
∂Σ+

(
Φµνρ

dxµ

dσ

dxν

dσ

dxρ

dσ

)1/3

dσ . (5.3)

It is worth mentioning that, although a full nonperturbative action principle for higher spin

gravity formulated exclusively in term of the metric and the spin-3 field is still unknown,

the entropy in (5.1) can be written as a closed analytic formula. In the weak spin-3 limit,

an explicit action principle was constructed in [24] up to quadratic order, from which the

entropy in the static case was also obtained and it turns out to agree with the corresponding

perturbative expansion of (5.1).

The higher spin black flower metric corresponds to a generalization of the soft hairy

black holes recently obtained in [1] for General Relativity with negative cosmological con-

stant in vacuum. In order to explicitly see the contact, for simplicity, let us choose the

Lagrange multipliers to be constants according to ζ± = −a, ζ±(3) = −a(3). The spacetime

metric can then be reconstructed from the gauge fields as in (1.4), and it is found to be

given by

ds2 = −2ρ`f(ρ)a
(

1 + 4 (1− 2f(ρ))2 a−2a2
(3)

)
dv2 + 2`dρdv − 2ωa−1dρdϕ

+ 4
(
ω + 4 (1− 2f(ρ))2 ω(3)a

−1a(3)

)
ρf(ρ)dvdϕ (5.4)

+

[
γ2 +

4

3
γ2

(3) +
2ρ

`
a−1f(ρ)

(
γ2 − ω2 + 4 (1− 2f(ρ))2

(
γ2

(3) − ω
2
(3)

))]
dϕ2 ,

with t = v, and f (ρ) = 1+ ρ
2a` . The remaining arbitrary functions are related to the global

charges according to

`J ± := γ ± ω ; `J ±(3) := γ(3) ± ω(3) , (5.5)

which means that they cannot be gauged away by proper gauge transformations. The event

horizon is located at ρ = 0. The line-element (5.4) shows that our boundary conditions
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can be interpreted as near horizon conditions that for small ρ recover Rindler space in

Eddington-Finkelstein type of coordinates. In the case of ω(3) = a(3) = 0, the spacetime

geometry reduces to the one found in [1] which is of negative constant curvature.

Analogously, the spin-3 field can be reconstructed from (1.4), whose explicit form is

given in the appendix B. For our purposes, it is enough to know the behaviour of its purely

angular component around the horizon, which reads

Φϕϕϕ = − 2

27

(
4γ2

(3) − 9γ2
)
γ(3) +O (ρ) . (5.6)

Note that in three spacetime dimensions the metric component gρϕ can always be

gauged away. Indeed, even in the case of a generic choice of Lagrange multipliers ζ±,

ζ±(3), the metric and the spin-3 field can also be directly reconstructed from (1.4) in normal

coordinates. This can be done through a permissible gauge transformation, which amounts

to replace the group elements b± in (2.2) by b± = e±
r
2

(L1+L−1). The line element then reads

ds2 = −`
2

2

[
ζ+

(3)ζ
−
(3)

(
cosh (4r) +

5

3

)
+ 2ζ+ζ− cosh2 (r)− 1

2

(
ζ+ + ζ−

)2
−2

3

(
ζ+

(3) + ζ−(3)

)2
]
dt2 + `2dr2 + `

[
1

2

(
ζ+

(3) − ζ
−
(3)

)
γ(3)

(
cosh (4r) +

5

3

)
−
(
ζ+

(3) + ζ−(3)

)
ω(3) sinh2 (2r)−

(
ζ+ + ζ−

)
ω sinh2 (r) +

(
ζ+ − ζ−

)
γ cosh2 (r)

]
dtdϕ

+

[
1

2

(
cosh (4r) +

5

3

)
γ2

(3) − ω
2
(3) sinh2 (2r) + γ2 cosh2 (r)− ω2 sinh2 (r)

]
dϕ2 ,

(5.7)

so that the event horizon locates at r = 0. This class of geometries asymptotically ap-

proaches to locally AdS3 spacetimes of radius `/2.

The explicit form of the spin-3 field is written in the appendix B, and its purely angular

component close to the horizon behaves as equation (5.6) with O(ρ) replaced by O(r2). It

is then simple to verify that requiring regularity of the Euclidean metric and the spin-3

field around the horizon fixes the Lagrange multipliers (chemical potentials) precisely as

in eq. (4.2) with m = 0 and n = 1, i.e., for the branch that is connected to the BTZ

black hole. Further issues about regularity of the fields in the metric formalism have been

discussed in [12, 25].

