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Introduction

After decades of intense efforts, Higher-Spin (HS) theories still present

several unanswered questions as well as many open problems that along the

years have highlighted the many difficulties of the subject and, most impor-

tantly, the limitations of the well known frameworks and techniques that have

been successfully applied to their lower-spin counterparts. For these reasons

HS theories have been over the last decades an intense field of research that

has attracted an increasing attention, starting from the works of the late 80’s

by Fradkin and Vasiliev (FV) [1] and Vasiliev [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

that opened the way to the first classically consistent examples of non-abelian

interactions of this type.

However, we are still far from a satisfactory understanding of the problem,

so much so that only in the last few years a reasonable understanding of the

free HS theory has been attained1. Two distinct approaches have come to

terms with a problem that, in some respects, dates back to the early days

of Quantum Field Theory (QFT) (see, e.g. [25, 26, 27, 28, 29, 30]). The

first is a “metric-like” approach, initiated in the works of Hagen and Singh

[31], Fronsdal [32] and de Wit and Freedman [33], and reconsidered more

recently by Francia and Sagnotti [34, 35, 36]. In their works the authors of

[34] proposed a geometric reinterpretation of the free-field equations that can

1For some recent reviews of HS gauge theories, see e.g. the proceeding [12] (which

includes contributions [13, 14, 15, 16, 17]) and [18, 19, 20, 21, 22, 23, 24].

1



2 INTRODUCTION

be expressed as
1

�n
∂ · R [n]

;µ1...µ2n+1 = 0 , (1)

for odd spins s = 2n + 1, and

1

�n−1
R [n]

;µ1...µ2n = 0 , (2)

for even spins s = 2n, together with the related minimal Lagrangian for-

mulation [37, 38], that rests for any s on at most two additional fields and

simplifies the previous BRST (Becchi, Rouet, Stora, Tyutin) constructions

of [39, 40, 41, 42, 43, 44, 45]. This form of the free equations includes the

three familiar lower-spin examples, given by the linearized Einstein equations

(s = 2), by the Maxwell equations (s = 1) and formally also by the Klein-

Gordon equation (s = 0), together with non-local equations for spin larger

than two. One can thus have an intuition, even if restricted to a single spin

at a time, of possible generalizations of the geometric framework of Maxwell

theory and Einstein gravity to HS, pointing also to a possible key role of non-

localities, that may be more and more fundamental at the interacting level,

together with an eventual reconsideration of QFT from a more general per-

spective. More recently, these results were also generalized to reducible HS

free fields, starting from the “triplet” system [46, 47, 48] and recovering simi-

lar interesting non-local structures [49, 50]. The constructions for symmetric

(spinor)-tensors that we have just outlined afford also interesting generaliza-

tions to the case of mixed-symmetry fields of the type φµ1...µs1 ;ν1...νs2 ...
, whose

non-local geometric equations were first proposed in [51, 52, 53], while the

Lagrangian formulation was initiated with the pioneering works of Curtright

and Labastida [54, 55, 56, 57, 58, 59, 60, 61, 62] and was completed only

recently [63, 64, 65]. A second kind of approach, the “frame-like” one, was

developed mostly by Vasiliev and collaborators [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

generalizing the Cartan-Weyl framework to HS, and led to the Vasiliev sys-

tem. Despite the remarkable success of Vasiliev’s approach, only recently has

it been possible to arrive at a covariant description of all bosonic flat space

cubic interactions in [66, 67, 68] by purely field theoretical methods. At the
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same time, starting from a String Theory vantage point, all consistent cubic

interactions involving bosonic and fermionic fields were obtained in [69, 70]2.

These results were then extended, for what concerns the part of the vertices

that is not proportional to traces and divergences of the fields, to constant-

curvature backgrounds in [75, 76]3 while the formalism was pushed forward

to higher orders in the number of fields in [78]4 identifying a class of higher-

order flat vertices. This extended previous results, including the works of the

80’s by Bengtsson, Bengtsson and Brink [80, 81] and the important works

of Metsaev [82, 83, 84, 85, 86, 87, 88, 89, 90], in the light-cone formulation,

and the works of Berends, Burgers and van Dam [91, 92, 93] in a covariant

formulation that were then reconsidered and extended by Boulanger and oth-

ers in5 [100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113]

and were recently exploited in the interesting work of Bekaert, Joung and

Mourad [114].

This Thesis is aimed at reviewing our current understanding of HS in-

teractions along the lines of the original contributions of the author [69, 70,

78, 75, 76, 77] and, more in detail, within the variant of the ambient-space

formalism developed originally by the author in6 [75, 76]. Moreover, we shall

push forward the idea that string results and their structure may give new

insights on field theory properties that manifest themselves when looking

at HS fields. This motivates a closer relation between ST and HS gauge

theories that resonates with the long-held feeling that ST draws its origin

from a generalized Higgs effect responsible for its massive excitations (see e.g.

[116, 117, 118, 119, 120, 121, 122, 123]). The crux of the matter has long been

to construct a consistent deformation of the free system at the quartic order.

2Further off-shell completions were presented in [71, 72, 73, 74].
3See also [77] for a review of the general ideas and results.
4See also the appendix of [70] and [79] for a related analysis of the quartic interactions

and for further discussions.
5See also [94, 95, 96, 97, 98, 99] for more recent results related to mixed-symmetry

fields and fermions.
6See also [115] and references therein for similar ideas in the framework of two-time

physics.
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It is indeed this the case in which the HS program has encountered along

the years a barrier, both in the metric-like formulation and in the frame-like

one, in which Vasiliev’s system unfortunately does not provide a transparent

answer7. Indeed, only recently in [107] the chain of higher-derivative terms

found in the work of FV8 [1] and weighted by inverse powers of the cosmolog-

ical constant Λ was recognized to be related, in the case of the gravitational

coupling, to a higher-derivative seed (called in this way after [130]). The

latter is nicely associated to the simpler flat space cubic vertex, whose exact

structure can be recovered, in a suitable scaling limit, wiping out the lower

members of the tail. Moreover, even the origin of the spin-2 excitation present

in the Vasiliev system is still unclear from a field theory perspective, since it

can be dressed with Chan-Paton factors like any excitation belonging to the

open bosonic string. This would make the “graviton9” colored, in contrast

with standard field theory results pointing out inconsistencies of this kind of

option [131] (strictly speaking with finitely many fields). To reiterate, at the

quartic order a number of difficulties have piled up along the years, starting

from the no-go results [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142],

up to the inconsistency pointed out in [111] for the Berends-Burgers-van

Dam cubic coupling of spin-3 fields (for a recent review see for instance [22]

and references therein). Four-point functions of HS fields have been (and

still are) somehow the most intriguing source of difficulties. Here we shall

review these questions discussing the role of Lagrangian non-localities from a

more general perspective while keeping in mind the well known breakdown of

unitarity and causality that seems unavoidably to accompany them (see e.g.

[1, 143, 22, 144]). As we have anticipated, already at the quadratic level some

non-localities naturally arise as soon as massless HS particles are considered

while at higher orders they may reflect very peculiar and subtle aspects of

7See [124, 125, 107] for a discussion of the the general strategy in order to extract the

couplings starting from the Vasiliev system together with some explicit results for the

scalar couplings. See also [126] for a proposal of an action principle for Vasiliev’s system.
8See [127, 128, 129] for the extension of the FV construction beyond 4 dimensions.
9We call it graviton here with a little abuse of language since it admits colors.
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the corresponding tree-level amplitudes that may clash with the factorization

property usually assumed in the framework of the S-matrix theory.

From a more general perspective concepts like locality or unitarity have

proved to be still poorly understood for HS field theories, and in general

in theories of Quantum Gravity. An example is the open problem of rec-

onciling unitarity with black hole entropy (see e.g. [145]), where the only

indirect argument that a unified description should exist comes from the

famous AdS/CFT correspondence10 [147]. The limitations as well as the

comprehension of these concepts deserve further studies, especially whenever

HS fields are taken into account. Moreover, it is worth stressing that those

concepts are very deeply related to fundamental questions that combine the

long standing problems of understanding Gravity and Quantum Mechanics.

Over the years there have been a number of results pointing to the afore-

mentioned direction, one of these being the AdS/CFT correspondence itself.

The latter gives indeed an interesting hint on the very nature of the full the-

ory of Quantum Gravity and strongly suggests the need of introducing HS

excitations in order to arrive at a systematic analysis of a quantum space-

time geometry. The reason is very simple and is related to the fact that many

CFT admit primary operators of arbitrary spin, be they related to conserved

currents or not. Most of the time such operators can be indeed constructed

by considering derivatives of the fundamental fields, as for instance

Jµ1...µs ∼ ∂ µ1 . . . ∂ µkφ ∂ µk+1 . . . ∂ µsφ , (3)

where the space time indices are carried by the derivatives, or as in ST:

Jµ1...µs ∼ ∂X µ1 . . . ∂X µs . (4)

where the space time indices are carried by the fields themselves. From

the space-time point of view this picture may correspond to various phases

of some underlying HS field theory whose observables, Ward Identities and

global symmetries can be captured by some CFT.

10See [146] for a reinterpretation of the Holographic principle from the point of view of

the Unfolding formulation.
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Even if the previous observation is centered on the AdS/CFT correspon-

dence, the very origin of these motivations is to be found in String Theory,

that is regarded as a promising scheme for the Fundamental Interactions,

leading naturally to a ultraviolet completion of classical gravity. Moreover it

is an example of a theory with an infinite number of propagating degrees of

freedom, which makes very hard to imagine how the fundamental concepts

mentioned above can be enforced systematically or even translated in terms

of a fully background independent scenario.

Surely enough, the whole net of string dualities together with the remark-

able M-theory picture have led to a number of important results, nonetheless

fundamental questions like those mentioned above about a background in-

dependent description highlight the limitations of the current formulation.

Therefore, to reiterate, one is naturally led to delve into the systematics of HS

theories that, for the reasons mentioned so far, are the most natural candi-

dates to describe in a fully background independent way Quantum Gravity,

as well as the generalizations of classical geometry to a full HS geometry

underlying this completion.

In this respect the crucial role of quartic and higher-order interactions

can be appreciated just looking at ST, where one can observe the presence

of an infinite number of α ′ corrections, in net contrast to the simpler cubic

level containing, for given spins, a finite number of them. Hence, it is not a

surprise from this viewpoint that starting from the quartic order the defor-

mation program has encountered along the years severe difficulties, both in

the metric-like formulation and in the frame-like one11.

An infinite number of α ′ corrections is actually tantamount to an intrinsic

non-locality of the corresponding space-time description. Although, causality

should be enforced only at the level of the observable quantities in the usual

11There are indeed difficulties in constructing a consistent first-order Lagrangian de-

scription (see [126] for a proposal of a Lagrangian for the Vasiliev system that requires an

enlargement of the usual Vasiliev’s setting).
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form of Einstenian locality [148]:

[O(x),O(y)] = 0 , (x− y)2 > 0 , (5)

for a space-like separation of the supports of the observables. This leaves

open in principle the possibility that non-observable objects like gauge-fields

interact in a seemingly unexpected non-local way. A further observation can

be made in this respect and is related to the possible singular nature that

goes in hand with non-localities. A very instructive example is given by a

non-locality of the form
1

� − m 2
, (6)

that naively seems to be more tractable than one of the form12

1

�
, (7)

because the operator in (6) can be expanded as a formal series yielding

1

� − m 2
= − 1

m2

∞
∑

n=0

(

�

m 2

)n

, (8)

that displays a perturbatively local expansion in the number of derivatives.

Let us stress, though, that the formal expansion of eq. (8) embodies a degree

of singularity that is comparable to the one of 1
�

because the above series

has a finite radius of convergence. Hence, off-shell non-localities behave in

general in similar ways and distinguishing between perturbatively local and

explicitly non-local ones should be supplemented by some further prescrip-

tion13. Let us conclude this brief detour stressing that non-localities like 1
�

are ubiquitous in field theory at the level of scattering amplitudes where they

are contained within the propagators. Actually, together with the Feynmann

iǫ prescription, they give rise to a general type of non-local structure that is

compatible with causality and unitarity14.

12The reason why it is more tractable is that the corresponding convolution kernel has an

exponential fall-off at infinity while the convolution kernel of 1
�
has in general a polynomial

fall-off.
13See e.g. [149] for a discussion about the meaning of a non-local differential equation

containing infinitely many time derivatives.
14Notice here that the above 1

�
terms are never of the ill-defined form 1

0 because within
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Noether Procedure

It is instructive to introduce our arguments starting from the usual field

theory perspective on the problem of HS interactions given by the Noether

procedure. The latter played a key role in the construction of supergravity

[150], and in its various incarnations has played a crucial role in order to

solve for HS cubic couplings in explicit cases. From this point of view, the

HS problem can be reformulated as equivalent to finding, order by order in

the number of fields, a deformation of the free system of the form

S[φ] =
∑

s

S (2)[φµ1...µs
] + ǫ S (3)[φµ1...µs

] + ǫ 2 S (4)[φµ1...µs
] + O(ǫ 3) , (9)

including at least one field of spin s > 2 and where the contribution S (3)

is cubic, S (4) is quartic, and so on. Consistency of the deformation (9)

translates into an equivalence class of deformations of the linearized gauge

symmetries of the type

δΛ φµ1...µs
= δ

(0)
Λ φµ1...µs

+ ǫ δ
(1)
Λ φµ1...µs

+ ǫ 2 δ
(2)
Λ φµ1...µs

+ O(ǫ 3) , (10)

leaving invariant S[φ] order by order, and defined modulo local redefinitions

of fields and gauge parameters of the form

φµ1...µs
→ φµ1...µs

+ ǫ f(φ)µ1...µs
+ O(ǫ 2) ,

Λµ1...µs−1 → Λµ1...µs−1 + ǫ ζ(φ,Λ)µ1...µs−1 + O(ǫ 2) .
(11)

In its general form above the Noether procedure has presented along the

years a number of difficulties that have appeared already at the quadratic

and cubic levels. In the following we are going to reexpress it exploiting two

key ingredients that have been recently recognized. These two ingredients are

the ambient space approach and the restriction to the transverse and traceless

the scattering amplitudes they are not acting on the external states. These kind of non-

localities are instead related, in momentum space, to inverses of the Mandelstam variables

so that their singular nature generates the pole contributions associated to resonances in

accordance with unitarity, while the iǫ prescription implies Einstein locality (5) at the

level of the observables.
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(TT) part of the Lagrangian, before addressing the problem of completing it

to its full version.

Before introducing these two ingredients in more detail, it can be inter-

esting to make some more comments on the possible relations between the

Noether program and the AdS/CFT correspondence. The key observation

moves from the conjectured link between any “fully consistent” theory living

in AdS, that could be thought of as a consistent outcome of the Noether

procedure, and a corresponding CFT on its boundary. In this respect it is

tempting to think that the latter correspondence may capture those consis-

tency requirements encoded by the Noether procedure, embodying them in

a different but equivalent fashion. More in detail, it would be interesting

to understand the meaning of these links and in particular the dictionary

between the Noether procedure requirements in the bulk on one side and

the conformal symmetry at the boundary on the other side15. Most impor-

tantly this would possibly clarify the role played by Lagrangian locality, that

is usually assumed in the bulk and seems to have no naive counterpart on

the CFT side, in relation to more fundamental concepts like Causality and

Unitarity [151, 152, 153]. These observations strengthen the feeling that the

Lagrangian locality constraint should be relaxed when solving the Noether

procedure in full generality, while the AdS/CFT correspondence can give

some hints on the possible alternative requirements that would rule out in-

consistent options. Surely enough, it would be interesting to investigate

the latter alternatives in order both to gain a better understanding of the

Noether procedure itself and to extend the analysis from AdS to flat-space,

that turns to be much more involved and elusive because of the lack of a

guiding principle like AdS/CFT in this case16. On the other hand this point

of view may also shed some new light on the very nature of the AdS/CFT

correspondence itself, whose generality, in a sense, goes far beyond ST or any

15We are referring here in particular to the bootstrap program at the CFT level.
16See e.g. [154, 155, 156, 157] for the study of the flat limit of some AdS scattering

amplitudes. Moreover, it is worth mentioning that the CFT results can be obtained a

priori from the AdS results attaching the Boundary-to-Bulk propagators to the vertices.
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other particular framework17.

In the following we are going to introduce the various ingredients that we

shall exploit in order to address the Noether procedure scheme.

Ambient-space formalism

Already in the flat case the full cubic vertices are highly non-trivial, and

one can expect the structure of (A)dS cubic vertices to be even more com-

plicated due to the non-commutativity of the covariant derivatives. The am-

bient space formalism puts in this respect constant curvature backgrounds

on the same footing, representing them by proper embeddings into diverse

signature flat space time. Actually, the ambient space formalism has a long

history that goes back to the seminal paper of Dirac [159] and has been used

in the context of HS in [160, 84, 85, 161]. The key point of this formalism

are the simplifications that arise when rewriting intrinsic (A)dS quantities in

terms of simpler flat-space ones.18 Recently, it was also exploited in order to

construct spin-s gauge interactions with a scalar field [113].

The key feature of the ambient-space formalism is to regard the (A)dS

space as the codimension-one hyper-surface X2 = σL2, with σ = ±, in an

ambient flat space-time parameterized by Cartesian coordinates XM with

M = 0, 1, · · · , d . In this formalism, the ambient-space HS fields ΦM1···Ms
that

are homogeneous in XM and tangent to the hyper-surface, are in one-to-one

correspondence to the (A)dS fields ϕµ1···µs
. Moreover, the field equations and

the gauge transformations, of (A)dS fields, can be derived from those of the

ambient-space fields by a radial-dimensional reduction.

The only subtlety of this formalism arises from the formally diverging

radial integral at the level of the action. This can be cured with a δ-function

insertion of the form δ
(
√
σX2−L

)

. The presence of the δ-function is the main

17See for instance [158] for a discussion of an holographic model whose bulk dual does

not contain the graviton but massive spin-2 fields.
18The ambient-space formalism has been used for a large number of applications. See

e.g. [162, 44, 163, 164, 165, 166, 167, 168, 169].
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difference between the purely flat-space constructions and the ambient-space

ones and represents an original contribution of the author, which appeared

in19 [75, 76, 77]. It requires particular care since it spoils the usual flat-space

property that the integral of a total derivative vanishes.

TT part of the Lagrangian

This second ingredient has to be considered as a strategy that is very

useful in order to divide the initial problem in well defined and conceptually

simpler ones. Indeed, one of the main lessons in the recent construction of

flat-space cubic interactions [68, 70] is that the complete expressions of the

vertices are determined by their on-shell forms. The latter may be regarded

as the TT part of the corresponding Lagrangian, considered as an equiv-

alence class modulo traces and divergences of the fields. In this approach

the ambient-space representative of the kinetic term for a HS field ΦM1···Ms

becomes simply

∫

dd+1X δ
(√

σX2 − L
) [

ΦM1···Ms
�ΦM1···Ms

+ . . .
]

, (12)

where the ellipsis refer to terms proportional to divergences and traces. In-

deed, the above Lagrangian is invariant under δ
(0)
E ΦM1···Ms

= ∂(M1EM2···Ms)

when quotienting modulo the corresponding Fierz system for the gauge pa-

rameter. The key observation is that the interaction problem can be ad-

dressed first at this level, while completing the Lagrangian to its full version

requires a tedious but well defined procedure. In order to avoid any confu-

sion, let us stress here that the TT part of the Lagrangian so far introduced is

not to be considered as a projection of the original Lagrangian. The ellipsis

are there to recall this fact, while we are just concentrating on a particular

portion of the full Lagrangian (the TT part). In this sense one can properly

study the appearance of possible non-localities at this level. For instance the

kinetic term in eq. (12) is clearly local involving only two derivatives while

19See also [115] and references therein for similar ideas.
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possible non-localities can come here only from the ellipsis in eq. (12). Let

us also mention that this splitting has a natural physical interpretation at

the S-matrix level where the TT-part of the couplings is the only leftover

contribution that couples on-shell propagating degrees of freedom while any

piece that is proportional to divergences or traces would vanish identically.

Generating functions are an additional ingredient that we shall exploit

henceforth. One defines a master field Φ(X ,U) as the ambient generating

function

Φ(X ,U) =
∞
∑

s=0

1
s!
Φµ1...µs

(X)Uµ1 . . . Uµs , (13)

whose components carry arbitrary bosonic representations of the ambient

Lorentz group20. On-shell, the corresponding representations are described

by the Fierz system

�Φ(X,U) = 0 ,

∂U · ∂X Φ(X,U) = 0 ,

∂U · ∂U Φ(X,U) = 0 ,

(14)

together with the on-shell gauge invariance

δ
(0)
E Φ(X,U) = U · ∂X E(X,U) , (15)

where the gauge parameter satisfies an analogous Fierz system

�E(X,U) = 0 ,

∂U · ∂X E(X,U) = 0 ,

∂U · ∂U E(X,U) = 0 .

(16)

As we have anticipated, the above equations are to be supplemented by

homogeneity and tangentiality constraints on both the fields and the gauge

parameters in order to keep an effective d-dimensional description. Hence,

20In principle we can consider also generating functions of mixed-symmetry field but in

this Thesis we concentrate our attention on the totally-symmetric representations.
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for massless fields one finally ends up with

X · ∂U Φ(X,U) = 0 , X · ∂U E(X,U) = 0

(X · ∂X − U · ∂U + 2)Φ(X,U) = 0 , (X · ∂X − U · ∂U)E(X,U) = 0 .

(17)

We are then able to recognize a simpler incarnation of the Noether procedure

at the level of n-point functions that realize both the linearized gauge sym-

metries and the global symmetries of the free system above, to be contrasted

with the n-point Lagrangian couplings, that nonetheless can be directly ex-

tracted from these data. Hence, defining by C̃
(n) TT
12...n (∂Xi

, Ui , . . .) the gener-

ating function of the TT part of the color-ordered HS n-point functions21,

one is led to the linear differential equations in the Ui’s

∂Xi
· ∂Ui

C̃
(n)TT

12...n (∂Xi
, Ui , . . .) ≈ 0 , i = 1 , . . . , n , (18)

in which the approximate equality means on-shell and where since the mea-

sure contains a δ-function insertion one has to take care of the non-vanishing

contributions coming from the ambient total derivatives. As anticipated, the

strategy is then to extend the above solutions adding traces and/or diver-

gences in order to recover the same condition

∂Xi
· ∂Ui

C̃
(n) full
12...n (∂Xi

, Ui , . . .) ≈ 0 , i = 1 , . . . , n , (19)

but where now the equality is modulo the full Lagrangian equations of mo-

tion (EoM), without quotienting modulo divergences and traces. As shown in

[78], the solution to this problem can be actually expressed in terms of pow-

ers of the standard color-ordered n-point functions G
(i)
12...n of the most general

theory built from a gauge boson, a scalar field and a spin-1/2 fermion, that

are uniquely specified by the cubic couplings in fig. 1. One should add, in

principle, also the usual Yang-Mills quartic couplings, that however can be

21In the following we shall avoid the superscript TT so that the generating function

should be always considered as referred to the TT part of the corresponding couplings

unless explicitly stated.
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Figure 1: Various cubic building blocks for the G
(i)
12...n’s.

reconstructed here interpreting them as counterterms restoring the linearized

gauge invariance of the tree-level amplitudes, thus making clear the funda-

mental role of the latter with respect to the former. Notice here the role

of the YM cubic couplings whose powers generate at the cubic order all HS

cubic couplings in any constant curvature background providing a suggestive

picture for the systematics of the HS interactions. More in detail, at the

cubic level the TT part of all consistent (A)dS cubic interactions reads

S(3) =
1

3!

∞
∑

s1,s2,s3=0

min{s1,s2,s3}
∑

n=0

gs1s2s3,na1a2a3

∫

dd+1X δ
(√

σX2 − L
)

× (20)

×
[

∂U1· (∂X23+ α ∂X)
]s1−n [− 2 ∂U2· (∂X1− α−1

α+1
∂X)
]s2−n

×
[

2 ∂U3· (∂X1− α+1
α−1

∂X)
]s3−n

×
[

∂U2· ∂U3 ∂U1· (∂X23+ β ∂X)− 2 ∂U3· ∂U1 ∂U2· (∂X1+
α−β
α+1

∂X)

+ 2 ∂U1· ∂U2 ∂U3· (∂X1+
α−β
α−1

∂X)
]n

×Φa1(X1, U1) Φ
a2(X2, U2) Φ

a3(X3, U3)
∣

∣

∣Xi=X
Ui0

,
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where the form of the vertices is encoded in a differential operator acting on

the generating functions of the ambient-space fields

Φa(X,U) =
∞
∑

s=0

1
s!
Φa

M1···Ms
(X)UM1 · · ·UMs , (21)

while

∂XM = ∂XM
1
+ ∂XM

2
+ ∂XM

3
(22)

is the ambient total derivative, and

∂XM
ij

:= ∂XM
i
− ∂XM

j
. (23)

Let us stress that different choices of α and β parameterize an ambiguity in

writing the building blocks and hence their contribution vanishes identically

upon integration. The number of ambient-space derivatives in (20) is

∆ = s1 + s2 + s3 − 2n , (24)

but, when radially reduced, different portions of the (A)dS vertices involve

different number of covariant derivatives: ∆, ∆− 2, . . . , 1 (or 0), while

whenever the number of derivatives decreases by two the corresponding mass-

dimension is compensated by the cosmological constant Λ := 1/L2 .22 This

structure makes clear the relation between (20) and the FV vertices, where

the inverse-power expansion in Λ appears. For instance, concentrating on

the gravitational couplings (s1 = s2 = s and s3 = n = 2) in (20), the action

can be recast in terms of an inverse-power series in Λ as

S(2) + S(3) =
λs

GN

s
∑

r=2

1

Λr−2

∫

(A)dSd

Lr . (25)

In order to get this expression, we made use of the redefinitions

gss2,2 = Λ2−s
√

GN λs , ϕ(s) = φ(s)/
√

GN , (26)

22The correct relation between the cosmological constant ΛC.C. and the radius of (A)dS is

ΛC.C. = (d− 1)(d− 2)/(2L2) = Λ (d− 1)(d− 2)/2 . However in this Thesis, for simplicity,

we call also Λ cosmological constant.
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where GN is the gravitational coupling constant. The Lr’s are cubic vertices

which are separately gauge invariant under the spin 2 gauge transformations

and can be written schematically as

Lr = D2(r−1) h φ(s)φ(s) + ΛD2(r−2) h φ(s)φ(s) , (27)

where L2 should involve the gravitational minimal coupling. Notice also that

the inverse-power Λ-expansion draws its origin from the redefinition of the

coupling constant gss2,2 , which makes the two-derivative part of the vertex

independent of Λ .

Coming back to our main discussion let us stress that eq. (18) fixes the

tensor structure of the generating function C̃
(n)
12...n, but leaves open the pos-

sibility of multiplying each of them with arbitrary coefficients and, starting

from the quartic order, also with functions of Mandelstam-like invariants.

Moreover, the general solution to eq. (18) for n ≥ 4 can be also expressed

as23

C̃(n) = K(n)
(

∂Xi
· ∂Xj

, H
(1)
ij , H

(2)
ijk

)

, (28)

in terms of a generic function of the Mandelstam variables ∂Xi
· ∂Xj

and of

the following building blocks:

H
(1)
ij =

Ui · ∂Xj
Uj · ∂Xi

∂Xi
· ∂Xj

− Ui · Uj , H
(2)
ijk =

Ui · ∂Xj

∂Xi
· ∂Xj

− Ui · ∂Xk

∂Xi
· ∂Xk

. (29)

However, this representation hides the important relations with the current

exchange amplitudes that should be used in order to constrain the consistent

theories. Hence, in the following we shall keep the description in terms of

the G(i)’s even if the latter can be rewritten in terms of the above H-building

blocks.

Moreover, let us underline a sort of correspondence between tree-level n-

point functions and n-point Lagrangian couplings. The former are associated

to a linearized on-shell gauge symmetry related to the free system of eq. (14)

together with the corresponding global symmetries. The latter encode some-

how geometrical principles, together with a fully non-linear deformation of

23Let me thank Euihun Joung for useful discussions on this point.
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the original gauge symmetries that could be captured, in principle, by a re-

summation of the full tower of non-linear couplings. For instance, in the

case of spin-2 this resummation rebuilds the usual Riemaniann geometry, as

observed by Deser in [170], and references therein, and in the case of HS

fields should encode, in a similar fashion, the HS geometry. One should also

gain a deeper understanding of the non-linear symmetries and of the global

symmetries of the system, that need to be related to some HS algebra putting

more constraints in principle on the available choices at the cubic order. We

leave this important analysis for the future.

In this Thesis we take the aforementioned perspective in order to study

how field theory can in principle overcome some difficulties encountered over

the years and trying to understand, without requiring explicitly a local La-

grangian description, what can be the requirements leading to consistent

interacting HS theories. The main discussion is done at the level of the lead-

ing term of the couplings that by the way coincides with the corresponding

flat limit. The result can be roughly summarized by the generating function

C̃
(n)
1234 (∂Xi

, Ui) = − 1

su
exp

[

− su
(

G
(0)
1234 +G

(1)
1234 +G

(2)
1234

)]

, (30)

of four-point amplitudes involving massless HS fields where theG
(i)
1234’s are the

gauge boson four-point functions discussed in Section 4.3 while the generating

function should be considered modulo functions of the Mandelstam variables

that do not introduce poles of order greater than one, in analogy with the

coefficients ga1a2a3
in eq. (20). Furthermore, the G(i)’s have been multiplied

by Mandelstam invariants in order to get only single poles. In this way, their

current exchange parts reconstruct HS exchanges after combining properly

the power expansion of eq. (30). This can be done choosing the relative

functions of the Mandelstam invariants in order to match the corresponding

contributions coming from the cubic level. In this way we are able to identify

the current exchanges that cannot be pursued at higher orders in a local

fashion while we are able to exhibit the local completion of the others.

This structure of the four-point functions arises as the solution of the

Noether procedure equation for a general field theory with massless particles
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of any spin, but we expect only a few choices of the relative coefficient as well

as of the spectrum of the theory to be consistent. Moreover, while embodying

an infinite class of local quartic couplings, the above result contains also the

seeds for the difficulties that have been faced along the years. However, the

physical interpretation and the need for the corresponding Lagrangian non-

localities is still a subtle issue and the peculiar form of the amplitudes one

arrives at for HS fields in flat space clashes in general with commonly accepted

ideas about the S-matrix structure that reflect some difficulties in defining

an S-matrix for (infinitely many) massless particles (see e.g. the discussion

in the introduction of [132] or [171]). The full amplitude generating function,

containing also Chan-Paton factors [172], is finally recovered summing over

all non-cyclic permutations of the external legs, as

A(Φ1,Φ2, . . . ,Φn) =
∑

σ

C̃
(n)
1σ(2)...σ(n)(∂Xi

, Ui)

⋆12...n Tr
[

Φ1(X1, U1) Φσ(2)(Xσ(2), Uσ(2)) . . . Φσ(n)(Xσ(n), Uσ(n))
]

, (31)

where the trace is over the color indices carried by the polarization generat-

ing functions Φi, recovering in this way a kind of generalized open-string-like

form. Interestingly, from four points onwards, there are more possibilities,

since some permutations with respect to the labels {1 , . . . , n} of the G(i)
12...n’s

are independent for n ≥ 4. This means that one can combine two or more

cyclically independent G(i)’s, eliminating the Chan-Paton factors and recov-

ering in this way a kind of closed-string-like amplitudes from which the usual

gravitational four-point functions emerge, together with HS generalizations.

In the four-point case, for instance, for each G
(i)
1234 there are two independent

options and one can recover in this fashion the closed-string-like generating

function

C̃(4)(∂Xi
, Ui, U

′
i ) =

(

∑

σ

C̃
(4)
1σ(2)σ(3)σ(4)(∂Xi

, Ui) C̃
(4)
1σ(2)σ(4)σ(3)(∂Xi

, U ′
i)

)

,

(32)

together with analogous generalizations to higher orders. These results are

analyzed in a number of examples pointing out some differences between the
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graviton and the colored spin-2 fields but leaving for the future a detailed

analysis of the generalized closed-string-like amplitudes together with pos-

sible generalizations of the Bern-Carrasco-Johansson (BCJ) construction of

[173] to HS.

A general lesson to be drawn from the results that we have summarized

is that HS n-point functions in flat space appear to go in hand with a pe-

culiar feature: while they are still built from current exchanges and local

terms, they generally factorize only on (infinite) subsets of the current ex-

changes available at the cubic level, lacking finite numbers of lower-spin con-

tributions. This unusual feature, when present, is equivalent to a non-local

nature of the corresponding HS Lagrangian couplings. This anyway results

from conventional amplitudes built from Feynman propagators, and one can

expect them to be still compatible with the notion of causality and with the

cluster property, even though at the moment more effort needs to be done in

order to clarify the situation. For instance, potential clashes with tree-level

unitarity may be possibly related to the fact that infinitely many degrees of

freedom have to contribute to the same residue as soon as non-localities ap-

pear ending up with a breakdown of analyticity. In this respect we can only

anticipate that within what we shall call minimal scheme, even admitting

non-localities, no pole arising in the amplitude can lack an interpretation

as an external particle participating in the physical process. This can give

some hope to arrive to an understanding of HS interactions, even though we

are not able at present to give a definite answer about the consistency of the

proposed scheme in flat space. We have also in mind to complete the analysis

of the Lagrangian couplings, extending the above results to (A)dS along the

same lines of the cubic level, and to exploit the AdS/CFT correspondence in

order to see whether locality can be preserved in these more general cases,

and if not what are the available alternatives.

Among other things, we shall discuss from the same perspective the role of

the spin-2 excitation present in the Vasiliev system that admits in principle

Chan-Paton factors, trying to give an answer to a puzzle pointed out in
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[38] together with a very interesting open question about its true nature.

Indeed, at the massless level a mixing between the singlet part of colored

spin-2 components and a combination that is strictly uncolored and plays

the role of a graviton, anticipated in [38], is here justified by the existence

of two different kinds of amplitudes, the first of the open-string-type and

the second of the closed-string-type. In the following, we shall see that a

non-abelian colored spin-2 field brings about non-localities, and from this

point of view it is naturally related to the massive excitations present in the

Open String spectrum, while only the spin-2 components interacting with

a closed-string-like amplitude can be directly related to the usual graviton.

This interesting feature can hopefully shed some new light on the non-local

nature of the Vasiliev’s system itself, where such colored spin-2 fields interact

consistently, together with the possible links between Vasiliev’s system and

ST.

The non-local nature of HS Lagrangian couplings puts our discussion of

QFT on more general grounds, that ought to be better understood, as we

anticipated. At the same time this discussion, and in particular our gener-

alization of open-string-like and closed-string-like amplitudes, reinforces the

feeling that ST hides within its structure a number of potentially profound

lessons for Field Theory.

The plan of the Thesis is the following. In Chapter 1, we introduce

the ambient space formalism in full detail, discussing the Noether procedure

from a general perspective. In Chapter 2 we apply the formalism developed

in Chapter 1 to the quadratic level and present in detail the procedure that

starting from the TT part generates the full Lagrangian. In Chapter 3 we

describe the three-point couplings along the lines of [75, 76]. In Chapter 4 we

extend the discussion to the quartic order, following [78]. First we consider

the simpler case of Yang-Mills theory and then the general setting of HS the-

ories, pointing out the differences between open-string-like amplitudes and

closed-string-like amplitudes and how the usual flat space problems arise.
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Some outlooks together with further discussions of the results described in

this Thesis are summarized in the conclusions. Finally, the Appendices con-

tain some details of the computations.





Chapter 1

Ambient Space Formulation

In this chapter we are going to introduce one of the main ingredients that

we shall exploit in this Thesis. This is the Ambient space formalism whose

main idea dates back to the works of Dirac [159], where the simplifications

that arise making use of the isometric embedding of (A)dS spacetime as a

codimension one hyperboloid inside a flat auxiliary space were first exploited.

These ideas were then extended all over the years by many other people,

most notably in the context of HS gauge theories by Fronsdal [160], Metsaev

[84, 85], Biswas and Siegel [161] and were also used for a large number of

applications [44, 163, 164, 165, 166, 167, 168, 169, 113, 174].

1.1 (A)dS Geometry

The key feature of the ambient-space formalism, as we have anticipated,

is to regard the (A)dS space as the codimension-one hyper-surface

X2 = σL2 , (1.1.1)

embedded into an ambient (d+1)-dimensional flat space-time parameterized

by Cartesian coordinates XM with M = 0, 1, · · · , d :

i : (A)dSd →֒ {X ∈ R
d+1 s.t. σX2 > 0} : xµ → XM(xµ) . (1.1.2)

23
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Here, σ is a sign positive for dS and negative for AdS. In order to avoid

ambiguities, as well as to fix the notation, we shall discuss only the cases of

Lorentzian dS or Euclidean AdS spaces. With these choices one can fix the

signature of the ambient space to be Minkowskian:

ηMN = (−1,+1, . . . ,+1) . (1.1.3)

However, the Lorentzian AdS as well as the Euclidean dS cases are straight-

forward generalizations. Notice also that Lorentzian dS and Euclidean AdS

are related by an analytic continuation of the (A)dS radius L→ iL. The em-

bedding formalism makes in this way manifest the isometry group of (A)dS

that coincides with the isometry group of the ambient space SO(d, 1).

