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Abstract

Bottom-up human pose estimation methods have diffi-

culties in predicting the correct pose for small persons

due to challenges in scale variation. In this paper, we

present HigherHRNet: a novel bottom-up human pose

estimation method for learning scale-aware representa-

tions using high-resolution feature pyramids. Equipped

with multi-resolution supervision for training and multi-

resolution aggregation for inference, the proposed ap-

proach is able to solve the scale variation challenge

in bottom-up multi-person pose estimation and local-

ize keypoints more precisely, especially for small person.

The feature pyramid in HigherHRNet consists of feature

map outputs from HRNet and upsampled higher-resolution

outputs through a transposed convolution. HigherHR-

Net outperforms the previous best bottom-up method by

2.5% AP for medium person on COCO test-dev, show-

ing its effectiveness in handling scale variation. Further-

more, HigherHRNet achieves new state-of-the-art result on

COCO test-dev (70.5% AP) without using refinement or

other post-processing techniques, surpassing all existing

bottom-up methods. HigherHRNet even surpasses all top-

down methods on CrowdPose test (67.6% AP), suggest-

ing its robustness in crowded scene. The code and mod-

els are available at https://github.com/HRNet/

Higher-HRNet-Human-Pose-Estimation.

1. Introduction

2D human pose estimation aims at localizing human

anatomical keypoints (e.g., elbow, wrist, etc.) or parts. As

a fundamental technique to human behavior understanding,

it has received increasing attention in recent years.

Current human pose estimation methods can be catego-

rized into top-down methods and bottom-up methods. Top-

down methods [34, 9, 16, 42, 38, 40, 39, 16] take a depen-

dency on person detector to detect person instances each

with a bounding box and then reduce the problem to a sim-
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Figure 1. (a) Using image pyramid for heatmap prediction [33,

30]. (a) Generating higher resolution and spatially more accurate

heatmaps by upsampling image. Recent work PersonLab [33] re-

lies on enlarging input image size to generate high quality feature

maps. (c) Our HigherHRNet uses high resolution feature pyramid.

pler task of single person pose estimation. As top-down

methods can normalize all the persons to approximately the

same scale by cropping and resizing the detected person

bounding boxes, they are generally less sensitive to the scale

variance of persons. Thus, state-of-the-art performances on

various multi-person human pose estimation benchmarks

are mostly achieved by top-down methods. However, as

such methods rely on a separate person detector and need to

estimate pose for every person individually, they are nor-

mally computationally intensive and not truly end-to-end

systems. By contrast, bottom-up methods [3, 30, 33, 22]

start by localizing identity-free keypoints for all the persons

in an input image through predicting heatmaps of differ-

ent anatomical keypoints, followed by grouping them into

person instances. This strategy effectively makes bottom-

up methods faster and more capable of achieving real-time

pose estimation. However, because bottom-up methods

need to deal with scale variation, there still exists a large

gap between the performances of bottom-up and top-down
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methods, especially for small scale persons.

There are mainly two challenges in predicting keypoints

of small persons. One is dealing with scale variation, i.e. to

improve the performance of small person without sacrific-

ing the performance of large persons. The other is generat-

ing a high-resolution heatmap with high quality for precise

localizing keypoints of small persons. Previous bottom-up

methods [3, 30, 33, 22] mainly focus on grouping keypoints

and simply use a single resolution of feature map that is 1/4

of the input image resolution to predict the heatmap of key-

points. These methods neglect the challenge of scale varia-

tion and rely on image pyramid during inference (Figure 1

(a)). Feature pyramids are basic components for handling

scale variation, however, smaller resolution feature maps

in a top-down feature pyramid usually suffer from the sec-

ond challenge. PersonLab [33] generates high-resolution

heatmaps by increasing the input resolution (Figure 1 (b)).

Although the performance of small persons increases con-

sistently as input resolution, the performance of large per-

sons begin decreasing when input resolution is too large.

To solve these challenges, it is crucial to generate spa-

tially more accurate and scale-aware heatmaps for bottom-

up keypoint prediction in a natural and simple way without

sacrificing computational cost.

