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A sudden outbreak of COVID-19 caused by a novel coronavirus, SARS-CoV-2, inWuhan,

China in December 2019 quickly grew into a global pandemic, putting at risk not only

the global healthcare system, but also the world economy. As the disease continues to

spread rapidly, the development of prophylactic and therapeutic approaches is urgently

required. Although some progress has been made in understanding the viral structure

and invasion mechanism of coronaviruses that may cause severe cases of the syndrome,

due to the limited understanding of the immune effects caused by SARS-CoV-2, it is

difficult for us to prevent patients from developing acute respiratory distress syndrome

(ARDS) and pulmonary fibrosis (PF), the major complications of coronavirus infection.

Therefore, any potential treatments should focus not only on direct killing of coronaviruses

and prevention strategies by vaccine development, but also on keeping in check the

acute immune/inflammatory responses, resulting in ARDS and PF. In addition, potential

treatments currently under clinical trials focusing on killing coronaviruses or on developing

vaccines preventing coronavirus infection largely ignore the host immune response.

However, taking care of SARS-CoV-2 infected patients with ARDS and PF is considered

to be the major difficulty. Therefore, further understanding of the host immune response

to SARS-CoV-2 is extremely important for clinical resolution and saving medication

cost. In addition to a breif overview of the structure, infection mechanism, and possible

therapeutic approaches, we summarized and compared the hematopathologic effect

and immune responses to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also discussed

the indirect immune response caused by SARS and direct infection, replication, and

destroying of immune cells by MERS-CoV. The molecular mechanisms of SARS-CoV
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and MERS-CoV infection-induced lymphopenia or cytokine stormmay provide some hint

toward fight against SARS-CoV-2, the novel coronavirus. This may provide guidance over

using immune therapy as a combined treatment to prevent patients developing severe

respiratory syndrome and largely reduce complications.

Keywords: SARS-CoV, MERS-CoV, SARS-CoV-2, hematopathologic effect, immune responses, immune therapy

INTRODUCTION

Coronaviruses belong to the Coronaviridae family of the
subfamily Coronavirinae. The viruses of this family have a broad
range of animal hosts, and zoonotic transfer between species is
common. Within the Coronavirinae subfamily, there are four
genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus,
and Deltacoronavirus (1, 2). Coronaviruses are non-segmented
positive-sense RNA viruses, whose RNA is covered by the
solar corona-shaped envelope, from which they acquired their
name. They are characterized by having the largest genome
among all RNA viruses with an average size of 30 kb (3). Two-
thirds of the coronaviral genome encodes non-structural proteins
responsible for the virus replication, including RNA-dependent
RNA polymerase, proteases, and helicase. The 3′ end of the
genome encodes four main structural proteins of the coronavirus
particles, which are the spike (S), membrane (M), envelope (E),
and nucleocapsid (N) proteins (4).

Coronaviruses have a long history of infecting humans.
HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1
are the prevalent human coronaviruses, which are estimated
to have been circulating in the human population for centuries
(4). These viruses cause mild upper respiratory infection, or in
other words, common cold symptoms (5). On the other hand,
three members of the Betacoronavirus genus were zoonotically
transferred to humans from other mammalian species in
the past two decades and caused major epidemics with high
mortality rates. Severe Acute Respiratory Syndrome (SARS),
caused by SARS-CoV, started in Guangdong province of China
in 2002 and affected 8,096 people worldwide, resulting in
774 deaths (10% mortality rate) (https://www.cdc.gov/sars/
about/faq.html). Middle East respiratory syndrome (MERS)
caused by MERS-CoV started in Saudi Arabia in 2012 and
affected 2,506 people, causing 862 deaths worldwide with a
35% mortality rate (https://www.who.int/csr/don/31-january-
2020-mers-united-arab-emirates/en/). In December 2019,
a novel coronavirus, SARS-CoV-2, caused an outbreak of
Coronavirus Disease 2019 (COVID-19) in Wuhan city in
China, which quickly spread throughout the world and grew
into a global pandemic affecting hundreds of thousands of
people as of March 2020. Notably, although SARS-CoV-2 is
characterized by higher contagiousness in comparison with
SARS-CoV and MERS-CoV, it causes a much lower mortality
rate (2.3% from the epidemic in China in Jan.-Feb, 2020)
(6). All three viruses can cause acute respiratory distress
syndrome (ARDS), the most acute and fatal stage of the
disease, characterized by wide-spread inflammation in the
lungs resulting from the aberrant immune response to the viral
infection (7–9).