The ambient space metric can be conveniently written in radial coordi-

nates (R, xµ),

XM = RX̂M(x) , X̂M =
XM

√
σX2

, (1.1.4)

foliated by (A)dS sections as

ds2d+1 = σ dR2 +
R2

L2
gµν(x)dx

µdxν , (1.1.5)

where

gµν(x) = L2 ηMN
∂X̂M(x)

∂xµ

∂X̂N(x)

∂xν
, (1.1.6)

is the (A)dS induced metric. For convenience one can also introduce the

ambient space and the intrinsic vielbeins, respectively by

ds2d+1 = ERER + ηαβ E
αEβ , ds2(A)dS = ηαβ e

αeβ . (1.1.7)

Let us recall that the vielbein is in general a local orthonormal frame

eα(x) = eαµ(x) dx
µ , (1.1.8)

defined by

eαµ(x) e
β
ν(x) ηαβ = gµν(x) . (1.1.9)

together with its dual vector fields

eα(x) = eα
µ(x) ∂µ , (1.1.10)
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where eµα(x) is the inverse vielbein:

eαµ(x) eβ
µ(x) = δαβ . (1.1.11)

Their transformations under infinitesimal local Lorentz transformations are

given by

δeα = ǫαβ(x)e
β(x) , δeα = −ǫβα(x) eβ(x) , (1.1.12)

while the transformation of the spin connection reads

δωαβ(x) = ǫαγ(x)ω
γβ(x) + ǫβγ(x)ω

αγ(x)− dǫαβ , (1.1.13)

so that the curvature two-form is

Rαβ = 1
2
Rµν

αβ dxµ ∧ dxν = dωαβ + ωαγ ∧ ωγ
β . (1.1.14)

A totally-symmetric rank-s tensor field in the moving basis takes the form

ϕ(x) = 1
s!
ϕα1...αs

(x) eα1(x)⊗ . . .⊗ eαs(x) , (1.1.15)

and in the following, introducing a fixed auxiliary vector uα, we are going to

consider generating functions of the above tensor fields of the form

ϕa(x, u) :=
∞
∑

s=0

1

s!
ϕa (s)
µ1...µs

(x) u · eµ1(x) · · · u · eµs(x) , (1.1.16)

where the contraction with the flat auxiliary variables uα is via the inverse

vielbein e µ
α (x) : u · eµ(x) = uα e µ

α (x) , and a is a color index associated with

the Chan-Paton factors. A local Lorentz transformation will also act on this

functions since the inverse vielbein transforms. Hence, one can conveniently

express the latter transformation properties as

δϕ(x, u) = −ǫαβ(x) uβ∂uα ϕ(x, u) , (1.1.17)

that reduces to (1.1.12) if applied to u · eµ(x). One can also consider finite

Lorentz transformations integrating (1.1.17) to

ϕe(x, u)→ ϕe′(x, u) = e−ǫαβ(x)u
β∂uαϕe(x, u) . (1.1.18)
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Within this formalism it is natural to compute the transformed form of the

derivative ∂µ from a constant frame eα
µ(x) = δα

µ to a generic moving frame

recovering, in accordance with eq. (1.1.13)

e−ǫαβ(x)u
β∂uα∂µϕδ(x, u) =

[

∂µ − (∂µǫ
α
β(x) + O(ǫ2)) uβ∂uα

]

ϕe(x, u)

=
[

∂µ −
(

e−ǫ(x)
)α

γ
∂µ
(

eǫ(x)
)γ

β
uβ∂uα

]

ϕe(x, u) , (1.1.19)

and where by definition of local frame:

(

e−ǫ(x)
)α

β
δβµ = eαµ(x) . (1.1.20)

Hence, in the following it will prove convenient to define the covariant deriva-

tive as

Dµ = ∇µ + 1
2
ω αβ
µ (x) u[α∂uβ] , (1.1.21)

where ∇µ is the usual covariant derivative acting on tensor indices, while

ω αβ
µ is the spin connection.

The formalism so far described proves to be quite convenient in the ambi-

ent space approach introduced at the beginning of this section. Indeed, one

can lift the intrinsic (A)dS generating functions of eq. (1.1.16) to ambient

space flat ones

Φa(X,U) =
∞
∑

s=0

1
s!
Φa

M1···Ms
(X)UM1 · · ·UMs , (1.1.22)

where we have defined the ambient space auxiliary variables UA in analogy

with eq. (1.1.16), while we have used a constant vielbein EA
M = δA

M . The

condition under which the lifting procedure turns to be well definite and

one-to-one were explained by Fronsdal in [160] and are:

• homogeneity in XM :

(X · ∂X − U · ∂U + 2 + µ) Φ(X,U) = 0 , (1.1.23)

• tangentiality to constant R surfaces:

X · ∂U Φ(X,U) = 0 . (1.1.24)
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The above conditions translate at the level of the tensor fields respectively

as

• homogeneity in XM :

(X · ∂X − ∆s) ΦM1...Ms
(X) = 0 , (1.1.25)

• tangentiality to constant R surfaces:

XM1 ΦM1...Ms
= 0 . (1.1.26)

More in detail, the latter conditions make the pull-back of a tensor field in

the ambient space to a tensor field in (A)dS:

i∗ : TRd+1 → T(A)dSd
:

ΦM1...Ms
(X)→ ϕµ1...µs

(x) =
∂XM1

∂xµ1
. . .

∂XMs

∂xµs
ΦM1...Ms

(X(x)) , (1.1.27)

or, in terms of generating functions:

i∗ : Φ(X,U) → ϕ(x, u) = exp
(

uµ ∂XM

∂xµ ∂UM

)

Φ(X(x), U)
∣

∣

∣

U=0
, (1.1.28)

one-to-one, recovering a well definite isomorphism of the associated tensor

bundles. Indeed, homogeneity in the radial coordinates gives a well defined

ambient space extensions of any function defined on (A)dS, while the tan-

gentiality condition takes care of the kernel of the pull-back that coincides

precisely with the radial components of tensors:

XM
∂XM

∂xµ
=

1

2

∂

∂xµ
X2 = 0 . (1.1.29)

Hence, in this formalism, the ambient-space HS fields ΦM1···Ms
that are ho-

mogeneous in XM and tangent to the hyper-surface, are in one-to-one corre-

spondence to the (A)dS fields ϕµ1···µs
. Moreover, also the various differential

operators that one usually defines in terms of intrinsic coordinates can be

lifted in the ambient space modulo the above prescriptions. In order to see
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explicitly how this works let us consider the ambient space coordinate trans-

formation in the radial frame XM → (R, xµ) together with the auxiliary

variable splitting in radial and tangent components UM → (v, uµ). This cor-

responds to move from the constant ambient frame δAM , with corresponding

generating functions of tensor fields of the form

Φδ(X,U) =
∑

s

1
s!
Φ

(δ)
M1...Ms

(X)U · δM1 . . . U · δMs , (1.1.30)

to the radial frame EA
M , where the analogous generating functions of tensor

fields look like

ΦE(X,U) =
∑

s

1
s!
Φ

(E)
M1...Ms

(X)U · EM1 . . . U · EMs . (1.1.31)

Using eq. (1.1.19) one can then compute the covariant derivative in the radial

frame as

DM = ∇M − ΩA
MB(x)U

B∂UA , ΩA
MB(x) = EA

N(x) ∂M EB
N(x) .

(1.1.32)

It is now convenient to express the ambient space vielbein EA(X) in terms

of the (A)dS vielbein eα(x) as

ER

R(R, x) =
√
σ , ER

µ(R, x) = 0 , Eα
R(R, x) = 0 , Eα

µ(R, x) = R
L eαµ(x) ,

(1.1.33)

that is equivalent to

ER =
√
σ dR , Eα = R

L
eα . (1.1.34)

The above relations can be also translated as

EA
M (x) = (ER

M , Eα
M ) =

(√
σ

∂R
∂XM , RL eαµ

∂xµ

∂XM

)

=
(

1√
σ
X̂M , RL eαµ

∂xµ

∂XM

)

,

EA
M (x) = (ER

M , Eα
M ) =

(

1√
σ
X̂M , L

R eα
µ ∂XM

∂xµ

)

. (1.1.35)

Along the same lines, one can also compute the ambient space connection

ΩA
MB(x) in the radial frame in terms of the intrinsic connection ω α

µ β
(x).

Applying eq. (1.1.32) one ends up with

ΩA
MB(x) =

(

ΩR
Mβ(x),Ω

α
Mβ(x)

)

= ∂xµ

∂XM

(

ER
N ∂µ E

N
β, E

α
N ∂µ E

N
β

)

,

(1.1.36)



1.1 (A)dS Geometry 29

so that one can check that ωα
µβ

= Eα
N ∂µ E

N
β satisfies the compatibility

equation

deα + ω α
γe

γ = 0 , (1.1.37)

and hence can be identified with the (A)dS spin-connection. On the other

hand,

ER
N ∂µ E

N
β = −EN

β ∂µ E
R
N = − 1

L
√
σ
eβ µ , (1.1.38)

and so the ambient space spin-connection in the radial frame takes the form

ΩA
MB(x) =

(

ΩR
Mβ(x),Ω

α
Mβ(x)

)

= ∂xµ

∂XM

(

− 1
L
√
σ
eβ µ(x), ω

α
µβ

(x)
)

. (1.1.39)

Using the above formulas one can easily perform the radial reduction of the

ambient space derivative in radial coordinates. More in details:

eǫ
A

B(x)UB∂
UA ∂M Φδ(X,U) = (∂M − ΩA

MB UB∂UA)ΦE(X,U)

=
[

σ X̂M ∂R + ∂xµ

∂XM

(

∂µ − ωα
µβ

ub∂uα

+ 1
L
√
σ
eβ µ u

β∂v − 1
L
√
σ
eβµ v ∂uβ

)]

ΦE(R, x; v, u) , (1.1.40)

from which, factoring the (A)dS vielbein, one recovers

∂M → σ X̂M(x) ∂R + ∂xµ

∂XM (R, x) eαµ(x)
[

Dα + 1
L
√
σ
(uα∂v − v ∂uα)

]

.

(1.1.41)

Analogously, recalling eq. (1.1.20), one can obtain similar relations also for

the auxiliary variables and the corresponding derivatives. In details the fol-

lowing relations

eǫ
A

B(x)UB∂
UA ∂UM Φδ(X,U) =

(

e−ǫ
)A

M
∂UA ΦE(X,U) , (1.1.42)

eǫ
A

B(x)UB∂
UA UM Φδ(X,U) =

(

e+ǫ
)

A

M
UA ΦE(X,U) , (1.1.43)

imply

∂UM → 1√
σ
X̂M ∂v +

R
L
eαµ(x)

∂xµ

∂XM ∂uα , (1.1.44)

UM → 1√
σ
X̂M v + L

R
eα

µ(x)∂X
M

∂xµ uα . (1.1.45)

For convenience, it is also useful to write explicit expressions for the intrin-

sic form of the various differential operators acting on the ambient space
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generating functions of eq. (1.1.30). The relevant operators are the ambi-

ent space gradient U · ∂X , the divergence ∂U · ∂X , the Laplacian ∂ 2
X and the

trace operator ∂U · ∂U and their intrinsic form can be easily recovered from

eqs. (1.1.41), (1.1.44) and (1.1.45):

U · ∂X = 1√
σ
v ∂R + L

R

[

u · eµDµ + 1
L
√
σ

(

u2∂v − v u · ∂u
)

]

, (1.1.46)

∂U · ∂X = 1√
σ
∂v∂R + L

R

[

∂u · eµDµ + 1
L
√
σ
(d ∂v + u · ∂u ∂v − v ∂u · ∂u)

]

,

∂U · ∂U = ∂ 2
v + ∂u · ∂u ,

where we have used:

X̂M ∂xµ

∂XM = ∂R xµ = 0 , X̂M
∂XM

∂xµ = σ
2R

∂xµR2 = 0 ,

∂XM

∂xµ
∂xν

∂XM = δνµ ,
∂xµ

∂XM

∂xν

∂XM = L2

R2 g
µν(x) .

(1.1.47)

The radial frame expression for ∂ 2
X requires a little more work and is given

by:

∂ 2
X =

{

σ X̂M(x) ∂R + ∂xµ

∂XM (R, x) eαµ(x)
[

Dα + 1
L
√
σ
(uα∂v − v ∂uα)

]}2

= σ ∂ 2
R + σ d

R
∂R + L2

R2

[

D2 + 2
L
√
σ
(∂v u ·D − v ∂u ·D)

+ 1
L2σ

(

u2∂2
v − 2v ∂v u · ∂u −D v ∂v + v2∂u · ∂u − u · ∂u

)

]

, (1.1.48)

where we have used the identities in eq. (1.1.47) together with

∂xµ

∂XM Dµ X̂
M = ∂xµ

∂XM ∂xµ X̂M = d
R
, (1.1.49)

while D2 is the (A)dS Laplacian expressed in terms of the covariant deriva-

tive (1.1.21). The above expressions simplify a bit if restricted to tangent

generating functions. Hence, setting ∂v = 0, one recovers:

U · ∂X = 1√
σ
v ∂R + L

R

[

u · eµ Dµ +
1

L
√
σ
v u · ∂u

]

, (1.1.50)

∂U · ∂X = L
R

[

∂u · eµ Dµ +
1

L
√
σ
v ∂u · ∂u

]

,

∂U · ∂U = ∂u · ∂u ,
∂ 2
X = σ ∂ 2

R + σ d
R
∂R

+ L2

R2

[

D2 − 2
L
√
σ
v ∂u ·D + 1

L2σ

(

v2∂u · ∂u − u · ∂u
)

]

.
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In the next section we shall apply the formalism so far developed to

the description of unitary spin-s representations on constant curvature back-

grounds.

1.2 (A)dS Dynamics

In this section we introduce the ambient space description of the stan-

dard totally-symmetric spin-s representations of the isometry groups of any

constant curvature background. It is well known from the old works of Fierz,

Pauli, Bargmann, and Wigner [175, 27, 176] that the various representations

of the corresponding isometry groups of the maximally symmetric spaces can

be specified by proper wave equations together with some irreducibility con-

straints. In flat space these wave equations were discovered for bosonic fields

by Fierz [175] and are respectively

(�−m2
s)ϕµ1...µs

(x) = 0 , ∂µ1ϕµ1...µs
(x) = 0 , ϕµ

µµ3...µs
(x) = 0 .

(1.2.1)

The first equation assigns the value of the Casimir operator p 2, the second

equation takes care of the translational part of the Poincaré group, removing

the negative-norm states, while the third equation is related to irreducibility

of the representation. The massless limitms = 0 of this system presents some

subtleties and indeed in order to keep a tensorial helicity representation of

the Lorentz group one needs to introduce a gauge symmetry quotienting by

the following equivalence relation

ϕµ1...µs
(x) ∼ ϕµ1...µs

(x) + ∂(µ1εµ2...µs)(x) , (1.2.2)

where the gauge parameter εµ2...µs
(x) satisfies by consistency an analogous

Fierz system:

� εµ1...µs−1(x) = 0 , ∂µ1εµ1...µs−1(x) = 0 , εµµµ3...µs−1(x) = 0 .

(1.2.3)



32 Ambient Space Formulation

In terms of generating functions the above equations become

(�−M2)ϕ(x, u) = 0 , ∂u · ∂x ϕ(x, u) = 0 , ∂u · ∂u ϕ(x, u) = 0 ,

(1.2.4)

where M is here a mass operator, while in the massless case M = 0 the

equivalence relation can be written as

ϕ(x, u) ∼ ϕ(x, u) + u · ∂x ε(x, u) , (1.2.5)

together with the gauge parameter Fierz system

� ε(x, u) = 0 , ∂u · ∂x ε(x, u) = 0 , ∂u · ∂u ε(x, u) = 0 . (1.2.6)

These equations can be easily generalized on constant curvature backgrounds1

where they look like

(D2 −M2)ϕ(x, u) = 0 , ∂u · eµDµ ϕ(x, u) = 0 , ∂u · ∂u ϕ(x, u) = 0 ,

(1.2.7)

while in the massless case the equivalence relation becomes

ϕ(x, u) ∼ ϕ(x, u) + u · eµDµ ε(x, u) , (1.2.8)

again together with the corresponding Fierz system for the gauge parameters2

(D2 − M̃2) ε(x, u) = 0 , ∂u · eµDµ ε(x, u) = 0 , ∂u · ∂u ε(x, u) = 0 .

(1.2.9)

The key feature of the ambient space techniques that we have introduced

in Section 1.1 is that thanks to the isomorphism between intrinsic tensors

and homogeneous and tangent ambient space tensors one can rewrite the

(A)dS Fierz system in terms of ambient space quantities making it possible

to simplify all problems coming from the non commuting nature of covariant

1One can perform a local Lorentz transformation on the Fierz system going to a generic

moving frame and then extend the system to a generic curved background exploiting

covariance.
2Notice that in (A)dS the massless case does not correspond to M = 0 but to a

particular non-vanishing value of the mass.
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derivatives. Indeed, from eq. (1.1.50) one recovers that the ambient space

Fierz system

�Φ(X,U) = 0 , ∂U · ∂X Φ(X,U) = 0 , ∂U · ∂U Φ(X,U) = 0 ,

(1.2.10)

supplemented with the homogeneity and tangentiality constraints

(X · ∂X − U · ∂U + 2 + µ) Φ(X,U) = 0 , X · ∂U Φ(X,U) = 0 , (1.2.11)

reduces to the intrinsic Fierz system (1.2.7) with a mass squared operator

M2 = − 1
L2 σ

[(µ− u · ∂u + 2)(µ− u · ∂u − d+ 3)− u · ∂u] , (1.2.12)

where we have used

Φ(R, x; v, u) =
(

R
L

)u·∂u−2−µ
ϕ(x, u) . (1.2.13)

Notice that for dS, where σ = 1 , the parameter µ is in general a complex

number, hence, in order for the fields to be real one has to add the complex

conjugate in eq. (1.2.13). It can be interesting to notice that the trace con-

straint present within the Fierz system of eq. (1.2.10) turns to be redundant

whenever the tangential constraint is considered just because on transverse

fields one gains the following identity:

∂U · ∂U Φ(X,U) = ∂U · ∂X X · ∂U Φ(X,U) = 0 . (1.2.14)

Hence, the description of reducible fields in (A)dS turns to be more involved

than its flat-space counterpart where the trace and the divergence of the field

are completely independent.

In the following we are going to study in detail the gauge symmetries that

can be preserved for the various unitary representations of the corresponding

isometry group.

1.2.1 Massless representations

For that regards massless representations of the (A)dS isometry group

one can find them working in the ambient-space formalism simply requir-

ing compatibility of the Fierz system (1.2.10) and of the homogeneity and
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tangential constraints with gauge transformations of the form

δ
(0)
E Φ(X,U) = U · ∂X E(X,U) . (1.2.15)

Here, by consistency with the homogeneity constraint on the fields, the gauge

parameter satisfies the following homogeneity constraint

(X · ∂X − U · ∂U + µ)E(X,U) = 0 . (1.2.16)

Even if the ambient Fierz system is compatible with such gauge symmetries

provided the gauge parameter satisfies the same Fierz system

�E(X,U) = 0 , ∂U · ∂X E(X,U) = 0 , ∂U · ∂U E(X,U) = 0 ,

(1.2.17)

regardless the value of µ, arbitrary values of µ are in general incompatible

with the tangentiality constraint, as can be easily seen from

X · ∂U U · ∂X E(X,U) = (U · ∂X X · ∂U − µ) E(X,U) . (1.2.18)

From this respect it is easy to notice that the choice µ = 0 if combined with

the algebraic constraint

X · ∂U E(X,U) = 0 , (1.2.19)

makes the gauge transformations compatible with the tangentiality of the

gauge field recovering in this way the standard massless representations. In-

deed, with this choice the ambient gauge symmetry (1.2.15) reduces to the

usual massless intrinsic gauge symmetry

δϕ(x, u) = u · eµDµ ε(x, u) . (1.2.20)

Plugging µ = 0 into eq. (1.2.12) one then finds with ambient space techniques

the value of the (A)dS mass corresponding to massless representations of the

isometry group that in terms of the spin reads

M2 = − 1
L2 σ

[(s− 2)(s− 3 + d)− s] , (1.2.21)
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and agrees with standard results. Actually, in the massless case, the ambient

space construction so far consider is nothing but equivalent to ask for the

intrinsic expression of U ·∂X in eq. (1.1.46) to reduce to u ·eµ Dµ when acting

on gauge parameters of the form

E(R, x; v, u) =
(

R
L

)u·∂u−µ
ε(x; v, u) , (1.2.22)

that solves the corresponding homogeneity constraints (1.2.16). Notice how-

ever that the ambient space construction does not require the intrinsic form

of the various differential operators like U · ∂X , while all standard properties

of the spin-s representations follow from their ambient realization.

1.2.2 Massive representations

On the contrary in the cases µ 6= 0 the same compatibility condition

(1.2.18) translates into the differential like constraint

(U · ∂X X · ∂U − µ) E(X,U) = 0 , (1.2.23)

for the gauge parameter that in turn is compatible with tangentiality pro-

vided

[

(U · ∂X)2 (X · ∂U)2 − 2µ (µ− 1)
]

E(X,U) = 0 . (1.2.24)

Again if µ 6= 1 one can go on and in general if

[µ]s := µ(µ− 1) . . . (µ− s+ 1) 6= 0 , (1.2.25)

one can iterate s times this procedure ending up with

{(U · ∂X)s(X · ∂U)s − s! [µ]s} E(X,U) = 0 . (1.2.26)

Hence, since the spin-(s−1) component E(s−1)(X,U) of the gauge parameter

generating function E(X,U) trivially satisfies

(X · ∂U)s E(s−1)(X,U) = 0 , (1.2.27)
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whenever [µ]s 6= 0 the spin-(s− 1) component of eq. (1.2.26) implies that the

gauge parameter E(s−1)(X,U) has to vanish identically and hence no gauge

symmetry can be preserved compatibly with the tangentiality constraint. In

this way, even though the ambient space Fierz system is exactly a massless

system in ambient space, for generic values of µ no gauge symmetry can be

preserved compatibly with the tangentiality constraint.

1.2.3 Partially-massless representations

Continuing the analysis of the previous section, it is interesting to notice

that the integers values of µ have a special role since in those cases the

iteration that led to eq. (1.2.26) stops before implying the vanishing of the

gauge parameter. Indeed, if µ = r ∈ N, a non-vanishing solution for the

gauge parameter exists for s > r such that

(X · ∂U)r E(X,U) = 0 . (1.2.28)

In this case it is convenient to introduce an auxiliary tangent gauge parameter

Ω(X,U) defined by

Ω(X,U) = (X · ∂U)rE(X,U) , (1.2.29)

in terms of which the gauge transformations read

δ
(0)
Ω Φ(X,U) = (U · ∂X)r+1Ω(X,U) . (1.2.30)

To summarize, since for massless fields one would like to preserve a gauge

transformation of the form (1.2.15) with a gauge parameter at most sub-

jected to algebraic constraints, the corresponding massless representations

are recovered for µ = 0 and for tangent and homogenous gauge parameters.

On the other hand, more general solutions to the tangential compatibility are

given by partially-massless representations [177] corresponding to non-zero

integer values of µ. These are however unitary only in dS, while for other
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values of µ one recovers a standard massive representation 3. In the following

we shall concentrate on massless fields for which these subtleties are absent

referring to [76] for more details.

Before concluding this section let us study the flat limit from the ambient

space perspective. This construction can be interesting because puts on very

similar grounds all constant curvature backgrounds and also because gives the

possibility to recover the flat vertices starting from the (A)dS ones. From our

perspective the flat-space limit L → ∞ can be still realized at the ambient

space level. In order to achieve this, first one needs to place the origin of the

ambient space in a point on the hypersurface X2 = σL2. This can be done

translating the coordinate system as

XM → XM + LN̂M , (1.2.31)

where NM is a constant vector in the ambient space that satisfies

N̂2 = σ . (1.2.32)

Then, in the flat limit the homogeneity and tangent constraints become

(

N̂ · ∂X −
√
−σM

)

Φ(X,U) = 0 N̂ · ∂U Φ(X,U) = 0 , (1.2.33)

respectively, where we have considered µ→∞ and L→∞, keeping µ
L
= M

finite, while the Fierz system stays the same as in eq. (1.2.10). It is worth

mentioning that, has we have anticipated, in the flat limit the traceless and

3Notice also that for µ 6= 0 one can preserve the usual form of gauge transformations

dropping the tangentiality constraint (see e.g. [76] for more details). This is equivalent to

perform a Stueckelberg shift introducing additional gauge symmetries together with the

corresponding Stueckelberg fields playing the role of auxiliary fields. This is actually a

different definition of the Fronsdal isomorphism built in terms of the equivalence classes

Φ(X,U) ∼ Φ(X,U) + X · U Ẽ(X,U). In this section however we were interested in the

unitary gauge in which we keep only the minimum gauge invariance sufficient to maintain

covariance on-shell. Let us mention that for µ 6= 0 in order to write a local quadratic

Lagrangian it is needed to introduce a number of Stueckelberg fields playing the role of

auxiliary fields in (A)dS, dropping in general the tangentiality constraint.
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transverse constraints are no more redundant. Hence, one has now the possi-

bility to describe massless reducible representations just dropping the trace-

less constraint at the level of the Fierz system. This feature is quite inter-

esting and resonates with the subtleties that arise when describing reducible

representations in (A)dS space in relation to their flat space counterparts

[84]. From our perspective these subtleties acquire a natural interpretation

related to the fact that in order to describe a massless representation one

has to choose a certain degree of homogeneity for the field in relation to its

spin. Therefore, a reducible representation, containing different spin compo-

nents, would require different degrees of homogeneity that are not mutually

compatible each other. We leave for future work a more detailed analysis of

these features in our approach.

1.3 Ambient space measure

So far we have described the various spin-s representations of the constant

curvature backgrounds from the ambient space perspective. What is left in

order to complete the discussion is to define the concept of ambient space

Action principle. The simplest possibility is to consider a similar setting to

that of the standard dimensional reduction framework in which one of the

dimensions is compactified on a circle. More in detail, this attempt would

correspond to a tentative Action of the form

S =

∫

dd+1X L[Φ] , (1.3.1)

Unfortunately, this kind of ansatz turns to work well at the quadratic level

but has some problems as soon as one considers interactions. Indeed the

action in this way is not truly d-dimensional because is written in terms of

a (d+ 1)-dimensional measure. More precisely the radial integration can be

a problem at the interacting level due to the appearance of infinities related

to the fixed degree of homogeneities of the fields. Indeed, the ambient-space

integral splits into the (A)dS one together with an additional radial integral
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as
∫

dd+1X

L
=

∫ ∞

0

dR
L

(

R
L

)d
∫

(A)dS

ddx
√−g . (1.3.2)

In order to overcome this difficulties we have to keep in mind that ambient

space techniques are just a translation of intrinsic (A)dS quantities in terms

of ambient space ones, while the tangentiality and homogeneity constraints

that one introduces at the level of the ambient space have the role of keeping

the description effectively d-dimensional. This suggest to simply rewrite the

d-dimensional intrinsic measure of (A)dS space in terms of ambient space

quantities so that one is naturally led to introduce a δ-function uplifting the

intrinsic (A)dS measure as4

ddx
√−σg = dd+1X δ

(√
σX2 − L

)

, (1.3.4)

Moreover, this formalism makes it possible to extend the discussion about

the flat limit considered above also at the level of the ambient space measure

so that performing the change of coordinates of eq. (1.2.31) and taking the

L→∞ limit one ends up with the ambient space measure

dd+1X σ δ
(

N̂ ·X
)

, (1.3.5)

that is just a d-dimensional measure on the flat hyperplane orthogonal to the

unit vector N̂ .

Having defined the ambient space (A)dS measure we can now start con-

structing Lagrangians. Let us mention that the effect of the δ-function in-

sertion will take care of all subtleties that arise in in constant curvature

backgrounds as for instance the loss of translation invariance at the ambient

space level, together with its implications as, for instance, the fact that total

total derivatives are not any more vanishing.

4Let us stress at this point that since we are working in the truncated ambient space

σX2 > 0 we could have chosen as well the measure

δd+1X δ
(

σX2 − L2
)

, (1.3.3)

simplifying some of the following formulas. We have decided in order to avoid some

confusion to keep the same convention of [75, 76].
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This is actually the counterpart of a well known fact when lifting to curved

backgrounds flat space quantities. Indeed the presence of the δ-function

makes clear that the (A)dS deformation of a total derivative is not any more

in general a total derivative in (A)dS. Indeed, even if

∫

dd+1X ∂XM (. . .) = 0 , (1.3.6)

this is not true after inserting the δ-function so that

∫

dd+1X δ
(√

σX2 − L
)

∂XM (. . .)

= −
∫

dd+1X δ′
(√

σX2 − L
)

σ
L
XM (. . .) 6= 0 , (1.3.7)

where by definition

δ ′(R− L) := L
R
∂R δ(R− L) . (1.3.8)

This is actually the same feature that presents itself from the intrinsic point

of view when substituting ordinary derivatives with covariant ones so that

the deformation of a flat total derivative will not give rise in general to a pure

total derivative in (A)dS but will give rise to a total derivative plus lower

derivative contributions that are not total derivatives and that in the ambient

space formalism come from the action of ∂X on the δ-function5. (A)dS total

derivatives can be instead easily written in our approach as

∫

dd+1X ∂XM

[

δ
(√

σX2 − L
)

(. . .)
]

, (1.3.11)

5Consider for instance the very simple intrinsic flat total derivative

(∂ν ∂µϕ)ϕ + ∂νϕ∂µϕ . (1.3.9)

This can be lifted as an example as

(DνDµϕ)ϕ + DνϕDµϕ , (1.3.10)

whose 2 derivative piece is still a total derivative. However, the (A)dS deformation intro-

duces a piece with no derivative that hence is not a total derivative.
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avoiding many of the difficulties that can arise when working with the non-

commuting covariant derivatives. In order to simplify the formalism it is

convenient to introduce a further auxiliary variable δ̂ in terms of which one

can encode all derivatives of the δ-function as

δ(R− L) (σ δ̂)n = δ(n)(R− L) , (1.3.12)

where by definition

δ(n)(R− L) = [L
R
∂R]

n δ(R− L) . (1.3.13)

With this prescription one can encode any distribution that is a sum of

derivatives of the delta function into a function of the auxiliary variable δ̂ as

∞
∑

n=0

an δ
(n)(R− L) := δ(R− L) a(σ δ̂) , a(x) =

∞
∑

n=0

an x
n . (1.3.14)

Let us mention that the δ̂ prescription is also a formal device in order to

encode in a single function different portions scaling with different powers of
1
L
. This feature will actually prove to be useful in (A)dS where in general any

Lagrangian contains a tail of lower derivative contributions scaling differently

in terms of the cosmological constant. Indeed, the observation is very simple

and is based on the identity

δ(n)(R− L)Rλ = 1
2
(2L)n ∂n

R′ δ(
√
R′ − L) (R′)(λ−1)/2

= 1
2
(−2L)nδ(

√
R′ − L)∂n

R′(R′)(λ−1)/2 = (−2)n [(λ−1)/2]n
Ln δ(R− L)Rλ ,

(1.3.15)

where we have used the change of variable R′ = R2 so that negative powers of

L can be absorbed into derivatives of the δ-function and hence into δ̂. Similar

considerations applies also to the flat limit where the auxiliary variable δ̂ can

be simply replaced by the differential operator

δ̂ → N̂ · ∂X . (1.3.16)

In the following for simplicity we shall use the short-hand notation

dd+1X δ
(√

σX2 − L
)

:= dd+1X δ , (1.3.17)
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without explicitly writing the argument of the δ-function when no ambiguity

is present while, in order to avoid any confusion, we shall use the notation δE,

with the subscript referring to the gauge parameter, when considering the

gauge transformations. Having settled the formalism we can start applying

it in order to find order by order Lagrangians for HS totally symmetric fields.

In the following sections we shall first describe the Noether procedure from

a general perspective in order to address the problem in the subsequent

chapters.

1.4 Noether Procedure

Noether procedure can be considered as one of the key techniques in

order to construct consistent Lagrangians for gauge theories and in its various

incarnations has played a crucial role in order to solve for cubic HS couplings

[91, 92, 93, 103, 107, 96]. From this point of view the HS problem can be

reformulated as equivalent to finding, order by order in the number of fields,

a deformation of the free system. Actually this approach is quite general

and can be applied even at the quadratic level promoting the on-shell gauge

symmetry introduced in Section 1.2 to genuine off-shell ones. More in detail

one starts expanding the fully non-linear ambient-space action order by order

in the number of fields as

S =

∫

dd+1X δ
[

L(2) + L(3) + L(4) + . . .
]

, (1.4.1)

where L(2) is quadratic in the fields, L(3) is cubic and so on. The same

expansion is considered at the level of the gauge algebra transformations as

δEΦ(X,U) = δ
(0)
E Φ(X,U) + δ

(1)
E Φ(X,U) + δ

(2)
E Φ(X,U) + . . . (1.4.2)
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where δ
(0)
E has the same form of the on-shell gauge symmetry recovered6 in

Section (1.2), while both the Lagrangian and the gauge transformations are

defined modulo local redefinitions of the fields and of the gauge parameters

of the form

Φ(X,U) → Φ(X,U) + f (1)(Φ) + f (2)(Φ) + . . . ,

E(X,U) → E(X,U) + g(1)(Φ, E) + g(2)(Φ, E) + . . . .
(1.4.3)

Let us recall for completeness that at the level of the gauge algebra it is

sufficient to limit the attention to the linearized order in the gauge parame-

ter. After this perturbative expansion also the condition that the action be

gauge invariant splits analogously ending up with the following infinite set

of consistency conditions:

δ
(0)
E L(2) = 0 ,

δ
(1)
E L(2) + δ

(0)
E L(3) = 0 ,

δ
(2)
E L(2) + δ

(1)
E L(2) + δ

(0)
E L(4) = 0 ,

. . .

(1.4.4)

where for brevity we have dropped the integral sign and the measure. The

above equations can be solved order by order iteratively and under some

further assumptions give as solutions consistent gauge theories at each order.

The general strategy goes as follows:

1. Solve for the quadratic part of the Lagrangian7 (Free Theory),

2. Having fixed the quadratic part any δ
(1)
E L(2) is just proportional to the

free EoMs regardless the precise form of δ(1) and hence one can first

6Notice that, as we have mentioned, dropping the tangentiality constraint one can end

up with a gauge invariant formulation of massive fields that is usually called Stueckelberg

formulation. In this way it is possible in principle to apply the Noether procedure also in

those more general cases.
7One has to fix what kind of wave equations have to be reproduced by the free action.

In other words one has to decide what kind of representations of the isometry group to

consider.
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solve the simplest equation

δ
(0)
E L(3) ≈ 0 , (1.4.5)

where henceforth ≈ means modulo the free EoMs.

3. Having the solution to eq. (1.4.5) one can now solve for δ(1) and go to

the next equation in the list.

4. Let us now suppose that we have solved the first n equations completely.

This means that we know the form of L(i) and of δ(i−2) for any i ≤ n+1

5. We can now solve the (n+1)-th equation first solving for L(n+2) modulo

the free EoMs and then extracting the corresponding deformation of

the gauge transformation δ(n).

Before going on with our discussion it is worth stressing that the set of equa-

tions so far considered is kind of trivial if no other assumption is made on the

structure of the interactions, as was first observed in [178] when discussing

the role of locality in relation to the Noether procedure. The key point is

from this respect the fact that one would like to recover unitary theories and

so it would be important to have a criterium to check the possible violations

of Unitarity. This is not a mystery at the quadratic level, where unitarity

of the theory is related to the representation theory of the corresponding

isometry group and manifests itself in terms of the sign of the kinetic terms.

On the other hand, at the interacting level and in particular from the quartic

order on, as it will be clearer in the following, the usual criteria that has been

used is Lagrangian locality. However, the necessity of the latter is debatable

and it should be considered just as a sufficient condition in order to ensure

tree-level unitarity, and hence, at least the classical consistency of the theory.

From this point of view it is worth mentioning that for long time ST and also

Vasiliev’s system or more recently the AdS/CFT correspondence have put in

question the necessity of requiring a local Lagrangian description. The only

local commutation relations have to hold at the level of the observable quan-

tities that, as more gauge symmetries one adds to the system, tend to lose
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completely their local nature as for instance happens already in General Rel-

ativity. In the following, having in mind this discussion we are going to relax

the standard locality hypothesis at the Lagrangian level with the aim of un-

derstanding its implications in relation to the systematics of HS interactions.