In this paper, we propose a Scale-Aware High-

Resolution Network (HigherHRNet) to address these chal-

lenges. HigherHRNet generates high-resolution heatmaps

by a new high-resolution feature pyramid module. Unlike

the traditional feature pyramid that starts from 1/32 reso-

lution and uses bilinear upsampling with lateral connection

to gradually increases feature map resolution to 1/4, high-

resolution feature pyramid directly starts from 1/4 resolu-

tion which is the highest resolution feature in the backbone

and generates even higher-resolution feature maps with de-

convolution (Figure 1 (c)). We build the high-resolution fea-

ture pyramid on the 1/4 resolution path of HRNet [38, 40],

to make it efficient. To make HigherHRNet capable of han-

dling scale variation, we further propose a Multi-Resolution

Supervision strategy to assign training target of different

resolutions to the corresponding feature pyramid level. Fi-

nally, we introduce a simple Multi-Resolution Heatmap Ag-

gregation strategy during inference to generate scale-aware

high-resolution heatmaps.

We validate our method on the challenging COCO key-

point detection dataset [27] and demonstrate superior key-

point detection performance. Specifically, HigherHRNet

achieves AP of 70.5% on COCO2017 test-dev without

any post processing, outperforming all existing bottom-up

methods by a large margin. Furthermore, we observe that

most of the gain comes from medium person (there is no

small person annotation for the keypoint detection task),

HigherHRNet outperforms the previous best bottom-up

method by 2.5% AP for medium persons without sacrafic-

ing the performance of large persons (+0.3% AP). This ob-

servation verifies HigherHRNet is indeed solving the scale

variation challenge. We also provide a solid baseline for

bottom-up methods on the new CrowdPose [24] dataset.

Our HigherHRNet achieves AP of 67.6% on CrowdPose

test, surpassing all existing methods. This result suggests

bottom-up methods naturally have the advantages in the

crowded scene.

To summarize our contributions:

• We attempt to address the scale variation challenge,

which is rarely studied before in bottom-up multi-

person pose estimation.

• We propose a HigherHRNet that generates high-

resolution feature pyramid with multi-resolution su-

pervision in the training stage and multi-resolution

heatmap aggregation in the inference stage to predict

scale-aware high-resolution heatmaps that are benefi-

cial for small persons.

• We demonstrate the effectiveness of our HigherHRNet

on the challenging COCO dataset. Our model outper-

forms all other bottom-up methods. We especially ob-

serve a large gain for medium persons.

• We achieve a new state-of-the-art result on the Crowd-

Pose dataset, suggesting bottom-up methods are more

robust to the crowded scene over top-down methods.

2. Related works

Top-down methods. Top-down methods [42, 38, 40, 34,

16, 18, 15, 9, 31] detect the keypoints of a single person

within a person bounding box. The person bounding boxes

are usually generated by an object detector [36, 26, 14, 13].

Mask R-CNN [16] directly adds a keypoint detection branch

on Faster R-CNN [36] and reuses features after ROIPooling.

G-RMI [34] and the following methods further break top-

down methods into two steps and use separate models for

person detection and pose estimation.

Bottom-up methods. Bottom-up methods [35, 19, 20, 3,

30] detect identity-free body joints for all the persons in an

image and then group them into individuals. OpenPose [3]

uses a two-branch multi-stage netork with one branch for

heatmap prediction and one branch for grouping. Open-

Pose uses a grouping method named part affinity field which

learns a 2D vector field linking two keypoints. Grouping is

done by calculating line integral between two keypoints and

group the pair with the largest integral. Newell et al. [30]

use stacked hourglass network [31] for both heatmap pre-

diction and grouping. Grouping is done by a method named

associate embedding, which assigns each keypoint with a

“tag” (a vector representation) and groups keypoints based

on the l2 distance between tag vectors. PersonLab [33] uses
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dilated ResNet [17] and groups keypoints by directly learn-

ing a 2D offset field for each pair of keypoints. PifPaf [22]

uses a Part Intensity Field (PIF) to localize body parts and

a Part Association Field (PAF) to associate body parts with

each other to form full human poses.

Feature pyramid. Pyramidal representation has been

widely adopted in recent object detection and segmentation

frameworks to handle scale variation. SSD [29] and MS-

CNN [2] predict objects at multiple layers of the network

without merging features. Feature pyramid networks [26]

extend the backbone model with a top-down pathway that

gradually recovers feature resolution from 1/32 to 1/4, us-

ing bilinear upsampling and lateral connection. The mo-

tivation in common is to let features from different pyra-

mid level to predict instances of different scales. However,

this pyramidal representation is less explored in bottom-up

multi-person pose estimation. In this work, we design a

high-resolution feature pyramid that extend the pyramid to

a different direction, starting from 1/4 resolution feature and

generate pyramid of features with higher resolution.