Therefore, in this review, we discuss three coronaviruses,
SARS-CoV, MERS-CoV, and SARS CoV-2, from an
immunological point of view. We describe their structure
and protein composition, mechanisms of entering host cells,
and mechanisms to evade innate immune responses. Comparing
their hosts, invading mechanisms, and inflammatory responses
will help us understand more about coronaviruses, aid in solving
the global SARS-CoV-2 epidemic happening now, and find out
possible effective treatments to deal with the public health crises
caused by coronaviruses in the future.

VIRUS STRUCTURE

As was demonstrated by cryoelectron tomography and
cryoelectron microscopy, coronavirus virions are of spherical
shape with diameters of approximately 65–125 nm (10). The
club-shaped spikes on the surface of the virion are the most
prominent feature of coronaviruses. These spikes confer them a
solar corona-like appearance fromwhich the name “coronavirus”
is derived. The nucleocapsids are helically symmetrical and
are packed by the envelope of the virion (5). Coronavirus
particles contain four main structural proteins, namely the
spike (S), membrane (M), envelope (E), and nucleocapsid
(N) proteins.

S PROTEIN

Coronavirus S protein is a large multifunctional class I viral
transmembrane protein, whose size varies from 1,160 amino
acids in Infectious Bronchitis Virus (IBV) in poultry to 1,400
amino acids in Feline Coronavirus (FCoV) (11). It is a trimer
located on the virion surface, giving the virion a crown-
like appearance. As for its function, it mediates the entry
of the infectious virion particles into the cells by making
attachments between virion particles and host cell membranes
through interaction with various host cellular receptors (12).
Furthermore, it plays an important role in tissue tropism
and the determination of host range (13). In addition, S
protein is capable of inducing host immune response (13).
S proteins in all coronaviruses can be divided into two
domains, S1 and S2 (11). S1 functions as the receptor-
binding domain (RBD) while S2 acts as a membrane fusion
subunit. The S1 domain can be further divided into two
subdomains, named the N-terminal domain (NTD) and the C-
terminal domain (CTD). Both of these subdomains act as the
receptor-binding domains, interacting efficiently with various
host receptors (13). The S1 CTD contains the receptor-binding
motif (RBM).
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FIGURE 1 | Human coronavirus infects different types of cells. Left: SARS-CoV can infect alveolar epithelial cells and immune cells but can only replicate in epithelial

cells. Middle: MERS-CoV infected and replicated in both alveolar epithelial cells and immune cells. Right: SARS-CoV2: infected lung and damaged lung and immune

system.

M PROTEIN

The M protein is the most abundant structural protein of the
coronavirus virion. It is a small (∼25–30 kDa) protein with three
transmembrane domains that is responsible for maintaining
the shape of the virion (14). The amino acid sequences of the
M protein are diverse in different coronaviruses, however, the
structural similarity is maintained overall (15). It has a short
N-terminal glycosylated domain outside the virion and a much
larger C-terminal domain inside the virion that extends 6–8 nm
into the viral particle (16). Most M proteins are co-translationally
inserted into the ER membrane without a signal sequence. The
viral scaffold is maintained by interactions between M proteins.
Recent studies suggest that the M protein exists as a dimer in
the virion, and may adopt two different conformations allowing
it to promote membrane curvature, as well as bind to the
nucleocapsid (14).

E PROTEIN

The E protein is the smallest structural protein (∼8–12 kDa)
within the virion. It plays a multifunctional role in the

pathogenesis, assembly, and release of the virus. The virulence
of the virus is also related to the E protein (17). The E proteins
from different coronaviruses are highly diverse in their amino
acid sequences but are characterized by a common structure
(18). There are three domains in the E protein: short hydrophilic
amino-terminal domain, large hydrophobic transmembrane
domain, and C terminal domain (19). The deletion of the E
protein-encoding gene results in slower amplification of the
virus, but the protein does not seem to be essential for the
replication of SARS-CoV (20). Besides its role in assembly and
release of the virus, the E protein still has other functions, for
instance, the ion channel activity. Compared to SARS-CoV, the
SARS-CoV-2 (2019-nCoV) E protein reveals a similar amino acid
constitution without any substitution (21).