Further constraints can come for instance from a detailed study of the global

symmetries of the system, whose structure is already very constraining at

the cubic level, or even from the AdS/CFT correspondence, from which one

can hopefully extract the right consistency criteria. We leave this important

analysis for the future.

Coming back to the Noether procedure, the structure of the above equa-

tions can be further simplified exploiting generating function techniques in

the ambient space formalism. First of all let us notice from this respect

that by considering all possible forms of ambient-space Lagrangian vertices

one does not loose any generality since any (A)dS Lagrangian vertex can be

written as an ambient-space one making use of the projector8:

PMN =
XMXN − ηMN X2

X2
. (1.4.6)

However, as suggested by the projector itself the possible ambient-space La-

grangian couplings can be more general than the flat-space ones allowing

a non trivial X-dependence. This can be also understood as a result of

the break down of translational symmetry at the level of the ambient space

induced by the δ-function insertion. All that being said, any Lagrangian

coupling involving a given number n ≥ 2 of fields can be rewritten in terms

of the corresponding ambient-space generating function as

L(n) = 1
n!

C(n)
a1 ... an

(

δ̂;X; ∂X1 , . . . , ∂Xn
;U1, . . . , Un

)

⋆1...n Φ
a1(X1, U1) . . .Φ

an(Xn, Un)
∣

∣

∣

Xi =X
, (1.4.7)

where for completeness we have also explicitly introduced the color indices ai

associated to the Chan-Paton factors, while the subscript on the various par-

tial derivatives is meant to specify on which generating function of the fields

8See e.g. [113] for more details
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the derivatives act upon. Here we have also introduced the inner-product ⋆i

that we shall refer to as ⋆-contraction between generating functions

⋆i : (Φ(Ui),Ψ(Ui))→ Φ ⋆i Ψ = e
∂Ui

·∂U′
i Φ(Ui)Ψ(U ′

i)
∣

∣

∣

Ui=0
, (1.4.8)

where the subscript i is meant to specify what sets of auxiliary variables

are contracted together especially whenever there is more then one choice9.

Let us mentioned that one can explicitly perform the ⋆-contraction with the

formal substitution

Ui → ∂Ui
, (1.4.9)

and depending on the situation in the following it will prove convenient to

work with the operatorial version of eq. (1.4.7) that can be presented as

L(n) = 1
n!

C(n)
a1 ... an

(

δ̂;X; ∂X1 , . . . , ∂Xn
; ∂U1 , . . . , ∂Un

)

× Φa1(X1, U1) . . .Φ
an(Xn, Un)

∣

∣

∣

Ui=0
Xi=X

, (1.4.10)

Furthermore, if one restricts the attention to parity-even Lorentz-invariant

couplings, one can consider functions of the following Lorentz-invariant build-

ing blocks

X2 , X ·∂Xi
, ∂Xi

·∂Xj
, X ·Ui , Ui ·∂Xj

, Ui ·Uj , (1.4.11)

modulo integration by parts, where by convention we have chosen the or-

dering prescription in which all X dependent quantities are placed on the

left with respect to the derivatives. However, even though we can have La-

grangian generating functions with an explicit X dependence this is indeed

redundant and can be in fact neglected:

• First, X2 simply becomes L2 after the radial integration, and can be

absorbed into the definition of Ca1a2a3 .

• Second, X · ∂Xi
is equivalent to Xi · ∂Xi

which essentially counts the

number of Xi’s and so can be absorbed into Ca1a2a3 as well.

9In our case for instance one of the generating functions depends on more then one

auxiliary variable.
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• Finally, X ·Ui is equivalent to Xi ·Ui which is nothing but the tangent

condition (1.1.24) after the ⋆-contraction. Hence, when it acts directly

on the fields it vanishes, while acting on the derivatives produces

(X · ∂U) ∂XM1 · · · ∂XMn Φ (1.4.12)

= −
n
∑

m=1

∂XM1 · · · ∂XMm−1 ∂UMm ∂XMm+1 · · · ∂XMm−1 Φ ,

so that X ·Ui is equivalent to a linear combination of the other Lorentz

invariants.

At the end one can write without loss of generality the Lagrangian generating

function of eq. (1.4.7) as

L(n) = 1
n!

C(n)
a1 ... an

(

δ̂; ∂Xi
· ∂Xj

; Ui · ∂Xj
; Ui · Uj

)

⋆1...n Φ
a1(X1, U1) . . .Φ

an(Xn, Un)
∣

∣

∣

Xi =X
. (1.4.13)

For the later convenience let us also introduce the color ordered part of the

interactions that will play a key role in Chapter 4. Indeed one can explicitly

introduce Chan-Paton factors T ai as in ST carrying the color indices ai so

that one can rewrite the Lagrangian couplings in the form

L(n) = 1
n!

∑

σn−1

C
(n)
0σ(1)...σ(n)

(

δ̂; ∂Xi
· ∂Xj

; Ui · ∂Xj
; Ui · Uj

)

⋆01...n Tr
[

Φ0(X0, U0) Φσ(1)(Xσ(1), Uσ(1)) . . .Φσ(n)(Xσ(n), Uσ(n))
]

∣

∣

∣

Xi =X
,

(1.4.14)

where the fields have been redefined as

Φ = Φa1 T a1 , (1.4.15)

the trace is over the Chan-Paton factors, the sum is over all permutations of

n − 1 elements and we have defined the cyclic color ordered portions of the

generating functions C
(n)
01...n. Let us stress that we have defined this color-

ordered representation of the generating functions because it is intimately
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related to what one can call open-string-like couplings having a natural planar

structure. In Chapter 4.2 we will also discuss other types of couplings that

one can call similarly of the closed-string-type in order to underline how

string results actually reflect interesting field theory properties that are still

to be completely understood.

All Noether procedure equations (1.4.4) translate into differential condi-

tions for the generating functions C
(n)
a1...an . For instance the equations

δ
(0)
Ei
L(3) ≈ 0 , (1.4.16)

where the gauge variation is taken with respect to the field Φai(Xi, Ui), imply

in the massless case the linear homogeneous first order differential equation

δ
[

∂Ui
· ∂Xi

C(3)
a1 a2 a3

(

δ̂; ∂Xj
· ∂Xk

; Uj · ∂Xk
; Uj · Uk

)]

≈ 0 , (1.4.17)

or equivalently the commutator equation

δ
[

C(3)
a1 a2 a3

(

δ̂; ∂Xj
· ∂Xk

; ∂Uj
· ∂Xk

; ∂Uj
· ∂Uk

)

, Ui · ∂Xi

]

Ui=0
Xi=X

≈ 0 , (1.4.18)

that have to be satisfied modulo the corresponding homogeneity and tangen-

tiality constraints on the fields and gauge parameters. Analogously, in the

partially-massless cases for each partially-massless field Φai(Xi, Ui) at the

partially-massless point ri, the corresponding coupling should be a solution

of the higher-order differential equation

δ
[

(∂Ui
· ∂Xi

)ri+1 C(3)
a1 a2 a3

(

δ̂; ∂Xj
· ∂Xk

; Uj · ∂Xk
; Uj · Uk

)]

≈ 0 , (1.4.19)

or of the commutator equation

δ
[

C(3)
a1 a2 a3

(

δ̂; ∂Xj
· ∂Xk

; ∂Uj
· ∂Xk

; ∂Uj
· ∂Uk

)

, (Ui · ∂Xi
)ri+1

]

Ui=0
Xi=X

≈ 0 .

(1.4.20)

Obviously the differential constraints on the vertices have to be imposed

only in relation to the fields that require a gauge symmetry as compatibility

conditions with the gauge symmetry itself while, for instance, massive fields

in the unitary gauge do not impose additional constraints on the vertices
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apart of course from the requirement of unitarity that as we have remarked

should be imposed on top of the Noether procedure. From this respect the

gauge invariant formulation à la Stueckelberg of massive fields can be of

help (see e.g. [76] for more details). In the following, starting from the

quadratic order we are going to systematically study the solution of the

Noether procedure equations in the massless case. For massive and partially-

massless couplings the logic is very similar to that of the massless case and

we refer to [76] for more details.





Chapter 2

HS Free Theory on constant

curvature backgrounds

In this chapter we are going to apply the formalism introduced in the

previous chapter in order to construct free Lagrangians for totally symmetric

HS fields on constant curvature backgrounds. See [34, 37, 38, 36, 166, 65]

for previous constructions in flat and (A)dS backgrounds in the intrinsic

formulation and also [169] for a discussion of the radial reduction method

in combination with the BRST formalism. This chapter is based on the

appendices of [78, 75]. While addressing here as a warm up exercise the

problem at the quadratic level, we shall discuss the interactions at the cubic

order and beyond in the next Chapters. Among the other things we shall also

define the concepts of transverse and traceless (TT) part of the lagrangian

that we shall heavily use in the following.

2.1 Free Ambient Lagrangians

In this section, as a warm up exercise, we are going to present the solution

to the Noether procedure at the quadratic level. Our point of view is to

take as starting point the Fierz system introduced in Section 1.2 finding a

Lagrangian that upon gauge fixing reduces to it on-shell. Since the dynamical

51
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equation at the free level is

�Φ(X,U) = 0 , (2.1.1)

being of the second order, while the other equations are at most of first order,

the natural starting point for a quadratic action describing those representa-

tions is

S(2) = 1
2

∫

dd+1X δ
(√

σX2 − L
)

×
[

δa1a2 e
∂U1

·∂U2 Φa1(X1, U1)�2 Φ
a2(X2, U2) + . . .

]

Ui=0
Xi=X

, (2.1.2)

where the ellipsis denote, henceforth, terms proportional to divergences and

traces of the fields as well as possible auxiliary fields. The corresponding

generating function

C(2)
a1a2

= δa1a2 e
U1·U2 �2 , (2.1.3)

is in turn a solution of the differential equation

∂Ui
· ∂Xi

C(2)
a1a2

= 0 , (2.1.4)

modulo the tangentiality and homogeneity constraints, if both the field and

the gauge parameter are also transverse and traceless. Of course keeping

constraints that are not purely algebraic at the Lagrangian level is most of

the time problematic. Moreover since we would like to recover those con-

straints after on-shell gauge fixing one can exploit the Noether procedure

in order to complete the Lagrangian to its full version. More in detail we

have to compensate the non vanishing gauge variation of (2.1.2) with terms

that vanish if the transversality and traceless (TT) constraints are enforced.

Computing the gauge variation of the action (2.1.2) and leaving implicit for

a moment the Chan-Paton indices one ends up with

δ
(0)
E S(2) = −

∫

dd+1X δ e∂U1
·∂U2

(

∂U1 · ∂X1 Φ(X1, U1)�2 E(X2, U2)
)

Ui=0
Xi+X

,

(2.1.5)

where we have used

�2 = ∂X · (∂X2 − ∂X1) + �1 , ∂X := ∂X1 + ∂X2 , (2.1.6)
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together with the tangentiality and homogeneity constraints of the fields and

gauge parameters. Then, proceeding as in the Appendix C of [78] one can

then define a so called generalized de Donder tensor by the condition

D(X,U) = ∂U · ∂X Φ(X,U) + U · ∂X A(X,U) ,

δ
(0)
E A(X,U) = −∂U · ∂X E(X,U) , (X · ∂X − U · ∂U)A(X,U) = 0 .

(2.1.7)

whose basic property is

δ
(0)
E D(X,U) = �E(X,U) , (2.1.8)

while A(X,U) contains only tensor structures that vanish on the TT con-

straints1 and does not satisfy any tangentiality constraint. In terms of

D(X,U) and A(X,U) it is then possible to write a gauge invariant ambient-

space Lagrangian as

S(2) =
1

2

∫

dd+1X δ
[

Φ(X1, U1) ⋆ �2 Φ(X2, U2)

+ D(X1, U1) ⋆ D(X2, U2) − A(X1, U1) ⋆ �2A(X2, U2)
]

. (2.1.9)

This general form for the quadratic Lagrangian is independent from the par-

ticular form of the operator A and what is left is to present the solutions to

the eqs. (2.1.7). If we restrict the attention to local solutions without aux-

iliary fields and giving rise to a two derivative action, the available options

are quite limited and at the end the only possible choice is given by

A(X,U) = − 1
2
∂U · ∂U Φ(X,U) , (2.1.10)

that actually is compatible with eqs. (2.1.7) only for traceless gauge param-

eters:

∂U · ∂U E(X,U) = 0 . (2.1.11)

In more details, the presence of this leftover constraint means that in order to

increase the number of independent gauge symmetries either auxiliary fields

1Notice that if we discard the trace constraint from the Fierz system then the tensor

A cannot be built from traces.
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or higher derivatives should be added while, keeping this minimal formu-

lation, there is a maximal number of gauge symmetries that is compatible

with the original Fierz system we started from. This phenomenon is actually

quite similar to what happened at the level of the Fierz system itself when

we have solved for the compatible gauge symmetries. Indeed there we have

asked for the minimum number of gauge symmetries that was compatible

with the Fierz system without adding auxiliary fields. On the other hand,

we could have preserved a completely unconstrained gauge symmetry just

introducing an auxiliary field for any broken gauge symmetry. This kind of

result is usually achieved with the help of the Stueckelberg shift so that one

is forced to add auxiliary fields that can be settled to zero upon a partial

gauge fixing, recovering finally the original minimal form of the gauge sym-

metry. In particular, in the case of the trace constraint we can address the

problem already at the level of the Fierz system considering the following

Stueckelberg shift:

∂U · ∂U Φ(X,U) → ∂U · ∂U Φ(X,U) − U · ∂X α(X,U) , (2.1.12)

where by construction

δ(0)α(X,U) = ∂U · ∂U E(X,U) , (2.1.13)

so that one lose any trace constraint on the gauge parameter. The extension

of the solution for the tensor A(X,U) is then straightforward:

A(X,U) = −1
2

[

∂U · ∂U Φ(X,U) − U · ∂X α(X,U)
]

. (2.1.14)

Having recovered the ambient space Lagrangian one has to check if the

amount of gauge symmetry is anyway sufficient in order to gauge fix it back

to the original Fierz system. This presents in general some subtleties and for

instance in our case is related to the fact that there exist a combination of

the double trace of the field that is identically gauge invariant:

δ
(0)
E ∂U · ∂U

[

∂U · ∂U Φ(X,U) − U · ∂X α(X,U)
]

= 0 . (2.1.15)
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Hence, one needs to set it to zero

∂U · ∂U
[

∂U · ∂U Φ(X,U) − U · ∂X α(X,U)
]

= 0 , (2.1.16)

in order to avoid gauge fixing problems. This can be done introducing a

further Lagrange multiplier β(X,U) as

S
(2)
β =

∫

dd+1X δ
{

β(X,U) ⋆ ∂U · ∂U
[

∂U · ∂U Φ(X,U) − U · ∂X α(X,U)
]}

,

(2.1.17)

along the lines of2 [37] while eq. (2.1.16) reduces to the double trace con-

straint on Φ(X,U) whenever the compensator α is removed. Let us mention

in fact that the same problem was present even before, since for traceless

gauge parameters the double trace of the field is identically gauge invariant3.

Finally, the above Lagrangian (2.1.9), given the tensors A in (2.1.10) and

(2.1.14) respectively, reduces in the flat limit to the Fronsdal Lagrangian

[32] and, supplemented with a Lagrange multiplier piece of eq. (2.1.17), to

the minimal unconstrained Lagrangian of [37], respectively. Hence, they are

the corresponding (A)dS deformations written in the ambient space language

and reduce exactly to the corresponding intrinsic form [38] as one can check

explicitly. Before going on with the discussion let us also mention another

possible solution to eqs. (2.1.7). Indeed, by choosing a transverse gauge

parameter

∂U · ∂X E(X,U) = 0 , (2.1.19)

one can find the solution

A(X,U) = 0 , (2.1.20)

2Notice that in our approach the Lagrange multiplier does not transform under gauge

transformations:

δ
(0)
E β(X,U) = 0 . (2.1.18)

3Setting the double-trace to zero is strictly required whenever the double trace has

spin greater than zero because any massless helicity representation cannot be consistent

without the corresponding gauge symmetry.
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for which the Lagrangian (2.1.9) reduces simply to

S(2) =

∫

dd+1X δ
{

Φ(X,U) ⋆
[

� − U · ∂X ∂U · ∂X
]

Φ(X,U)
}

, (2.1.21)

recovering the transverse Lagrangians studied in [50, 179] in a ambient space

representation as a particular solution for the tensor D in eq. (2.1.7). This

Lagrangian is compatible with the ambient space gauge symmetry only for

tangent and transverse gauge parameters. However, these two conditions

together imply also the trace constraint

∂U · ∂U E(X,U) = ∂U · ∂X X · ∂U E(X,U) = 0 (2.1.22)

so that the trace of the field turns to be identically gauge invariant and has

to be set to zero

∂U · ∂U Φ(X,U) = 0 , (2.1.23)

by consistency, along the same lines as above when the double trace con-

straint has been introduced. In this way the above Lagrangian (2.1.21)

describes on-shell massless irreducible representations of the corresponding

isometry group. Let us mention that eq. (2.1.22) holds only for finite L while

in the flat limit L → ∞ this condition is lost so that one is not forced to

require a traceless gauge parameter. In this case in the flat limit one recovers

the so called triplet system [46, 47, 48] describing a reducible representation

containing spin s, s− 2 down to 1 or 0 for odd and even s respectively. The

fact that traceless and transversality conditions are linked in (A)dS suggests

that the corresponding description of reducible trace-full representations in

(A)dS is more involved. This can be actually appreciated already at the level

of the Fierz system and resonates, as we have already mentioned, with the

fact that it is in general more difficult to describe massless reducible represen-

tations in (A)dS. In our formalism the difficulty is related to the fixed degree

of homogeneity that one assigns to a given field. Indeed, in this case all traces

will have the same degree of homogeneity independently from their spin vio-

lating eq. (1.2.16). Hence, their degree of homogeneity is in general different

from the value for which one gets a massless representation. This pattern is
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actually the same that one encounters when dealing with reducible mixed-

symmetry representations. For instance, allowing non-vanishing traces in the

above case one would in general end up with a massless spin-s field plus a

bunch of massive lower-spin fields (traces) recovering a bigger representation

with respect to the shorter flat space counterpart. From this respect, more

efforts are needed in order to extend the discussion presented so far to more

general reducible representations and also to partially-massless and massive

fields of all symmetry type and we leave this for future work.

Before closing this section it is worth discussing the role of locality at

this level as we have remarked in Section 1.4. As we have anticipated, the

key concept is rather unitarity and at this order it is entirely related to the

representation theory and hence to the general form of eq. (2.1.2) regardless

of the precise structure of the ellipsis. From this respect one can in principle

allow any non-local solution for the tensor structure A that upon on-shell

gauge fixing implies the TT constraints and hence the correct propagator

compatibly with the representation theory. This is actually the first and

simplest instance in which locality proves to be too strong and manifests its

role as a sufficient condition implying unitarity, while allowing non-localities

there are still a number of consistent Unitary options that otherwise one

would have lost4.

2.2 TT part of the action

Before closing this section let us reiterate on the logic that we have taken

in order to find solutions to the Noether procedure. This logic will be indeed

our key approach at higher orders. The starting point has been the Fierz

system translating into the general form of the kinetic term in eq. (2.1.2),

while the Noether procedure has produced its completion containing also

terms proportional to divergences and traces. One can indeed observe how

the part of the Lagrangian proportional to � is gauge invariant modulo

4See e.g. [34, 36, 38, 49, 50] for the discussion of free non-local Lagrangians.
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divergences and traces of the fields while, modulo the EoMs, all traces and

divergences have a gauge variation that closes on the TT constraints. This

suggest to solve the Noether procedure first modulo the TT constraints and

only after, finding the completion of the TT part. This perspective is actually

in the spirit of the important work of Metsaev [88, 90]. There, all consistent

cubic interactions involving massive and massless HS fields in flat space-time

were constructed in the light-cone formalism restricting the attention to the

physical DoF and avoiding in this way many of the problems that have been

observed in the previous literature related to the appearance of unphysical

degrees of freedom. See e.g. [180, 181, 182, 183, 184, 185, 186, 140, 139, 141,

106, 110, 142, 187, 97, 188] for some recent works on the consistency of the

electromagnetic (EM) and gravitational couplings to massive HS fields.5 It is

worth noticing that, as shown for spin 2 in [190, 191] and for arbitrary spins

in [192], ST provides a solution for the case of constant EM background. See

also [69, 70] for an analysis of HS interactions in the open bosonic string and

[193, 194, 195, 196, 197] for studies on scattering amplitudes of HS states in

superstring and heterotic string theories. Other works on cubic interactions

of massive HS fields in (A)dS can be found in [102, 108].

The aforementioned difficulties in finding consistent interactions manifest

themselves only at the full off-shell level,6 while they can be circumvented

restricting the attention to the physical DoF. In this approach, what is left

is to find the complete expressions associated with those vertices. Starting

from the TT parts of the interactions, that can be viewed as the covariant

versions of Metsaev’s lightcone vertices, the corresponding complete forms

within the Fronsdal setting were obtained recently in [68, 70]. Moreover,

the computation of (tree-level) correlation functions does not require the

full vertices but only their TT parts.7 Therefore, although they ought to be

5See also [189] for the study of EM interactions of partially-massless spin 2 fields.
6By “full off-shell level” we mean the entire Lagrangian including traces and divergences

of fields, as opposed to its TT part.
7See e.g [70, 78] for the analysis of higher-order interactions of massless particles in flat

space.
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completed, the TT parts of the vertices are also interesting in their own right.

Motivated by this observation, recently the TT parts of the cubic interactions

of massive and (partially-)massless HS fields in (A)dS were identified in [75,

76].8 More in detail in our approach we shall define the TT part of the Action

Figure 2.1: Various domain where to apply the Noether procedure. The TT

domain is the smallest one for which one can keep a covariant description

but it is well defined only on-shell or off-shell as an equivalence class.

as the corresponding equivalence class modulo traces and divergences of the

fields:

STT = {S/ ∼} , S1 ∼ S2 → S1 = S2 + f(Φ, ∂X · ∂U Φ, ∂U · ∂U Φ) ,

(2.2.1)

with f any (possibly non-local) functional involving the field and proportional

to its divergences or traces. Let us reiterate here that in the above definition

there is no non-local projection while, in order to arrive to the full Lagrangian,

it is required to fix the portion proportional to divergences and traces as

8See [129] for a discussion of the same problem in the frame-like approach.
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we have shown at the quadratic level. The concept of Lagrangian locality

translates as usual in the form of polynomial dependence of the Lagrangian

on the ambient space derivatives and extends also to the TT part of the

Lagrangian, if there exists a local representative within the corresponding

equivalence class. At the quadratic level for instance a representative of

the corresponding equivalence class is local and coincides with (2.1.2). The

corresponding EoMs then read

�Φ(X,U) + . . . ≈ 0 , (2.2.2)

under the same equivalence relation, together with possible equations for

the auxiliary fields. Moreover, the whole Noether procedure has a well def-

inite lifting to the corresponding equivalence classes. Indeed, for any action

representative

S = STT + . . . (2.2.3)

the equation

δES ≈ 0 , (2.2.4)

implies

δESTT ≈ . . . , (2.2.5)

since

δE(. . .) ≈ . . . . (2.2.6)

modulo the free EoMs (2.2.2). Hence, the TT part of the action is well de-

fined, while after having solved for it one should find its completion as we

have done at the quadratic level above (See fig. 2.1 for a graphic represen-

tation of the setting described so far). Let us also mention that from this

perspective the TT part of the action is completely independent on the num-

ber of auxiliary fields and in general from the explicit form of the ellipsis in

eq. (2.1.2). This is similar to what happens at the quadratic level where the

� part of the action (2.1.2) is fixed by the Fierz system or equivalently by

the representation theory. Moreover, the classification of the TT part can

be thought of as the classification of all possible on-shell interactions and
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hence can be considered on very similar grounds underlying an interesting

link between the following, say, bulk construction and the analogous problem

from the CFT side of constructing the most general correlation function in a

boundary CFT containing currents of arbitrary rank9 [199, 200, 201]. More-

over let us reiterate that the computation of (tree-level) correlation functions

does not require the full vertices but only their TT parts. Hence, the TT

part of the vertices acquire some interest on its own right not only as a start-

ing point in order to construct a full HS Lagrangian. All that being said, in

the following we shall restrict our attention to the solution of the Noether

procedure modulo divergences and traces that we shall refer as TT part of

the vertices. We shall review the completion of the flat vertices along the

lines of [68, 70, 78] in Appendix D.

9See also [198] for the corresponding analysis in three dimensions.





Chapter 3

HS Interaction on constant

curvature backgrounds

In this chapter we shall present the solution to the Noether procedure at

the cubic level for arbitrary massless totally-symmetric fields. This Chapter

is based on [78, 75, 76]. As explained previously we restrict our attention to

the TT part of the vertices while we shall describe the explicit completion

in the flat-space case in Appendix D. In this Chapter we shall work mostly

with coupling generating function of the form (1.4.10) where for convenience

the ⋆-contraction has been explicitly performed.

3.1 Cubic interactions: general setting

In this section we construct the consistent parity-invariant cubic inter-

actions of massless totally-symmetric HS fields in (A)dS. More precisely, we

focus on those pieces which do not contain divergences and traces of the fields

(TT parts). We begin with the most general expression for the cubic vertices

introduced in Section 1.4

S(3) =
1

3!

∫

dd+1X δ
(√

σX2−L
)

Ca1a2a3
(L−1 ; ∂X1 , ∂X2 , ∂X3 ; ∂U1 , ∂U2 , ∂U3)

× Φa1(X1, U1) Φ
a2(X2, U2) Φ

a3(X3, U3)
∣

∣

∣

Xi=X

Ui=0

+ . . . , (3.1.1)
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where hereafter Ca1a2a3
denotes the TT part of the vertices, as defined in

Section 2.2, while the ellipsis represent its completion. The cubic interactions

in (A)dS are in general inhomogeneous in the number of derivatives, the

lower-derivative parts being dressed by negative powers of L compared to the

highest-derivative one. Hence, the TT parts of the vertices can be expanded

as

Ca1a2a3
(L−1 ; ∂Xi

, ∂Ui
) =

∞
∑

n=0

L−n C [n]

a1a2a3
(Y, Z) , (3.1.2)

where we have introduced the parity-preserving Lorentz invariants:

Yi = ∂Ui
· ∂Xi+1

, Zi = ∂Ui+1
· ∂Ui−1

, [i ≃ i+ 3] , (3.1.3)

in the operatorial convention, or

Yi = Ui · ∂Xi+1
, Zi = Ui+1· Ui−1 , [i ≃ i+ 3] , (3.1.4)

in the other one where the ⋆-contraction has not been performed yet. In this

way, choosing a particular set of Yi’s, we have fixed any ambiguity related to

the (A)dS deformation of total derivatives mentioned in Section 1.3, while

in order to properly analyze the role of the total derivatives the latter are

denoted henceforth by

∂X := ∂X1 + ∂X2 + ∂X3 . (3.1.5)

Moreover, it is worth noticing that at the cubic level and restricting the

attention to the TT part of the interactions one can further simplify the

general expressions of eq. (1.4.13) and indeed we have dropped divergences,

∂Ui
· ∂Xi

, traces, ∂ 2
Ui

as well as terms proportional to ∂Xi
· ∂Xj

’s that being

proportional to the field equations up to total derivatives:

∂X1 · ∂X2 = 1
2
∂X · (∂X1 + ∂X2 − ∂X3) + 1

2
(∂2

X3
− ∂2

X1
− ∂2

X2
) , (3.1.6)

can be removed by proper field redefinitions. Notice on this respect that for

that regards the TT part of the cubic vertex there is no possible room for

non-local terms that are not singular on-shell just because either

1

∂2
Xi

≈ 1

0
(3.1.7)
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or

(∂X1 · ∂X2)
−1 ≈ 2 [∂X · (∂X1 + ∂X2 − ∂X3)]

−1 , (3.1.8)

that modulo integrations by parts is proportional to a combination of the

degrees of homogeneities of the fields and hence is either of the singular

form 1
0
or can be reabsorbed by a redefinition of the coupling function, being

just a constant overall factor. We are assuming here that observables are

well-defined on-shell1.

For the above reasons one does not need to assume locality so far while

one has indeed to check Unitarity as we have remarked in Section 1.4. From

this respect, one can easily remove from the vertex any temporal derivative

of order higher than one with proper field redefinitions just exploiting the

equations of motion

∂2
t ≈ ∂2

x , (3.1.9)

ending up with a coupling that contains at most one temporal derivative

and for this reason does not propagate ghosts at this order. Even though

non-localities do not enter explicitly at the level of the TT part of the cou-

pling they can play a role in combination with traces and divergences just

because in those cases they can still be well defined on-shell being of the

generic form 0
0
. Their possible presence is related from this respect to the

tensor structure A that has been chosen at the quadratic level and that en-

ters the EoMs. Their consistency rely on the consistency of the complete

quadratic Lagrangian so that non-localities can still play a role, compatibly

with unitarity also at the cubic level, even though the TT part of the vertex

turns out to be of higher-derivative nature but local for any fixed spin of the

fields.

Coming back to our discussion, in order to simplify the analysis, it is

convenient to recast the expansion (3.1.2) as in Section 1.3 so that each

1Let us reiterate that we have defined locality of the level of the TT part as equivalent

to the existence of a local representative in the equivalence class (2.2). Above we have

proved that a non-local cubic TT-part would inevitably led to ill-defined observables and

hence no room for them is leftover.
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coefficient of (3.1.2) can be redefined as

L−n C [n]

a1a2a3
(Y, Z) = δ̂n C (n)

a1a2a3
(Y, Z) . (3.1.10)

Notice that C [n]
a1a2a3

and C (n)
a1a2a3

are different functions for n ≥ 1 . The entire

couplings can be finally resummed as

Ca1a2a3
(δ̂;Y, Z) =

∞
∑

n=0

δ̂n C (n)

a1a2a3
(Y, Z) , (3.1.11)

where we have used the same notation for both C(L−1; . . .) and C(δ̂; . . .) al-

though they are different functions. Moreover, an equivalent presentation of

the same generating function that will be very useful in the following can be

given reabsorbing all δ̂ dependence within total derivatives. Indeed exploiting

backwards the identity

δ(n)
(√

σX2 − L
)

∂XM = − σ δ(n+1)
(√

σX2 − L
) XM

L
, (3.1.12)

one can rewrite the vertex generating function as

δ
(√

X2 − L
)

Ca1a2a3( ∂X ; Yi, Zi) = δ
(√

σX2 − L
)

∞
∑

n=0

δ̂n C [n]

a1a2a3
(Yi, Zi) ,

(3.1.13)

where all the L dependence of the vertex has been reabsorbed into the to-

tal derivative dependece of the function Ca1a2a3( ∂X ; Yi, Zi), that is again a

different function with respect to the above ones.

Before going on let us make contact with the standard tensor notation

providing an explicit example. For instance, a dS vertex of the form

C(δ̂;Y, Z) = (Y 2
1 Y2 Y3 Z1+cycl.)− δ̂

L
(Y1 Y2 Z1 Z2+cycl.)+ 3

4

(

δ̂
L

)2

Z1 Z2 Z3 ,

(3.1.14)

in our notation translates in the usual tensor notation as

S(3) =
1

2

∫

dd+1X δ
(√

X2 − L
) [

∂P Φ
MN ∂M ∂N ΦLQ ∂L ΦPQ

+
d− 5

L2
ΦM

N
∂M ΦLP ∂

L ΦNP +
(d− 3)(d− 4)

4L4
ΦM

N
ΦN

P
ΦP

M

]

. (3.1.15)
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3.2 Consistent cubic interactions of massless

HS fields

So far, we have just improved our notation at the cubic level exploiting the

simplifications that arise in this case. As we have discussed in Section (1.4)

gauge consistency can be studied order by order (in the number of fields),

and at the cubic level gives

δ(1)

i S(2) + δ(0)

i S(3) = 0 ⇒ δ(0)

i S(3) ≈ 0 , (3.2.1)

where ≈ means equivalence modulo the free field equations

�Φ(X,U) + . . . = 0 , (3.2.2)

and δ(0)

i is the linearized gauge transformation (1.2.15) associated with the

massless field Φai . Let us reiterate that the key point of our approach is that

the TT parts of the vertices can be determined from the Noether procedure

(3.2.1) independently from the ellipses in (2.1.2). This amounts to quotient

the Noether equation (3.2.1) by the Fierz systems of the fields Φai and of

the gauge parameters Eai . In our notation, this is equivalent to impose, for

i = 1 ,
[

Ca1a2a3
(δ̂;Y, Z) , U1 · ∂X1

] ∣

∣

∣

U1=0
≈ 0 , (3.2.3)

modulo all the ∂ 2
Xi
’s , ∂Ui

· ∂Xi
’s and ∂ 2

Ui
’s . Due to the presence of the delta

function, the total derivative terms generated by the gauge variation do not

simply vanish, but contribute as

δ
(√

σX2 − L
)

∂XM = − δ
(√

σX2 − L
)

δ̂
XM

L
. (3.2.4)

Using the commutation relations (A.1) together with the identity (A.2),

eq. (3.2.3) turns to be equivalent to the following differential equation:

[

Y2∂Z3−Y3∂Z2+
δ̂
L

(

Y2∂Y2 − Y3∂Y3 − µ2−µ3

2

)

∂Y1

]

Ca1a2a3
(δ̂;Y, Z) = 0 , (3.2.5)

where µ2 and µ3 are the possibly non-zero homogeneities of the other two

fields taking part to the interactions. In the following we shall restrict the
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attention to the case µi = 0 so that one should solve the system of three

equations
[

Yi+1∂Zi−1
− Yi−1∂Zi+1

+ δ̂
L

(

Yi+1∂Yi+1
− Yi−1∂Yi−1

)

∂Yi

]

Ca1a2a3
(δ̂;Y, Z) = 0 ,

i = 1, 2, 3 , (3.2.6)

whose solutions are the consistent parity-invariant cubic interactions involv-

ing massless HS fields in (A)dS. Since Ca1a2a3
is a polynomial in δ̂ , one can

solve (3.2.5) iteratively starting from the lowest order in δ̂. More explicitly

the auxiliary variable δ̂ is nothing but a formal device in order to turn a dif-

ferential recurrence relation into a single partial differential equation. Indeed,

eliminating δ̂, the simple commutator equation (3.2.3) becomes

δ
(√

σX2 − L
)

∞
∑

n=0

δ̂n
[

C (n)

a1a2a3
(Yi , Zi ) , Uj · ∂Xj

]

≈ 0 , (3.2.7)

that taking into account the total derivatives and integrating them by parts

implies the differential recurrence relation

(Y2 ∂Z3 − Y3 ∂Z2)C
(n)

a1a2a3
+ 1

L
(Y2∂Y2 − Y3∂Y3) ∂Y1C

(n−1)

a1a2a3
= 0 , (3.2.8)

where the C(n)
a1a2a3

vanish for negative n. Before discussing the solutions of

the system (3.2.6) let us notice that in the flat limit L→∞ the differential

equations simplify becoming the corresponding Noether procedure equations

in flat space time2:
(

Yi+1∂Zi−1
− Yi−1∂Zi+1

)

Ca1a2a3
(δ̂;Y, Z) = 0 . (3.2.11)

2Some subtleties arise whenever one considers massive fields in the flat limit because

taking the limit one is generically not allowed to rescale the homogeneities µi in order to

end up after the substitution

lim
L→∞

1
L
µ = −M . (3.2.9)

with the flat massive Noether equation
[

Y2∂Z3
− Y3∂Z2

+ δ̂
2 (M2 −M3) ∂Y1

]

Ca1A2A3
(δ̂;Y, Z) = 0 , (3.2.10)

In these cases one needs to check that the value of the homogeneities is not at a particular

point at which some enhancement of the number of solution can arise. In general particular

care should be taken whenever µ2−µ3 ∈ 2Z so that the limiting equation would still result

to be (3.2.11).
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This means that any solution of the (A)dS Noether equation (3.2.6) in the

flat limit gives rise to a consistent solution of the flat Noether procedure.

Obviously, the opposite is not generically true and one should explicitly check

if for each flat solution there exists a corresponding deformation starting with

the same leading term and supplemented with 1
L
corrections such that the

former flat solution can be promoted to a full (A)dS solution. In the following

we shall solve this problem in two ways:

• First, we shall follow the derivation of [75, 76], where the solution to

the problem has been found asking for the possibility to lift the order

zero solution to a full solution of (3.2.3) deforming the former with

total derivative contributions that as we have discussed can be used in

order to encode the lower derivative tail of the vertex.

• Second, we shall present the explicit polynomial solutions of the system

of partial differential equations (3.2.6) solving directly the differential

equation and building the most general deformation of the order zero

solutions.