High resolution feature maps. There are mainly 4 meth-

ods to generate high resolution feature maps. (1) Encoder-

decoder [31, 16, 9, 37, 1, 25, 41, 10] captures the context

information in the encoder path and recover high resolution

features in the decoder path. The decoder usually contains a

sequence of bilinear upsample operations with skip connec-

tions from encoder features with the same resolution. (2)

Dilated convolution [44, 5, 6, 7, 8, 4, 28, 43, 11, 12] (a.k.a.

“atrous” convolution) is used to remove several stride con-

volutions/max poolings to preserve feature map resolution.

Dilated convolution prevents losing spatial information but

introduces more computational cost. (3) Deconvolution

(transposed convolution) [42] is used in sequence at the end

of a network to efficiently increase feature map resolution.

SimpleBaseline [42] demonstrates that deconvolution can

generate high quality feature maps for heatmap prediction.

(4) Recently, a High-Resolution Network (HRNet) [38, 40]

is proposed as an efficient way to keep a high resolution pass

throughout the network. HRNet [38, 40] consists of multi-

ple branches with different resolutions. Lower resolution

branches capture contextual information and higher reso-

lution branches preserve spatial information. With multi-

scale fusions between branches, HRNet [38, 40] can gener-

ate high resolution feature maps with rich semantic.

We adopt HRNet [38, 40] as our base network to gener-

ate high-quality feature maps. And we add a deconvolution

module to generate higher resolution feature maps to pre-

dict heatmaps. The resulting model is named “Scale-Aware

High-Resolution Network” (HigherHRNet). As both HR-

Net [38, 40, 40] and deconvolution are efficient, HigherHR-

Net is an efficient model for generating higher resolution

feature maps for heatmap prediction.

3. Higher-Resolution Network

In this section, we introduce our proposed Scale-Aware

High-Resolution Representation Learning using the High-

erHRNet. Figure 2 illustrates the overall architecture of our

method. We will firstly give a brief overview on the pro-

posed HigherHRNet and then describe its components in

details.

3.1. HigherHRNet

HRNet. HigherHRNet uses HRNet [38, 40] (shown in

Figure 2) as backbone. HRNet [38, 40] starts with a high-

resolution branch in the first stage. In every following stage,

a new branch is added to current branches in parallel with 1
2

of the lowest resolution in current branches. As the network

has more stages, it will have more parallel branches with

different resolutions and resolutions from previous stages

are all preserved in later stages. An example network struc-

ture, containing 3 parallel branches, is illustrated in Fig-

ure 2.

We instantiate the backbone using a similar manner as

HRNet [38, 40]. The network starts from a stem that con-

sists of two strided 3× 3 convolutions decreasing the reso-

lution to 1/4. The 1st stage contains 4 residual units where

each unit is formed by a bottleneck with width (number of

channels) 64, followed by one 3 × 3 convolution reducing

the width of feature maps to C. The 2nd, 3rd, 4th stages

contain 1, 4, and 3 multi-resolution blocks, respectively.

The widths of the convolutions of the four resolutions are

C, 2C, 4C, and 8C, respectively. Each branch in the multi-

resolution group convolution has 4 residual units and each

unit has two 3 × 3 convolutions in each resolution. We ex-

periment with two networks with different capacity by set-

ting C to 32 and 48 respectively.

HRNet [38, 40] was originally designed for top-down

pose estimation. In this work, we adopt HRNet [38, 40]

to a bottom-up method by adding a 1 × 1 convolution to

predict heatmaps and tagmaps similar to [30]. We only use

the highest resolution ( 14 of the input image) feature maps

for prediction. Following [30], we use a scalar tag for each

keypoint.

HigherHRNet. Resolution of the heatmap is important

for predicting keypoints for small persons. Most ex-

isting human pose estimation methods predict Gaussian-

smoothed heatmaps by preparing the ground truth

headmaps with an unnormalized Gaussian kernel applyed to

each keypoint location. Adding this Gaussian kernel helps

training networks as CNNs tend to output spatially smooth

responses as a nature of convolution operations. However,

applying a Gaussian kernel also introduces confusion in

precise localization of keypoints, especially for keypoints

belonging to small persons. A trivial solution to reduce this

confusion is to reduce the standard deviation of the Gaus-
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Figure 2. An illustration of HigherHRNet. The network uses HRNet [38, 40] as backbone, followed by one or more deconvolution

modules to generate multi-resolution and high-resolution heatmaps. Multi-resolution supervision is used for training. More details are

given in Section 3.

sian kernel. However, we empirically find that it makes op-

timization harder and leads to even worse results.