N PROTEIN

The N protein is the only structural protein present in the
nucleocapsid. It is composed of three highly conserved and
separate domains: an N-terminal domain (NTD), RNA-binding
domain or a linker region (LKR), and a C-terminal domain
(CTD) (22). The NTD binds to the 3′ end of the viral RNA and
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FIGURE 2 | Summary of host immune response modulated by severe coronaviruses. (A) SARS-CoV infected epithelial cells represents SARS epitope by MHC I to

recruit CD8+ cytotoxic T cells (CTL). Macrophage and dendritic cells (DCs) are infected by SARS-CoV and represent SARS epitope by MHC II to recruit CD4+ helper

T cells (Th1). Abortive replication of SARS in macrophage impaired its cytokine production, resulting in a delayed IFN response, infiltration of inflammatory

monocyte-macrophages (IMMs), and T cells apoptosis. In addition, SARS-CoV infection impaired dendritic cell (DC) function, resulting in reduced T cell activation. (B)

Successful replication of MERS-CoV in both alveolar epithelial cells and immune cells resulted in the direct killing of these infected cells. (C) SARS-CoV-2 can probably

infect both lung epithelial cells and immune cells and damage the tissue through a direct or cytokine-mediated indirect effect.

TABLE 1 | Immunology differences between SARS-CoV, MERS-CoV, and SARS-CoV-2.

SARS MERS SARS-CoV-2

Infected host cell Alveolar epithelial cells

Monocyte-macrophage

Dendritic cells

Activated T cells

Alveolar epithelial cells

Monocyte-macrophage

Dendritic cells

Activated T cells

Respiratory epithelial cells

T lymphocytes

Suspectable for virus replication Respiratory epithelial cells Alveolar epithelial cells

Monocyte-macrophage

Dendritic cells

Activated T cells

Respiratory epithelial cells

Unknown

Monocyte-macrophage Abortive replication

Viral protein inhibition

Viral replication

Kill monocyte-macrophage

Unknown

Impacts on immune system Indirectly kill: T cell

apoptosis

Viral replication

Directly killed T cell

Unknown

is highly divergent from virus to virus (23). The LKR region [also
called SR (Serine and Arginine) domain] is charged because of
its serine and arginine-rich sequence (24). It has been reported to
interact directly with RNA in vitro and play a part in cell signaling
(25, 26). The N protein has two RNA substrates that have already
been identified, the transcriptional regulatory sequence (TRS)
(25) and the genomic packaging signal (27). In addition, it can
also act as a viral suppressor of RNA silencing in mammalian
cells (28). N protein is also heavily phosphorylated (29), so that
it can change its conformation to enhance the affinity for viral
vs. non-viral RNA. N protein also binds nsp3 (24, 30) and the M
protein (31). These proteins may interact to help tether the viral
genome packaging.

HE PROTEIN

The hemagglutinin-esterase (HE) is a structural protein
present in a subset of Betacoronavirus. The protein acts as a
hemagglutinin, which binds sialic acids of surface glycoproteins.
It also contains acetylesterase activity (32). These activities are
thought to enhance the cell entry mediated by the S protein and
virus spread through the mucosa (33).

STRUCTURE OF SARS-CoV

SARS-CoV virus particles are spherical with an average diameter
of 78 nm. The virus contains a helical nucleocapsid, surrounded
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by an envelope (34), covered with rod-shaped long envelope
particles of about 20 nm in length, with typical coronal
features. The structure of SARS-CoV is similar to that of other
coronaviruses. The gene sequence is 5′ end, replicase [rep], spike
[S], envelope [E], membrane [M], nucleocapsid [N], 3′ end. There
are short untranslated regions at both ends. The sequences of
the other five non-structural proteins may be distributed between
ORF S and N (35).

The SARS-CoV genome contains a total of 11 ORFs and
encodes 23 mature proteins (36). Among them, two major
ORFs (ORF1a and ORF1b) account for about two-thirds of
the genome size and encode two important polyproteins, pp1a
and pp1ab. Polyproteins are proteolytically cleaved to produce
non-structural proteins, the most important of which are RNA-
dependent RNA polymerase and ATPase helicase. Only several
nucleotides are different among different viruses (37).

STRUCTURE OF MERS-CoV

The genome of MERS-CoV consists of genes encoding the
replicase and structural proteins (spike-envelope-membrane-
nucleocapsid)-poly (A)−3′, similar to other coronaviruses. The
virus has 10 ORFs and encodes 16 putative non-structural
proteins involved in the viral transcription and replication
process (38, 39).

STRUCTURE OF SARS-CoV-2

Basically, the structure of SARS-CoV-2 shares all the typical
characteristics with other coronaviruses. Several recent studies
considering the structure of SARS-CoV-2 were all focused on
the S protein. Wrapp et al. (40) reported a structure at 3.5 Å
resolution of SARS-CoV-2 S protein. Yan et al. (41) reported the
complex structure of B0AT1, an amino acid transporter protein,
with human host cell binding receptor angiotensin-converting
enzyme 2 (ACE2), which provided important insights into the
molecular basis of coronavirus infection. Lan et al. (42) reported
a crystal structure of SARS-CoV-2 S protein’s receptor binding
domain (RBD) region bound to ACE2. The viral architecture of
SARS-CoV-2 with post-fusion spike was observed by Cyro-EM,
which showed the image of disassociated spikes (43).