For the most generic higher spin black flower configuration (5.7), and (the again trans-

formed) (5.6), as well as for the particular case in (5.4), (5.6), the event horizon area

element and its spin-3 analogue in eqs. (5.2), (5.3), respectively, then evaluate as

A2 = gϕϕ|r+ = γ2 +
4

3
γ2

(3) (5.8)

φ3 = Φϕϕϕ|r+ =
2

27
γ(3)

(
9γ2 − 4γ2

(3)

)
, (5.9)

so that, by virtue of the identity

cos

[
1

3
arcsin

(
x
(
x2 − 3

)
(x2 + 1)3/2

)]
=

1√
x2 + 1

(5.10)
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the entropy in (5.1) reduces to

S =
1

4G

∫
γ dϕ =

k

2

∫ (
J + + J −

)
dϕ = 2π

(
J+

0 + J−0
)
, (5.11)

in full agreement with the result found exclusively in terms of gauge fields in section 4 (see

eq. (4.6)).

Note that
∫
γdϕ could then be regarded as a sort of “effective higher spin horizon

area”, which curiously corresponds to the horizon area of the purely gravitational black

flower in the absence of higher spin fields.

6 Extension to AdS3 gravity coupled to fields of spin greater than 2

The extension of our boundary conditions and the analysis of the properties of the corre-

sponding higher spin black flower can also be performed in the case of gravity with negative

cosmological constant coupled to bosonic fields of spin s > 2. As explained in the intro-

duction, the generic theory we consider2 is described by a gauge group spanned by two

copies of sl (N,R), where the two copies of sl (2,R) are principally embedded. It is also

worth mentioning that in the case of even N , the theory admits an additional truncation

that describes the coupling of gravitation on AdS3 with fields of even spin s = 4, 6, · · · ,
N , described by two copies of sp (N,R). Additional special truncations are also known to

exist in the case of exceptional groups, see e.g., [26]. Hereafter we carry out the analysis

for sl (N,R).

We propose that the asymptotic behaviour of the sl (N,R) gauge fields A± is of the

form in (2.1) with b± given by (2.2), so that the auxiliary connection extends to

a± =
(
±J ± dϕ+ ζ± dt

)
L0 +

N∑
s=3

(
±J ±(s) dϕ+ ζ±(s) dt

)
W

(s)
0 , (6.1)

where L0, and W
(s)
0 stand for the generators of the Cartan subalgebra of the gauge group.

The dynamical fields are then described by arbitrary functions of time and the angular

coordinate, given by J ±, J ±(s), with s = 3, 4, · · · , N ; and their corresponding Lagrange

multipliers, ζ±, ζ±(s), are assumed to be fixed at the boundary without variation. It is then

simple to verify that the field equations read

J̇ ± = ±ζ ′ J̇ ±(s) = ±ζ ′(s) . (6.2)

The asymptotic symmetries that maintain the form of (6.1) are spanned by Lie-algebra-

valued parameters of the form ε± = η±L0 +
∑N

s=3 η
±
(s)W

(s)
0 , with η̇± = η̇±(s) = 0, provided the

fields transform according to

δJ ± = ±η±′ δJ ±(s) = ±η±′(s) . (6.3)

2Further generalizations to higher-spin theories based on Chern-Simons actions (1.1) with arbitrary

gauge groups G+, G− containing SL (2, R) as subgroup are possible as well, but will not be considered in

the present work. See for instance section 2.1 in [10].
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The canonical generators of the asymptotic symmetries then read

Q±
[
η±, η±(s)

]
= ∓ k

4π

∫
dϕ

(
η± (ϕ)J ± (ϕ) +

N∑
s=3

αsη
±
(s) (ϕ)J ±(s) (ϕ)

)
, (6.4)

where

αs =
48 (s− 1)!4

(2s− 1)! (2s− 2)!

s−1∏
i=2

(
N2 − i2

)
(6.5)

and their algebra is given by

{
J ± (ϕ) ,J ±

(
ϕ′
)}

= ∓
(

4π

k

)
δ′
(
ϕ− ϕ′

)
{
J ±(s) (ϕ) ,J ±(s′)

(
ϕ′
)}

= ∓
(

4π

αsk

)
δs,s′δ

′ (ϕ− ϕ′) . (6.6)

Expanding in Fourier modes according to

J ± (ϕ) =
2

k

∞∑
n=−∞

J±n e
±inϕ J ±(s) (ϕ) =

2

αsk

∞∑
n=−∞

J (s)±
n e±inϕ , (6.7)

the algebra (6.6) reads

i
{
J±n , J

±
m

}
=
k

2
nδm+n,0 i

{
J (s)±
n , J (s′)±

m

}
=
αsk

2
nδs,s′δm+n,0 , (6.8)

which corresponds to a set of û (1) currents with levels 1
2k and 1

2αsk.