Instead of reducing standard deviation, we solve this

problem by predicting heatmaps at higher resolution with

standard deviation unchanged at different resolutions.

Bottom-up methods usually predict heatmaps at resolution
1
4 of the input image. Yet we find this resolution is not high

enough for predicting accurate heatmaps. Inspired by [42],

which shows that deconvolution can be used to effectively

generate high quality and high resolution feature maps, we

build HigherHRNet on top of the highest resolution feature

maps in HRNet as shown in Figure 2 by adding a deconvo-

lution module as discussed in Section 3.3.

The deconvolution module takes as input both features

and predicted heatmaps from HRNet and generates new fea-

ture maps that are 2 times larger in resolution than the input

feature maps. A feature pyramid with two resolutions is

thus generated by the deconvolution module together with

the feature maps from HRNet. The deconvolution module

also predicts heatmaps by adding an extra 1 × 1 convolu-

tion. We follow Section 3.4 to train heatmap predictors at

different resolutions and use a heatmap aggregation strategy

as described in (Section 3.5) for inference.

More deconvolution modules can be added if larger reso-

lution is desired. We find the number of deconvolution mod-

ules is dependent on the distribution of person scales of the

dataset. Generally speaking, a dataset containing smaller

persons requires larger resolution feature maps for predic-

tion and vice versa. In experiments, we find adding a single

deconvolution module achieves the best performance on the

COCO dataset.

3.2. Grouping.

Recent works [30, 23] have shown that grouping can be

solved with high accuracy by a simple method using as-

sociative embedding [30]. As an evidence, experimental

results in [30] show that using the ground truth detections

with the predicted tags improves AP from 59.2 to 94.0 on a

held-out set of 500 training images of the COCO keypoint

detection dataset [27]. We follow [30] to use associative

embedding for keypoint grouping. The grouping process

clusters identity-free keypoints into individuals by group-

ing keypoints whose tags have small l2 distance.

3.3. Deconvolution Module

We propose a simple deconvolution module for generat-

ing high quality feature maps whose resolution is two times

higher than the input feature maps. Following [42], we use

a 4 × 4 deconvolution (a.k.a. transposed convolution) fol-

lowed by BatchNorm and ReLU to learn to upsample the

input feature maps. Optionally, we could further add sev-

eral Basic Residual Blocks [17] after deconvolution to re-

fine the upsampled feature maps. We add 4 Residual Blocks

in HigherHRNet.

Different from [42], the input to our deconvolution mod-

ule is the concatenation of the feature maps and the pre-
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dicted heatmaps from either HRNet or previous deconvo-

lution modules. And the output feature maps of each de-

convolution module are also used to predict heatmaps in a

multi-scale fashion.

3.4. Multi­Resolution Supervision

Unlike other bottom-up methods [30, 33, 3] that only ap-

ply supervision to the largest resolution heatmaps, we intro-

duce a multi-resolution supervision during training to han-

dle scale variation. We transform ground truth keypoint lo-

cations to locations on the heatmaps of all resolutions to

generate ground truth heatmaps with different resolutions.

Then we apply a Gaussian kernel with the same standard

deviation (we use standard deviation = 2 by default) to all

these ground truth heatmaps. We find it important not to

scale standard deviation of the Gaussian kernel. This is be-

cause different resolution of feature pyramid is suitable to

predict keypoints of different scales. On higher-resolution

feature maps, a relatively small standard deviation (com-

pared to the resolution of the feature map) is desired to more

precisely localize keypoints of small persons.

At each prediction scale in HigherHRNet, we calculate

the mean squared error between the predicted heatmaps of

that scale and its associated ground truth heatmaps. The

final loss for heatmaps is the sum of mean squared errors

for all resolutions.

It is worth highlighting that we do not assign different

scale of persons to different levels in the feature pyramid,

due to the following reasons. First, the heuristic used for

assigning training target depends on both the dataset and

network architecture. It is hard to transform the heuristic

for FPN [26] to HigherHRNet as both the dataset (scale dis-

tribution of person v.s. all objects) and architecture (High-

erHRNet only has 2 levels of pyramid while FPN has 4)

change. Second, ground truth keypoint targets interact with

each other since we apply the Gaussian kernel. Thus, it is

very hard to decouple keypoints by simply setting ignored

regions. We believe model has the ability to automatically

focus on specific scales in different levels of the feature

pyramid.