INFECTION (ENTERING HOST CELLS)

SARS-CoV
Similar to other coronaviruses, SARS-CoV enters cells through
endocytosis and membrane fusion, and its host receptor is
ACE2 (35, 44). SARS-CoV enters into target cells and can
be inhibited by polyanionic compounds, suggesting that the
SARS-CoV envelope protein may be positively charged. At the
same time, SARS-CoV needs to be in the acidified endosome
to produce effective infection, indicating that its effect is pH-
dependent (45). Viral RNA is replicated in the unique bottle-
shaped bilayer membrane compartments (46). Several studies
have found that SARS-CoV infection can cause ultrastructural
changes in vivo and in cultured cells, including the formation

of double-membrane vesicles and nucleocapsid inclusions and
particles in the cytoplasm (34).

MERS-CoV
MERS-CoV has been reported as being able to infect and kill
not only alveolar epithelial cells but also T cells (47). MERS-
CoV enters host cells by binding to a DPP4 receptor expressed
in the kidney and other organs (48), and uses proteases of the
host to enter lung cells. Furin activates the S protein on the viral
envelope, mediating the membrane fusion and virus entry into
host cells (49). Like SARS-CoV, MERS-CoV can overcome the
host’s natural immune response, produce high virus titers, and
induce cytokine imbalance (38, 50).

SARS-CoV-2
SARS-CoV-2 is mainly considered to infect respiratory epithelial
cells, but a recent study confirmed that it can also infect T
lymphocytes (51), spleens, and lymph nodes (52). There are
already some solid studies that confirm that ACE2 serves as
the receptor for the entry of SARS-CoV-2. Analysis of the
receptor binding motif (RBM), a portion of the receptor binding
domain (RBD) that makes contact with ACE2 (53), revealed that
most amino acid residues essential for ACE2 binding by SARS-
CoV were conserved in SARS-CoV-2. Hoffmann et al. blocked
ACE2 in Vero cells and found that both SARS-CoV and SARS-
CoV-2 infection was dramatically inhibited, and that serine
protease TMPRSS2 played an important role in SARS-CoV-2’s
infection (54). The difference of the host cells among SARSCoV,
MERS-CoV and SARS-CoV-2 is summarized in Figure 1.

ACE2 Receptor
Angiotensin-converting enzyme 2 (ACE2) is an essential
component of the renin-angiotensin system (55). It was shown to
bind to the S protein of SARS-CoV in 2003 by mass spectrometry
(56) and was also confirmed to be a receptor of SARS-CoV-
2 required to enter human cells (57). Xu et al. (58) drafted
the currently available world’s largest human kidney cell atlas
with 42,589 cells and identified 19 clusters through unsupervised
hierarchical clustering analysis. ACE2 and TMPRSS genes
were significantly co-expressed in podocytes and proximal
convoluted tubules as potential host cells targeted by SARS-CoV-
2. Comparative analysis showed that ACE2 expression in kidney
cells was no less than that in the lung, esophagus, small intestine,
and colon, suggesting that the kidney may be an important target
organ for SARS-CoV-2.

As for the susceptibility of different population groups to
SARS-CoV-2, Chen et al. (59) showed that the expression of
ACE2 in Asians was similar to that in other races, and was
also not related to sex. Surprisingly, ACE2 was shown to be
significantly upregulated after virus infection, including SARS-
CoV and SARS-CoV-2 (60). According to the public data
analysis, the level of ACE2 expression in adipose tissue was higher
than that in lung tissue, which was indicative of the possibility
that adipose tissue was also a potential target of SARS-CoV-
2 (61).
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Inflammatory Response to Coronavisuses
Human coronaviruses can be divided into two groups by their
pathogenicity. Whereas, low pathogenic coronaviruses (HCoV-
OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1) cause
mild cold-like respiratory illness, the highly pathogenic SARS-
CoV, MERS-CoV and SARS-CoV-2 cause immunopathological
events that result in fatal pneumonia. The invasion of such
coronaviruses is associated with severe immune responses, which
may eventually lead to acute respiratory distress syndrome
(ARDS). The innate immune system constitutes the primary line
of defense against the invading viruses. The pathogen-associated
molecular patterns (PAMPs), represented by the viral RNA
or dsRNA formed during viral replication, are recognized by
intracellular sensors such as RIG-I andMDA5. After recognition,
the downstream signaling cascade results in activation of NF-
κB and IRF3 transcriptional activity (62). This leads to the
expression of type I interferon (IFN) and pro-inflammatory
cytokines, which constitute the defense line against the virus
infection at an early stage (63).