For the simplest choice of boundary conditions, given by constant Lagrange multipliers

ζ±, ζ±(s), the dynamical fields become time-independent, and the total Hamiltonian reads

H = ζ+J+
0 + ζ−J−0 +

N∑
s=3

(
ζ+

(s)J
(s)+
0 + ζ−(s)J

(s)−
0

)
, (6.9)

which manifestly commutes with the û (1) generators J±n , J
(s)±
m . Therefore, in this case,

the whole set of affine global charges can be regarded as (higher spin) soft hair in the sense

of [2].

Following the procedure described in section 3, one naturally expects to find the gener-

alization of the Miura transformation in (3.9), (3.10) between the currents in the diagonal

and highest weight gauges, from which the WN currents should emerge from composite

operators of the affine ones through an analogue of the twisted Sugawara construction.

Note that in the case of constant ζ± and ζ±(s), the field equations (6.2) imply that

the space of solutions that fulfills our boundary conditions is described by J ± = J ± (ϕ),

J ±(s) = J ±(s) (ϕ), which generically corresponds to non spherically symmetric higher spin

black holes endowed with all of the possible left and right soft û (1) charges. Indeed, in the

fundamental representation of sl (N,R), regularity of the Euclidean configurations reads

HC = Pe
∫
C a = (−1)N+1

1 ,
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where C stands for any contractible cycle in the solid torus. The regularity conditions

of the Euclidean solutions then just reduces to exponentiate a diagonal matrix, which

readily implies that the chemical potentials ζ±, ζ±(s) become fixed by precise relationships

that depend linearly on N − 1 arbitrary integers, and they are independent of the global

charges. For the branch that is connected to the BTZ black hole, the only nonvanishing

chemical potentials are the ones that correspond to the purely gravitational sector, i.e.,

ζ± =
2π

β
ζ±(s) = 0 . (6.10)

The generic solution is then described by N − 1 left and right soft û (1) charges, from

which the higher spin ones can be reconstructed by virtue of the map between them and

the WN currents.

For the branch that is continuously connected to the BTZ black hole, the entropy of a

generic higher spin black flower can be directly recovered from (4.4), which reduces to

S = 2π
(
J+

0 + J−0
)
. (6.11)

Note that the entropy (6.11) exactly agrees with the one in (4.6) for the case of sl (3,R),

as well as for the expression found in [1] in the case of gravity on AdS3. In this sense,

the entropy in (6.11) is universal because it depends only on the zero modes of the purely

gravitational û (1) charges, regardless the value of N ≥ 2.

7 Discussion

The new set of boundary conditions (2.1)–(2.3) (or more generally, (6.1)) for higher spin

gravity on AdS3 has a set of affine û(1) currents generating the asymptotic symmetry alge-

bra with non-vanishing levels (2.10) (or more generally (6.8)). The concept of spin emerges

from the conformal weight of the composite generators of the asymptotic W algebra that is

recovered through a nonlinear analogue of the twisted Sugawara construction (3.9), (3.10).

Fourier decomposition of the û(1) charges leads to a tower of generators (2.9) which can be

interpreted as creation operators for negative integer indices. Acting with these creation

operators on states, e.g. on the vacuum as in (2.11), generates higher spin soft hair descen-

dants that have the same energy as the original state, thereby generalizing corresponding

spin-2 results [2] (see also [27–36]).

The generic solution of the field equations that fulfills our boundary conditions de-

scribes stationary and non necessarily spherically symmetric configurations, whose en-

tropy (6.11) was shown to be independent of (higher spin) soft hair. In the case of AdS3

gravity coupled to spin-3 fields, these results were also explicitly recovered in the metric

formalism in section 5. It would be interesting to explore further geometric aspects of these

higher spin black flowers along the lines of [37, 38], as well as the possibility of performing

a microstate counting for their entropy as in [39].

We have generalized our results from spin-3 gravity in AdS3 to general higher spin

gravity in section 6, but there is a number of issues that remain for further exploration.