Tagmaps are trained differently from heatmaps in High-

erHRNet. We only predict tagmaps at the lowest resolution,

instead of using all resolutions. This is because learning

tagmaps requires global reasoning and it is more suitable to

predict tagmaps in lower resolution. Empirically, we also

find higher resolutions do not learn to predict tagmaps well

and even do not converge. Thus, we follow [30] to train the

tagmaps on feature maps at 1
4 resolution of input image.

3.5. Heatmap Aggregation for Inference

We propose a heatmap aggregation strategy during in-

ference. We use bilinear interpolation to upsample all the

predicted heatmaps with different resolutions to the reso-

lution of the input image and average the heatmaps from

all scales for final prediction. This strategy is quite different

from previous methods [3, 30, 33] which only use heatmaps

from a single scale or single stage for prediction.

The reason that we use heatmap aggregation is to en-

able scale-aware pose estimation. For example, the COCO

Keypoint dataset [27] contains persons of large scale vari-

ance from 322 pixels to more than 1282 pixels. Top-down

methods [34, 9, 42] solve this problem by normalizing per-

son regions approximately into a single scale. However,

bottom-up methods need to be aware of scales to detect

keypoints from all scales. We find heatmaps from differ-

ent scales in HigherHRNet captures keypoints with differ-

ent scales better. For example, keypoints for small per-

sons missed in lower-resolution heatmap can be recovered

in the higher-resolution heatmap. Thus, averaging predicted

heatmaps from different resolutions makes HigherHRNet a

scale-aware pose estimator.

4. Experiments

4.1. COCO Keypoint Detection
Dataset. The COCO dataset [27] contains over 200, 000
images and 250, 000 person instances labeled with 17 key-

points. COCO is divided into train/val/test-dev sets with

57k, 5k and 20k images respectively. All the experiments

in this paper are trained only on the train set. We report

results on the val set for ablation studies and compare with

other state-of-the-art methods on the test-dev set.

Evaluation metric. The standard evaluation metric is

based on Object Keypoint Similarity (OKS): OKS =
∑

i
exp(−d2

i
/2s2k2

i
)δ(vi>0)

∑
i
δ(vi>0) . Here di is the Euclidean distance

between a detected keypoint and its corresponding ground

truth, vi is the visibility flag of the ground truth, s is the

object scale, and ki is a per-keypoint constant that con-

trols falloff. We report standard average precision and re-

call scores1: AP
50 (AP at OKS = 0.50), AP

75, AP (the

mean of AP scores at OKS = 0.50, 0.55, . . . , 0.90, 0.95),

AP
M for medium objects, AP

L for large objects, and AR

(the mean of recalls at OKS = 0.50, 0.55, . . . , 0.90, 0.95).

Training. Following [30], we use data augmentation with

random rotation ([−30◦, 30◦]), random scale ([0.75, 1.5]),

random translation ([−40, 40]) to crop an input image patch

of size 512 × 512 as well as random flip. As mentioned in

Section 3.4, we generate two ground truth heatmaps with

resolutions 128× 128 and 256× 256 respectively.

We use the Adam optimizer [21]. The base learning rate

is set to 1e−3, and dropped to 1e−4 and 1e−5 at the 200th
and 260th epochs respectively. We train the model for a

total of 300 epochs. To balance the heatmap loss and the

grouping loss, we set the weight to 1 and 1e−3 respectively

for the two losses.

1http://cocodataset.org/#keypoints-eval
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Method Backbone Input size #Params GFLOPs AP AP
50

AP
75

AP
M

AP
L

w/o multi-scale test

OpenPose [3]† - - - - 61.8 84.9 67.5 57.1 68.2

Hourglass [30] Hourglass 512 277.8M 206.9 56.6 81.8 61.8 49.8 67.0

PersonLab [33] ResNet-152 1401 68.7M 405.5 66.5 88.0 72.6 62.4 72.3

PifPaf [22] - - - - 66.7 - - 62.4 72.9

Bottom-up HRNet‡ HRNet-W32 512 28.5M 38.9 64.1 86.3 70.4 57.4 73.9

HigherHRNet (Ours) HRNet-W32 512 28.6M 47.9 66.4 87.5 72.8 61.2 74.2

HigherHRNet (Ours) HRNet-W48 640 63.8M 154.3 68.4 88.2 75.1 64.4 74.2

w/ multi-scale test

Hourglass [30] Hourglass 512 277.8M 206.9 63.0 85.7 68.9 58.0 70.4

Hourglass [30]† Hourglass 512 277.8M 206.9 65.5 86.8 72.3 60.6 72.6

PersonLab [33] ResNet-152 1401 68.7M 405.5 68.7 89.0 75.4 64.1 75.5

HigherHRNet (Ours) HRNet-W48 640 63.8M 154.3 70.5 89.3 77.2 66.6 75.8

† Indicates using refinement.
‡ Our implementation, not reported in [38, 40]

Table 1. Comparisons with bottom-up methods on the COCO2017 test-dev set. All GFLOPs are calculated at single-scale. For Person-

Lab [33], we only calculate its backbone’s #Params and GFLOPs. Top: w/o multi-scale test. Bottom: w/ multi-scale test. It is worth noting

that our results are achieved without refinement.