Finally, we shall link the two different ways of presenting the solutions show-

ing how they are related by integrations by parts. Hence, let us discuss

the solution for the order zero part of the equations, namely the flat limit

(3.2.11).

3.2.1 Flat solution

The general solution of the latter differential equations (3.2.11) is given

by

Ca1a2a3(Y1 , Y2 , Y3 , Z1 , Z2 , Z3 ) = Ka1a2a3(Y1 , Y2 , Y3 , G ) , (3.2.12)

where G is defined as

G := Y1 Z1 + Y2 Z2 + Y3 Z3 (3.2.13)

= ∂U2· ∂U3 ∂U1· ∂X2 + ∂U3· ∂U1 ∂U2· ∂X3 + ∂U1· ∂U2 ∂U3· ∂X1 .
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The consistent cubic interactions are encoded in an arbitrary function Ka1a2a3

(3.2.12), and when expanded for different spins, they are expressed as

Ka1a2a3 =
∑

s1,s2,s3

min{s1,s2,s3}
∑

n=0

gs1s2s3,na1a2a3
Gn Y s1−n

1 Y s2−n
2 Y s3−n

3 , (3.2.14)

where the gs1s2s3,na1a2a3
’s are coupling constants that might be fixed by the consis-

tency of higher-order interactions. The number of derivatives of each vertex

can be identified from the above expansion as

s1 + s2 + s3 − 2n , (3.2.15)

so that the mass-dimensions of the coupling constants are

[

gs1s2s3,na1a2a3

]

= 6−d
2
− s1 − s2 − s3 + 2n . (3.2.16)

Moreover, from the symmetry properties of the cubic action (3.1.1), the cou-

pling constants inherit the symmetries

gs2s1s3,na2a1a3
= gs1s3s2,na1a3a2

= (−1)s1+s2+s3 gs1s2s3,na1a2a3
. (3.2.17)

As a result, the uncolored case is consistent only when the total spin s1 +

s2 + s3 is even.

Having classified the corresponding flat solution what is left, as we have

anticipated, is to find their lifting. Before discussing explicitly this issue let

us add some comments on the higher order solutions C (n)
a1a2a3

. Indeed one

can now solve iteratively all subsequent differential equations that for each

n ≥ 1 are now inhomogeneous differential equations whose solutions are fixed

up to a solution of the corresponding homogeneous equation. Each of these

homogeneous solutions K′
a1a2a3

(Yi, G) induces a tail of particular solutions for

higher orders, and provides additional solutions of eqs. (3.2.8):

Ca1a2a3 = δ
(√

σX2 − L
)

δ̂n

[

K′
a1a2a3

+
∞
∑

m=1

δ̂m C (m)

a1a2a3

]

. (3.2.18)

This observation seems to imply the presence of ambiguities in the (A)dS

interactions, but these additional solutions are in fact redundancies. This
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is true because, after the radial integration, different δ̂ n’s give just different

spin-dependent constant factors as one can see from eq. (1.3.15). Therefore,

any solution of the type (3.2.18) can be re-expressed in the form:

Ca1a2a3 = δ
(√

σX2 − L
)

[

K̃′
a1a2a3

+
∞
∑

n=1

δ̂ n C̃ (n)

a1a2a3

]

, (3.2.19)

where K̃′
a1a2a3

and C̃ (n)
a1a2a3

are proportional to K′
a1a2a3

and C (n)
a1a2a3

with some

spin-dependent factors. To reiterate, the aforementioned ambiguity can be

recast into a redefinition of the original C (0)
a1a2a3

= Ka1a2a3 . Hence, a consistent

cubic interaction is univocally determined from the choice of C (0)
a1a2a3

.

3.3 General solutions by total derivative de-

formation

So far, we have shown that the consistent cubic interactions in (A)dS can

be obtained solving the differential equations (3.2.8). The δ(0)-order solution

was already obtained in terms of an arbitrary function Ka1a2a3 , and what is

left is to determine a particular solution for the higher order parts C (n≥1)
a1a2a3

,

keeping in mind that the ambiguities in the latter are redundancies.

In the following, we construct at once the full cubic vertex comprising the

full higher order tail of the C (n)
a1a2a3

’s, by making use of the following ansatz

Ca1a2a3( ∂X ; ∂Xi
, ∂Ui

) = Ka1a2a3

(

Ỹi , G̃
)

, (3.3.1)

where we have considered a total derivative deformation of the Ỹi’s and G̃ of

the form

Ỹi = Yi + αi ∂Ui
· ∂X , (3.3.2)

G̃ = (Y1 + β1 ∂U1· ∂X)Z1 + (Y2 + β2 ∂U2· ∂X)Z2 + (Y3 + β3 ∂U3· ∂X)Z3 .

Notice first that this ansatz is a highly restricted one, with only six con-

stants, compared to the general setting with an arbitrary number of C (n)
a1a2a3

’s.

Nonetheless, the motivation is straightforward: we attempt to keep the form
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of the generating function Ka1a2a3 fixed in terms of the same type of build-

ing blocks as in the flat case. Indeed if all order zero solutions really admit

a proper lifting to (A)dS, as expected in the massless case, this would be

equivalent to the existence of a proper deformation at the level of the build-

ing blocks themselves, otherwise one would most likely lose some particular

couplings depending on the spin of the external particles.

Notice as well that, although (3.3.3) contains explicitly total derivatives,

the highest-derivative part of the vertices built from (3.3.3) do not, ensuring

its non-triviality. Moreover, let us mention that in general in order to avoid

triviality problems it is always sufficient to start from the corresponding so-

lutions at the zero-th order asking for a proper lower derivative deformation.

Indeed, for any solution to the (A)dS Noether procedure the corresponding

leading term3 is always a proper solution of the corresponding flat Noether

procedure equation. This means that the number of solutions to the flat

Noether procedure is always bigger than the corresponding number of solu-

tions to the (A)dS Noether procedure. Hence, inequivalent flat solution will

always admit inequivalent lower derivative liftings whenever existing.

In order to examine the ansatz (3.3.1), we compute the gauge variation of

the latter exercising some care in treating total derivatives. We first provide

our solutions, leaving the detailed computation for the last part of this sub-

section. Requiring that the gauge variation vanishes modulo ∂2
Xi
≈ 0 , one

ends up with the conditions

(α1 + 1)α2 + 1 = 0 , (3.3.3)

(α1 + 1)(β2 + 1) + α1 β3 = 0 , (3.3.4)

(β1 + 1)(β2 + 1) + β3(β1 + β2 + 1) = 0 , (3.3.5)

on the constants αi and βi appearing in the ansatz (3.3.1), together with

their cyclic permutations on the subscripts i of αi and βi . If a solution for

3By leading term we mean the highest derivative piece of the (A)dS coupling that is

not a total derivative. Notice on this respect that the flat limit is well defined only at

the action level and not at the Lagrangian level due to the identical vanishing of total

derivatives under the integral sign.
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these equations exists, eq. (3.3.1) provides the consistent cubic interactions.

Actually, as expected, eqs. (3.3.3 - 3.3.5) admit solutions parameterized by

two constants α and β :

α1 = α , α2 = − 1
α+1

, α3 = −α+1
α

,

β1 = β , β2 = − β+1
α+1

, β3 = − α−β
α

, (3.3.6)

so that we can definitely conclude that the (A)dS deformation exists at the

level of the building blocks themselves as we have argued before. Regarding

possible redundancies related to different choices of α and β they can be in

principle reabsorbed into the definition of the functions Ka1a2a3 so that one

can work with a particular choice of α and β without loss of generality. More

precisely, as we shall see in the following, one can even prove that different

choices of α and β are parameterizing just total derivative contributions that

vanish identically.

Finally, the general solution for the (A)dS cubic-interaction problem is

given by an arbitrary function Ka1a2a3 (3.3.1) together with eq. (3.3.6) . One

can easily verify that when s1 = s2 = 0 our results coincide with the inter-

action vertices constructed in [113]. The coupling constants have the same

mass-dimensions (3.2.16) and the same permutation symmetries (3.2.17) as

the flat-space ones, while each vertex is now not homogeneous in the number

of the (A)dS-covariant derivatives since the ambient-space derivative (1.1.21)

is not. However, the maximum number of derivatives of the vertex associ-

ated with gs1s2s3,na1a2a3
can be easily identified as s1 + s2 + s3 − 2n . In the next

section we shall see in more detail how this non-homogeneity is related to

the inverse power expansion in the cosmological constant exhibited by the

FV vertices.

3.3.1 Proof at the δ(1) level

Here we show that the gauge invariance of the ansatz (3.3.1) is equivalent

to the conditions of eqs. (3.3.3 - 3.3.5) . Since all vertices of different spins are

independent, we consider without loss of generality the case where Ka1a2a3 is
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given by an exponential function:

Ka1a2a3 = ka1a2a3 e
LV , (3.3.7)

where L is again the radius of (A)dS, V is the sum of the arguments of Ka1a2a3

in eq. (3.3.1) modulo a factor of two:

V := ∂U1· (∂X23+ α̃1 ∂X) + ∂U2· (∂X31+ α̃2 ∂X) + ∂U3· (∂X12+ α̃3 ∂X)

+ ∂U2· ∂U3 ∂U1· (∂X23+ β̃1 ∂X) + ∂U3· ∂U1 ∂U2· (∂X31+ β̃2 ∂X)

+ ∂U1· ∂U2 ∂U3· (∂X12+ β̃3 ∂X) . (3.3.8)

and where, for convenience, we have redefined the αi’s and βi’s as

αi → α̃i = αi−1
2

, βi → β̃i = βi−1
2

. (3.3.9)

It is now convenient to use the following compact notation for the cubic

action:

S(3) =
1

3!

∫

δ k eLV Φ1 Φ2 Φ3

∣

∣ , (3.3.10)

where we use as a shorthand notation k and Φi in place of ka1a2a3 and

Φai(Xi, Ui) , while | at the end of equation denotes the evaluation Xi = X

and Ui = 0 . Performing the gauge variation with respect to Φ1 , one then

gets

δ(0)

E1
S(3) =

1

3!

∫

δ k
[

V , U1 · ∂X1

]

eLV E1 Φ2 Φ3

∣

∣ , (3.3.11)

where the commutator [V , U1 · ∂X1 ] is given by the total derivative terms:

[

V , U1 · ∂X1

]

≈ ∂X · ∂X23 (1 + ∂U2· ∂U3) + ∂X · ∂X1 (α̃1 + β̃1 ∂U2· ∂U3)

+ ∂X · ∂U2

(

1
2
∂X12· ∂U3 + β̃2 ∂X1· ∂U3

)

+ ∂X · ∂U3

(

1
2
∂X31· ∂U2 + β̃3 ∂X1· ∂U2

)

. (3.3.12)

After integrations by parts, one ends up with terms proportional to Xi · ∂Xi

and Xi · ∂Ui
which are exactly the operators appearing in the homogeneous

and tangent conditions (1.2.11). To make these operators act directly on
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the fields, one must move them to the right of eLV using the commutators

[Xi· ∂Xi
,V ] and [Xi· ∂Ui

,V ] computed in Appendix A. As a result one gets

δ(0)

E1
S(3) ≈ − 1

3!

∫

δ(1) k eLV A E1 Φ2 Φ3

∣

∣ , (3.3.13)

with

A =
(

1 + ∂U2· ∂U3

)

(3.3.14)

×
[

1
L
(X2 · ∂X2 −X3 · ∂X3)− (α̃1 ∂X23 + ∂X)· ∂U1 + (α̃2 + 1) ∂X3· ∂U2

− (α̃3 − 1) ∂X2· ∂U3 − (β̃1 ∂X23 + ∂X)· ∂U1 ∂U2· ∂U3

+(β̃2 + 1) ∂X3· ∂U2 ∂U3· ∂U1 − (β̃3 − 1) ∂X2· ∂U3 ∂U1· ∂U2

]

+
(

α̃1 + β̃1 ∂U2· ∂U3

)

×
[

1
L
X1 · ∂X1 − (α̃2 − 1) ∂X1· ∂U2 − (α̃3 + 1) ∂X1· ∂U3

− (β̃2 − 1) ∂X1· ∂U2 ∂U3· ∂U1 − (β̃3 + 1) ∂X1· ∂U3 ∂U1· ∂U2

]

+
(

1
2
∂X12· ∂U3 + β̃2 ∂X1· ∂U3

)

×
[

1
L
X2 · ∂U2 − (α̃3 − 1) ∂U2· ∂U3 − (α̃1 + 1) ∂U1· ∂U2

− (β̃3 − 1) ∂U2· ∂U3 ∂U1· ∂U2 − (β̃1 + 1) ∂U1· ∂U2 ∂U2· ∂U3

]

+
(

1
2
∂X31· ∂U2 + β̃3 ∂X1· ∂U2

)

×
[

1
L
X3 · ∂U3 − (α̃1 − 1) ∂U3· ∂U1 − (α̃2 + 1) ∂U2· ∂U3

− (β̃1 − 1) ∂U3· ∂U1 ∂U2· ∂U3 − (β̃2 + 1) ∂U2· ∂U3 ∂U3· ∂U1

]

.

The resulting termA containsXi·∂Xi
andXi·∂Ui

as well as other terms coming

from the commutation relations. Here Xi·∂Ui
vanishes by the tangent condi-

tion, and the homogenous condition replaces X1 · ∂X1 and X2 · ∂X2 −X3 · ∂X3

respectively, with U1 · ∂U1 and U2 · ∂U2 − U3 · ∂U3 . Since the last two depend

on Ui , pushing them to the left of eLV , they vanish when evaluated at Ui = 0

and the only remaining contributions are the commutators. Collecting all the

resulting terms one finally ends up with

δ(0)

E1
S(3) ≈ − 1

3!

∫

δ(1) k (B + C ) eLV E1 Φ2 Φ3

∣

∣ , (3.3.15)

where we have separated terms into the non-total-derivative part B (which

involves only ∂XM
ij

but not ∂XM ) and the total-derivative part C (which con-

tains ∂XM ). If the gauge variation δ1 S
(3) vanishes, B should vanish as well
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since there is no way to compensate it. In order to simplify the discussion

one can split B as B = B1 + B2 + B3, where the Bn’s are of order n in the

Lorentz invariants and are given respectively by

B1 = 1
2

[

(α̃1 + 1)(α̃2 − 1) + 4
]

∂X31· ∂U2

−1
2

[

(α̃3 + 1)(α̃1 − 1) + 4
]

∂X12· ∂U3 , (3.3.16)

B2 = 1
2

[

(α̃2 − 1)(β̃1 + 1) + (α̃2 + 1)(β̃3 − 1) + 4
]

∂X31· ∂U2 ∂U2· ∂U3

− 1
2

[

(α̃3 − 1)(β̃2 + 1) + (α̃3 + 1)(β̃1 − 1) + 4
]

∂X12· ∂U3 ∂U1· ∂U2 ,

+1
2

[

(α̃1 + 1)(β̃2 + 1) + (α̃1 − 1)(β̃3 − 1)
]

×
(

∂X31· ∂U2 ∂U3· ∂U1 − ∂X12· ∂U3 ∂U1· ∂U2

)

(3.3.17)

B3 = ∂U2· ∂U3

{

1
2

[

(β̃1 + 1)(β̃2 + 1) + (β̃3 − 1)(β̃1 + β̃2)
]

∂X31· ∂U2 ∂U2· ∂U3

−1
2

[

(β̃3 + 1)(β̃1 + 1) + (β̃2 − 1)(β̃3 + β̃1)
]

∂X12· ∂U3 ∂U1· ∂U2

}

. (3.3.18)

Since Bn’s are independent, each Bn should vanish separately. Moreover,

since we have considered so far the gauge consistency only with respect to

δ(0) Φa1(X1, U1) we have still to take into account the gauge invariance with

respect to δ(0) Φa2(X2, U2) and δ(0) Φa3(X3, U3) . These give the same condi-

tions just recovered here for δ(0) Φa1(X1, U1) but with cyclic permutations on

the subscripts i of α̃i and β̃i . Finally, the equations B1 = 0 , B2 = 0 and

B3 = 0 give respectively the conditions

(α̃1 + 1)(α̃2 − 1) + 4 = 0 , (3.3.19)

(α̃1 + 1)(β̃2 + 1) + (α̃1 − 1)(β̃3 − 1) = 0 , (3.3.20)

(β̃1 + 1)(β̃2 + 1) + (β̃3 − 1)(β̃1 + β̃2) = 0 , (3.3.21)

that in terms of αi and βi reduce exactly to eqs. (3.3.3), (3.3.4) and (3.3.5).

To complete the proof, one should also compute the total-derivative part

C in (3.3.15) and verify whether it imposes additional constraints on the

α̃i’s and β̃i’s. Actually, C is vanishing with the conditions (3.3.3 - 3.3.5), and

hence the latter equations are sufficient. However, this cannot be seen simply

at the present level δ(1) , but needs to be carefully analyzed at the next level

δ(2) . The details of the proof can be found in the Appendix B .
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3.4 Cubic interactions from the differential

equation

In the previous section we have constructed the (A)dS lifting of all mass-

less flat solutions considering a total derivative deformation of the corre-

sponding flat building blocks and than enforcing eq. (3.2.3). The existence

of the deformed building blocks can be considered as a consequence of the

fact that all flat vertices can be promoted to consistent (A)dS vertices. How-

ever, since the Noether equation (3.2.3) is equivalent to the partial differential

equations (3.2.6), it can be of interest to recover the same solutions solving

directly the differential equation and obtaining the result explicitly in terms

of δ̂. In order to recover the solutions in this way one has to solve the dif-

ferential equations (3.2.6) obtaining all of their polynomial solutions. This

can be done, as we have anticipated, solving iteratively order by order in δ̂

the corresponding differential recurrence relations starting from the zero-th

order solutions

C(0)
a1a2a3

(Yi, Zi) = K(0)
a1a2a3

(Y1, Y2, Y3, G) . (3.4.1)

On the other hand, in order to solve the full differential equation it is conve-

nient to consider the following ansatz

Ka1a2a3
(δ̂, Yi, Zi) = Ô

(

δ̂
L
Zi

)

K(0)
a1a2a3

(Y1, Y2, Y3, G) , (3.4.2)

where the operator Ô acts on the zero-th order solution generating its lower

derivative tail and contains the full explicit Zi dependence of the coupling.

Having divided the explicit Zi dependence in the operator Ô and the G de-

pendence inside K(0) it is natural to rewrite the differential equations (3.2.6)

in terms of partial derivatives making the following substitutions

∂Yi
= ∂̄Yi

+ Zi ∂̄G , ∂Zi
= ∂̄Zi

+ Yi ∂̄G . (3.4.3)
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The differential equations then becomes

[

Yi+1∂̄Zi−1
− Yi−1∂̄Zi+1

+ δ̂
L

(

Yi+1∂̄Yi+1
+ Yi+1Zi+1 ∂̄G − Yi−1∂̄Yi−1

−Yi−1Zi−1 ∂̄G
)

(∂̄Yi
+ Zi∂̄G)

]

Ô
(

δ̂
L
Zi

)

K(0)
a1a2a3

(Y1, Y2, Y3, G) = 0 , (3.4.4)

and is divided into two pieces:

• The first piece Yi−1∂̄Zi+1
−Yi+1∂̄Zi−1

whose partial derivatives acts only

on Ô,

• The second piece of order δ̂
L
whose derivatives act only on the order

zero solution although it does not commute with the operator Ô.

This structure of the differential equation supplemented by the fact that no

constraint should be imposed on the order zero solution K(0)
a1a2a3

(Y1, Y2, Y3, G)

implies the following operatorial differential equation for the operator Ô:

(Yi+1∂̄Zi−1
− Yi−1∂̄Zi+1

) Ô
(

δ̂
L
Zi

)

= − δ̂
L

(

Yi+1∂̄Yi+1
+ Yi+1Zi+1 ∂̄G

−Yi−1∂̄Yi−1
− Yi−1Zi−1 ∂̄G

)

(∂̄Yi
+ Zi∂̄G) Ô

(

δ̂
L
Zi

)

. (3.4.5)

The above equation can be easily integrated to a cyclic solution for the op-

erator Ô:

Ô = exp
[

− δ̂
L

(

Z1 ∂̄Y2 ∂̄Y3 + Z2 ∂̄Y3 ∂̄Y1 + Z3 ∂̄Y1 ∂̄Y2

+Z2 Z3 ∂̄Y1 ∂̄G + Z3 Z1 ∂̄Y2 ∂̄G + Z1 Z2 ∂̄Y3 ∂̄G

+Z1 Z2 Z3 ∂̄
2
G

)]

, (3.4.6)

so that at the end we have recovered the most general polynomial solution

of eq. (3.4.4) and hence of the massless Noether procedure in (A)dS:

Ka1a2a3
(δ̂, Yi, Zi) = exp

[

− δ̂
L

(

Z1 ∂̄Y2 ∂̄Y3 + Z2 ∂̄Y3 ∂̄Y1 + Z3 ∂̄Y1 ∂̄Y2

+Z2 Z3 ∂̄Y1 ∂̄G + Z3 Z1 ∂̄Y2 ∂̄G + Z1 Z2 ∂̄Y3 ∂̄G

+Z1 Z2 Z3 ∂̄
2
G

)]

K(0)
a1a2a3

(Yi, G) , (3.4.7)
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explicitly in terms of δ̂. It is interesting to observe how the operator Ô
generates the lower derivative tail corresponding to a given leading term in

K(0)
a1a2a3

. The simplest choices for the coupling function K(0)
a1a2a3

is obviously

the exponential so that the corresponding solution reads

Ka1a2a3
(δ̂, Yi, Zi) = exp [L(Y1 + Y2 + Y3 +G)

− δ̂
(

Z1 + Z2 + Z3 + Z2 Z3 + Z3 Z1 + Z1 Z2 + Z1 Z2 Z3

)

]

, (3.4.8)

that further simplifies if one restricts the attention only to the highest deriva-

tive zero-th order solution for K(0)
a1a2a3

. In this case one recovers the suggestive

result

Kh.d.
a1a2a3

(δ̂, Yi, Zi) = exp
[

L (Y1 + Y2 + Y3)− δ̂
(

Z1 + Z2 + Z3

)

]

, (3.4.9)

that has the same form of the string cubic amplitude recovered in [69, 70]

modulo the formal replacement

δ̂

L
→ 2

α′ . (3.4.10)

Of course the above replacement is just formal but the latter analogy is point-

ing out how the tensor structure of the various couplings present in String

Theory are the same as those arising from this very simple class of (A)dS

couplings apart for the relative coefficient between pieces with a different

number of derivatives. While we are planning to further investigate these

analogies also in more general cases putting forward this analysis in the fu-

ture, let us explicitly eliminate the δ̂ auxiliary variable in this simple example

exploiting eq. (1.3.15).

Considering a generic monomial in the expansion of eq. (3.4.9) and com-

bining it with the radial part of the integration measure one gets:

dRRd δ(R− L)
(

− δ̂
L

)m1+m2+m3

Y s1−m2−m3
1 Y s2−m3−m1

2 Y s3−m1−m2
3

Zm1
1 Zm2

2 Zm3
3 Rs1+s2+s3−6 , (3.4.11)

where we have used the degree of homogeneity of massless fields ∆i = si− 2.

From the above expression one can compute the radial degree of homogeneity
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of each monomial that turns out to depend only on the number of derivative

or on the total number m of Zi’s. Hence one can consider the following

expansion

∞
∑

m=0

1
m!

δ(R− L)
(

− δ̂
L

)m

Rd+2m−6 (Z1 + Z2 + Z3)
m , (3.4.12)

from which, applying eq. (1.3.15) one gets

∞
∑

m=0

1
m!

δ(R− L)
2m[d−7

2
+m]m

(σL2)m
Rd+2m−6 (Z1 + Z2 + Z3)

m , (3.4.13)

that further simplifies in terms of the ascending pochhammer as

∞
∑

m=0

1
m!

δ(R− L)
2m(d−5

2
)m

(σL2)m
Rd+2m−6 (Z1 + Z2 + Z3)

m . (3.4.14)

Finally one can rewrite the full vertex as

Kh.d.
a1a2a3

(δ̂, Yi, Zi) = e

√

σ L2

2
(Y1+Y2+Y3) F (Z1 + Z2 + Z3) , (3.4.15)

where the function F (z) can be explicitly computed resumming eq. (3.4.14)

as

F (z) =
∞
∑

m=0

1
m!

(d−5
2
)m zm = (1− z)−

d−5
2 . (3.4.16)

A similar but slightly more complicated result can be recovered in the general

case starting from (3.4.8) and obtaining

Ka1a2a3
(δ̂, Yi, Zi) = e

√

σ L2

2
(Y1+Y2+Y3)

× F

(

√

σ L2

2
G,Z1 + Z2 + Z3, Z1Z2 + Z2Z3 + Z3Z1, Z1Z2Z3

)

, (3.4.17)

in terms of a function F of four variables given by

F (z1, z2, z3, z4) =
∞
∑

ni=0

1
n1!n2!n3!n4!

(

d−5
2

+m1 +m3 + 2m4

)

m2+m3+m4

× zm1
1 zm2

2 zm3
3 zm4

4 . (3.4.18)
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3.5 Total derivatives or δ̂?

In the previous two sections we have seen two different presentation of the

solution to the Noether procedure at the cubic level. The first is explicitly

given in terms of deformed building blocks where the deformation is given

by total derivatives that encode the lower derivative pieces of the vertex,

while the second has been recovered directly as solution to the differential

equation implied by the Noether procedure in terms of the variables Yi and

Zi. Both of them have their pros and cons and in this section we shall link

these two different presentations carrying explicitly the integration by parts

of the total derivative terms present in the building blocks. This can be of

interest in order to relate different choices of the auxiliary variables Yi that

are related by integrations by parts. In the following we shall also discuss

the appearance of a new type of building blocks that trivialize the Noether

procedure being identically tangent and gauge invariant. The latter provide

in a simple way non-trivial solutions of the Noether differential equations

whose precise form in terms of Yi and Zi is although very difficult to obtain

because of the complicated integrations by parts involved in this case.

In order to make manifest the links between eqs. (3.3.1) and (3.4.7) in

the following we shall explicitly integrate by parts all total derivative terms

in (3.3.1). In order to simplify the integrations by parts we can start from

the simple exponential form of the coupling generating function

δ
(√

σX2 − L
)

Ka1a2a3

(

Ỹi, G̃
)

= δ
(√

σX2 − L
)

exp
[

Y1 ∂λ1 + Y2∂λ2 + Y3∂λ3 +G∂τ

+ ∂U1 · ∂X (α1∂λ1 + β1∂τZ1) + ∂U2 · ∂X (α2∂λ1 + β2∂τZ2)

+ ∂U3 · ∂X (α3∂λ1 + β3∂τZ3)
]

Ka1a2a3
(λi, τ)

∣

∣

∣

λi=0
τ=0

, (3.5.1)

where we have introduced the auxiliary variables λi’s and τ in order to put

all relevant dependence at the exponent while we have also divided the Yi

and G parts from the corresponding total derivative deformation. The above
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expression is of the general form

δKa1a2a3
= δ exp

[

A1 · ∂X + A2 · ∂X + A3 · ∂X
+B1 · ∂X1 + B2 · ∂X2 + B3 · ∂X3

]

, (3.5.2)

where

Ai = (αi∂λi
+ βi∂τ Zi) ∂Ui

, (3.5.3)

Bi = (∂λi−1
+ ∂τZi−1) ∂Ui−1

, (3.5.4)

and can be integrated by parts term by term as

δKa1a2a3
= δ exp

[

A1 · ∂X
]

× exp
[

A2 · ∂X + A3 · ∂X +B1 · ∂X1 +B2 · ∂X2 +B3 · ∂X3

]

= δ exp
[

− δ̂
L
A1 ·X1

]

× exp
[

A2 · ∂X + A3 · ∂X +B1 · ∂X1 +B2 · ∂X2 +B3 · ∂X3

]

= δ exp
[

A2 · ∂X + A3 · ∂X +B1 · ∂X1 +B2 · ∂X2 +B3 · ∂X3

]

× exp
[

δ̂
L
(A1 · A2 + A1 · A3 + A1 · B1)

]

. (3.5.5)

where we have used that tangentiality implies

exp
[

− δ̂
L
A1 ·X1

]

Φ(X1, U1) = Φ(X1, U1) . (3.5.6)

Iterating other two times the above procedure one finally gets

δKa1a2a3
= δ exp

[

B1 · ∂X1 +B2 · ∂X2 +B3 · ∂X3

]

× exp
[

δ̂
L
(A1 · A2 + A2 · A3 + A3 · A1 + A1 · B1 + A2 · B2 + A3 · B3)

]

,

(3.5.7)

so that using the above expressions for Ai and Bi one recovers

B1 · ∂X1 +B2 · ∂X2 +B3 · ∂X3 = Y1∂λ1 + Y2∂λ2 + Y3∂λ3 +G∂τ , (3.5.8)

together with

A1 · A2 + A2 · A3 + A3 · A1 + A1 · B1 + A2 · B2 + A3 · B3

= [α3(α2 + 1)]Z1 ∂λ2∂λ3 + [α1(β1 + β3 + 1) + β2]Z2Z3∂λ1∂τ

+ [β1β2 + β2β3 + β3β1 + β1 + β2 + β3]Z1Z2Z3 ∂
2
τ + cyclic . (3.5.9)
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Hence, exploiting eqs. (3.3.3), (3.3.4), (3.3.5) one finally gets

A1 · A2 + A2 · A3 + A3 · A1 + A1 · B1 + A2 · B2 + A3 · B3

= −
[

Z1 ∂λ2∂λ3 + Z2Z3∂λ1∂τ + Z1Z2Z3 ∂
2
τ + cyclic

]

. (3.5.10)

The fact that no leftover dependence on the αi’s and βi’s is remained implies

that the above two parameter family of couplings was just parameterizing

different total derivative terms in (A)dS. Finally, putting together the various

results one ends up with

δKa1a2a3
= δ exp

[

Y1∂λ1 + Y2∂λ2 + Y3∂λ3 +G∂τ
]

× exp
[

− δ̂
L

(

Z1 ∂λ2∂λ3 + Z2Z3∂λ1∂τ + Z1Z2Z3 ∂
2
τ + cyclic

) ]

× Ka1a2a3
(λi, τ)

∣

∣

∣

λi=0
τ=0

. (3.5.11)

Now since the first exponential is just a translation operator one can eliminate

the auxiliary variables ending up with

δKa1a2a3
= δ exp

[

− δ̂
L

(

Z1 ∂̄Y2 ∂̄Y3 + Z2Z3∂̄Y1 ∂̄G + Z1Z2Z3 ∂̄
2
G + cyclic

) ]

× Ka1a2a3
(Yi, G) , (3.5.12)

whose form coincides with eq. (3.4.7). With this techniques one can easily

change the convention of the Yi’s, that here have been chosen as in (3.1.3),

to any other convention. For instance in the antisymmetric convention

Y a
i = ∂Ui

· ∂Xi+1,i−1
, (3.5.13)

the corresponding solution in terms of δ̂ reads

δKa1a2a3
= δ exp

[

− δ̂
L

(

3Z1 ∂̄Y2 ∂̄Y3 + 2Z2Z3∂̄Y1 ∂̄G + Z1Z2Z3 ∂̄
2
G

+ cyclic
)]

Ka1a2a3
(Y a

i , G
a) , (3.5.14)

while in the following convention

Y c
1 = 1

2
∂U1 · ∂X23 , Y c

2 = ∂U2 · ∂X3 , Y c
3 = − ∂U3 · ∂X2 , (3.5.15)
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that is useful in order to extract the corresponding Noether currents the

coupling looks like

Ka1a2a3
(δ̂, Yi, Zi)

= exp
[

− δ̂
L

(

Z2 ∂̄Y3 ∂̄Y1 + Z3 ∂̄Y1 ∂̄Y2 + Z2 Z3 ∂̄Y1 ∂̄G
)

]

Ka1a2a3
(Y c

i , G
c) .

(3.5.16)

One can then extract the Ambient Noether currents as

Ja(X,U) = exp
[

− δ̂
L

(

Z2 ∂̄Y3 ∂̄Y1 + Z3 ∂̄Y1 ∂̄Y2 + Z2 Z3 ∂̄Y1 ∂̄G
)

]

× Ka
a2a3

(Y c
i , G

c) Φa2(X2, U2) Φ
a3(X3, U3)

∣

∣

∣

∂U1
→UT

U2=U3=0
Xi=X

. (3.5.17)

The latter are conserved modulo the equations of motion while we have

defined the tangent auxiliary variable

UT
M = UM −

U ·X
X2

XM , (3.5.18)

in order to translate the tangentiality constraint on the fields in terms of

tangent currents.

As we have anticipated, before closing this section we want to describe a

very simple class of solutions to the Noether procedure equations. Indeed,

our strategy has been to explicitly solve the differential equations starting

from the zero-th order solution or to deform the latter with total derivatives

in order to control both the number of solutions and their non-triviality. On

the other hand we could have solved the commutator equation (3.2.3) directly

obtaining in principle a subclass of the solutions. From this respect it can

be interesting to notice that the following building blocks

H̃i = ∂Ui−1
· ∂Xi+1

∂Ui+1
· ∂Xi−1

− ∂Xi+1
· ∂Xi−1

Zi , (3.5.19)

are tangent and identically gauge-invariant:

[

Xi · ∂Ui
, H̃j

]

= 0 ,
[

H̃j, Ui · ∂Xi

]

= 0 . (3.5.20)
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Hence, the above identities actually imply that any function

Ca1a2a3
= Ka1a2a3

(H̃1, H̃2, H̃3) , (3.5.21)

is a solution to the Noether procedure. This can be considered a trivial

solution because it does not need to be completed further and does not

require any TT constraint for the gauge invariance. On the other hand this

set of couplings cover only a very limited class of the whole set that we have

found above.

3.6 Reduction to (A)dS-intrinsic expressions

The cubic vertices (3.3.1) or (3.4.7) constructed in the ambient-space

formalism are given in terms of the Lorentz invariants ∂Ui
· ∂Xj

and ∂Ui
· ∂Uj

,

and the expressions are compact but implicit with respect to (A)dS. The

explicit expressions in terms of (A)dS-intrinsic quantities can be obtained

making use of the radial reduction formulas recovered in Section 1.1. A

convenient way for the reduction is to express the Lorentz invariants in terms

of the following (A)dS-intrinsic bi-local quantities4:

Z(xi, xj) := X̂M(xi) X̂
M(xj) , (3.6.1)

Hµ(xi, xj) := L
∂X̂M(xi)

∂xµ
i

X̂M(xj) , (3.6.2)

Gµν(xi, xj) := L2 ∂X̂M(xi)

∂xµ
i

∂X̂M(xj)

∂xν
j

, (3.6.3)

whose coincident-point limits are given by

Z(x, x) = 1 , Hµ(x, x) = 0 , Gµν(x, x) = gµν(x) . (3.6.4)

Here the indices of the bi-local quantities are raised or lowered with the local

metric tensor. With these conventions, the ambient-space Lorentz invariant

4In the following we shall concentrate on σ = 1 remembering that the σ = −1 case can

be obtained by analytic continuation L→ iL.
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operators can be written as

∂Ui
· ∂Xj

=
[

∂vi Z(xi, xj) + ∂uµ
i
Hµ(xi, xj)

]

∂Rj

+
[

∂vi H
ν(xj, xi) + ∂uµ

i
Gµν(xi, xj)

][

Dj ν +
1
L
(uj ν ∂vj − vj ∂uν

j
)
]

L
Rj

,

∂Ui
· ∂Uj

= ∂vi Z(xi, xj) ∂vj + ∂uµ
i
Hµ(xi, xj) ∂vj + ∂vi H

ν(xj, xi) ∂uν
j

+ ∂uµ
i
Gµν(xi, xj) ∂uν

j
, (3.6.5)

where we have also introduced the compact notation

uµ
i := uα

i e µ
α (xi) , ∂uµ

i
:= ∂uα

i
eαµ(xi) . (3.6.6)

These quantities are more convenient than the flat auxiliary variables for the

explicit computations since they commute with the (A)dS-covariant deriva-

tive:

[Di µ , u
ν
j ] = 0 , [Di µ , ∂uν

j
] = 0 . (3.6.7)

The advantage of the bi-local quantities (3.6.3) rests on the fact that they

are closed under the action of the (A)dS-covariant derivatives, as one can see

by explicit computation:

Di µ Z(xi, xj) =
1
L
Hµ(xi, xj) , Di ν Hµ(xi, xj) = −gµν(xi)

1
L
Z(xi, xj) ,

Dj ν Hµ(xi, xj) =
1
L
Gµν(xi, xj) , Di ρ Gµν(xi, xj) = −gρµ(xi)

1
L
Hν(xj, xi) .

(3.6.8)

Therefore, the ambient-space cubic vertices (3.3.1) can be reduced to the

(A)dS-intrinsic ones with some algebra. Notice that the ambient-space deriva-

tives ∂XM
i

do not always reduce to the (A)dS covariant ones Di µ , but they

can produce some powers of 1/L2 either via the contractions between ∂vi/L’s

and vi/L’s or via the actions on bi-local quantities. Hence, an ambient-space

vertex with a number ∆ of ambient-space derivatives results in a tail of

(A)dS vertices whose number of covariant derivatives varies within the range

∆, ∆− 2, · · · , 1 (or 0). Whenever the number of derivatives decreases by

two, the corresponding mass-dimension is compensated by a factor 1/L2 .
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3.6.1 Example: 3−3−2 vertex with lowest number of

derivatives

Let us deal with an explicit example in order to see how this radial reduc-

tion works. We have chosen the 3−3−2 example with the least number of

derivatives because it is both one of the simplest examples of HS interactions

and one of the vertices constructed by FV in the frame-like formalism. The

3−3−2 vertex was also obtained in [107, 106] in terms of metric-like fields.