For instance, we did not explicitly provide the (twisted) Sugawara-like constructions for

– 16 –



J
H
E
P
1
0
(
2
0
1
6
)
1
1
9

spins greater than 3. Moreover, we focused exclusively on the principal embedding of

sl(2,R) into sl(N,R) [40, 41]. Additionally, we did not consider Vasiliev-type of theories

with infinite towers of spins, based on hs(λ) [7, 9]. Finally, our focus was exclusively on

AdS3 backgrounds, but it is well-known that higher spin gravity allows also for non-AdS

backgrounds [42–46] and vanishing cosmological constant [47–51] or generalizations along

the lines of hypergravity [52–55]. Investigations of the other branches, besides the BTZ

branch, of the entropy should be possible [56]. Furthermore, it might be interesting to

explore extremal higher spin black holes [55, 57] and entanglement entropy [58–62] in this

setup.

Besides, a different set of boundary conditions for which the Lagrange multipliers

depend locally on the dynamical fields has been recently proposed in [63], where it was

shown that the field equations correspond to different integrable hierarchies. Our set of

boundary conditions, once expressed in the highest weight gauge, differs from the one in [63]

because here the Lagrange multipliers depend non-locally on the dynamical fields (see e.g.,

eqs. (3.7), (3.8), with (3.9), (3.10)). Nonetheless, as pointed out in [63], for the case of pure

gravity on AdS3, our boundary conditions appear to be related to a representative of an

extension of the KdV hierarchy that is labeled by a fractional instead of an integer label

(precisely k = −1/2), see e.g. [64–67]. One might then naturally expect that a similar effect

should occur for the extension of different hierarchies once the higher spin fields within our

boundary conditions are switched on.

Additional interesting possibilities also naturally arise along the lines of the connection

of higher spin fields and string theory [68, 69] and the diverse related results in refs. [70–80].
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A Principal embedding of SL (2,RRR) within SL (N,RRR)

In the principal embedding of SL (2,R) within SL (N,R), the set of generators of sl (N,R)

naturally splits as {Li; W(s)
m }, with i=−1, 0, 1; s = 3, · · · , N , andm = − (s− 1) , · · · , (s− 1),
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so that

[Li, Lj ] = (i− j) Li+j (A.1)[
Li, W

(s)
m

]
= ((s− 1) i−m) W

(s)
i+m (A.2)

from which Li and W
(s)
m can be seen to possess spin two and spin s, respectively. In the

fundamental representation, the generators of the sl (2,R) subset are described through

N ×N matrices that can be chosen to be given by

(L1)jk = −
√
j (N − j)δj+1,k (A.3)

(L−1)jk =
√
k (N − k)δj,k+1 (A.4)

(L0)jk =
1

2
(N + 1− 2j) δj,k , (A.5)

with j, k = 2 . . . , N , so that the remaining ones become defined as

W(s)
m = 2 (−1)s−m−1 (s+m− 1)!

(2s− 2)!
[L−1, [L−1, · · · [L−1︸ ︷︷ ︸

s−m−1 terms

, (L1)s−1] · · · ]]

= 2 (−1)s−m−1 (s+m− 1)!

(2s− 2)!

(
adL−1

)s−m−1
(L1)s−1 , (A.6)

where adX (Y) := [X, Y].

The normalization constants used in the text are then given by

εN = tr(L0L0) =
N(N2 − 1)

12
(A.7)

αs =
12

N (N2 − 1)
tr
(
W

(s)
0 W

(s)
0

)
=

48 (s− 1)!4

(2s− 1)! (2s− 2)!

s−1∏
i=2

(
N2 − i2

)
. (A.8)

B Explicit form of the spin-3 field

For the particular case of the solution that describes a higher spin black flower, whose

metric is given by (5.4), the explicit form of the spin-3 field reads

Φ =

{
a−2γ(3)dρ

2 + 2`

[
(1− 2f(ρ))2

(
a(3)a

−1γ − 1

3
γ(3)

)
− 4

3
a−1γ(3)

ρ

`
f(ρ)

]
dρdv

+
2

3
a−1

[
(1− 2f(ρ))2 (γ(3)ω − 3γω(3)

)
+ 4a−1γ(3)ω

ρ

`
f(ρ)

]
dρdϕ

+
2

3
a−1`ρf(ρ)

[
(1− 2f(ρ))2

(
γ(3)