Method AP AP
50

AP
75

AP
M

AP
L

AR

Top-down methods

Mask-RCNN [16] 63.1 87.3 68.7 57.8 71.4 -

G-RMI [34] 64.9 85.5 71.3 62.3 70.0 69.7

Integral Pose Regression [39] 67.8 88.2 74.8 63.9 74.0 -

G-RMI + extra data [34] 68.5 87.1 75.5 65.8 73.3 73.3

CPN [9] 72.1 91.4 80.0 68.7 77.2 78.5

RMPE [15] 72.3 89.2 79.1 68.0 78.6 -

CFN [18] 72.6 86.1 69.7 78.3 64.1 -

CPN (ensemble) [9] 73.0 91.7 80.9 69.5 78.1 79.0

SimpleBaseline [42] 73.7 91.9 81.1 70.3 80.0 79.0

HRNet-W48 [38, 40] 75.5 92.5 83.3 71.9 81.5 80.5

HRNet-W48 + extra data [38, 40] 77.0 92.7 84.5 73.4 83.1 82.0

Bottom-up methods

OpenPose∗ [3] 61.8 84.9 67.5 57.1 68.2 66.5

Hourglass∗+ [30] 65.5 86.8 72.3 60.6 72.6 70.2

PifPaf [22] 66.7 - - 62.4 72.9 -

SPM [32] 66.9 88.5 72.9 62.6 73.1 -

PersonLab+ [33] 68.7 89.0 75.4 64.1 75.5 75.4

Ours: HigherHRNet-W48+ 70.5 89.3 77.2 66.6 75.8 74.9

Table 2. Comparisons with both top-down and bottom-up methods

on COCO2017 test-dev dataset. ∗ means using refinement. +

means using multi-scale test.

Method Feat. stride/resolution AP APM APL

HRNet 4/128 64.4 57.1 75.6
HigherHRNet 2/256 66.9 61.0 75.7
HigherHRNet 1/512 66.5 61.1 74.9

Table 3. Ablation study of HRNet vs. HigherHRNet on

COCO2017 val dataset. Using one deconvolution module for

HigherHRNet performs best on the COCO dataset.

Testing. We first resize the short side of the input image to

512 and keep the aspect ratio. Heatmap aggregation is done

by resizing all the predicted heatmaps to the size of input

image and taking the average. Following [30], flip testing

is used for all the experiments. All reported numbers have

been obtained with single model without ensembling.

Results on COCO2017 test-dev. Table 1 summarizes the

results on COCO2017 test-dev dataset. From the results,

we can see that using HRNet [38, 40] itself already serves

as a simple and strong baseline for bottom-up methods

(64.1 AP). Our baseline method of HRNet with only single

scale test outperforms Hourglass [30] using multi-scale test,

while HRNet has much less parameters and computation in

terms of FLOPs. Equipped with light-weight deconvolu-

tion modules, our proposed HigherHRNet (66.4 AP) out-

performs HRNet by +2.3 AP with only marginal increase

in parameters (+0.4%) and FLOPs (+23.1%). HigherHR-

Net is comparable with PersonLab [33] but with only 50%

parameters and 11% FLOPs. If we further use multi-scale

test, our HigherHRNet achieves 70.5 AP, outperforming all

existing bottom-up methods by a large margin. We do not

use any post processing like refining with top-down meth-

ods in [3, 30].

Table 2 lists both bottom-up and top-down methods

on the COCO2017 test-dev dataset. HigherHRNet further

closes the performance gap between bottom-up and top-

down methods.

4.2. Ablation Experiments

We perform a number of ablation experiments to analyze

Scale-Aware High-Resolution Network (HigherHRNet) on

the COCO2017 [27] val dataset.