For simplicity, we leave aside the Chan-Paton factors and choose α and

β in a way5 that the cubic action has a symmetric form:

S(3) = −2

3
g332,2

∫

dd+1X δ
(√

X2 − L
)

G2 ∂U1· ∂X2 ∂U2· ∂X1 (3.6.9)

×Φ(3)(X1, U1) Φ
(3)(X2, U2) Φ

(2)(X3, U3)
∣

∣

∣Xi=X
Ui=0

,

where G is given by

G = 2
[

∂U2· ∂U3∂U1· ∂X2 − ∂U1· ∂U3 ∂U2· ∂X1 +
1
2
∂U1· ∂U2 ∂U3· ∂X12

]

. (3.6.10)

Expanding G2 gives rise to six terms, and in order to describe the procedure

let us consider first the term

(∂U2· ∂U3)
2 (∂U1· ∂X2)

3 ∂U2· ∂X1 . (3.6.11)

Using (3.6.5) and (3.6.5), one gets

[

∂v2
Z23 ∂v3

+ ∂u2
·H2

3
∂v3

+ ∂u3
·H3

2
∂v2 + ∂u2

·G23· ∂u3

]2

(3.6.12)

×
[

(∂v1
Z12 + ∂u1

·H1

2
) ∂R2

+ (∂v1
H 2

1
+ ∂u1

·G12)·
[

D2 +
1
L
(u2 ∂v2

− v2 ∂u2
)
]

L
R2

]3

×
[

(∂v2 Z21 + ∂u2
·H2

1
) ∂R1

+ (∂v2
H 1

2
+ ∂u2

·G21)·
[

D1 +
1
L
(u1 ∂v1

− v1 ∂u1
)
]

L
R1

]

,

where the subscripts or superscripts of Z,H and G encode the bi-local de-

pendence on (xi, xj) , in particular,

(H i

j
)µ = Hµ(xi, xj) , (H j

i
)µ = Hµ(xj, xi) . (3.6.13)

5We take the ǫ→ 0 limit with α = 1− 2ǫ and β = 1 + ǫ . Even though the second line’s

last factor in (3.3.1) diverges, it does not matter since we consider the case n = s3 .
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Even though eq. (3.6.13) has a rather complicated structure, many simplifi-

cations can be made. First, since the operator (3.6.11) is acting on

R1

L
R2

L
ϕ(3)(x1, u1)ϕ

(3)(x2, u2)ϕ
(2)(x3, u3)

∣

∣

ui=vi=0
, (3.6.14)

the dependence in Ri and vi can be removed performing all possible con-

tractions. Second, the coincident limit (3.6.4) simplifies some of the bi-local

quantities, and the formula (3.6.13) becomes

(∂u2· ∂u3)
2
[{

(∂u1·D2)
2(∂u1·G12·D2 +

1
L ∂u1·H1

2)− 3
L2 u2 · ∂u1 ∂u1· ∂u2 ∂u1·D2

}

×

× (∂u2·G21·D1 +
1
L ∂u2·H2

1)

+ 1
L

{

1
L (∂u1·D2)

2 − ∂u1·D2 H 2
1 ·D2 (∂u1·G12·D2 +

1
L ∂u1·H1

2)

+ 1
L2 ∂u1·D2 u2 ·H2

1 ∂u1·G12· ∂u2 − (∂u1·D2)
2(H 2

1 ·D2 +
1
L Z12)

+ 2
L2 u2 · ∂u1 ∂u1·D2 ∂u2·H2

1

}

∂u1·G12· ∂u2

]

. (3.6.15)

Finally, the property (3.6.8) enables one to remove all bi-local quantities

replacing them with some powers of L . At the end, one obtains the (A)dS

intrinsic expression for the operator (3.6.11) as

(∂u2·∂u3)
2 (∂u1·D2)

3 ∂u2·D1− 6
L2 ∂u1·∂u2 ∂u1·∂u3 ∂u2·∂u3 ∂u1·D2 ∂u2·D1 . (3.6.16)

Notice that the first term has the same form of (3.6.11) with the replace-

ment of (∂Xi
, ∂Ui

) by (Di , ∂ui
), but the second term has a lower number of

derivatives and is proportional to 1/L2 .

Five other terms in the expansion (3.6.10) can be computed in a similar

way (see Appendix C for more details), and the cubic action (3.6.10) can be
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finally expressed solely in terms of (A)dS intrinsic quantities as

S(3) = −8

3
g332,2

∫

ddx
√−g × (3.6.17)

×
[

(

∂u2· ∂u3 ∂u1·D2 − ∂u1· ∂u3 ∂u2·D1 +
1
2 ∂u1· ∂u2 ∂u3·D12

)2
∂u1·D2 ∂u2·D1

+ 4
L2 ∂u1· ∂u2

[

(∂u2· ∂u3)
2(∂u1·D2)

2 + (∂u1· ∂u3)
2(∂u2·D1)

2

−3 ∂u1· ∂u3 ∂u2· ∂u3 ∂u1·D2 ∂u2·D1]

+ 3
L2 (∂u1· ∂u2)

2 [∂u2· ∂u3 ∂u1·D2 − ∂u1· ∂u3 ∂u2·D1

+1
6 ∂u1· ∂u2 ∂u3·D12

]

∂u3·D12

− 5
4L2 (∂u1· ∂u2)

2 [∂u2· ∂u3 ∂u1·D2 ∂u3·D1 + ∂u1· ∂u3 ∂u2·D1 ∂u3·D2]

− 7d+29
2L4 (∂u1· ∂u2)

2∂u1· ∂u3 ∂u2· ∂u3

]

×ϕ(3)(x1, u1)ϕ
(3)(x2, u2)ϕ

(2)(x3, u3)
∣

∣

∣x1=x2=x3=x
u1=u2=u3=0

,

where we organized the various contributions according to the number of

(A)dS covariant derivatives.

3.7 Discussion

In this Chapter, we have obtained the TT part of the general solution

to the cubic-interaction problem of HS gauge fields in (A)dS. Interestingly,

the structure of the vertices, when expressed in the ambient-space formal-

ism, coincides with the flat-space ones up to non-trivial total-derivative terms

whose form is completely constrained by the gauge consistency. This obser-

vation underlines the key role of the simpler YM couplings from which all

possible HS interactions can be recovered systematically in terms of pow-

ers of the former. This resonates with the observations made in [173] in

the simpler gravity case and follows here just as a consequence of the gauge

principle behind the Noether procedure, as observed in [78]. On the other

hand, we have been able to explicitly carry out the integrations by parts

relating together different total derivative deformations of the same funda-

mental building blocks modulo lower derivative pieces recovering in this way

different but equivalent presentations of the same results.
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3.8 Relation to the Fradkin-Vasiliev vertices

Let us consider the s−s−2 vertices, which were originally constructed by

FV. They correspond to the case s1 = s2 = s and s3 = n = 2 in (3.3.1), so

that they are the vertices with lowest number of derivatives. With the same

choice of α and β as in (3.6.10), they are given by

S(3) = gss2,2
∫

dd+1X δ
(√

σX2 − L
)

G 2 (∂U1· ∂X2 ∂U2· ∂X1)
s−2

×Φ(s)(X1, U1) Φ
(s)(X2, U2) Φ

(2)(X3, U3)
∣

∣

∣Xi=X
Ui=0

, (3.8.1)

where, for simplicity, we have absorbed a numerical factor into the definition

of the coupling constant. In the previous section, we have shown how to

express ambient differential operators in terms of (A)dS-intrinsic quantities.

Likewise, expressing the operators (∂U1· ∂X2 ∂U2· ∂X1)
s−2 in the above formula

using (3.6.5) yields an expression in terms of (A)dS-covariant derivatives,

bi-local quantities and also the vi’s. Taking the ordering where all (A)dS-

covariant derivatives are placed on the RHS, one gets

(∂U1· ∂X2 ∂U2· ∂X1)
s−2 = As−2 + ΛAs−3 + · · ·+ Λs−2A0 , (3.8.2)

where Ar is the portion containing the 2r-th power of the (A)dS-covariant

derivatives, or Ar ∝ D2r . Plugging (3.8.2) into (3.8.1), the s−s−2 vertex

admits a similar expansion given by

S(3) = gss2,2
[

As + ΛAs−1 + · · ·+ Λs−2 A2

]

, (3.8.3)

with

Ar+2 =

∫

dd+1X δ
(√

σX2 − L
)

G 2Ar Φ
(s) Φ(s) Φ(2)

∣

∣

∣Xi=X
Ui=0

. (3.8.4)

Notice that each Ar is separately gauge invariant under the spin 2 gauge

transformations, and this is due to the fact that the Ar’s trivially commute

with the spin 2 gauge transformations. Notice as well that Ar involves 2(r−2)
or 2(r − 1) (A)dS covariant derivatives, since the action of G2 may or may

not add two additional derivatives.
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This expansion of the vertex is quite similar to the one obtained by FV,

and in fact one can make it as an expansion in inverse powers of Λ by re-

defining the coupling constant and the fields as

gss2,2 =

√
G

Λs−2
λs , ϕ(2) = 1√

G
h , ϕ(s) = 1√

G
φ(s) . (3.8.5)

The coupling constant gss2,2 has mass-dimension (2− d)/2− 2(s− 2) , while

with this redefinition the new coupling constant λs together with the new

fields have vanishing mass-dimension. Finally, the expansion (3.8.3) becomes

S(3) =
λs

G

[

Ã2 +
1

Λ
Ã3 + · · ·+

1

Λs−2
Ãs

]

, (3.8.6)

where Ãr’s are given schematically by

Lr = D2(r−1)hφ(s)φ(s) + ΛD2(r−2)hφ(s)φ(s) , (3.8.7)

in terms of dimensionless fields φ(s) and h .

Two remarks are in order. First, the lowest-derivative part Ã2 of the

above expression should involve the gravitational minimal coupling as well as

non-minimal ones which do not deform the gauge transformations. Therefore,

the simplest way to see this link is to analyze how the vertices here reviewed

deform the gauge transformations and the gauge algebra. We leave this

issue for future work. Second, the highest-derivative part (the so-called seed

coupling, according to [130]) has the same form as the flat-space vertices

with ∂xµ
i
’s replaced by Di µ’s. The relation between the gravitational minimal

coupling and the seed coupling was already noticed in [107], and in the present

Thesis we can see how both lower-derivative and seed couplings come out

at the same time from the ambient-space vertices. From a more general

perspective, it would be interesting to investigate the relation between the

present construction (in metric-like approach) and the recent frame-like one

of [129].

Boulanger-Leclercq-Sundell limit Since a curved space looks flat in the

short-distance limit, the dominant term of the curved-space actions in the
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limit should correspond to flat-space ones. One may expect to obtain in this

way the flat-space vertices from the FV ones, but because of the inverse power

expansion in Λ the dominant terms diverge in the limit. In [107], the authors

considered a particular limit of the FV system in order to extract flat-space

information from AdS interactions. More precisely, they considered the limit

where not only the cosmological constant but also the gravitational constant

and the fields scale as

Λ = ǫ Λ̃ , G = ǫ2(s−2) G̃ ,

h = ǫs−2 h̃ , φ(s) = ǫs−2 φ̃(s) , (3.8.8)

with ǫ → 0 . Under this rescaling, the quadratic action remains invariant,

but the cubic vertices scale in a way that only the seed coupling survives and

one gets the flat-space vertices with 2s− 2 derivatives.

In our setting, this can be understood at the level of (3.8.3), where the

flat-space limit is not singular for fixed (or non-scaling) gss2,2 and ϕ(s)’s, and

the flat-space cubic vertices are recovered. In this respect, the rescaling

(3.8.8) can be viewed as a particular flat-space limit in (3.8.5) which holds

gss2,2 and the ϕ(s)’s finite.

Let us conclude by summarizing our results and our strategy and by

describing their possible applications from a more general perspective also in

order to introduce the next Chapter where we are going to try and extend

as much as possible the above analysis at higher orders.

First, we observed that the flat-space interactions play a key role, through

the ambient-space formalism, in understanding and controlling cubic inter-

actions in any constant curvature background. Second, the simplified TT

(or on-shell) system makes possible to identify and classify the consistent

cubic interactions dividing the problem of finding them from the problem of

computing their completion that can be studied later. From this respect we

have in mind a direct application of these results to higher order amplitude

computations in any constant curvature background as we shall see in the

next Chapter. Indeed, the latter problem does not require in principle the
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aforementioned completions. We expect as well that many other key proper-

ties of the interactions can be appreciated already at this simpler level even

thought we want to stress the importance of the completion in order to arrive

at full consistent Lagrangians order by order in the number of fields.

The aforementioned perspectives open a new window for a systematic

analysis of many other aspects of HS theory. First of all, the issue of non-

Abelian HS gauge algebras in (A)dS and flat space together with their rela-

tions might be addressed6. In particular, it is interesting to draw some more

lessons on the HS geometry7 from the relations between the minimal (A)dS

couplings and the non-minimal ambient-space ones. Moreover, the nature of

the non-localities, which appear in the flat-space Lagrangian starting from

the quartic order, can be clarified from this point of view: flat-space non-

localities might fit within the Vasiliev’s system with the aid of the ambient-

space formalism. If so, the strategy employed above can give an additional

motivation for the flat-space HS gauge theory.

Further interesting applications of our results can be found in massive

HS field theories,8 of which String Theory is the most important example.

Actually, the interactions of massive HS fields can be investigated with tech-

niques similar to those used above and we refer to [76] for further details. It

is indeed believed by many authors9 that the masses of HS fields can play a

role similar to that of the cosmological constant of massless HS theories, and

the understanding of this relation can give more insights on the very nature

of String Theory.10

6See [111] for an analysis of flat-space gauge algebras.
7See [34, 35] for the free HS geometric equations, and [73] for a recent development on

HS curvatures.
8See [36, 202] for the recent development of the free massive HS theory in the metric-like

approach.
9See e.g. [108, 106, 110] for some investigation along these lines.

10See [203, 46, 48] for the triplet system which contains the same DoFs as the massless

limit of the first Regge trajectory of String Theory. See [192] for the analysis of HS in-

teractions in a constant electromagnetic background within the String Theory framework.

See [204, 205, 194] for the construction of some cubic and quartic flat-space vertices of
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Moreover, other applications can be found in the AdS/CFT correspon-

dence, which has been applied to HS theories starting from [207, 208].11 We

expect that the ambient-space representation of interacting vertices simplifies

the computations of n-point functions. Moreover, loop computations might

be addressed within this formalism, shedding some light on the quantum

aspects of HS gauge theories.

massless HS fields using vertex operators in String theory, and [206] for its recent extension

to AdS.
11In the AdS3 case, there has been considerable recent development after the works

[209, 210, 211].



Chapter 4

On four-point functions and

beyond

In this Chapter we are going to try and extend as much as possible the

analysis of the Noether procedure to the quartic level. The discussion is

based on [78] and we are going to rewrite it in the ambient space formalism

in order to make more clear its role in relation to the problem of finding

order by order in the number of fields a consistent Lagrangian in any constant

curvature background. We shall also discuss the role of locality arguing about

the possibility of relaxing it. As before, the following analysis will be carried

out in the TT setting, although mostly at the zero-th order level in δ̂. The

latter, as in the cubic case, is the leading part of the corresponding (A)dS

couplings and coincides with their flat limit. The full result can be than

recovered asking for a consistent lifting of the various zero-th order results

and we leave this very interesting problem for future work. Moreover, for

that regards the generalization of the following results to higher numbers of

external legs we refer for brevity to the Appendix A of [78].
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4.1 The Noether equations at quartic order

In this section we analyze the quartic Noether procedure equation
∫

dd+1X δ
(√

σX2 − L
) [

δ
(1)
E L(3) + δ

(0)
E L(4)

]

≈ 0 , (4.1.1)

in order to recover the general form of a consistent quartic coupling. Let

us recall that with ≈ we mean equality modulo the free EoMs while each

identity is considered as before modulo traces and divergences in order to

concentrate on a first instance on the TT portion of the Lagrangian. As

shown in Section 1.4, some formal simplifications arise considering the cor-

responding Lagrangian coupling generating functions. Hence, as we have

anticipated, we shall consider a generating function representation of the

quartic coupling given by

L(4) = 1
4!
C(4)

a1a2a3a4

(

δ̂; ∂Xi
· ∂Xj

;Ui · ∂Xj
, Ui · Uj

)

⋆1234 Φ
a1(X1, U1)Φ

a2(X2, U2)Φ
a3(X3, U3)Φ

a4(X4, U4)
∣

∣

∣

Ui=0
Xi=X

, (4.1.2)

whose labels ai’s are associated to Chan-Paton factors. Henceforth, for con-

venience, we are going to consider the color ordered convention (1.4.14) thus

splitting eq. (4.1.1) into independent color-ordered contributions. Restricting

the attention to one of these, eq. (4.1.1) takes the form

∂Ui
· ∂Xi

C(4)
1234 ≈ − [δ

(1)
i C(3)]1234 , (4.1.3)

where we recall that the above equality is to be considered modulo traces,

divergences and free EoMs while, for brevity, we have dropped the generating

functions of the fields. Here, the δ
(1)
i operator takes the form

δ
(1)
i = δ

(1)
i Φaj(Xj, Uj) ⋆j

δ

δΦaj(Xj, Uj)
, (4.1.4)

with δ
(1)
i Φaj(Xj, Uj) the deformation of the gauge transformations of the

field Φaj(Xj, Uj) induced from the cubic level1. For convenience, we have

1We are not distinguishing here between trivial and non-trivial deformations just be-

cause the following discussion is independent on this feature.
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introduced the functional derivative with respect to a generating function as

δ

δΦai(Xi, Ui)
Φaj(Xj, Uj) = δaiajδ(Xi −Xj) e

(Ui·Uj)T , (4.1.5)

where we have defined the tangent contraction

(Ui · Uj)T = Ui · Uj −
Ui ·Xj Uj ·Xi

Xi ·Xj

, (4.1.6)

by consistency with the tangentiality constraints on the fields. Therefore,

exploiting the cubic Noether equation
∫

dd+1X δ
[

δ
(1)
i L(2) + δ

(0)
i L(3)

]

= 0 , (4.1.7)

one then ends up with

δ
(1)
i Φaj(Xj, Uj) ⋆j �jΦ

aj(Xj, Uj) = − δ
(0)
i L(3) , (4.1.8)

from which it follows2

δ
(1)
i Φaj(Xj, Uj) = − 1

�j

δ

δΦaj(Xj, Uj)

(

δ
(0)
i L(3)

)

. (4.1.9)

Using this equation one then recovers

δ
(1)
i L(3) = −

(

L(3)
)

←−
δ

δΦaj(Xj, Uj)

⋆j

�j

−→
δ

δΦaj(Xj, Uj)

(

δ
(0)
i L(3)

)

= − δ
(0)
i

[

1

2

(

L(3)
)

←−
δ

δΦaj(Xj, Uj)

⋆j

�j

−→
δ

δΦaj(Xj, Uj)

(

L(3)
)

]

, (4.1.10)

where the sum runs over all possible j’s. The above expression can be also

rewritten in terms of the corresponding color-ordered generating functions as

δ
(1)
1 L(3) =

∑

σ

{

− ∂Ui
· ∂Xi

[

C
(3)
1σ(2)j(∂Xk

, Uk) ⋆̃j C
(3)
j′σ(3)σ(4)(∂Xk

, Uk)

+C
(3)
4σ(1)j(∂Xk

, Uk) ⋆̃j C
(3)
j′σ(2)σ(3)(∂Xk

, Uk)
]}

⋆1234 Tr
[

E1(X2, U2) Φσ(2)(Xσ(2), Uσ(2))

×Φσ(3)(Xσ(3), Uσ(3)) Φσ(4)(Xσ(4), Uσ(4))
]

, (4.1.11)

2Here we have used that δ
(1)
i Φaj (Xj , Uj) has the same degree of homogeneity of

Φaj (Xj , Uj).
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where we have defined a new inner-product

⋆̃j =

(

Φ(Xj,
←−
∂ Uj

)

←−
δ

δΦ(Xi, Ui)

)

⋆i

� i

( −→
δ

δΦ(Xi, Ui)
Φ(Xj′ ,

−→
∂ Uj′

)

)

.

(4.1.12)

The latter is naturally related to the propagator of the theory and rebuilds

the corresponding current exchange being by definition proportional to the

inverse Laplacian times projectors into the physical components of the fields3.

Finally, the Noether equations (4.1.1) become the first order differential

equations4

∂Ui
· ∂Xi

[

C
(3)
12j(∂Xk

, Uk) ⋆̃j C
(3)
j′34(∂Xk

, Uk) + C
(3)
41j(∂Xk

, Uk) ⋆̃j C
(3)
j′23(∂Xk

, Uk)

+ C
(4)
1234(∂Xk

, Uk)
]

≈ 0 , (4.1.13)

where≈means, as above, that the equality should hold modulo the free EoMs

of the external fields �iΦi + . . . ≈ 0 for i = 1, 2, 3, 4. Moreover, for brevity

we have left implicit the δ̂ dependence of the various generating functions.

The above differential equations (4.1.13) encode precisely the content of the

Noether procedure, that is thus equivalent to search for the most general

solution C̃
(4)
1234 of

∂Ui
· ∂Xi

C̃
(4)
1234(∂Xk

, Uk) ≈ 0 , (4.1.14)

or equivalently for the most general solution of the commutator equation

[

C̃
(4)
1234(∂Xk

, ∂Uk
), Ui · ∂Xi

]

≈ 0 , (4.1.15)

in the operator notation. Let us mention that the above equations have

exactly the same form of the Noether procedure equations at the cubic level

3Recall that our fields are defined modulo traces and divergences and on-shell they

become transverse and traceless. Hence compatibility of the Fierz system with the tan-

gentiality constraint implies that the above expression is exactly the inverse of the Lapla-

cian on the domain of tangent fields. Notice from this respect that the presence of two

projectors into eq. (4.1.12) implies that the inverse Laplacian can be completely factorized

either on the left or on the right just because the non-vanishing commutator is entirely

tangent or transverse as one can see from eq. (1.1.48).
4The differential equation is to be considered with respect to the variables Ui.
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apart for the number of external legs. Then, supposing to have recovered

the most general solution to the above equations, the TT part of the quartic

color-ordered Lagrangian coupling generating function can be obtained as

C
(4)
1234(∂Xk

, Uk) = C̃
(4)
1234(∂Xk

, Uk)

− C
(3)
12j(∂Xk

, Uk) ⋆̃j C
(3)
j′34(∂Xk

, Uk) − C
(3)
41j(∂Xk

, Uk) ⋆̃j C
(3)
j′23(∂Xk

, Uk) .

(4.1.16)

So far we have just addressed the problem of describing the general structure

of the solution to the Noether procedure equations at the quartic order. More

in detail we have solved a non-homogeneous differential equation finding a

particular solution

C
(4) part.
1234 (∂Xk

, Uk) = −C
(3)
12j(∂Xk

, Uk) ⋆̃j C
(3)
j′34(∂Xk

, Uk)

− C
(3)
41j(∂Xk

, Uk) ⋆̃j C
(3)
j′23(∂Xk

, Uk) , (4.1.17)

that in our case has also a neat physical interpretation being exactly minus

the color-ordered part of the current exchange. The complete solution has

been given adding to the particular solution any solution of the corresponding

homogeneous differential equation (4.1.14)

C
(4) hom
1234 (∂Xk

, Uk) = C̃
(4)
1234(∂Xk

, Uk) . (4.1.18)

The particular solution so far obtained to the Noether procedure was rec-

ognized already in5 [70] but without including the possible homogeneous

solutions. It was than extended in the present form in [78]. We have men-

tioned above the physical interpretation of the particular solution. However,

also the homogeneous solution has a neat interpretation from the physical

viewpoint. Indeed, the homogeneous differential equation can be interpreted

as enforcing the Ward identities necessary in order to end up with a con-

sistent amplitude involving massless degrees of freedom. Hence, the role of

5See also [79] for a derivation of the same particular solution at the quartic order in

flat space.
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the homogeneous solution is closely related to the possibility of recovering a

non-vanishing four-point amplitude as we shall discuss in the following.

Summarizing, the most general form of the solution to (4.1.1), and hence

to the Noether procedure at this order, is given in eq. (4.1.16). This form

manifests the relations between C
(4)
1234, the current exchange part, quantities

like C̃
(4)
1234 and the cubic couplings themselves C

(3)
123 that solve homogeneous

equations and entail the linearized gauge symmetries (tantamount to Ward

identities) of the free system (1.2.7). In this form the Lagrangian coupling can

be, in principle, both local and non-local depending both on the structure of

the cubic coupling and on the available solutions to the quartic homogeneous

equations. In the next sections we shall analyze the key properties that one

should exploit in order to put constraints on both the cubic and quartic

couplings with the aim of recovering consistent unitary theories. Indeed,

as we have anticipated in Section 1.4, without supplementing the Noether

procedure with further requirements, the result will not have any constraint

apart from being of the general form above and, in general we expect it to be

inconsistent6. Let us conclude this section mentioning that given the most

general form of the solution to the cubic and to the quartic homogeneous

equations as above, consistency lies behind the properties of the combination

(4.1.16) that cannot have an arbitrary structure but can in principle have a

non-local nature.

4.2 Four-point scattering amplitudes

In this Section, starting from the Feynman rules associated to the cou-

plings recovered above, we are going to compute the associated four-point

6Notice in this respect that the same is true also for the cubic couplings that although

have been found as solutions to the Noether procedure are not generally expected to be

consistent at the full non-linear level. We expect only some particular combinations of

them to be so and in the following we are going to analyze what can be the consistency

constraint that should be enforced also in light of the general structure of the quartic

solution to the Noether procedure
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amplitudes clarifying the physical interpretation of the generating function

C̃
(4)
1234 introduced in the previous section. As we have already anticipated, the

propagator of the theory is given by

P = ⋆̃ , (4.2.1)

where ⋆̃ has been defined in eq. (4.1.12), and is nicely expressed in terms of the

inner-product (1.4.8) up to some projectors that are needed by consistency

with the tangentiality and TT constraints. The color-ordered Feynman rules

for the cubic and quartic interactions associated to the color-ordered gener-

ating functions so far considered can be easily recovered from the previous

definitions and read

V (3)
123 = + C

(3)
123

(

δ̂, ∂Xi
, Ui

)

, (4.2.2)

V (4)
1234 = − C12j

(

δ̂, ∂Xk
, Uk

)

⋆̃j C
(3)
j34

(

δ̂, ∂Xk
, Uk

)

(4.2.3)

− C41j

(

δ̂, ∂Xk
, Uk

)

⋆̃j C
(3)
j23

(

δ̂, ∂Xk
, Uk

)

+ C̃
(4)
1234

(

δ̂, ∂Xk
, Uk

)

.

One can now compute the HS four-point amplitudes, ending up with

A4 =
∑

σ

C̃
(4)
1σ(2)σ(3)σ(4)

(

δ̂, ∂Xk
, Uk

)

⋆1234 Tr
[

Φ1(X1, U1) Φσ(2)(Xσ(2), Uσ(2)) Φσ(3)(Xσ(3), Uσ(3))

×Φσ(4)(Xσ(4), Uσ(4))
]

, (4.2.4)

where the sum is over the permutations, the trace is over the Chan-Paton

factors and where only the contribution coming from C̃
(4)
1234 is still present,

while the contribution given by the current exchanges is completely canceled

by the first contribution to the quartic Feynmann rules of eq. (4.2.3).

In some sense what we have recovered here is the equivalence between the

Noether procedure at the Lagrangian level, and the decoupling of unphysical

states at the amplitude level, that is intrinsically related to the linearized

part of the gauge symmetry. Moreover, this construction clarifies the role of

the homogeneous solution C̃
(4)
1234 that, indeed, coincides on-shell with the four-

point amplitude generating function and from which, attaching the proper
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boundary to bulk propagator in AdS, one would recover the related CFT cur-

rent correlators. In the following we shall provide the general tree-level form

for C̃
(4)
1234 extracting the Lagrangian couplings and commenting on the issue of

locality, also in relation to the content of Weinberg’s theorem of [132]. Let us

emphasize that we have split the TT part of the quartic Lagrangian couplings

into portions that are non-local, putting on more general grounds their form

along lines that are actually in the spirit of [178]. From this point of view the

TT part of the quartic couplings can be entirely characterized as the coun-

terterm canceling the non-vanishing linearized gauge variation of the current

exchange amplitude. Hence, we see here the first instance in which the TT

part itself of a coupling can be non-local canceling in this case the portion

of the current exchange whose gauge variation cannot be compensated by

local terms. The quartic coupling C
(4)
1234 is indeed explicitly non-local if C̃

(4)
1234

does not factorize on all possible current exchanges that one can construct

starting from the cubic vertices, with the correct relative coefficients. Let us

mention although that the nature of the allowed non-localities is anyway very

restricted even without enforcing consistency requirements like Unitarity but

just imposing that the observable quantities are well-behaved on-shell. In-

deed the only acceptable non-localities, as we have also commented in the

previous Chapter, should not have a singular behavior on-shell7. Hence, they

can be only of the type that is already allowed within the current exchange

amplitudes where non-localities appear as inverses of the Mandelstam-like

invariants. This feature is to be confronted with the cubic case in which no

Mandelstam variable is available and indeed the TT part of the couplings has

an intrinsic local, although higher derivative, nature. One could still require

Locality as a consistency constraint at the quartic order but this constraint

has proved to be at least too restrictive already at the quadratic and cubic

levels, for that regards the completion of the TT part. Hence, it would be

7We reiterate here that this is the reason why at the cubic level non-localities can only

enter the part proportional to traces and divergences. Let us stress, in order to avoid

confusion, that non-localities are not all of the form 1
0 ∼ ∞, like for instance the inverse

of Mandelstam variables.
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interesting to better understand the role of this hypothesis in more general

cases relaxing it and explicitly checking for more fundamental requirements

like unitarity, as we have done for instance at the quadratic and cubic levels.

Having relaxed the standard locality hypothesis, we need to find some

physical alternative that has to give a rationale for the possibly non-local

answer especially whenever no local one is available. This is what we call

minimal scheme. It is defined via a number of constraints on the couplings,

and hence also on the cubic coupling function together with the spectrum of

the theory, that have to satisfy altogether the following prescriptions:

• any particle propagating within some exchange gives rise to non-vanishing

four-point amplitudes where it plays the role of an external state8,

• no quartic coupling contains portions that are identically gauge invari-

ant under the linearized gauge variation9,

• In standard constructions, the on-shell gauge invariance of four-point

S-matrix elements is generally violated by current exchanges, but these

violations can be eliminated by the contributions of contact terms, lo-

cal quartic couplings. In this fashion, consistent four-point amplitudes

result from the local three-point couplings that build the exchanges

and from additional local quartic interactions, within the conventional

framework of local field theories. With higher-spin interactions, how-

ever, this cancellation is in general impossible, as implied for instance

8With this constraint we ensure that the S-matrix be non trivial and that all current

exchanges be built from states present in the spectrum constraining both the latter and

the coupling functions of the theory.
9With this requirement we avoid for simplicity local quartic couplings that are pro-

portional to the amplitude itself multiplied with Mandelstam variables in order to get a

local object. This requirement is not so strict and can be eliminated in the most general

setting although it is suggested by the structure of the boundary CFT in the framework

of AdS/CFT correspondence. Indeed, the full conformal algebra and all the correlation

functions are entirely specified by the OPE of two operators and by their conformal di-

mensions and hence by the cubic couplings while no additional freedom comes entirely

from higher orders.
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by Weinberg’s argument [132]. As a result, the only option that ap-

pears generally available is to eliminate the offending amplitudes al-

together via non-local quartic couplings that cancel precisely the ex-

changes. More in general, given a current exchange C1234 built from

two cubic couplings with both external spins and propagating particle

fixed, its gauge invariant completion has to be chosen local if a solution

C̃1234 of (4.1.14) factorizing on C1234 exists.10

• only those non-vanishing current exchanges that do not satisfy the

above requirement have to be removed altogether by non-local quartic

couplings11.

At the end only the current exchanges of the latter type, if any, will not

contribute to the amplitudes while any residue present in a given scattering

amplitude will be associated with one of the propagating degrees of freedom

present in the spectrum. This iterative procedure fixes the non-vanishing

entries of the cubic coupling function and in principle also the relative coeffi-

cients between different cubic couplings. Moreover, it enforces constraints on

the possible spectra playing the same job of locality in the lower-spin cases.

Let us stress in this respect that the above requirements are equivalent to

locality whenever all possible exchanges satisfy the third condition. They de-

part from it only whenever there is no non-trivial gauge invariant amplitude

factorizing on a certain exchange. However in those cases, as we shall see

below, the amplitude must involve by consistency at least infinitely many

propagating degrees of freedom contributing to the same residue making

much more difficult to verify unitarity and posing very interesting questions

about the consistency of the above requirements in these unusual cases. For

10This is equivalent to consider the maximal set of gauge invariant amplitudes enforcing

a correspondence between the residues and the propagating particles present in the spec-

trum. More in detail if a residue is present in the amplitude, its form cannot be different

from that of the corresponding current exchange. (See e.g. the YM example that we

consider in the next section where α and β have to be chosen in order to recover a local

result).
11Non-localities should never touch the correspondence between residues and exchanges.
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instance, whenever infinitely many degrees of freedom contribute to the same

residue possible clashes with analyticity can in principle arise12.

Other options are related to quartic local couplings that can arise as solu-

tions to the homogeneous equations. This types of couplings are proportional

to the amplitude itself but contain a sufficient number of Mandelstam vari-

ables in the numerator in order to give rise to local objects. Any coupling of

this type can give in principle a consistent local field theory with no cubic

coupling but since the tensorial structure is the same of C̃
(4)
1234, these kind

of options are clearly encoded into choices of the relative functions of the

Mandelstam variables that weight each different contribution to C̃
(4)
1234. In

the following, we shall restrict our attention to the minimal scheme and pur-

suing this kind of program we are going to explore in which sense, if any,

the usual notion of locality at the Lagrangian level may be overcome, leav-

ing though a systematic analysis of those constraints and of their solutions

for the future13. Moreover, we want to stress that in principle some of the

solutions that comply to the minimal scheme can explicitly clash with many

commonly accepted ideas about the structure of the S-matrix for massless

particles. However, given the enormous difficulties present on this subject

related to various assumptions whose origin cannot be proved in a rigorous

sense starting from the usual causality and unitarity hypothesis [171], we

make the choice of exploring the minimal setting that can give rise to non-

trivial HS interactions trying to understand in which sense their non-triviality

makes them different from their lower-spin counterparts.

Furthermore, we leave for the future the important question of clarifying

wheatear the minimal scheme here proposed is sufficient to imply global

symmetries of higher spin, as it does for their lower-spin counterparts.

12See e.g. [114, 69, 70] for the analysis of the resummation of infinite exchanges con-

tributing to the same residue
13It can be useful to stress that for the lower-spin cases the solutions to the minimal

scheme are all local.
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4.3 The Yang-Mills example

In the previous sections we have obtained the general form of the quartic

coupling stressing the role of linearized gauge symmetries related to the free

system. In order to make the construction explicit let us apply these tech-

niques to the familiar case of Yang-Mills theory coupled to scalar fields in

the adjoint representation, whose cubic couplings have been recovered in the

previous Chapter. For simplicity from now on we shall restrict the attention

to the zero-th order in δ̂ of the above generating functions, setting to zero

any total derivative that otherwise would have acted on the δ-function inside

the measure. Those solutions by the way can be interpreted as the flat limits

of the corresponding (A)dS couplings, as we have observed at the cubic level.