(
a2 + 4a2

(3)

)
− 6aa(3)γ

)
+ 4aγ(3)

ρ

`
f(ρ)

]
dt2

+
4

3
a−1ρf(ρ)

[
(1− 2f(ρ))2 (3γ (aω(3) + a(3)ω

)
− γ(3)

(
aω + 4a(3)ω(3)

))
+ 4ωγ(3)

ρ

`
f(ρ)

]
dvdϕ+

[
(1− 2f(ρ))4 γ(3)

(
γ2 − 4

3
γ2

(3)

)
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+
1

3
(1− 2f(ρ))2

(
2a−1

(
γ(3)

(
ω2 + 4ω2

(3)

)
− 6γω(3)ω

) ρ
`
f(ρ)− γ(3)γ

2
)

+
8

3
a−2γ(3)

(ρ
`
f(ρ)ω2 + aγ2

(3)

) ρ
`
f(ρ) +

28

27
γ3

(3)

]
dϕ2

}
dϕ . (B.1)

Therefore, close to the horizon, the component Φϕϕϕ expands as in eq. (5.6).

For a generic choice of Lagrange multipliers, the spacetime geometry can be described

in normal coordinates as in eq. (5.7), and the exact expression for the spin-3 field is given by

Φ=−`
3

3

(
1

2

(
ζ+

(3)−ζ
−
(3)

)
dt+

γ(3)

`
dϕ

)
dr2

−`
3

6

{
−3

8

(
cosh(4r)+

1

3

)[
4

3
ζ+

(3)ζ
−
(3)

(
ζ+

(3)−ζ
−
(3)

)
+ζ+

(3)

(
ζ−
)2−ζ−(3)

(
ζ+
)2]

+ζ+ζ−
(
ζ+

(3)−ζ
−
(3)

)
cosh(2r)+

2

9

[(
ζ+

(3)

)3
−
(
ζ−(3)

)3
]
−1

2

[(
ζ+
)3−(ζ−)3]}dt3

−1

6

{
γ3

(3)

(
cosh(4r)+

7

9

)
+ω(3)

(
3γω−2γ(3)ω(3)

)
sinh2(2r)

−3γ(3)ω
2sinh2(r)

(
cosh(2r)−1

3

)
−3γ(3)γ

2cosh2(r)

(
cosh(2r)+

1

3

)}
dϕ3

−`
{(
ζ++ζ−

)(
γω(3)cosh2(r)+

1

6
γ(3)ω(1−3cosh(2r))

)
sinh2(r)

+
(
ζ+−ζ−

)(
ω(3)ωsinh2(r)−1

6
γ(3)γ(3cosh(2r)+1)

)
cosh2(r) (B.2)

+
1

4

(
ζ+

(3)+ζ
−
(3)

)(
γω−4

3
γ(3)ω(3)

)
sinh2(2r)−1

4

(
ζ+

(3)−ζ
−
(3)

)[2

3
ω2

(3)sinh2(2r)

−γ2
(3)

(
cosh(4r)+

7

9

)
+γ2cosh2(r)

(
cosh(2r)+

1

3

)
+ω2sinh2(r)

(
cosh(2r)−1

3

)]}
dtdϕ2−`

2

2

{
ω(3)

[(
ζ+
)2−(ζ−)2]sinh2(r)cosh2(r)

−1

6
γ(3)

[(
ζ+

(3)+ζ
−
(3)

)2
sinh2(2r)−3

2

(
cosh(4r)+

7

9

)(
ζ+

(3)−ζ
−
(3)

)2

+
3

2

(
ζ++ζ−

)2
sinh2(r)

(
cosh(2r)−1

3

)
+

3

2

(
ζ+−ζ−

)2
cosh2(r)

(
cosh(2r)+

1

3

)]
+3
(
ζ+

(3)−ζ
−
(3)

)[(
ζ+−ζ−

)
γ

(
cosh(2r)+

1

3

)
cosh2(r)+

(
ζ++ζ−

)
ω

(
cosh(2r)−1

3

)
sinh2(r)

]
−3

2

(
ζ+

(3)+ζ
−
(3)

)[(
ζ++ζ−

)
γ+
(
ζ+−ζ−

)
ω−4

3

(
ζ+

(3)−ζ
−
(3)

)
ω(3)

]
sinh2(2r)

}
dϕdt2,

so that the component Φϕϕϕ expands according to (5.6), with O(ρ) replaced by O(r2), near

the horizon.
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