HRNet vs. HigherHRNet. We perform ablation study

comparing HRNet and HigherHRNet. For HigherHRNet,

deconvolution module without extra residual blocks is used,

and heatmaps aggregation is used for inference. Results are

shown in Table 3. A simple bottom-up baseline by using

HRNet with a feature stride of 4 achieves AP = 64.4. By

adding one deconvolution module, our HigherHRNet with

a feature stride of 2 outperforms HRNet by a large mar-

gin of +2.5 AP (achieving 66.9 AP). Furthermore, the main
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Figure 3. (a) Baseline method using HRNet [38, 40] as backbone. (b) HigherHRNet with multi-resolution supervision (MRS). (c) High-

erHRNet with MRS and feature concatenation. (d) HigherHRNet with MRS and feature concatenation. (e) HigherHRNet with MRS,

feature concatennation and extra residual blocks. For (d) and (e), heatmap aggregation is used.

Network w/ MRS feature concat. w/ heatmap aggregation extra res. blocks AP APM APL

(a) HRNet 64.4 57.1 75.6
(b) HigherHRNet X 66.0 60.7 74.2
(c) HigherHRNet X X 66.3 60.8 74.0
(d) HigherHRNet X X X 66.9 61.0 75.7
(e) HigherHRNet X X X X 67.1 61.5 76.1

Table 4. Ablation study of HigherHRNet’s components on COCO2017 val dataset. MSR: multi-resolution supervision. feature concat.:

feature concatenation. res. blocks: residual blocks.

improvement comes from medium persons, where APM is

improved from 57.1 for HRNet to 61.0 for HigherHRNet.

These results show that HigherHRNet performs much

better with small scales thanks to its higher resolution

heatmaps. We also find the AP for large person pose does

no drop. This is mainly because we also use smaller resolu-

tion heatmaps for prediction. It demonstrates that 1) mak-

ing prediction at higher resolution is beneficial to bottom-up

pose estimation and 2) scale-aware prediction is important.

If we add a sequence of two deconvolution modules after

HRNet to generate feature maps that is of the same resolu-

tion as the input image, we observe that the performance

decreases to 66.5 AP from 66.9 AP for adding only one de-

convolution module. The improvement for medium person

is marginal (+0.1 AP) but there is a large drop in the per-

formance of large person (−0.8 AP). We hypothesize this

is because the misalignment between feature map scale and

object scales. Larger resolution feature maps (feature stride

= 1) are good for detecting keypoints from even smaller

persons but the small persons in COCO are not considered

for pose estimation. Therefore, we only use one deconvo-

lution module by default for the COCO dataset. But we

would like to point out that the number of cascaded decon-

volution modules should be dependent on datasets and we

will validate this on more datasets in our future work.

HigherHRNet gain breakdown. To better understand

the gain of the proposed components, we perform detailed

ablation studies on each individual component. Figure 3 il-

lustrates all the architectures of our experiments. Results

are shown in Table 4.

Effect of deconvolution module. We perform ablation study

on the effect of adding deconvolution module to gener-

ate higher resolution heatmaps. For a fair comparison,

we only use the highest resolution feature maps to gener-

ate heatmaps for prediction (Figure 3 (b)). HRNet (Fig-

ure 3 (a)) achieves a baseline of 64.4 AP. By adding one de-

convolution module, the model achieves 66.0 AP which is

1.6 AP better than the baseline. This improvement is com-

pletely due to predicting on larger feature maps with higher

quality. The result verifies our claim that it is important

to predict on higher resolution feature maps for bottom-up

pose estimation.

Effect of feature concatenation. We concatenate feature

maps with predicted heatmaps from HRNet as input to the

deconvolution module (Figure 3 (c)) and the performance

is further improved to 66.3 AP. We also observe there is

a large gain in medium persons while the performance for

large persons decreases. Comparing method (a) and (c),

the gain of predicting heatmaps at higher resolution mainly

comes from medium persons (+3.7APM ). Moreover, the

drop in large persons (−1.6 AP) justifies our claim that dif-

ferent different resolutions of feature maps are sensitive to

different scales of persons.

Effect of heatmap aggregation. We further use all resolu-

tions of heatmaps following the heatmap aggregation strat-

egy for inference (Figure 3 (d)). Compared with Fig-
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Training size AP APM APL

512 67.1 61.5 76.1
640 68.5 64.3 75.3
768 68.5 64.9 73.8

Table 5. Ablation study of HigherHRNet with different training

image size on COCO2017 val dataset.