In this framework we need to solve the equations

∂Xi
· ∂Ui

C̃
(4)
1234(∂Xj

, Uj) ≈ 0 , (4.3.1)

discarding any total derivative contribution while ≈ means that the result

is to hold modulo the free EoMs for the external states and up to terms

proportional to divergences and traces. Actually, as we have remarked above,

the physical meaning of (4.3.1), and more generally of (3.2.3), amounts to

the decoupling condition for unphysical polarizations (Ward identities) at

the level of the amplitudes. The latter has indeed the same form of the

linearized gauge symmetry of the free system. We emphasize here the analogy

between these constraints and those satisfied by the cubic couplings. The

only difference is that the solution of the decoupling condition is no more,

in general, a Lagrangian coupling, simply because from the quartic order

Lagrangian couplings do not coincide in general with the amplitudes but

rather differ from them in the current exchange parts. What happens in the

three-point case is actually an accident from this point of view.

Following our strategy, one can start from the current exchange amplitude

that can be constructed from the following spin-1 cubic coupling14

14We introduce henceforth the notation ∂Xij
= ∂Xi

− ∂Xj
.
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G123 = (U1 · U2 + 1)U3 · ∂X12 + (U2 · U3 + 1)U1 · ∂X23

+ (U3 · U1 + 1)U2 · ∂X31 , (4.3.2)

encoding precisely the YM cubic interactions together with the minimal

coupling to a scalar. Restricting the attention to a single color-ordered con-

tribution, one is then left with the color-ordered current exchange

A(exch.)
1234 = − 1

s
G12a ⋆a Ga34 −

1

u
G41a ⋆a Ga23 , (4.3.3)

where only the s and u channels contribute while the Mandelstam variables

are defined as15

s = − (∂X3 + ∂X4)
2 , t = − (∂X2 + ∂X4)

2 , u = − (∂X2 + ∂X3)
2 . (4.3.4)

This current exchange (4.3.10) is not gauge invariant, and its linearized gauge

variation reads

δ4A(c.e.)
1234 = ∂X4 · ∂U4 A

(c.e.)
1234 = − 2U2 · ∂X4 + U1 · ∂X4

+ U3 · ∂X4 − 2U1 · U3 U2 · ∂X4 + U1 · U2 U3 · ∂X4 + U2 · U3 U1 · ∂X4 ,

(4.3.5)

so that the whole point of the Noether procedure, as we have stressed, is to

produce a counterterm whose linearized gauge variation cancels this contri-

bution. The totally cyclic counterterm can be worked out relatively easily in

this case, it is local, and is given by

C
(4)YM
1234 = 2U1 · U3 U2 · U4 − U1 · U4 U2 · U3 − U1 · U2 U3 · U4

+ 2 (U1 · U3 + U2 · U4) − U1 · U2 − U2 · U3 − U3 · U4 − U4 · U1 , (4.3.6)

so that it coincides precisely with the corresponding color-ordered contri-

bution to the Yang-Mills quartic coupling generating function that can be

deduced from the Yang-Mills Lagrangian coupled to scalar fields. Notice also

15Notice that both sides of the current exchange have the same degree of homogeneity

by consistency. Hence, by virtue of eq. (2.1.6), one can integrate by parts inside the

Mandelstam variables also when considering the subleading contributions in δ̂.
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that one would have ended with the same result starting from the full (A)dS

result without dropping the δ̂ contributions.

Returning to our discussion, we would like to reiterate that we have recov-

ered the Yang-Mills quartic Lagrangian generating function C
(4)YM
1234 follow-

ing the strategy outlined in the previous section and imposing the decoupling

condition of unphysical degrees of freedom at the level of the amplitude. One

then recovers the full generating function of Yang-Mills four-point amplitudes

in color-ordered form, given by

G1234(∂Xi
, Ui) = − 1

s
G12a ⋆a Ga34 −

1

u
G41a ⋆a Ga23 + C

(4)YM
1234 , (4.3.7)

that is actually the desired solution for C̃
(4)
1234(∂Xi

, Ui). In a similar fashion,

any Lagrangian vertex can be recovered as a counterterm that guarantees the

gauge invariance property of the corresponding amplitude while, as pointed

out in the previous section, the key physical content of the Noether proce-

dure is to produce amplitudes that decouple unphysical degrees of freedom.

Moreover, we want to underline, as also stressed in [178] and as remarked

previously, that from Noether procedure alone there is no general argument

forcing to choose local counterterms for C
(4)
1234. It is then interesting at least

in principle to analyze the most general quartic coupling, studying also non-

local solutions in this simple toy model. In this case, for instance, we can

conceive to consider the solutions

C̃
(4)
1234 = λG1234 , (4.3.8)

with λ an overall coefficient that does not affect the defining property of

eq. (4.3.1). This choice would led to a non-local quartic Lagrangian coupling

of the form

C
(4)
1234(∂Xi

, Ui) = − λ − 1

s
G12a ⋆ a Ga34 −

λ − 1

u
G41a ⋆ a Ga23 + λV YM

1234 ,

(4.3.9)

where we have subtracted the current exchange contribution in eq. (4.3.10).

Similarly, one could have also started from a more general current exchange
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of the form

A(exch.)
1234 = − α

s
G12a ⋆ a Ga34 −

β

u
G41a ⋆ a Ga23 , (4.3.10)

weighted by different constants α and β, that can be interpreted as param-

eterizing a violation of the Jacobi identity16, and yielding to the non-local

Lagrangian quartic coupling

C
(4)
1234(∂Xi

, Ui) = − λ − α

s
G12a ⋆ a Ga34 −

λ − β

u
G41a ⋆ a Ga23 + λC

(4)YM
1234 .

(4.3.11)

The meaning, if any, of these class of solutions, that manifest themselves in

this setting creates a sort of ambiguity related to the various choices for the

parameters λ, α and β, so much so that if one wants to relax the locality

constraint one clearly needs to replace it with something else. Our observa-

tions move from the fact that, whatever the choice for these coefficients, the

amplitude that one recovers at the end is always given by eq. (4.3.8), whose

residues have a fixed form matching the coefficients of the current exchange

part only if17 λ = α = β. Hence, we are led to the conclusion that the

only choice leading to a physically meaningful setting is exactly α = β = λ,

in which the current exchange contributions extracted from (4.3.8) can be

entirely related to the cubic part of the theory via the current exchanges,

as the minimal scheme requires. The same argument can be given using

tree-level unitarity since whenever a finite number of degrees of freedom is

to contribute to the residue, arbitrary choices of α, β and λ would clearly

violate it. This is true since the residue would not match the current ex-

change contribution of eq. (4.3.10) that counts the finite number of degrees

of freedom that ought to be propagating. The situation may well be different

if an infinite number of degrees of freedom contributes to the same residue.

16This situation arise whenever one does not start directly with Chan-Paton factors but

with arbitrary color factors that do not define a gauge group.
17Notice that, as required in the third point of the minimal scheme, the dependence

of the Mandelstam variables inside the amplitude is the same as in the current exchange

regardless of the choice of α, β and λ.
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A different situation presents itself when the theory possesses cubic cou-

plings leading to current exchanges whose violation of gauge invariance leads

to amplitudes that cannot factorize on the initial type of exchange. In such

cases the quartic coupling becomes intrinsically non-local and locality can-

not be restored modifying the cubic couplings relative coefficients as above,

as we shall see in the next sections18. In those cases either the cubic cou-

plings cannot be present in a consistent theory because non-localities create

further inconsistencies, or one needs to resort to the minimal scheme or to

other similar frameworks. To reiterate, whenever the propagating multiplet

contains a finite number of degrees of freedom the above discussion implies

the necessity within a covariant approach of Lagrangian locality at the level

of the TT part of the action, while the situation has to be still clarified when

the multiplet contains infinitely many massless degrees of freedom. Let us

anticipate that non-localities of this type, modulo all possible problems that

can come together with them, require an infinite number of massless HS

fields.

The full amplitude generating function is then obtained summing over all

color orderings as

A(Φ1,Φ2,Φ3,Φ4) =
∑

σ

G1σ(2)σ(3)σ(4)(∂Xi
, Ui)

⋆1234 Tr
[

Φ1(X1, U1) Φσ(2)(Xσ(2), Uσ(2))

× Φσ(3)(Xσ(3), Uσ(3)) Φσ(4)(Xσ(4), Uσ(4))
]

, (4.3.12)

where for simplicity in the YM case one can consider truncated matrix valued

generating functions of the form

Φ(X,U) = φ(X) + A(X) · U , (4.3.13)

encoding only the scalar wave-function and the polarization tensor of the

gauge bosons. The sum is over all permutations of three elements, in order

18Notice that in the YM case just presented as well as in all standard low-spin examples,

including classical gravity, the minimal scheme implies locality.
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to recover the usual group theoretical factors

fabef cde ∼ Tr
(

[T a, T b][T c, T d]
)

, (4.3.14)

together with a sum over the non-cyclic permutations of the external legs.

Moreover, we have expressed the amplitude in terms of the star-contraction

(1.4.8). It is interesting to observe that G1234 satisfies some simple relations

like

G1234 + G2134 + G2314 = 0 , G1234 = G4321 , (4.3.15)

that, together with the cyclicity in the external legs, leave two independent

objects, say for instance

G1234 , G1243 . (4.3.16)

Analyzing more in detail what we have gained, as for three-point amplitudes,

one can look more closely at the various contributions to G1234, distinguishing
them by their order in the symbols Ui’s. In this case, for each of the inde-

pendent terms G1234 and G1243, one can extract three different contributions

of order 0, 2 and 4 in the symbols, given by

a−1(s, t, u)G
(−1)
1234(∂Xi

) = −
(

2 t − 2
s u

t

)

G
(−1)
1234(∂Xi

) (4.3.17)

= G1234(∂Xi
, λ Ui)

∣

∣

∣

λ=0
=

t − u

s
+

t − s

u
,

G
(1)
1234(∂Xi

, Ui) =

(

d

dλ

) 2

[G1234(∂Xi
, λ Ui)]

∣

∣

∣

λ=0
, (4.3.18)

G
(2)
1234(∂Xi

, Ui) =

(

d

dλ

) 4

[G1234(∂Xi
, λ Ui)]

∣

∣

∣

λ=0
. (4.3.19)

The first is a function of the Mandelstam variables that is related to the

four-scalar amplitude. Here, by convention we have defined G
(−1)
1234 as the

factorized contribution with a scalar exchange, encoding in the function

a−1(s, t, u) = −
(

2 t − 2
s u

t

)

, (4.3.20)

the residue of the spin-1 exchange. On the other hand, the other two G
(i)
1234’s

are related, respectively, to the two scalar – two gauge boson amplitude and
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to the four gauge boson amplitude, whose structure has been recovered here

enforcing linearized gauge invariance.

To summarize, we have recovered the analogs of the three-point Y and G

operators. They are:

G
(1)
1234(∂Xi

, Ui) , G
(2)
1234(∂Xi

, Ui) , (4.3.21)

together with their independent non-cyclic permutations and can be related

to the tree-level amplitudes

A(φ 1, φ 2, A3, A4) =
∑

σ

G
(1)
1σ(2)σ(3)σ(4)(p i, ξ i) (4.3.22)

⋆ 1234 Tr
[

φ 1 φσ(2) Aσ(3) · Uσ(3) Aσ(4) · Uσ(4)

]

A(A1, A2, A3, A4) =
∑

σ

G
(2)
1σ(2)σ(3)σ(4)(∂Xi

, Ui) (4.3.23)

⋆ 1234 Tr
[

A1 · U1 Aσ(2) · Uσ(2) Aσ(3) · Uσ(3) Aσ(4) · Uσ(4)

]

.

The role of the overall constant factor, that at the cubic level corresponds

to the three-scalar coupling, is played here by the basic building block of a

four-scalar amplitude given by

G
(−1)
1234(∂Xi

) = − 1

s
− 1

u
=

t

s u
. (4.3.24)

The other G
(i)
1234’s are on the contrary color-ordered amplitudes for the pro-

cesses involving two or four gauge bosons. Explicitly

G
(1)
1234(∂Xi

, Ui) = −
[

1

s

(

G
(0)
12a ⋆a G

(1)
a34 + G

(1)
12a ⋆a G

(0)
a34 + G

(0)
12a G

(0)
a34

∣

∣

∣

Ua =0

)

+
1

u

(

G
(0)
41a ⋆a G

(1)
23a + G

(1)
41a ⋆a G

(0)
23a + G

(0)
12a G

(0)
a34

∣

∣

∣

ξa =0

)]

+ 2 (U1 · U3 + U2 · U4) − U1 · U2 − U2 · U3 − U3 · U4 − U4 · U1 , (4.3.25)

and

G(2)1234(∂Xi
, Ui) = −

[

1

s
G

(1)
12a ⋆a G

(1)
a34 +

1

u
G

(1)
41a ⋆a G

(1)
23a

]

+ 2U1 · U3 U2 · U4 − U1 · U4 U2 · U3 − U1 · U2 U3 · U4 , (4.3.26)
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where G
(0)
123 and G

(1)
123 are the pieces of G123 in eq. (4.3.2) of order one and

three in the Ui’s, respectively. The G
(i)
1234’s that we have found here can be

used to find the most general solution for C̃
(4)
1234 satisfying (4.3.1) in a theory

with scalars and gauge bosons. The corresponding solution reads

C̃
(4)
1234 = K(4)

1234

(

∂Xi
· ∂Xj

, G
(i)
1234

)

= a−1(s, t, u)G
(−1)
1234

+ a0(s, t, u)G
(0)
1234 + a1(s, t, u)G

(1)
1234 + a2(s, t, u)G

(2)
1234 + . . . , (4.3.27)

where the ai(s, t, u) are functions of the Mandelstam variables that do not

introduce higher-order poles, laying the freedom left by Noether procedure

in building a consistent theory19. They encode the residues of the various

processes as well as further local quartic couplings that are gauge invariant

under the linearized gauge symmetry. In this case, by consistency, C̃
(4)
1234

does not contain exchanges with spin greater than one, while the G
(i)
1234’s are

defined in eqs. (4.3.24), (4.3.25) and (4.3.26). Moreover, one can see the

reason why we have left a free slot for G
(0)
1234. Indeed, one can consider a

further contribution linear in the symbols Ui and defined as20

G
(0)
1234 = − 1

s
(U1 · ∂X2a + U2 · ∂Xa1 + U3 · ∂X4ã

+ U4 · ∂Xã3
)

− 1

u

(

U1 · ∂Xb4
+ U2 · ∂X3b̃

+ U3 · ∂X
b̃2

+ U4 · ∂X1b

)

, (4.3.28)

where by convention

∂Xa
= − ∂X1 − ∂X2 , ∂Xã

= − ∂Xa
, (4.3.29)

∂Xb
= − ∂X1 − ∂X4 , ∂X

b̃
= − ∂Xb

. (4.3.30)

Hence, the Yang-Mills plus scalar example is finally recovered with the choice

K̃YM
1234 = −

(

2 t − s u

t

)

G
(−1)
1234 + G

(1)
1234 + G

(2)
1234 . (4.3.31)

19Notice that the structure recovered above is similar the one coming out from ST

integrating out the massive modes. Again whenever a finite number of degrees of freedom

is present higher-order derivatives would imply the violation of unitarity above a certain

scale. Otherwise the situation may well be different whenever an infinite number of degrees

of freedom is propagating.
20This additional building block can be interpreted as an amplitude involving 3 scalars

and 1 gauge boson.
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Other non-standard examples related to a theory with gauge bosons and

scalars can arise whenever one takes into account the corresponding quartic

amplitudes that can be extracted from higher powers of the building blocks
[

G
(i)
1234

]n

. (4.3.32)

In this case one can recover the local quartic couplings that are linked to the

highest-derivative cubic couplings involving two or three gauge bosons that

in generating function form read

U1 · ∂X23 U2 · ∂X31 + cyclic , U1 · ∂X23 U2 · ∂X31 U3 · ∂X12 . (4.3.33)

The corresponding four-point amplitudes are proportional to the generalized

H building blocks

H
(1)
ij =

Uj · ∂Xi
Ui · ∂Xj

∂Xi
· ∂Xj

− Ui · Uj , (4.3.34)

H
(2)
ijk =

Ui · ∂Xj

∂Xi
· ∂Xj

− Ui · ∂Xk

∂Xi
· ∂Xk

, (4.3.35)

that are the analog of the H operator (3.5.19) recovered in the cubic case

with the difference that at the quartic or higher orders they can be non-local

thanks to existence of the Mandelstam variables. In the following we shall

keep always in mind that the above amplitudes arise as particular combina-

tion of powers of the building blocks so far considered up to field redefinitions

or, viceversa, that all G
(i)
1234 can be rewritten in terms of the H(i) operators.

Indeed it is worth noticing that, contrary to the cubic case, starting from

the quartic order the number of the above H building blocks is enough in

order to solve the full ambient-space Noether procedure in terms of a generic

function of the form

C̃
(4)
1234 = K(4)

1234

(

∂Xi
· ∂Xj

, H
(1)
ij , H

(2)
ijk

)

i 6=j 6=k
. (4.3.36)

The key difference with respect to the cubic level, as we have anticipated,

is the fact that starting from the quartic order the presence of the Mandel-

stam variables gives the possibility to define non-singular non-local struc-

tures. However, the above H(i) building blocks hide the important links be-

tween the quartic homogeneous solutions and the current exchanges. Hence,
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admitting some redundancy in the description, we shall consider generat-

ing functions of these operators together with the previous ones. Finally, it

can be interesting to notice that the above solution (4.3.36), that we have

recovered modulo traces and divergences, is actually complete because it is

satisfying the Noether equations off-shell while what is left is just the precise

relation between the G(i) and the H(i) building blocks.

To conclude this section, we want to emphasize the role of the scattering

amplitudes in comparison with the Lagrangian couplings as we have recovered

in (4.1.13). As we have seen, it is possible to work directly at the amplitude

level, where the gauge symmetry is realized linearly, extracting the quartic

couplings as counterterms needed in order to guarantee the linearized gauge

invariance. We want to emphasize here that, although the decoupling con-

dition for the unphysical polarizations does not fix the relative functional

coefficients between G
(0)
1234, G

(1)
1234 and G

(2)
1234, these can be completely fixed

requiring the minimal scheme or the stronger locality condition, as we have

seen.

In the following we will push forward these observations, generalizing

the results to HS gauge fields, with special attention to the nature of the

four-point Lagrangian couplings that for gauge bosons can be local, but in

this approach result explicitly from subtractions between different non-local

objects and can be, in general, non-local as well.

4.4 The HS case

In this section we are going to consider the general case of HS four-point

couplings, extending the ideas of the previous section. In order to arrive at

a systematic description of HS four-point amplitudes, we proceed as before,

finding the solutions to the Noether procedure modulo divergences and traces.

At the end, we shall comment on the Lagrangian couplings that arise after

subtracting the current exchange portions. In order to achieve this goal we
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need to exhibit the general solution C̃
(4)
1234 satisfying

∂Xi
· ∂Ui

C̃
(4)
1234(∂Xj

, Uj) ≈ 0 . (4.4.1)

Actually, one can construct a general ansatz for a solution to eq. (4.4.1)

starting from the results obtained in the previous section and generalizing

what happens in the three-point case where, as we have discussed, the HS

couplings are simply given by powers of the gauge-boson ones. Focusing on

a generating function, it suffices to exponentiate the G(i)’s obtained in the

previous section, so that a general class of solutions to eq. (4.4.1) can be

given by

C̃
(4)
1234(∂Xj

, Uj) = − 1

su
exp

[

− su
(

G
(0)
1234 + G

(1)
1234 + G

(2)
1234

)]

. (4.4.2)

Admitting some redundancy as anticipated in the previous section, we could

also add to the exponent all other building blocksH(i). We can call this result

with a little abuse of language, of the open-string-type since it is planar and

hence is naturally associated to Chan-Paton factors [172]. Moreover, C̃
(4)
1234

should be considered modulo arbitrary relative functions of the Mandelstam

variables, that are not constrained by eq. (4.4.1) and play the role of relative

weights between the various totally cyclic terms in the expansion of (4.4.2).

Finally, we have considered a fixed ordering 1234 of the external legs so that

only the G
(i)
1234’s enter and contribute to the correct channels reproducing the

HS exchanges. The corresponding current exchange amplitude generating

function to which (4.4.2) should be confronted with is by the way

Ac.e. = −1

s
C

(3)
12a ⋆a C

(3)
a34 −

1

u
C

(3)
41a ⋆a C

(3)
a23 . (4.4.3)

The full amplitude, that we can call again of the open-string-type, is recov-

ered as usual by

A(Φ1,Φ2,Φ3,Φ4) =
∑

σ

Tr
[

Φ1(ξ1) Φσ(2)(ξσ(2)) Φσ(3)(ξσ(3)) Φσ(4)(ξσ(4))
]

⋆ 1234 C̃
(4)
1σ(2)σ(3)σ(4)(p i, ξ i) , (4.4.4)



4.4 The HS case 117

where now Φi(ξi) is an arbitrary matrix valued generating function containing

all totally symmetric HS polarization tensors, while the trace is over the color

indices. We clearly recover the results of the previous section as soon as we

restrict the attention to the linear part in the G
(i)
1234’s. Going ahead, we have

chosen a dependence as

suG
(i)
1234(∂Xi

, Ui) , (4.4.5)

multiplying with (su) the G(i)’s, in order to avoid higher-order poles as soon

as one considers HS fields. For instance, the form of the above four-point

scattering amplitude of the open-string-type in the case of four spin-2 fields

becomes here

C̃
(4)
1234 ∼ −

1

su

∑

α+2β+4γ=8

aα,β,γ(s, t, u)
[

− suG
(0)
1234

]α

×
[

− suG
(1)
1234

]β [

− suG
(2)
1234

]γ

, (4.4.6)

where the aα,β,γ(s, t, u)’s are some functions that do not introduce additional

poles in the Mandelstam variables. Those are to be fixed, in our minimal

scheme, in order to reproduce the current exchange amplitudes, and hence

by comparison to the cubic coupling function, whose arbitrariness is in turn

constrained by the minimal scheme itself. The TT part of the quartic cou-

pling generating function can be now extracted exploiting eq. (4.1.16) where

in order to be explicit

C̃
(4)
1234 = − 1

su

∑

α, β, γ

aα,β,γ(s, t, u)
[

− suG
(0)
1234

]α [

− suG
(1)
1234

]β [

− suG
(2)
1234

]γ

.

(4.4.7)

This form, as in the spin-1 case, encodes in principle also non-minimal

choices, which reflect some freedom left by Noether procedure. The lat-

ter freedom is related to local quartic couplings that are gauge invariant

under the linearized gauge variation and whose tensorial structure is exactly

as in the amplitude, but multiplied by a sufficient number of Mandelstam

variables that suffice to eliminate all poles. Moreover, although (4.4.6) is a

generic planar color-ordered expression consistent with gauge invariance that
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one can write for four spin-2 fields it does not exhaust all the possibilities, as

it was the case for the cubic couplings. Indeed, we have at our disposal two

independent building blocks G1234 and G1243 and another available option is

to combine them together using G1243 in place of the color factor. One ends

up, in this way, with the following type of derived generating function

C̃(4)(Ui , U
′
i) =

(

∑

σ

C̃
(4)
1σ(2)σ(3)σ(4)(∂Xi

, Ui) C̃
(4)
1σ(2)σ(4)σ(3)(∂Xi

, U ′
i )

)

,

(4.4.8)

whose contributions of the form

[G1243]
α [G1243]

β , (4.4.9)

with neither α = 0 nor β = 0, could be called, with a little abuse of lan-

guage, closed-string-like amplitudes21. Here we have literally replaced the

Chan-Paton contribution in eq. (4.4.4) with the generating function C̃
(4)
1243,

again defined in eq. (4.4.2), so that for tree-level scattering amplitudes in-

volving totally symmetric fields, one recovers the generating function

A(4)(Ui) =
1

stu

×
∑

σ

e
− s1σ(2)s1σ(3)

(

G
(0)
1σ(2)σ(4)σ(3)

(Ui)+G
(1)
1σ(2)σ(4)σ(3)

(Ui)+G
(2)
1σ(2)σ(4)σ(3)

(Ui)
)

× e
− s1σ(2)s1σ(4)

(

G
(0)
1σ(2)σ(3)σ(4)

(Ui)+G
(1)
1σ(2)σ(3)σ(4)

(Ui)+G
(2)
1σ(2)σ(3)σ(4)

(Ui)
)

. (4.4.10)

Here by definition

sij = − (∂Xi
+ ∂Xj

)2 , (4.4.11)

the sum is over all permutation of the three elements {234} and one has,

again, the freedom to multiply each totally cyclic gauge-invariant term in

the expansion of (4.4.10) with arbitrary relative functions ai(s, t, u) of the

21To be precise, we can call in this way only the contributions with α = β. The

other contributions, that show up starting from spin-3, do not satisfy the analog of level

matching but are not ruled out here by gauge invariance. We cannot exclude at this stage

that they are not ruled out by other arguments, but we leave a more detailed analysis of

these potentially interesting options for the future.



4.4 The HS case 119

Mandelstam variables that give rise to amplitude with single poles at most

(see e.g. eq. (4.4.7)). Moreover:

• one can in principle constrain these functions relating any current ex-

change contribution belonging to C̃ to the corresponding contribution

obtained from the cubic couplings of the theory via the minimal scheme,

• the only non-local contributions to the quartic Lagrangian coupling are

those related to the exchanged particles that cannot be made gauge

invariant with the addition of a local counterterms and that, for this

reason, can never belong to C̃.

We leave a more detailed analysis of these issues related to non-local field

theories for the future, trying to understand their eventual geometric ratio-

nale and in which sense, if any, they can be consistent with unitarity, even

though they clash with commonly accepted ideas about the structure of S-

matrix poles like factorization.

Before going on with our discussion, it can be of interest to comment

more in details on the nature of the couplings that we have obtained for

spin-2 external particles as a toy model of more general cases, extracting the

current exchange part and identifying the cubic couplings involved. It is also

important to discuss the difference between the open-string-like couplings

of eq. (4.4.2) and the closed-string-like ones of eq. (4.4.10). Let us begin

considering the coupling in eq. (4.4.10) associated to

A(4)(Ui) = . . . +
1

stu

∑

σ

s 2
1σ(2)s1σ(3)s1σ(4) G

(2)
1σ(2)σ(4)σ(3) G

(2)
1σ(2)σ(3)σ(4) + . . . ,

(4.4.12)

and contributing to the four spin-2 scattering amplitude. Explicitly this

contribution is given by

A(4)(Ui) = −
∑

σ

[

s

(

1

s
G

(1)
12a ⋆a G

(1)
a34 +

1

u
G

(1)
41a ⋆a G

(1)
a23 − V YM

1234

)

×
(

1

s
G

(1)
12a ⋆a G

(1)
a34 +

1

t
G

(1)
13a ⋆a G

(1)
a24 + V YM

1243

)]

, (4.4.13)
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so that one recovers, as expected, a non-planar amplitude and the various

contributions conspire after some algebra to yield

A1234 = −1

s

(

G
(1)
12a

) 2

⋆a

(

G
(1)
a34

)2

− 1

t

(

G
(1)
13a

) 2

⋆a

(

G
(1)
a42

)2

− 1

u

(

G
(1)
14a

) 2

⋆a

(

G
(1)
a23

)2

+ . . . , (4.4.14)

where the ellipses represent local terms and where the current exchange am-

plitude have been completely reconstructed. Here, one can observe a four-

point function involving the minimal coupling of two spin-2 fields with a

propagating spin-2, since the number of derivatives entering the current ex-

change is precisely 4. This result resonates with the fact that this particular

four-point function (4.4.13) is exactly the standard “four-graviton” four-point

function, written in a form analogous to that obtained in the field theory

limit of ST in [212]. On the contrary, let us now consider the open-string-like

amplitude

A1234 = − 1

su

(

− s uG
(2)
1234

)2

, (4.4.15)

that can be recovered from eq. (4.4.6). In this case we see a different structure

that is given explicitly by

A1234 = − s u

(

1

s
G

(1)
12a ⋆ a G

(1)
a34 +

1

u
G

(1)
41a ⋆a G

(1)
a23 − V YM

1234

)2

, (4.4.16)

so that, extracting the pole part in order to read off the current exchange

contribution, one recovers

A1234 = − u

s

(

G
(1)
12a

) 2

⋆a

(

G
(1)
a34

) 2

− s

u

(

G
(1)
41a

) 2

⋆a

(

G
(1)
a23

) 2

+ . . . . (4.4.17)

Here, as before, the ellipsis represent local terms while, using functions

ai(s, t, u) that do not introduce higher-order poles, one can only increase the

power of the additional Mandelstam variables in the numerator. The latter

are actually necessary in order to guarantee both the right pole structure and

the decoupling of transverse unphysical polarizations. This translates into

the fact that the coupling in which the current exchange factorizes involves

this time the exchange of a spin-3 excitation and is of the form

C(3) ∼
[

G
(1)
ijk

] 2 [

G
(0)
ijk

]

, (4.4.18)



4.4 The HS case 121

as one can evince looking at the residue, that is of order six in the momenta.

In principle, one could go ahead, considering higher powers of the Mandel-

stam variables that are associated with HS exchanges building a full overall

function a(s, t, u) that does not introduce additional poles. For instance, one

possibility could be the following gauge-invariant amplitude

A1234 = − 1

s u
e−t

(

u G12a ⋆a Ga34 + s G41a ⋆a Ga23 − s uV YM
1234

)2

+ . . . ,

(4.4.19)

where the exponential of t accounts for an infinite number of exchanges.

Also more complicated examples related to the results in [114, 69, 70] can be

available, while the ellipsis stand for terms containing also powers of G
(1)
1234,

as in eqs. (4.4.2) and (4.4.6). In principle, this kind of structure is needed

if one wants to construct a consistent quartic amplitude that factorizes into

an infinite number of exchanges. However, let us stress that here only spins

different than two propagate, even if a cubic coupling with colored spin-

two fields does in principle exist and in contrast to the previous case where

the exchange of a spin-2 field was indeed present. The counterpart of this

peculiar aspect turns out to be non-localities at the Lagrangian level, as

expected from the result of [131], since the corresponding spin-2 exchange do

not admit any local gauge-invariant completion. Moreover, this means that:

• a massless colored spin-2 field can have a charge of spin strictly higher

than 2,

• a full theory producing such four-point functions has to contain an

infinite tower of massless HS fields.

The latter can be inferred requiring the minimal scheme or, in more detail,

requiring that any propagating HS particle brings non-trivial interactions.

Therefore, as soon as a spin-3, say, propagates one can look at processes

with also spin-3 external particles recovering again a propagating particle

of higher spin and so on. Other possibilities are then available, since one

can in principle consider also powers of G
(0)
1234 recovering exchanges where
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no minimal coupling is present, but at the price of increasing the exchanged

particle minimum spin. Also other options are available and are related

to the other H(i) building blocks, recovering in the four spin-2 case in flat

space abelian self-interactions. For instance, one could build in this way the

following amplitude

A1234 = − 1

su

(

−suG(2)
1234

) [

−su
(

sH
(1)
12 H

(1)
34 + uH

(1)
41 H

(1)
23

)]

, (4.4.20)

containing the current exchanges built from the cubic couplings involving

two spin-2 fields that are linear in the G
(1)
123 operator22. Let us remark that

from this result it follows that the lowest spin propagating without intro-

ducing non-localities is now spin-2 together with a quartic coupling that is

manifestly higher derivative. Indeed, the available spin-1 exchange does not

admit a local gauge invariant completion, coming back to a situation similar

to the one above for the spin-2 exchange. Along similar lines one can also

construct the completion of the current exchanges involving the spin two

cubic couplings with no G
(1)
123. In this case one ends up with the following

expression

A1234 = − 1

s

[

s2 H
(1)
12 H

(1)
34

]2

− 1

u

[

u2 H
(1)
41 H

(1)
23

]2

, (4.4.21)

from which this time the lowest spin propagating is spin-0 but again with

higher-derivative quartic couplings.

It is important to point out that, from our perspective, potential clashes

between Lagrangian non-localities and tree-level unitarity need to be ana-

lyzed taking into account that whenever an infinite number of exchanges is

present on the same residue some subtleties can in principle arise. For in-

stance, it is no more clear in this case how to disentangle all contributing

residues outside the radius of convergence of the series of exchanges. Things

would have been clearly different if only a finite number of exchanges had

contributed to any given pole of the tree-level amplitude. Indeed, in the lat-

ter case the minimal scheme implies locality at least for that regards the TT

22Notice that this coupling exists only in dimensions strictly higher than 4.
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part of the Lagrangian. Certainly, a deeper understanding of non-local field

theories is needed in order to clarify such peculiar features that actually may

be considered as the counterpart of an infinite number of higher-derivative

cubic couplings contributing to the same residue and might well led to an in-

consistent answer in a Minkowski background. The latter implications could

be appreciated extending the analysis to higher order terms in δ̂ and deform-

ing the above results to full (A)dS results or to massive fields where concrete

examples of this kind are available. Along the same lines, it can be inter-

esting to study the tensionless limit of ST at the quartic order, from which

one can expect to recover similar types of results. More information can also

come solving for the most general theory that is consistent with the minimal

scheme, and we plan to address these problems in the future.

The planar spin-2 example may also clarify the role of the spin-2 exci-

tation present in the Vasiliev system. Indeed, the latter can be dressed in

principle with Chan-Paton factors making its interpretation debatable. For

some time the relation of such spin-2 excitation with gravity and/or with the

massive spin-2 excitation present in open string theory was somehow unclear,

as pointed out in [38]. Indeed, it was argued that although the interaction

of two massive open-string spin-2 excitations with a graviton is forbidden by

momentum conservation, this is not true in the tensionless limit, whenever

one reaches a regime where the massive open string spin-2 becomes massless.

This observation implies a potential mixing that can be already appreciated

from the results of [69, 70]. In fact, among the limiting cubic couplings of the

massive spin-2, the lowest derivative one is exactly the same as that of the

graviton. Our present discussion may clarify these issues, since at the quar-

tic order two different possibilities show up distinguishing two options. One

of these, given in eq. (4.4.6), is naturally endowed with Chan-Paton factors

while the other, eq. (4.4.10), is closely related to gravity. They coexist in the

amplitude of four spin-2 excitations and hence one is led to deduce that in

the massless case the two options for spin-2 can give rise indeed to a Cabibbo-

like mixing between the combination of spin-2 fields that interacts as gravity
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and the singlet component interacting with open-string-like four-point am-

plitudes, as anticipated in [38]. Obviously, the mixing so far considered is

expected to disappear whenever the theory breaks the HS-symmetry. In

this case, the colored spin-2 field, that brings about non-localities, becomes

massive, while a combination of the massless spin-2 fields remains massless,

playing the role of the graviton. Again, it is tempting to believe that behind

the string structure of the interactions there are some field theory proper-

ties that have to be understood and that may be intimately related to HS

theories.

4.5 Weinberg’s theorem revisited

In this section we take a closer look, in light of the previous discussion,

at a key no-go theorem on the subject, in order to understand as much as

possible its assumptions and in which sense one can go beyond them, clar-

ifying hopefully the meaning of the results proposed so far. Indeed, one of

the strongest arguments that has been presented over the years is Weinberg’s

1964 Theorem of [132] (see e.g. [22] for a review and also for an interesting

discussion of its interpretation). It is an S-matrix argument based on the

analysis of a would be flat-space S-matrix element with N external particles

with momenta p i, i = 1, . . . , N and a massless spin-s particle of momentum

q and polarization tensor Φµ1...µs
(q). In the following we shall review this

argument explicitly in the case with arbitrary massless particles entering the

process and restricting the attention to the consistent cubic vertices studied

in Chapter 3. The idea is to analyze the case in which the momentum q of one

of the particles participating in the scattering process tends to zero, called

also soft limit. This limit encodes the long distance behavior, if any, of the

interactions, which is dominated by the pole part, and it is very interesting

since it gives constraints coming from very general and model independent

infrared (IR) properties. The dominant pole generates in this limit a reso-

nance, so that one can factorize the amplitude, eliminating any local contact
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interaction and leaving only the contribution associated to the current ex-

change23. Actually, this is the contribution on which Weinberg concentrated

in order to develop his argument, and in the following we shall study pre-

cisely the same contribution in our explicit setting recognizing what vertices

contribute to long-distances and what vertices give instead a vanishing con-

tribution in the same limit and reinterpreting Weinberg’s conclusions. Going

to momentum space, the explicit form of the S-matrix amplitude becomes in

this limit

S(p 1,Φ 1; . . . ; pN ,ΦN ; q,Φ) ≈
N
∑

i=1

S(p 1,Φ 1; . . . ; p i + q, Ũi; . . . ;PN , φN)

⋆ i
P̂(Ũi, U1)

2p i · q
⋆ 1

[

exp
(

G123(U1, U2, U3)
)

⋆ 2,3 Φ i(−p i, U2) Φ(−q, U3)
]

,

(4.5.1)

where P(Ũi, U1) is the propagator numerator and, apart from the pole factor,

the dependence on q has been completely factorized solely into G123. Using

for the momenta of the particles participating to the factorized scattering

process the parametrization

p 1 = p i + q , p 2 = −p i , p 3 = −q , (4.5.2)

one then recovers

G123 = 2 (1 + U1 · U2) U3 · p i + (1 + U2 · U3) U1 · (q − p i)

− 2 (1 + U3 · U1) U2 · q , (4.5.3)

where we have made use of momentum conservation together with the transver-

sality constraint

p i · Ui = 0 . (4.5.4)

23We depart here from the original Weinberg proof that has been given in the S-matrix

language assuming some commonly accepted ideas about the pole structure of the S-

matrix. In this respect, the usual factorization property translates here into locality of the

corresponding TT part of the Lagrangian.
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First of all, from this form one can immediately conclude that for s > 3 the

relevant tensor structure contributing at long distances, whenever present, is

always given by
(U3 · pi)s
2pi · q

. (4.5.5)

Second, we are now in a position to see whether or not the amplitude that

we are recovering in this limit decouples the unphysical degrees of freedom

and what are the cubic couplings that contribute. The latter physical re-

quirement, as we have shown in Section 4.1, is precisely the content of the

Noether procedure from a Lagrangian point of view. Hence, let us perform

a linearized gauge transformation for the HS particle Φ whose momentum q

goes to zero. The unphysical polarizations are given by

δΦ(−q, U3) = −q · U3 E(−q, U3) , (4.5.6)

and performing this substitution in (4.5.1) one finally ends up with

δ S(p 1,Φ 1; . . . ; pN ,ΦN ; q,Λ) ≈
N
∑

i=1

S(p 1,Φ 1; . . . ; p i + q, Ũi; . . . ; pN , UN)

⋆ i P̂(Ũi, U1) ⋆ 1

[

(1 + U1 · U2) exp
(

G123(U1, U2, U3)
)

⋆ 2,3Φ i(−p i, U2)E(−q, U3)] , (4.5.7)

where the offending pole has been canceled by the terms proportional to

momentum squared produced by the ⋆-contraction of q · U3 with G123. We

can recognize here the most dangerous contribution24 in the limit q → 0,

that is given by

δ S(q = 0) ∼
∑

i

S̃i(Ui) ⋆ i

∑

αi,βi

{(

2U3 · p i

)αi

[

1 + Ui · U2

(

2Ui · U2 U3 · p i

)βi

]

⋆ 2,3 Φ i(−p i, U2)E(−q, U3)

}

, (4.5.8)

24It is important to stress that in the limit q → 0 we recover only the order zero contribu-

tion in q while, by consistency, all contributions have to cancel identically. This underlines

the no-go character of this argument from which one can only extract information about

possible obstructions.
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where αi ≥ −1 and βi ≥ −1 are some integers25, we have called S̃(Ui) the

leftover part of the S-matrix together with the propagator numerator, and

where the sum over αi and βi runs over all admissible values that are asso-

ciated to consistent HS cubic couplings that can be generated from (4.5.7).

This contribution is dangerous since it does not tend to zero when q → 0,

and hence must vanish identically. Restricting the attention to the case in

which all external fields but one are scalars and only one HS field Φ(−q, U)

is present only the scalar exchange contributes to (4.5.8) and there is only

one possible value for β, β = −1. Thus, in order to set to zero (4.5.8), one

recovers a non-trivial constraint given by

∑

i

gi p i
µ1
. . . p i

µs−1
= 0 , (4.5.9)

where the gi’s are the corresponding coupling constants. As pointed out by

Weinberg, this equation does not admit non-trivial solutions unless in general

s = 1, and eq. (4.5.9) reduces to charge conservation

∑

i

gi = 0 , (4.5.10)

or s = 2, so that eq. (4.5.9) reduces to g i = κ for any i since, by momentum

conservation
∑

i

p i
µ ≡ 0 . (4.5.11)

We then arrive at a potential inconsistency for HS interactions, since the

argument explained so far forces

g i = 0 (4.5.12)

for spin grater than 2. Actually, considering a more general HS theory and

referring again to (4.5.8), we see that as soon as an insertion of a scalar field

is present in the amplitude there can be similar obstructions. This happens

since one can reiterate this argument, concentrating on the factorized ampli-

tude in which a scalar field is exchanged and in which Φ i in eq. (4.5.8) is one

25For αi = −1 or βi = −1 we simply define the corresponding contribution to be zero.
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of the scalar fields participating to the process. This conclusion has actually

a deeper meaning, since it forbids the possibility of having an s− 0− 0 cou-

pling whenever s is greater than 2 within the framework of local field theories.

This can be understood observing that as soon as such cubic couplings are

present one generates automatically dangerous contributions to some current

exchange amplitude. However this conclusion is true unless, by some mech-

anism, these dangerous exchanges are eliminated whenever they give rise to

this kind of problems. Hence, the only possible way out is related to the

fact that we have considered in the q → 0 limit only the current exchange

contribution, so that one is led to a clash with perturbative locality on the

Lagrangian side or with commonly accepted S-matrix properties like factor-

ization on the S-matrix side. These anyway are possibly stronger statements

than the fundamental unitarity and causality properties, and a closer look

to them is potentially interesting in view of a better understanding of the

tensionless limit of ST.

Let us now turn to see the implications of Weinberg’s argument in more

general examples. Concentrating on eq. (4.5.8), let us consider an external

particle with arbitrary spin si. The factorization of the amplitude can give

rise to problems in the soft limit only if a sufficient number of U2 is contained

in (4.5.8), otherwise this offending contribution vanishes identically. Hence,

we conclude that a dangerous term of the form (4.5.8) can be generated only

if

βi ≥ si − 1 . (4.5.13)

In order to analyze the most general case let us restrict the attention to a

factorized process in which, referring to (4.5.8), Φ i is a spin-s i particle. If

si > s non-vanishing contributions cannot be generated and so, without

loss of generality, we can concentrate on the cases in which si ≤ s. In this

case we recover a non-vanishing contribution to (4.5.8) whenever the bound

(4.5.13) is satisfied, but we also see that as soon as

−1 ≤ βi < si − 1 , (4.5.14)

no contribution can be generated, so that no inconsistency follows by this
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argument. Moreover, since for βi ≥ si one gets simply zero in (4.5.8), there

is only one dangerous contribution given by βi = si− 1 that is associated to

an exchanged particle with spin

s exchanged = si . (4.5.15)

We clearly recover the simplest case of before when si = 0, since in this

case there is no solution for βi, and as soon as si ≥ 1, one begins to recover

non-trivial solutions to (4.5.14).

Summarizing, one can convince oneself that the only possibly dangerous

contributions come in this limit whenever one considers a current exchange

built from a coupling of the form si − si − s with s derivatives when s ≥ si

and the exchanged particle with spin si. As concluded by Weinberg, this

argument poses strict restrictions on the long distance behavior of HS fields,

that hence cannot interact at zero frequency. In particular all long-range

couplings given by the minimal ones, can be ruled out in a local field theory

while other multipolar couplings are not yet forbidden. The former actually

entail exactly the leading contribution related to long distance physics on

which Weinberg concentrated in [132]. Moreover, since for s < si the number

of derivatives for these couplings is given by

2si − s > s , (4.5.16)

we have explicitly shown that the content of Weinberg’s argument together

with the classification of all consistent cubic couplings completely forbids the

minimal coupling for HS particles within the framework of local field theories.

It is now interesting to compare this result with the scattering amplitudes

constructed in the previous sections. As we have remarked a possible solu-

tion to the problem can arise resorting to non-local quartic couplings whose

job is to cancel the dangerous exchanges contributing in principle to the am-

plitudes26 but without setting to zero all non-abelian cubic couplings. This

26It is interesting to comment that as for what concerns the long-distance behavior of

HS interactions Weinberg conclusions are still valid also if non-localities are introduced
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circumstances of course would possibly violate causality or unitarity (see e.g.

[144]) but at present we are not able to come up with a definite conclusion

on this issue and we believe that more effort is needed in order to clarify the

situation.

For instance the conclusion drawn so far are still valid in (A)dS if one

restricts the attention to the (A)dS couplings whose leading terms are the

problematic flat interactions above. This can be inferred because, assuming

locality as we have done in this section, the eventual lower derivative tails of

the interactions cannot cancel the dangerous pieces that we have obtained

here. It is then interesting to see if the presence of an infinite multiplet can

make the difference since in those cases, in particular in (A)dS, one cannot

restrict the attention to a single propagating particle within the factorized

exchange. We plan to address this as well as other related issues in the future.

Let us end this section with a simple observation about the consequences

of our results. If we concentrate on String Theory we see that all these

minimal couplings are indeed generated in the tension-less limit starting from

the simplest one that concerns two scalars [69, 70]. Hence, we see here a very

severe obstruction if we insist to use the framework of local field theories

or the usual factorization properties at the level of the S-matrix in order to

describe a would be tensionless string. Similar considerations apply to the

leading contribution of FV vertices, as observed in [107]. Hence, one can

argue that if a background independent underlying theory exists it has to

include non-local couplings or, possibly, non-local degrees of freedom, which

motivate a closer look at unitarity and its general implications.

and one can easily check that the general solution to the Noether procedure that we have

exhibited satisfies this property.



Conclusions

In this Thesis we have studied the Noether procedure reconsidering it in

the ambient space formalism.

We have described in detail the solutions to the cubic-interaction problem

for massless HS fields in a constant-curvature background leaving aside for

brevity the extension of the results to the cases of massive and partially-

massless interactions which has been studied in [76, 77]. This has been

achieved through a dimensional reduction of a (d + 1)-dimensional massless

theory with a delta function insertion in the action. For simplicity, the entire

construction has been carried out focusing on the TT part of the Lagrangian.

We expect that the completion of such vertices can be performed adding

divergences and traces of the fields together with possible auxiliary fields,

proceeding along the lines of what was done for the flat space vertices in [70].

Our studies were mainly motivated by ST, whose very consistency rests on

the presence of infinitely many HS fields. Conversely, string interactions may

provide useful information on the systematics of the consistent HS couplings.

In [69, 70], cubic vertices of totally-symmetric tensors belonging to the first

Regge trajectory of the open bosonic string were investigated. Those vertices

are encoded in the generating function

1√
GN
KA1A2A3

= i
go
α′

Tr [TA1
TA2

TA3
] exp

[

i
√
2α′ (y1 + y2 + y3) + z1 + z2 + z3

]

+ i
go
α′

Tr [TA2
TA1

TA3
] exp

[

−i
√
2α′ (y1 + y2 + y3) + z1 + z2 + z3

]

,

where GN denotes Newton’s constant, go the open string coupling constant
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and α′ the inverse string tension related to the masses of the string states as

M2 ϕ(s) =
s− 1

α′ ϕ(s) .

Remarkably, the Taylor coefficients of the exponential function and the string

spectrum combine nicely to reproduce consistent massive and massless ver-

tices. In this respect, it would be interesting to understand how the expo-

nential function above fits in with other ST properties and what its AdS

counterpart may be from the point of view of the Noether procedure. In par-

ticular, we have some reasons to believe that the choice of the exponential

is crucial for the global symmetries as well as for the planar dualities of the

theory. Let us mention however that in AdS an exponential coupling of the

form

ei
√
2α′ (Ỹ1+Ỹ2+Ỹ3)+Z1+Z2+Z3 ,

where the Ỹi’s are here any total-derivative deformations of the Yi’s , is in-

compatible with any spectrum containing a massless spin 1 field together

with massive fields, reflecting the difficulties encountered in quantizing ST

on (A)dS backgrounds [213, 47, 48]. From this perspective it is conceivable

that a better understanding of the global symmetries of ST and of their im-

plementation at the interacting level may shed some light on this issue. We

have then extended the formalism to higher orders, reversing the usual per-

spective of focusing on four-point Lagrangian couplings. In this respect we

have recovered directly a class of gauge invariant 4-point functions involv-

ing massless HS fields, as well as low-spin fields, from the linearized gauge

invariance of the free system, relating them in a relatively simple way to

powers of the standard 4-point functions in a theory with a scalar and a

gauge boson. This generalizes the construction of [70], making it possible to

define similar color-ordered generating functions in the general case. Those

include, as a particular example, the simpler cubic ones from which all cu-

bic couplings originate. One is then able to extract, subtracting the current

exchange parts, four-point and in general n-point couplings. These contain

as a special case the familiar low-spin examples, together with an infinite set
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of local couplings, but manifest in general a non-local nature as soon as one

considers more exotic cases, as for instance a colored spin-2, or more gener-

ally HS fields. The non-local nature so far observed has an interesting and

peculiar structure of the form pointed out in the Appendix of [70]. However,

the meaning of non-localities is here to restrict the spins propagating within

the amplitude to those whose violation of gauge invariance can be compen-

sated by local Lagrangian couplings27. This fact entails the key obstruction

that has been recognized long ago by Weinberg in [132], as well as other in-

consistencies at the level of Jacobi identity and so on [111], that disappear as

soon higher-derivative and explicitly non-local couplings are considered, as

already noticed in [178]. Of course a non-local solution to the problem, even

if explicit, cannot be satisfactory without a full understanding of its implica-

tions and in particular of the status of the minimal scheme proposed here. In

this respect the only thing we can say is that it is conceivable that potential

clashes with the standard form of tree-level unitarity, that can come together

with the non-localities allowed by the minimal scheme, do not materialize if

an infinite number of degrees of freedom is present. Even considering the

case in which the latter option does not hold, it can be interesting to extend

the above analysis to constant curvature backgrounds, and we leave this for

the near future. Nonetheless, let us stress that any residue of the set of am-

plitudes so far recovered can be related to lower-point couplings via exchange

amplitudes if the minimal scheme is enforced in place of the stronger locality

constraint. In this respect it can be interesting to ask what plays the role

of locality in constant curvature backgrounds and whether the solution will

still contain similar non-localities even if controlled by some expansion pa-

rameter, thinking to push forward our analysis in order to understand more

clearly the possible need of resorting to this kind of picture. Finally, a deeper

understanding of the peculiar features involved by HS interactions, that seem

to imply a clash with commonly accepted ideas about the pole-structure of

27We are referring here to the fourth point of the minimal scheme so that the amplitude

cannot factorize on the current exchanges that would require non-local quartic couplings.
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the S-matrix, can be hopefully related to the difficulties that are encoun-

tered in the definition of an S-matrix, and we believe that they deserve a

better understanding motivated at least by their appearance within ST in

its tensionless limit or within the Vasiliev system in its flat limit [107]. In

this respect our aim is to investigate further these questions trying to gain

some indication also from the AdS/CFT correspondence, considered from

our perspective as a slightly different incarnation of the Noether procedure

for theories defined in AdS.

Although the subject of non-local field theories is still a completely unex-

plored arena, the aforementioned properties of the amplitudes may open the

way to a deeper understanding of Field Theory. In this respect, ST appears

to contain the seeds for interesting generalizations, and hides, in our opinion,

some key field theory properties that have surfaced in this Thesis. To wit,

the remarkable construction of Closed String Field Theory in [214] is very

general in its starting point, but the mechanical model definition of the in-

teractions hides somehow their non-local nature that has long been felt to be

related to a broken phase of the HS symmetry. The mechanical model may

hide somehow the non-local features that we have presented here by linking

them to the string tension28. A similar situation may arise in the Vasiliev

system so that it is tempting to imagine that the intrinsic non-local form of

the couplings of a colored spin-2 exhibited here may shed some light on the

non-local nature of the Vasiliev system itself, that seems to be obscured by

the presence of the cosmological constant Λ, whose role is similar to that of

the string tension in ST and provides an expansion of perturbatively local

terms in which non-local operators like 1
�
could split in terms of Λ.

Other questions then arise in order to attain a meaningful quantization

of systems of this kind, that at any rate can be naturally formulated in

terms of the Batalin-Vilkoviski formalism [232] or in terms of a usual loop

28See e.g. [215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,

230, 231] where other examples in which the mechanical model appears to provide an

incomplete description are discussed.
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expansion. Those can be recovered from the Feynman rules here considered

or, alternatively, from recursion relations techniques [233, 234, 235, 236, 237,

238, 239]. Other issues regard the freedom in building a theory of massless

HS that we have recursively related to the freedom of choosing a consistent

cubic coupling function within what we have called minimal scheme. We

leave this as well as other questions, like the extension of the quartic results

to constant curvature backgrounds, for the near future.





Appendix A

Useful identities

This appendix contains some identities and mathematical tools used in

our construction of the cubic vertices. Basic commutation relations among

the operators (3.1.3) are

[

Yi , Uj · ∂Xj

]

= δij ∂Xi
· ∂Xi+1

, (A.1)
[

Zi , Ui+1 · ∂Xi+1

]

= ∂X · ∂Ui−1
− Yi−1 ,

[

Zi , Ui−1 · ∂Xi−1

]

= Yi+1 ,
[

Xi · ∂Ui
, F (Y, Z)

]

= −Zi+1 ∂Yi−1
F (Y, Z) ,

[

Xi · ∂Xi
, F (Y, Z)

]

= −Yi−1 ∂Yi−1
F (Y, Z) ,

[

F (Y, Z) , Ui · ∂Ui

]

=
(

Yi ∂Yi
+ Zi+1 ∂Zi+1

+ Zi−1 ∂Zi−1

)

F (Y, Z) .

Here i, j are defined modulo 3: (i, j) ∼= (i+ 3, j + 3). Another identity used

throughout all the Thesis concerns the commutator between an arbitrary

function f(A) of a linear operator A and an other linear operator B :

[ f(A) , B ] =
∞
∑

n=1

1

n!
(adA)

nB f (n)(A) , (A.2)

where adA B = [A , B ] and f (n)(A) denotes the n-th derivative of f with

respect to A. In order to prove the latter formula, we represent f(A) as a

Fourier integral so that the commutator appearing in (A.2) can be written
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as

[ f(A) , B ] =

∫ ∞

−∞
dt [ eitA , B ] f(t) . (A.3)

Using the well-known identity

eitA B e−itA =
∞
∑

n=0

(it)n

n!
(adA)

n B , (A.4)

eq. (A.3) becomes

[ f(A) , B ] =
∞
∑

n=1

1

n!
(adA)

n B

∫ ∞

−∞
dt (it)n eitA f(t)

=
∞
∑

n=1

1

n!
(adA)

n B f (n)(A) . (A.5)

Since our vertices are arbitrary functions of commuting operators, formula

(A.2) applies independently to each of them.
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Proof at the δ(2) level

In this section, we prove that the total-derivative part C in (3.3.15) does

not impose additional conditions on the constants α̃i and β̃i . At the level of

δ(1), C does not vanish with (3.3.3 - 3.3.4), but is simplified to

C = (α̃2
1 − 1) ∂X · ∂U1 + 2(α̃2 + 1) ∂X · ∂U2 − 2(α̃3 − 1) ∂X · ∂U3

− (α̃1 − 1)(β̃3 − 1
2
) ∂X · ∂U2 ∂U3· ∂U1 − (α̃1 + 1)(β̃2 +

1
2
) ∂X · ∂U3 ∂U1· ∂U2

+
[

2(α̃1 β̃1 − 1) ∂X · ∂U1 +
3
2
(α̃2 + 1) ∂X · ∂U2 − 3

2
(α̃3 − 1) ∂X · ∂U3

]

∂U2· ∂U3

+
[

(β̃2
1 − 1) ∂X · ∂U1 ∂U2· ∂U3 − (β̃3 − 1

2
)(β̃1 + β̃2) ∂X · ∂U2 ∂U3· ∂U1

− (β̃2 +
1
2
)(β̃3 + β̃1) ∂X · ∂U3 ∂U1· ∂U2

]

∂U2· ∂U3 . (B.1)

We integrate by parts in order to replace δ(1) ∂X · ∂Ui
with −δ(2) Xi · ∂Ui

/L2 ,

and then δ(1) C can be rewritten as −δ(2)D/L2 with D some other differential

operator. We now push D to the right hand side of eLV as
∫

δ(2) k D eLV E1 Φ2 Φ3

∣

∣ =

∫

δ(2) k eLV L E E1 Φ2 Φ3

∣

∣ , (B.2)

getting the following operator acting on the fields:

E =
{

−
[

2(α̃1 β̃1 − 1)(α̃2 − 1)− (α̃1 + 1)(α̃2 + 1)(β̃2 − 1)

+2(α̃2 + 1)(β̃3 + β̃1)
]

∂U1· ∂U2

−
[

2(α̃1 β̃1 − 1)(α̃3 + 1)− (α̃3 − 1)(α̃1 − 1)(β̃3 + 1)

+2(α̃3 − 1)(β̃1 + β̃2)
]

∂U3· ∂U1
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−
[

− (α̃2 − 1)(β̃2
1 − 1) (B.3)

+(α̃2 + 1)(β̃2 − 1)(β̃3 + β̃1)
]

∂U1· ∂U2 ∂U2· ∂U3

−
[

− (α̃3 + 1)(β̃2
1 − 1)

+(α̃3 − 1)(β̃3 + 1)(β̃1 + β̃2)
]

∂U3· ∂U1 ∂U2· ∂U3

+(β̃2 + β̃3)
[

α̃1(β̃2 + β̃3) + β̃2 − β̃3 + 2
]

∂U1· ∂U2 ∂U3· ∂U1

}

∂U2· ∂U3 .

None of these contributions can be compensated, so that each coefficient

in the above formula should vanish separately. Using the general solutions

(3.3.6) of (3.3.3 - 3.3.5), one can verify that this is indeed the case.
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Radial reduction of the 3−3−2
vertex

In this Appendix we present more details of the reduction of the 3−3−2
vertex (3.6.10) to the (A)dS-intrinsic expression (3.6.18). Expanding the

operator in eq. (3.6.10) gives altogether six terms:

[

∂U2· ∂U3 ∂U1· ∂X2 − ∂U1· ∂U3 ∂U2· ∂X1 + 1
2
∂U1· ∂U2 ∂U3· ∂X12

]2

× ∂U1· ∂X2 ∂U2· ∂X1

= ∂U2· ∂U3 (∂U1· ∂X2)
3 ∂U2· ∂X1 + (1↔ 2)

− 2 ∂U1· ∂U3 ∂U2· ∂U3 (∂U1· ∂X2)
2 (∂U2· ∂X1)

2

+ ∂U1· ∂U2 ∂U2· ∂U3 (∂U1· ∂X2)
2 ∂X1· ∂U2 ∂U3· ∂X12 + (1↔ 2)

+ 1
4
(∂U1· ∂U2)

2 ∂U1· ∂X2 ∂U2· ∂X1 (∂U3· ∂X12)
2 , (C.1)

but taking into account the symmetries under 1 ↔ 2 , one is left with four

terms. One of such terms is (3.6.11), and we have sketched how to get

the corresponding (A)dS intrinsic expression (3.6.16). Applying the same

techniques explained there, one can deal with the other three terms in the

same manner.

We present the (A)dS intrinsic expression for each term. The third term
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in the expansion (C.1) gives

∂U1· ∂U3 ∂U2· ∂U3 (∂X2· ∂U1)
2 (∂X1· ∂U2)

2

≃ ∂u1· ∂u3 ∂u2· ∂u3 (∂u1·D2)
2(∂u2·D1)

2

+ 1
L2 ∂u1· ∂u2 ∂u1· ∂u3 ∂u2· ∂u3 ∂u1·D2 ∂u2·D1

− 1
L2 ∂u1· ∂u2 (∂u1· ∂u3)

2 (∂u2·D1)
2 − 1

L2 ∂u1· ∂u2 (∂u2· ∂u3)
2 (∂u1·D2)

2

+ d+4
L4 (∂u1· ∂u2)

2 ∂u1· ∂u3 ∂u2· ∂u3 , (C.2)

where ≃ means equivalence of two operators under the condition (3.6.14).

The fourth term gives

∂U1· ∂U2 ∂U2· ∂U3 (∂U1· ∂X2)
2 ∂U2· ∂X1 ∂U3· ∂X12

≃ ∂u1· ∂u2 ∂u2· ∂u3 (∂u1·D2)
2 ∂u2·D1 ∂u3·D12

+ 1
L2 ∂u1· ∂u2 (∂u2· ∂u3)

2(∂u1·D2)
2

− 1
L2 (∂u1· ∂u2)

2 ∂u1· ∂u3 ∂u2·D1 ∂u3·D12

+ 2
L2 (∂u1· ∂u2)

2 ∂u2· ∂u3 ∂u1·D2 ∂u3·D12

+ 3
L2 ∂u1· ∂u2 ∂u1· ∂u3 ∂u2· ∂u3 ∂u1·D2 ∂u2·D1

−d+1
L4 (∂u1· ∂u2)

2 ∂u1· ∂u3 ∂u2· ∂u3 , (C.3)

and the fifth term can be obtained interchanging 1 and 2 in the above. The

last term gives

(∂U1· ∂U2)
2 ∂U1· ∂X2 ∂U2· ∂X1 (∂U3· ∂X12)

2

≃ ∂u1·D2 (∂u2·D12)
2 + 2

L2 (∂u1· ∂u2)
3 (∂u3·D12)

2

− 5
L2 ∂u1· ∂u3 (∂u1· ∂u2)

2 ∂u2·D1 ∂u3·D2

− 5
L2 ∂u2· ∂u3 (∂u1· ∂u2)

2 ∂u1·D2 ∂u3·D1

− 8
L2 ∂u1· ∂u2 ∂u1· ∂u3 ∂u2· ∂u3 ∂u1·D2 ∂u2·D1

+2 d−9
L4 (∂u1· ∂u2)

2 ∂u1· ∂u3 ∂u2· ∂u3 , (C.4)

and collecting all these terms finally gives (3.6.18) .
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Completion of the TT part

In this appendix we consider the completion of the flat cubic vertices in

the Fronsdal formulation. In the following we shall start from the TT part

of the flat vertices and we consider the same Noether procedure equation

[

C̃(3)(∂Xi
, ∂Ui

) , Ui · ∂Xi

]

≈ 0 , (D.1)

where now the symbol ≈ means that the above equation is satisfied on-shell

modulo the full Fronsdal EoM’s. The procedure is tedious but straightfor-

ward and rests on finding the needed counterterms proportional to traces

and divergences that compensate the traces and divergences coming from

the original TT result along similar lines as those used in Chapter 2 in order

to find the free Lagrangians.

Restricting the attention without loss of generality to the completion of

C̃(3) = exp (ℓV) , (D.2)

with

V = Y1 + Y2 + Y3 +G , (D.3)

we can exploit the general setting of Chapter 2 considering the following

completion of the EoMs

�φ(X ,U) ≈ U · ∂X D(X ,U) , (D.4)
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Hence, evaluating the linearized gauge variation of the vertex on-shell in the

sense of eq. (D.4) the following commutators show up

[

V , U1 · ∂X1

]

Φ1 Φ2 E3 ≈ (H23 U3 · ∂X3 − U2 · ∂X2H32) Φ1 Φ2 E3 ,
[

V , U2 · ∂X2

]

Φ1 Φ2 E3 ≈ (H13 U1 · ∂X1 − U3 · ∂X3H31) Φ1 Φ2 E3 ,
[

V , U3 · ∂X3

]

Φ1 Φ2 E3 ≈ (U2 · ∂X2 H12 − U1 · ∂X1H21) Φ1 Φ2 E3 ,

(D.5)

where

Hij = (∂Ui
· ∂Uj

+ 1)Dj + ∂Ui
· ∂Xj

Aj . (D.6)

This set of commutators encodes a recursive structure from which one can

reconstruct the full off-shell completion of the cubic vertex. The end result

can be expressed in the following compact form:

C (3) Fronsdal = eℓV
[

1 + ℓ2 H12H13 + ℓ3 : H21H32H13 : + (cyclic perm.)
]

,

(D.7)

where : : enforces an ordering in which the generalized de Donder operators

are to act directly on the fields and hence are to be put to the right:

: D1 Z2 : = Z2 D1 . (D.8)

In the Fronsdal setting one can also add Fermions and following [70] one ends

up with the full complete result

C (3) Fronsdal =
(

1 + /∂
23
U1

+ /∂
31
U2

+ /∂
12
U3

)

exp
(

ℓV
)

×
[

1 +
α ′

2
Ĥ 12 Ĥ 13 +

(

α ′

2

)
3
2

: Ĥ21 Ĥ 32 Ĥ 13 : + cyclic

]

+ exp
(

ℓV
)

{

/∂
12
U1

[

√

α ′

2
Ĥ 23 +

α ′

2
Ĥ 32 Ĥ 13

]

− /∂
12
U2

[

√

α ′

2
Ĥ 13 −

α ′

2
Ĥ 31 Ĥ 23

]

+ cyclic

}

,

(D.9)
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where we have considered also fermionic labels that give zero contribution

in the purely bosonic case, so that for instance /∂
ij
contracts the fermionic

indices between the field Ψ i and Ψ j while the 1 simply contracts the two

fermionic indices together, whenever they are present. The (A)dS off-shell

completion is expected to work on very similar grounds. In this case one gets

the following schematic form of the gauge variation

δ S(3) =

∫

dd+1X
∞
∑

n=1

δ(n)

(√
X2 − L

)

×

× ∂Xi
· ∂Ui

(

· · ·
)

E(X1, U1) Φ(X2, U2) Φ(X3, U3)
∣

∣

∣X1=X2=x3=X
U1=U2=U3=0

, (D.10)

that is to be compensated adding further divergence and trace terms at the

δ(1)-level. This procedure is expected to work order by order, so leading

eventually to the off-shell form of the (A)dS cubic action.



146 Appendix D



Bibliography

[1] E. Fradkin and M. A. Vasiliev, “Cubic Interaction in Extended

Theories of Massless Higher Spin Fields,” Nucl. Phys. B291 (1987)

141.

[2] M. A. Vasiliev, “Consistent equations for interacting massless fields of

all spins in the first order in curvatures,” Annals Phys. 190 (1989)

59–106.

[3] M. A. Vasiliev, “Dynamics of Massless Higher Spins in the second

order in Curvatures,” Phys.Lett. B238 (1990) 305–314.

[4] M. A. Vasiliev, “Consistent equation for interacting gauge fields of all

spins in (3+1)-dimensions,” Phys. Lett. B243 (1990) 378–382.

[5] M. A. Vasiliev, “Properties of equations of motion of interacting

gauge fields of all spins in (3+1)-dimensions,” Class. Quant. Grav. 8

(1991) 1387–1417.

[6] M. A. Vasiliev, “Algebraic aspects of the higher spin problem,”

Phys.Lett. B257 (1991) 111–118.

[7] M. A. Vasiliev, “More on equations of motion for interacting massless

fields of all spins in (3+1)-dimensions,” Phys.Lett. B285 (1992)

225–234.

147



148 Appendix D

[8] M. A. Vasiliev, “Higher spin gauge theories in four-dimensions,

three-dimensions, and two-dimensions,” Int.J.Mod.Phys. D5 (1996)

763–797, arXiv:hep-th/9611024 [hep-th].

[9] M. Vasiliev, “Higher spin gauge theories in various dimensions,”

Fortsch. Phys. 52 (2004) 702–717, arXiv:hep-th/0401177

[hep-th].

[10] M. A. Vasiliev, “Higher spin gauge theories: Star product and AdS

space,” arXiv:hep-th/9910096 [hep-th]. Contributed article to

Golfand’s Memorial Volume, M. Shifman ed., World Scientific.

[11] M. Vasiliev, “Actions, charges and off-shell fields in the unfolded

dynamics approach,” Int.J.Geom.Meth.Mod.Phys. 3 (2006) 37–80,

arXiv:hep-th/0504090 [hep-th].

[12] R. Argurio, G. Barnich, G. Bonelli, and M. Grigoriev, eds.,

“Higher-Spin Gauge Theories”, Proceedings of the First Solvay

Workshop, held in Brussels on May 12-14, 2004, Int. Solvay

Institutes. 2006.

[13] M. Bianchi and V. Didenko, “Massive higher spin multiplets and

holography,” arXiv:hep-th/0502220 [hep-th].

[14] D. Francia and C. Hull, “Higher-spin gauge fields and duality,”

arXiv:hep-th/0501236 [hep-th].

[15] N. Bouatta, G. Compere, and A. Sagnotti, “An Introduction to free

higher-spin fields,” arXiv:hep-th/0409068 [hep-th].

[16] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. Vasiliev, “Nonlinear

higher spin theories in various dimensions,” arXiv:hep-th/0503128

[hep-th].

[17] A. Sagnotti, E. Sezgin, and P. Sundell, “On higher spins with a

strong Sp(2,R) condition,” arXiv:hep-th/0501156 [hep-th].



BIBLIOGRAPHY 149

[18] D. Sorokin, “Introduction to the classical theory of higher spins,” AIP

Conf.Proc. 767 (2005) 172–202, arXiv:hep-th/0405069 [hep-th].

[19] D. Francia and A. Sagnotti, “Higher-spin geometry and string

theory,” J. Phys. Conf. Ser. 33 (2006) 57, arXiv:hep-th/0601199

[hep-th].

[20] A. Fotopoulos and M. Tsulaia, “Gauge Invariant Lagrangians for Free

and Interacting Higher Spin Fields. A Review of the BRST

formulation,” Int.J.Mod.Phys. A24 (2009) 1–60, arXiv:0805.1346

[hep-th]. Extended version of the contribution to the volume

dedicated of Prof I.L. Buchbinder.

[21] A. Campoleoni, “Metric-like Lagrangian Formulations for Higher-Spin

Fields of Mixed Symmetry,” Riv.Nuovo Cim. 033 (2010) 123–253,

arXiv:0910.3155 [hep-th].

[22] X. Bekaert, N. Boulanger, and P. Sundell, “How higher-spin gravity

surpasses the spin two barrier: no-go theorems versus yes-go

examples,” arXiv:1007.0435 [hep-th].

[23] A. Campoleoni, “Higher Spins in D = 2+1,” arXiv:1110.5841

[hep-th].

[24] A. Sagnotti, “Notes on Strings and Higher Spins,” arXiv:1112.4285

[hep-th].

[25] E. Majorana, “Relativistic theory of particles with arbitrary intrinsic

momentum,” Nuovo Cim. 9 (1932) 335–344.

[26] P. A. Dirac, “Relativistic wave equations,” Proc.Roy.Soc.Lond. 155A

(1936) 447–459.

[27] M. Fierz and W. Pauli, “On relativistic wave equations for particles

of arbitrary spin in an electromagnetic field,” Proc.Roy.Soc.Lond.

A173 (1939) 211–232.



150 Appendix D

[28] W. Rarita and J. Schwinger, “On a theory of particles with half

integral spin,” Phys.Rev. 60 (1941) 61.

[29] E. P. Wigner, “On Unitary Representations of the Inhomogeneous

Lorentz Group,” Annals Math. 40 (1939) 149–204.

[30] V. Bargmann and E. P. Wigner, “Group Theoretical Discussion of

Relativistic Wave Equations,” Proc.Nat.Acad.Sci. 34 (1948) 211.

[31] C. Hagen and L. Singh, “Search for consistent interactions of the

rarita-schwinger field,” Phys.Rev. D26 (1982) 393–398.

[32] C. Fronsdal, “Massless Fields with Integer Spin,” Phys. Rev. D18

(1978) 3624.

[33] B. de Wit and D. Z. Freedman, “Systematics of Higher Spin Gauge

Fields,” Phys.Rev. D21 (1980) 358.

[34] D. Francia and A. Sagnotti, “Free geometric equations for higher

spins,” Phys. Lett. B543 (2002) 303–310, arXiv:hep-th/0207002

[hep-th].

[35] D. Francia and A. Sagnotti, “On the geometry of higher spin gauge

fields,” Class. Quant. Grav. 20 (2003) S473–S486,

arXiv:hep-th/0212185 [hep-th].

[36] D. Francia, “Geometric Lagrangians for massive higher-spin fields,”

Nucl.Phys. B796 (2008) 77–122, arXiv:0710.5378 [hep-th].

[37] D. Francia and A. Sagnotti, “Minimal local Lagrangians for

higher-spin geometry,” Phys. Lett. B624 (2005) 93–104,

arXiv:hep-th/0507144 [hep-th].

[38] D. Francia, J. Mourad, and A. Sagnotti, “Current Exchanges and

Unconstrained Higher Spins,” Nucl. Phys. B773 (2007) 203–237,

arXiv:hep-th/0701163 [hep-th].



BIBLIOGRAPHY 151

[39] A. Pashnev and M. Tsulaia, “Dimensional reduction and BRST

approach to the description of a Regge trajectory,” Mod.Phys.Lett.

A12 (1997) 861–870, arXiv:hep-th/9703010 [hep-th].

[40] A. Pashnev and M. Tsulaia, “Description of the higher massless

irreducible integer spins in the BRST approach,” Mod.Phys.Lett. A13

(1998) 1853–1864, arXiv:hep-th/9803207 [hep-th].

[41] C. Burdik, A. Pashnev, and M. Tsulaia, “The Lagrangian description

of representations of the Poincare group,” Nucl.Phys.Proc.Suppl. 102

(2001) 285–292, arXiv:hep-th/0103143 [hep-th]. 8 pages, Latex,

style file espcrc2.sty. Talk given at the D.V. Volkov Memorial

Conference “Supersymmetry and Quantum Field Theory”, July

25-30, 2000, Kharkov, to be published in the Nuclear Physics B

Conference Supplements Report-no: IC/2001/16.