Backbone #Params GFLOPs AP APM APL

HRNet-W32 28.6 47.8 68.5 64.3 75.3
HRNet-W40 44.5 110.7 69.2 64.9 75.9
HRNet-W48 63.8 154.3 69.9 65.4 76.4

Table 6. Ablation study of HigherHRNet with different backbone

on COCO2017 val dataset.

ure 3 (c) (66.3 AP) that only uses the highest resolu-

tion heatmaps for inference, applying heatmap aggrega-

tion strategy achieves 66.9 AP. Comparing method (d) and

(e), the gain of heatmap aggregation comes from large

person (+1.7 AP). And the performance of large person

is even marginally better than predicting at lower resolu-

tion (method (a)). It means that predicting heatmaps using

heatmap aggregation strategy is truly scale-aware.

Effect of extra residual blocks. We add 4 residual blocks

in the deconvolution module and our best model achieves

67.1 AP. Adding residual blocks can further refine the fea-

ture maps and it increases AP for both medium and large

persons equally.

Training with larger image size. A natural question is

can training with larger input size further improve perfor-

mance? To answer this question, we train HigherHRNet

with 640 × 640 and 768 × 768 and results are shown in

Table 5, all three models are tested using the training im-

age size. We find that by increasing training image size

to 640, there is a significant gain of 1.4 AP. Most of the

gain comes from medium person while the performance of

large person degrades slightly. When we further change the

training image size to 768, the overall AP does not change

anymore. We observe a marginal improvement in medium

person along with large degradation in large person.

Larger backbone. In previous experiments, we use

HRNet-W32 (1/4 resolution feature map has 32 channels)

as backbone. We perform experiments with larger back-

bones HRNet-W40 and HRNet-W48. Results are shown in

Table 6. We find using larger backbone consistently im-

proves performance for both medium and large person.

4.3. CrowdPose

The CrowdPose [24] dataset consists of 20,000 images,

containing about 80,000 persons. The training, validation

and testing subset are split in proportional to 5:1:4. Crowd-

Pose has more crowded scenes than the COCO keypoint

Method AP AP
50

AP
75

AP
E

AP
M

AP
H

Top-down methods

Mask-RCNN [16] 57.2 83.5 60.3 69.4 57.9 45.8

AlphaPose [15] 61.0 81.3 66.0 71.2 61.4 51.1

Top-down with refinement

SPPE [24] 66.0 84.2 71.5 75.5 66.3 57.4

Bottom-up methods

OpenPose [3] - - - 62.7 48.7 32.3

Ours: HigherHRNet-W48 65.9 86.4 70.6 73.3 66.5 57.9

Ours: HigherHRNet-W48+ 67.6 87.4 72.6 75.8 68.1 58.9

Table 7. Comparisons with both top-down and bottom-up methods

on CrowdPose test dataset. Superscripts E, M, H of AP stand for

easy, medium and hard. + means using multi-scale test.

dataset, posing more challenges to pose estimation meth-

ods. The evaluation metric is the same as COCO [27].

The strong assumption of top-down methods that each

person detection only contains a single person in the center,

is no more valid in crowded scene. As shown in Table 7,

top-down methods [16, 15] that perform well on COCO fail

on the CrowdPose dataset.

On the other hand, bottom-up methods naturally have

the advantage in crowded scene. To validate the robustness

of HigherHRNet in crowded scene, as well as setting up a

strong baseline for bottom-up methods. We train our best

HigherHRNet-W48 model on the CrowdPose train and val

set and report performance on the test set. All training pa-

rameters follow COCO exactly and we use a crop size of

640× 640 for both training and testing.

Results are shown in Table 7. Our HigherHRNet out-

performs naı̈ve top-down methods by a large margin of

6.6 AP. HigherHRNet also outperforms the previous best

method [24] (which performs a global refinement of top-

down method [15]) by a healthy margin of 1.6 AP and

most of the gain comes from AP
M (+1.8 AP) and AP

H

(+1.5 AP), which contains images with the most crowd.

Even without multi-scale test, HigherHRNet outperforms

SPPE [24] by 0.5 in AP
H .

5. Conclusion

We have presented a Scale-Aware High-Resolution Net-

work (HigherHRNet) to solve the scale variation challenge

in the bottom-up multi-person pose estimation problem, es-

pecially for precisely localizing keypoints of small persons.

We find multi-scale image pyramid and larger input size

partially solve the problem, but these methods suffer from

high computational cost. To solve the problem, we propose

an efficient high-resolution feature pyramid based on HR-

Net and train it with multi-resolution supervision. During

the inference, HigherHRNet with multi-resolution heatmap

aggregation is capable of efficiently generating muilt- and

higher-resolution heatmaps for more accurate human pose

estimation. HigherHRNet outperforms all existing bottom-

up methods by a large margin on the challenging COCO

dataset, especially for small persons.
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