[42] I. Buchbinder, A. Pashnev, and M. Tsulaia, “Lagrangian formulation

of the massless higher integer spin fields in the AdS background,”

Phys.Lett. B523 (2001) 338–346, arXiv:hep-th/0109067 [hep-th].

14 pages, LaTeX, references added.

[43] I. Buchbinder, A. Pashnev, and M. Tsulaia, “Massless higher spin

fields in the AdS background and BRST constructions for nonlinear

algebras,” arXiv:hep-th/0206026 [hep-th].

[44] X. Bekaert, I. Buchbinder, A. Pashnev, and M. Tsulaia, “On higher

spin theory: Strings, BRST, dimensional reductions,”

Class.Quant.Grav. 21 (2004) S1457–1464, arXiv:hep-th/0312252

[hep-th].

[45] I. Buchbinder, V. Krykhtin, and A. Pashnev, “BRST approach to

Lagrangian construction for fermionic massless higher spin fields,”

Nucl.Phys. B711 (2005) 367–391, arXiv:hep-th/0410215 [hep-th].



152 Appendix D

[46] M. Henneaux and C. Teitelboim, Quantum Mechanics of

Fundamental System, 2. Plenum Press, Newyork, 1987.

[47] G. Bonelli, “On the covariant quantization of tensionless bosonic

strings in AdS space-time,” JHEP 0311 (2003) 028,

arXiv:hep-th/0309222 [hep-th].

[48] A. Sagnotti and M. Tsulaia, “On higher spins and the tensionless

limit of string theory,” Nucl.Phys. B682 (2004) 83–116,

arXiv:hep-th/0311257 [hep-th].

[49] D. Francia, “On the relation between local and geometric Lagrangians

for higher spins,” J.Phys.Conf.Ser. 222 (2010) 012002,

arXiv:1001.3854 [hep-th].

[50] D. Francia, “String theory triplets and higher-spin curvatures,”

Phys.Lett. B690 (2010) 90–95, arXiv:1001.5003 [hep-th].

[51] X. Bekaert and N. Boulanger, “Tensor gauge fields in arbitrary

representations of GL(D,R): Duality and Poincare lemma,”

Commun.Math.Phys. 245 (2004) 27–67, arXiv:hep-th/0208058

[hep-th].

[52] X. Bekaert and N. Boulanger, “On geometric equations and duality

for free higher spins,” Phys.Lett. B561 (2003) 183–190,

arXiv:hep-th/0301243 [hep-th].

[53] P. de Medeiros and C. Hull, “Geometric second order field equations

for general tensor gauge fields,” JHEP 0305 (2003) 019,

arXiv:hep-th/0303036 [hep-th].

[54] T. Curtright, “Massless field Supermultiplets with arbitrary spin,”

Phys.Lett. B85 (1979) 219.

[55] T. Curtright, “Generalized Gauge Fields,” Phys.Lett. B165 (1985)

304.



BIBLIOGRAPHY 153

[56] C. Aulakh, I. Koh, and S. Ouvry, “Higher spin fields with mixed

symmetry,” Phys.Lett. B173 (1986) 284.

[57] S. Ouvry and J. Stern, “Gauge Fields of any spin and symmetry,”

Phys.Lett. B177 (1986) 335.

[58] J. Labastida and T. Morris, “Massless mixed symmetry bosonic free

fields,” Phys.Lett. B180 (1986) 101.

[59] W. Siegel and B. Zwiebach, “Gauge String Fields from the Light

Cone,” Nucl.Phys. B282 (1987) 125.

[60] W. Siegel, “Gauging Ramond String Fields via OSP(1,1/2),”

Nucl.Phys. B284 (1987) 632.

[61] J. Labastida, “Massless bosonic free felds,” Phys.Rev.Lett. 58 (1987)

531.

[62] J. Labastida, “Massless particles in arbitrary representations of the

lorentz group,” Nucl.Phys. B322 (1989) 185.

[63] A. Campoleoni, D. Francia, J. Mourad, and A. Sagnotti,

“Unconstrained Higher Spins of Mixed Symmetry. I. Bose Fields,”

Nucl. Phys. B815 (2009) 289–367, arXiv:0810.4350 [hep-th].

[64] A. Campoleoni, D. Francia, J. Mourad, and A. Sagnotti,

“Unconstrained Higher Spins of Mixed Symmetry. II. Fermi Fields,”

Nucl. Phys. B828 (2010) 425, arXiv:0904.4447 [hep-th].

[65] A. Campoleoni and D. Francia, “Maxwell-like Lagrangians for higher

spins,” arXiv:1206.5877 [hep-th].

[66] R. Manvelyan, K. Mkrtchyan, and W. Ruhl, “Off-shell construction of

some trilinear higher spin gauge field interactions,” Nucl. Phys. B826

(2010) 1–17, arXiv:0903.0243 [hep-th].



154 Appendix D

[67] R. Manvelyan, K. Mkrtchyan, and W. Ruehl, “Direct construction of

a cubic selfinteraction for higher spin gauge fields,” Nucl.Phys. B844

(2011) 348–364, arXiv:1002.1358 [hep-th].

[68] R. Manvelyan, K. Mkrtchyan, and W. Ruehl, “General trilinear

interaction for arbitrary even higher spin gauge fields,” Nucl. Phys.

B836 (2010) 204–221, arXiv:1003.2877 [hep-th].

[69] M. Taronna, “Higher Spins and String Interactions,”

arXiv:1005.3061 [hep-th].

[70] A. Sagnotti and M. Taronna, “String Lessons for Higher-Spin

Interactions,” Nucl. Phys. B842 (2011) 299–361, arXiv:1006.5242

[hep-th].

[71] A. Fotopoulos and M. Tsulaia, “On the Tensionless Limit of String

theory, Off - Shell Higher Spin Interaction Vertices and BCFW

Recursion Relations,” arXiv:1009.0727 [hep-th].

[72] R. Manvelyan, K. Mkrtchyan, and W. Ruehl, “A generating function

for the cubic interactions of higher spin fields,” Phys. Lett. B696

(2011) 410–415, arXiv:1009.1054 [hep-th].

[73] R. Manvelyan, K. Mkrtchyan, W. Ruhl, and M. Tovmasyan, “On

Nonlinear Higher Spin Curvature,” Phys.Lett. B699 (2011) 187–191,

arXiv:1102.0306 [hep-th].

[74] K. Mkrtchyan, “Higher Spin Interacting Quantum Field Theory and

Higher Order Conformal Invariant Lagrangians,” arXiv:1011.0160

[hep-th]. Ph.D. Thesis. Advisor Prof. Ruben Manvelyan.

[75] E. Joung and M. Taronna, “Cubic interactions of massless higher

spins in (A)dS: metric-like approach,” Nucl.Phys. B861 (2012)

145–174, arXiv:1110.5918 [hep-th].



BIBLIOGRAPHY 155

[76] E. Joung, L. Lopez, and M. Taronna, “On the cubic interactions of

massive and partially-massless higher spins in (A)dS,”

arXiv:1203.6578 [hep-th].

[77] E. Joung, L. Lopez, and M. Taronna, “Solving the Noether procedure

for cubic interactions of higher spins in (A)dS,” arXiv:1207.5520

[hep-th].

[78] M. Taronna, “Higher-Spin Interactions: four-point functions and

beyond,” JHEP 1204 (2012) 029, arXiv:1107.5843 [hep-th].

[79] P. Dempster and M. Tsulaia, “On the Structure of Quartic Vertices

for Massless Higher Spin Fields on Minkowski Background,”

Nucl.Phys. B865 (2012) 353–375, arXiv:1203.5597 [hep-th].

[80] A. K. Bengtsson, I. Bengtsson, and L. Brink, “Cubic Interaction

terms for arbitrary spin,” Nucl.Phys. B227 (1983) 31.

[81] A. K. Bengtsson, I. Bengtsson, and L. Brink, “Cubic Interaction

terms for arbitrarily extended Supermultiplets,” Nucl.Phys. B227

(1983) 41.

[82] R. Metsaev, “Generating function for cubic interaction vertices of

higher spin fields in any dimension,” Mod.Phys.Lett. A8 (1993)

2413–2426.

[83] R. Metsaev, “Cubic interaction vertices of totally symmetric and

mixed symmetry massless representations of the Poincare group in D

= 6 space-time,” Phys.Lett. B309 (1993) 39–44.

[84] R. Metsaev, “Massless mixed symmetry bosonic free fields in

d-dimensional anti-de Sitter space-time,” Phys.Lett. B354 (1995)

78–84.

[85] R. Metsaev, “Arbitrary spin massless bosonic fields in d-dimensional

anti-de Sitter space,” arXiv:hep-th/9810231 [hep-th].



156 Appendix D

[86] R. Metsaev, “Light cone formalism in AdS space-time,”

arXiv:hep-th/9911016 [hep-th].

[87] R. Metsaev, “Massive totally symmetric fields in AdS(d),” Phys.Lett.

B590 (2004) 95–104, arXiv:hep-th/0312297 [hep-th].

[88] R. Metsaev, “Cubic interaction vertices of massive and massless

higher spin fields,” Nucl.Phys. B759 (2006) 147–201,

arXiv:hep-th/0512342 [hep-th].

[89] R. Metsaev, “Gravitational and higher-derivative interactions of

massive spin 5/2 field in (A)dS space,” Phys.Rev. D77 (2008) 025032,

arXiv:hep-th/0612279 [hep-th].

[90] R. Metsaev, “Cubic interaction vertices for fermionic and bosonic

arbitrary spin fields,” arXiv:0712.3526 [hep-th].

[91] F. A. Berends, J. van Holten, B. de Wit, and P. van Nieuwenhuizen,

“On Spin 5/2 Gauge Fields,” J. Phys. A A13 (1980) 1643–1649.

[92] F. A. Berends, G. Burgers, and H. van Dam, “On the theoretical

problems in constructing interactions involving higher spin massless

particles,” Nucl. Phys. B260 (1985) 295.

[93] F. A. Berends, G. Burgers, and H. van Dam, “Explicit construction of

conserved currents for massless fields of arbitrary spin,” Nucl. Phys.

B271 (1986) 429.

[94] K. Alkalaev, “FV-type action for AdS5 mixed-symmetry fields,”

JHEP 1103 (2011) 031, arXiv:1011.6109 [hep-th].

[95] N. Boulanger, E. Skvortsov, and Y. Zinoviev, “Gravitational cubic

interactions for a simple mixed-symmetry gauge field in AdS and flat

backgrounds,” J.Phys.A A44 (2011) 415403, arXiv:1107.1872

[hep-th].



BIBLIOGRAPHY 157

[96] N. Boulanger and E. Skvortsov, “Higher-spin algebras and cubic

interactions for simple mixed-symmetry fields in AdS spacetime,”

JHEP 1109 (2011) 063, arXiv:1107.5028 [hep-th].

[97] Y. Zinoviev, “Gravitational cubic interactions for a massive mixed

symmetry gauge field,” arXiv:1107.3222 [hep-th].

[98] R. Metsaev, “BRST-BV approach to cubic interaction vertices for

massive and massless higher-spin fields,” arXiv:1205.3131

[hep-th].

[99] M. Henneaux, G. Lucena Gomez, and R. Rahman, “Higher-Spin

Fermionic Gauge Fields and Their Electromagnetic Coupling,”

arXiv:1206.1048 [hep-th].

[100] N. Boulanger, S. Leclercq, and S. Cnockaert, “Parity violating

vertices for spin-3 gauge fields,” Phys. Rev. D73 (2006) 065019,

arXiv:hep-th/0509118 [hep-th].

[101] I. Buchbinder, A. Fotopoulos, A. C. Petkou, and M. Tsulaia,

“Constructing the cubic interaction vertex of higher spin gauge

fields,” Phys.Rev. D74 (2006) 105018, arXiv:hep-th/0609082

[hep-th].

[102] Y. Zinoviev, “On massive spin 2 interactions,” Nucl.Phys. B770

(2007) 83–106, arXiv:hep-th/0609170 [hep-th].

[103] N. Boulanger and S. Leclercq, “Consistent couplings between spin-2

and spin-3 massless fields,” JHEP 0611 (2006) 034,

arXiv:hep-th/0609221 [hep-th].

[104] A. Fotopoulos and M. Tsulaia, “Interacting higher spins and the high

energy limit of the bosonic string,” Phys.Rev. D76 (2007) 025014,

arXiv:0705.2939 [hep-th].



158 Appendix D

[105] A. Fotopoulos, N. Irges, A. C. Petkou, and M. Tsulaia, “Higher-Spin

Gauge Fields Interacting with Scalars: The Lagrangian Cubic

Vertex,” JHEP 0710 (2007) 021, arXiv:0708.1399 [hep-th].

[106] Y. M. Zinoviev, “On spin 3 interacting with gravity,” Class. Quant.

Grav. 26 (2009) 035022, arXiv:0805.2226 [hep-th].

[107] N. Boulanger, S. Leclercq, and P. Sundell, “On The Uniqueness of

Minimal Coupling in Higher-Spin Gauge Theory,” JHEP 0808 (2008)

056, arXiv:0805.2764 [hep-th].

[108] Y. Zinoviev, “On spin 2 electromagnetic interactions,” Mod.Phys.Lett.

A24 (2009) 17–23, arXiv:0806.4030 [hep-th].

[109] Y. Zinoviev, “Frame-like gauge invariant formulation for massive high

spin particles,” Nucl.Phys. B808 (2009) 185–204, arXiv:0808.1778

[hep-th].

[110] Y. Zinoviev, “On massive spin 2 electromagnetic interactions,”

Nucl.Phys. B821 (2009) 431–451, arXiv:0901.3462 [hep-th].

[111] X. Bekaert, N. Boulanger, and S. Leclercq, “Strong obstruction of the

Berends-Burgers-van Dam spin-3 vertex,” J. Phys. A A43 (2010)

185401, arXiv:1002.0289 [hep-th].

[112] Y. Zinoviev, “Spin 3 cubic vertices in a frame-like formalism,” JHEP

1008 (2010) 084, arXiv:1007.0158 [hep-th].

[113] X. Bekaert and E. Meunier, “Higher spin interactions with scalar

matter on constant curvature spacetimes: conserved current and

cubic coupling generating functions,” JHEP 11 (2010) 116,

arXiv:1007.4384 [hep-th].

[114] X. Bekaert, E. Joung, and J. Mourad, “On higher spin interactions

with matter,” JHEP 0905 (2009) 126, arXiv:0903.3338 [hep-th].



BIBLIOGRAPHY 159

[115] I. Bars, “Gauge Symmetry in Phase Space, Consequences for Physics

and Spacetime,” Int.J.Mod.Phys. A25 (2010) 5235–5252,

arXiv:1004.0688 [hep-th].

[116] D. J. Gross and P. F. Mende, “The High-Energy Behavior of String

Scattering Amplitudes,” Phys.Lett. B197 (1987) 129.

[117] D. J. Gross and P. F. Mende, “String Theory Beyond the Planck

Scale,” Nucl.Phys. B303 (1988) 407.

[118] D. J. Gross, “High-energy symmetries of string theory,” Phys. Rev.

Lett. 60 (1988) 1229.

[119] D. Amati, M. Ciafaloni, and G. Veneziano, “Superstring Collisions at

Planckian Energies,” Phys.Lett. B197 (1987) 81.

[120] D. Amati, M. Ciafaloni, and G. Veneziano, “Classical and Quantum

Gravity Effects from Planckian Energy Superstring Collisions,”

Int.J.Mod.Phys. A3 (1988) 1615–1661.

[121] D. Amati, M. Ciafaloni, and G. Veneziano, “Can Space-Time Be

Probed Below the String Size?,” Phys.Lett. B216 (1989) 41.

[122] M. Bianchi, J. F. Morales, and H. Samtleben, “On stringy AdS(5) x

S5 and higher spin holography,” JHEP 0307 (2003) 062,

arXiv:hep-th/0305052 [hep-th].

[123] N. Beisert, M. Bianchi, J. F. Morales, and H. Samtleben, “Higher

spin symmetry and N=4 SYM,” JHEP 0407 (2004) 058,

arXiv:hep-th/0405057 [hep-th].

[124] E. Sezgin and P. Sundell, “Analysis of higher spin field equations in

four-dimensions,” JHEP 0207 (2002) 055, arXiv:hep-th/0205132

[hep-th].



160 Appendix D

[125] E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin

theories and a test via cubic scalar couplings,” JHEP 0507 (2005)

044, arXiv:hep-th/0305040 [hep-th].

[126] N. Boulanger and P. Sundell, “An action principle for Vasiliev’s

four-dimensional higher-spin gravity,” arXiv:1102.2219 [hep-th].

[127] M. A. Vasiliev, “Cubic interactions of bosonic higher spin gauge fields

in AdS5),” Nucl. Phys. B616 (2001) 106–162,

arXiv:hep-th/0106200.

[128] K. B. Alkalaev and M. A. Vasiliev, “N = 1 supersymmetric theory of

higher spin gauge fields in AdS5 at the cubic level,” Nucl. Phys.

B655 (2003) 57–92, arXiv:hep-th/0206068.

[129] M. Vasiliev, “Cubic Vertices for Symmetric Higher-Spin Gauge Fields

in (A)dSd,” arXiv:1108.5921 [hep-th].

[130] A. Sagnotti, “The higher-spin challenge,” in Strings 2009. 2009.

[131] N. Boulanger, T. Damour, L. Gualtieri, and M. Henneaux,

“Inconsistency of interacting, multigraviton theories,” Nucl.Phys.

B597 (2001) 127–171, arXiv:hep-th/0007220 [hep-th].

[132] S. Weinberg, “Photons and Gravitons in s Matrix Theory: Derivation

of Charge Conservation and Equality of Gravitational and Inertial

Mass,” Phys. Rev. 135 (1964) B1049–B1056.

[133] S. R. Coleman and J. Mandula, “All possible symmetries of the S

Matrix,” Phys. Rev. 159 (1967) 1251–1256.

[134] R. Haag, J. T. Lopuszanski, and M. Sohnius, “All Possible Generators

of Supersymmetries of the s Matrix,” Nucl.Phys. B88 (1975) 257.

[135] S. Weinberg and E. Witten, “Limits on Massless Particles,”

Phys.Lett. B96 (1980) 59.



BIBLIOGRAPHY 161

[136] C. Aragone and S. Deser, “Consistency Problems of Hypergravity,”

Phys. Lett. B86 (1979) 161.

[137] C. Aragone and S. Deser, “Consistency Problems of Spin-2 Gravity

Couplings,” Nuovo Cim. B57 (1980) 33–49.

[138] T. Damour and S. Deser, “Higher Derivative Interactions of Higher

Spin Gauge Fields,” Class.Quant.Grav. 4 (1987) L95.

[139] M. Porrati, “Universal Limits on Massless High-Spin Particles,” Phys.

Rev. D78 (2008) 065016, arXiv:0804.4672 [hep-th].

[140] M. Porrati and R. Rahman, “Intrinsic Cutoff and Acausality for

Massive Spin 2 Fields Coupled to Electromagnetism,” Nucl.Phys.

B801 (2008) 174–186, arXiv:0801.2581 [hep-th].

[141] M. Porrati and R. Rahman, “A Model Independent Ultraviolet Cutoff

for Theories with Charged Massive Higher Spin Fields,” Nucl.Phys.

B814 (2009) 370–404, arXiv:0812.4254 [hep-th].

[142] M. Porrati and R. Rahman, “Causal Propagation of a Charged Spin

3/2 Field in an External Electromagnetic Background,” Phys.Rev.

D80 (2009) 025009, arXiv:0906.1432 [hep-th].

[143] J. Z. Simon, “Higher derivative Lagrangians, nonlocality, problems

and solutions,” Phys.Rev. D41 (1990) 3720.

[144] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and

R. Rattazzi, “Causality, analyticity and an IR obstruction to UV

completion,” JHEP 0610 (2006) 014, arXiv:hep-th/0602178

[hep-th].

[145] S. B. Giddings, “Black hole information, unitarity, and nonlocality,”

Phys.Rev. D74 (2006) 106005, arXiv:hep-th/0605196 [hep-th].

[146] M. A. Vasiliev, “Holography, Unfolding and Higher-Spin Theory,”

arXiv:1203.5554 [hep-th].



162 Appendix D

[147] J. M. Maldacena, “The Large N limit of superconformal field theories

and supergravity,” Adv.Theor.Math.Phys. 2 (1998) 231–252,

arXiv:hep-th/9711200 [hep-th].

[148] F. Strocchi, “Symmetry breaking,”.

[149] N. Moeller and B. Zwiebach, “Dynamics with infinitely many time

derivatives and rolling tachyons,” JHEP 0210 (2002) 034,

arXiv:hep-th/0207107 [hep-th].

[150] D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, “Progress

Toward a Theory of Supergravity,” Phys.Rev. D13 (1976) 3214–3218.

[151] I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, “Holography

from Conformal Field Theory,” JHEP 0910 (2009) 079,

arXiv:0907.0151 [hep-th].

[152] A. L. Fitzpatrick and J. Kaplan, “Analyticity and the Holographic

S-Matrix,” arXiv:1111.6972 [hep-th].

[153] A. L. Fitzpatrick and J. Kaplan, “Unitarity and the Holographic

S-Matrix,” arXiv:1112.4845 [hep-th].

[154] J. Polchinski, “S matrices from AdS space-time,”

arXiv:hep-th/9901076 [hep-th].

[155] L. Susskind, “Holography in the flat space limit,”

arXiv:hep-th/9901079 [hep-th].

[156] T. Okuda and J. Penedones, “String scattering in flat space and a

scaling limit of Yang-Mills correlators,” Phys.Rev. D83 (2011)

086001, arXiv:1002.2641 [hep-th].

[157] J. Penedones, “Writing CFT correlation functions as AdS scattering

amplitudes,” JHEP 1103 (2011) 025, arXiv:1011.1485 [hep-th].



BIBLIOGRAPHY 163

[158] L. Apolo and M. Porrati, “On AdS/CFT without Massless

Gravitons,” arXiv:1205.4956 [hep-th].

[159] P. A. Dirac, “Wave equations in conformal space,” Annals Math. 37

(1936) 429–442.

[160] C. Fronsdal, “Singletons and Massless, Integral Spin Fields on de

Sitter Space (Elementary Particles in a Curved Space. 7.),” Phys.

Rev. D20 (1979) 848–856.

[161] T. Biswas and W. Siegel, “Radial dimensional reduction: Anti-de

Sitter theories from flat,” JHEP 0207 (2002) 005,

arXiv:hep-th/0203115 [hep-th].

[162] I. Bars and C. Kounnas, “Theories with two times,” Phys.Lett. B402

(1997) 25–32, arXiv:hep-th/9703060 [hep-th].

[163] K. Hallowell and A. Waldron, “Constant curvature algebras and

higher spin action generating functions,” Nucl.Phys. B724 (2005)

453–486, arXiv:hep-th/0505255 [hep-th].

[164] G. Barnich and M. Grigoriev, “Parent form for higher spin fields on

anti-de Sitter space,” JHEP 0608 (2006) 013,

arXiv:hep-th/0602166 [hep-th].

[165] A. Fotopoulos, K. L. Panigrahi, and M. Tsulaia, “Lagrangian

formulation of higher spin theories on AdS space,” Phys.Rev. D74

(2006) 085029, arXiv:hep-th/0607248 [hep-th].

[166] D. Francia, J. Mourad, and A. Sagnotti, “(A)dS exchanges and

partially-massless higher spins,” Nucl. Phys. B804 (2008) 383–420,

arXiv:0803.3832 [hep-th].

[167] N. Boulanger, C. Iazeolla, and P. Sundell, “Unfolding

Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General

Formalism,” JHEP 0907 (2009) 013, arXiv:0812.3615 [hep-th].



164 Appendix D

[168] N. Boulanger, C. Iazeolla, and P. Sundell, “Unfolding

Mixed-Symmetry Fields in AdS and the BMV Conjecture. II.

Oscillator Realization,” JHEP 0907 (2009) 014, arXiv:0812.4438

[hep-th].

[169] K. B. Alkalaev and M. Grigoriev, “Unified BRST description of AdS

gauge fields,” Nucl.Phys. B835 (2010) 197–220, arXiv:0910.2690

[hep-th].

[170] S. Deser, “Selfinteraction and gauge invariance,” Gen.Rel.Grav. 1

(1970) 9–18, arXiv:gr-qc/0411023 [gr-qc].

[171] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The

Analytic S-Matrix. 1966.

[172] J. E. Paton and H.-M. Chan, “Generalized veneziano model with

isospin,” Nucl.Phys. B10 (1969) 516–520.

[173] Z. Bern, J. J. M. Carrasco, and H. Johansson, “Perturbative

Quantum Gravity as a Double Copy of Gauge Theory,”

Phys.Rev.Lett. 105 (2010) 061602, arXiv:1004.0476 [hep-th].

[174] K. Alkalaev and M. Grigoriev, “Unified BRST approach to (partially)

massless and massive AdS fields of arbitrary symmetry type,”

Nucl.Phys. B853 (2011) 663–687, arXiv:1105.6111 [hep-th].

[175] M. Fierz, “Force-free particles with any spin,” Helv.Phys.Acta 12

(1939) 3–37.

[176] V. Bargmann, “Irreducible unitary representations of the Lorentz

group,” Annals Math. 48 (1947) 568–640.

[177] S. Deser and R. I. Nepomechie, “Gauge invariance versus

masslessness in de sitter space,” Annals Phys. 154 (1984) 396.



BIBLIOGRAPHY 165

[178] G. Barnich and M. Henneaux, “Consistent couplings between fields

with a gauge freedom and deformations of the master equation,”

Phys.Lett. B311 (1993) 123–129, arXiv:hep-th/9304057 [hep-th].

[179] D. Francia, “Low-spin models for higher-spin Lagrangians,”

Prog.Theor.Phys.Suppl. 188 (2011) 94–105, arXiv:1103.0683

[hep-th].

[180] M. Porrati, “Massive spin 5/2 fields coupled to gravity: Tree level

unitarity versus the equivalence principle,” Phys.Lett. B304 (1993)

77–80, arXiv:gr-qc/9301012 [gr-qc].

[181] R. Doria, J. Helayel-Neto, and S. Mokhtari, “The Minimal coupling of

charged spin 3/2 fields to an extended Abelian gauge model,”

Commun.Theor.Phys. 21 (1994) 121–124.

[182] A. Cucchieri, M. Porrati, and S. Deser, “Tree level unitarity

constraints on the gravitational couplings of higher spin massive

fields,” Phys.Rev. D51 (1995) 4543–4549, arXiv:hep-th/9408073

[hep-th]. Dedicated to the memory of Julian Schwinger.

[183] I. Giannakis, J. T. Liu, and M. Porrati, “Massive higher spin states in

string theory and the principle of equivalence,” Phys.Rev. D59 (1999)

104013, arXiv:hep-th/9809142 [hep-th].

[184] S. Klishevich, “Massive fields of arbitrary half integer spin in constant

electromagnetic field,” Int.J.Mod.Phys. A15 (2000) 609–624,

arXiv:hep-th/9811030 [hep-th].

[185] S. Deser, V. Pascalutsa, and A. Waldron, “Massive spin 3/2

electrodynamics,” Phys.Rev. D62 (2000) 105031,

arXiv:hep-th/0003011 [hep-th].

[186] S. Deser and A. Waldron, “Inconsistencies of massive charged

gravitating higher spins,” Nucl.Phys. B631 (2002) 369–387,

arXiv:hep-th/0112182 [hep-th].



166 Appendix D

[187] Y. Zinoviev, “On electromagnetic interactions for massive mixed

symmetry field,” JHEP 1103 (2011) 082, arXiv:1012.2706

[hep-th].

[188] R. Rahman, “Helicity-1/2 Mode as a Probe of Interactions of Massive

Rarita-Schwinger Field,” arXiv:1111.3366 [hep-th].

[189] S. Deser and A. Waldron, “Partially Massless Spin 2

Electrodynamics,” Phys.Rev. D74 (2006) 084036,

arXiv:hep-th/0609113 [hep-th].

[190] P. C. Argyres and C. R. Nappi, “Massive spin-2 bosonic string states

in an electromagnetic background,” Phys.Lett. B224 (1989) 89.

[191] M. Porrati and R. Rahman, “Notes on a Cure for Higher-Spin

Acausality,” Phys.Rev. D84 (2011) 045013, arXiv:1103.6027

[hep-th].

[192] M. Porrati, R. Rahman, and A. Sagnotti, “String Theory and The

Velo-Zwanziger Problem,” Nucl.Phys. B846 (2011) 250–282,

arXiv:1011.6411 [hep-th].

[193] M. Bianchi, L. Lopez, and R. Richter, “On stable higher spin states

in Heterotic String Theories,” JHEP 1103 (2011) 051,

arXiv:1010.1177 [hep-th].

[194] D. Polyakov, “Higher Spins and Open Strings: Quartic Interactions,”

Phys.Rev. D83 (2011) 046005, arXiv:1011.0353 [hep-th].

[195] O. Schlotterer, “Higher Spin Scattering in Superstring Theory,”

Nucl.Phys. B849 (2011) 433–460, arXiv:1011.1235 [hep-th].

[196] M. Bianchi and P. Teresi, “Scattering higher spins off D-branes,”

arXiv:1108.1071 [hep-th].

[197] S. Lee and D. Polyakov, “String Amplitudes and Frame-like

Formalism for Higher Spins,” arXiv:1203.0909 [hep-th]. 25 pages.



BIBLIOGRAPHY 167

[198] S. Giombi, S. Prakash, and X. Yin, “A Note on CFT Correlators in

Three Dimensions,” arXiv:1104.4317 [hep-th].

[199] Y. S. Stanev, “Correlation Functions of Conserved Currents in Four

Dimensional Conformal Field Theory,” arXiv:1206.5639 [hep-th].

[200] A. Zhiboedov, “A note on three-point functions of conserved

currents,” arXiv:1206.6370 [hep-th].

[201] K. Alkalaev, “Mixed-symmetry tensor conserved currents and

AdS/CFT correspondence,” arXiv:1207.1079 [hep-th].

[202] D. Francia, “Geometric massive higher spins and current exchanges,”

Fortsch. Phys. 56 (2008) 800–808, arXiv:0804.2857 [hep-th].

[203] A. K. Bengtsson, “A Unified Action For Higher Spin Gauge Bosons

From Covariant String Theory,” Phys.Lett. B182 (1986) 321.

[204] D. Polyakov, “Interactions of Massless Higher Spin Fields From

String Theory,” Phys. Rev. D82 (2010) 066005, arXiv:0910.5338

[hep-th].

[205] D. Polyakov, “Gravitational Couplings of Higher Spins from String

Theory,” Int. J. Mod. Phys. A25 (2010) 4623–4640,

arXiv:1005.5512 [hep-th].

[206] D. Polyakov, “A String Model for AdS Gravity and Higher Spins,”

arXiv:1106.1558 [hep-th].

[207] E. Sezgin and P. Sundell, “Massless higher spins and holography,”

Nucl.Phys. B644 (2002) 303–370, arXiv:hep-th/0205131 [hep-th].

[208] I. Klebanov and A. Polyakov, “AdS dual of the critical O(N) vector

model,” Phys.Lett. B550 (2002) 213–219, arXiv:hep-th/0210114

[hep-th].



168 Appendix D

[209] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen,

“Asymptotic symmetries of three-dimensional gravity coupled to

higher-spin fields,” JHEP 1011 (2010) 007, arXiv:1008.4744

[hep-th].

[210] M. Henneaux and S.-J. Rey, “Nonlinear Winfinity as Asymptotic

Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity,”

JHEP 1012 (2010) 007, arXiv:1008.4579 [hep-th].

[211] M. R. Gaberdiel and R. Gopakumar, “An AdS3 Dual for Minimal

Model CFTs,” arXiv:1011.2986 [hep-th].

[212] H. Kawai, D. Lewellen, and S. Tye, “A Relation Between Tree

Amplitudes of Closed and Open Strings,” Nucl.Phys. B269 (1986) 1.

[213] A. A. Tseytlin, “On limits of superstring in AdS5× S5,” Theor. Math.

Phys. 133 (2002) 1376–1389, arXiv:hep-th/0201112.

[214] B. Zwiebach, “Closed string field theory: Quantum action and the

B-V master equation,” Nucl.Phys. B390 (1993) 33–152,

arXiv:hep-th/9206084 [hep-th].

[215] A. Sagnotti, “Open Strings and their Symmetry Groups,”

arXiv:hep-th/0208020 [hep-th].

[216] G. Pradisi and A. Sagnotti, “Open String Orbifolds,” Phys.Lett.

B216 (1989) 59.

[217] P. Horava, “Strings on World Sheet Orbifolds,” Nucl.Phys. B327

(1989) 461.

[218] P. Horava, “Background Duality of Open String Models,” Phys.Lett.

B231 (1989) 251.

[219] M. Bianchi and A. Sagnotti, “On the systematics of open string

theories,” Phys.Lett. B247 (1990) 517–524.



BIBLIOGRAPHY 169

[220] M. Bianchi and A. Sagnotti, “Twist symmetry and open string

Wilson lines,” Nucl.Phys. B361 (1991) 519–538.

[221] M. Bianchi, G. Pradisi, and A. Sagnotti, “Toroidal compactification

and symmetry breaking in open string theories,” Nucl.Phys. B376

(1992) 365–386.

[222] A. Sagnotti, “A Note on the Green-Schwarz mechanism in open string

theories,” Phys.Lett. B294 (1992) 196–203, arXiv:hep-th/9210127

[hep-th].

[223] E. Dudas, “Theory and phenomenology of type I strings and M

theory,” Class.Quant.Grav. 17 (2000) R41–R116,

arXiv:hep-ph/0006190 [hep-ph].

[224] C. Angelantonj and A. Sagnotti, “Open strings,” Phys.Rept. 371

(2002) 1–150, arXiv:hep-th/0204089 [hep-th].

[225] S. Sugimoto, “Anomaly cancellations in type I D-9 - anti-D-9 system

and the USp(32) string theory,” Prog.Theor.Phys. 102 (1999)

685–699, arXiv:hep-th/9905159 [hep-th].

[226] I. Antoniadis, E. Dudas, and A. Sagnotti, “Brane supersymmetry

breaking,” Phys.Lett. B464 (1999) 38–45, arXiv:hep-th/9908023

[hep-th].

[227] C. Angelantonj, “Comments on open string orbifolds with a

nonvanishing B(ab),” Nucl.Phys. B566 (2000) 126–150,

arXiv:hep-th/9908064 [hep-th].

[228] G. Aldazabal and A. Uranga, “Tachyon free nonsupersymmetric type

IIB orientifolds via Brane - anti-brane systems,” JHEP 9910 (1999)

024, arXiv:hep-th/9908072 [hep-th].



170 Appendix D

[229] C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas, and

A. Sagnotti, “Type I vacua with brane supersymmetry breaking,”

Nucl.Phys. B572 (2000) 36–70, arXiv:hep-th/9911081 [hep-th].

[230] E. Dudas and J. Mourad, “Consistent gravitino couplings in

nonsupersymmetric strings,” Phys.Lett. B514 (2001) 173–182,

arXiv:hep-th/0012071 [hep-th].

[231] G. Pradisi and F. Riccioni, “Geometric couplings and brane

supersymmetry breaking,” Nucl.Phys. B615 (2001) 33–60,

arXiv:hep-th/0107090 [hep-th].

[232] I. Batalin and G. Vilkovisky, “Gauge Algebra and Quantization,”

Phys.Lett. B102 (1981) 27–31.

[233] E. Witten, “Perturbative gauge theory as a string theory in twistor

space,” Commun.Math.Phys. 252 (2004) 189–258,

arXiv:hep-th/0312171 [hep-th].

[234] F. Cachazo, P. Svrcek, and E. Witten, “MHV vertices and tree

amplitudes in gauge theory,” JHEP 0409 (2004) 006,

arXiv:hep-th/0403047 [hep-th].

[235] R. Britto, F. Cachazo, and B. Feng, “New recursion relations for tree

amplitudes of gluons,” Nucl.Phys. B715 (2005) 499–522,

arXiv:hep-th/0412308 [hep-th].

[236] R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of

tree-level recursion relation in Yang-Mills theory,” Phys.Rev.Lett. 94

(2005) 181602, arXiv:hep-th/0501052 [hep-th].

[237] P. Benincasa and F. Cachazo, “Consistency Conditions on the

S-Matrix of Massless Particles,” arXiv:0705.4305 [hep-th].



BIBLIOGRAPHY 171

[238] P. Benincasa and E. Conde, “On the Tree-Level Structure of

Scattering Amplitudes of Massless Particles,” JHEP 1111 (2011) 074,

arXiv:1106.0166 [hep-th].

[239] P. Benincasa and E. Conde, “Exploring the S-Matrix of Massless

Particles,” arXiv:1108.3078 [hep-th].