SARS-CoV and MERS-CoV have evolved a number of
strategies to suppress type I IFN response during their invasion.
SARS-CoV can interfere with the downstream signaling of
the RNA sensors, including MAVS and TRAF3/6, directly
or indirectly (64). As for MERS-CoV, it can downregulate
interferon-stimulated genes (ISG) by activating repressive
histone modification as its strategy (64).

As part of the adaptive immunity, T cells also play important
roles in the primary defense line against coronaviruses. There are
many T cell epitopes identified to induce an IFN-γ-specific T
cell response or cytotoxic T lymphocyte (CTL) response. Studies
have found that epitopes in the S protein (64, 65) and the N
protein of coronaviruses (66, 67) can induce antibody responses
in both mice models or patients. IgM and IgG, produced by
B lymphocytes, are formed after the infection of coronaviruses
(68, 69). The induction of IgM is an early and transient response
to neoantigens, which is later replaced by the induction of IgG
to play the role as the predominant and long-term antibody. IgG
is characterized by a longer half-life and lower molecular weight,
which gives it the ability to provide long-lasting protection and
effective tissue penetration (68).

The Immune Response to SARS-CoV
The combined induction of antibodies and virus-specific T cells
provides optimal protective immunity. Following the infection,
a strong humoral immune response with a high titer of
neutralization antibodies targeting the SARS-CoV S protein
that show a protective effect are found in the serum of most
patients. In addition, CD4+ T cells targeting N protein and
HLA-A2 restricted CD8+ T cells targeting S protein were
observed in SARS patients (70–72). However, the dramatic
loss of CD4+ T cells (in ∼90–100% of patients) and CD8+
T cells (in ∼80–90% of patients) was observed in the acute
phase of SARS patients (73). The delayed adaptive immune
response resulted in prolonged virus clearance and correlated
with the severity of the SARS disease (74). One possible reason
for the decreased number of T cells is that after infecting
alveolar epithelial cells, SARS-CoV encodes multiple structural

and non-structural proteins that antagonize innate IFN response
(75–78). The delayed IFN response orchestrates infiltration of
pathogenic inflammatory monocyte-macrophages (IMMs) and
elevation of pro-inflammatory cytokines (79). IMM-derived pro-
inflammatory cytokines, such as type I INF (80), may sensitize
T cells to undergo apoptosis through Bim (81) or Bcl-xL (82)-
mediated intrinsic pathway by E protein, thus consequently
impeding the viral clearance (79). Depletion of IMMs or
neutralization of pro-inflammatory cytokines was shown to
protect mice from lethal SARS-CoV infection (79). Another
possible explanation of the reduction of virus-specific T cells
is the alteration in antigen presenting cell (APC) function and
impaired dendritic cell (DC) migration, resulting in the reduced
priming of T Cells (83, 84). This mechanism was supported
by animal studies using SARS-CoV-MA15, the mouse-adapted
strain of SARS-CoV. Inefficient activation of respiratory DCs
by SARS-CoV-MA15 attributed to poor virus-specific CD4+
and CD8+ T cells responses (84). Moreover, the age-dependent
reduction in the magnitude of T cell response may also explain
the higher susceptibility to SARS-CoV with advanced age (85).
Consistently, depletion of CD4+ T cells delayed SARS-CoV
(Urbani strain) clearance and enhanced pneumonitis (86). In
contrast, transfer of SARS-CoV-specific CD4+ and CD8+ T cells
resulted in rapid virus clearance and amelioration of the disease
(87). Mechanistically, the pattern recognition receptors such as
MyD88 (88) and TRIF (89) are required for protection against
SARS-CoV infection.

In addition to the humoral response, a 3-year follow-up study
of 176 SARS patients showed that the level of IgM peaked at ∼1
month after symptoms onset, and IgG peaked at 2–4months (90).
Patients with a longer illness period showed a lower neutralizing
antibody response compared to patients with a shorter illness
duration (91). It was reported that vaccine-elicited, neutralizing
monoclonal antibody (MAb) targeting the S protein of SARS-
CoV facilitates viral entry into host cells and enhances viral
infectivity (92). This phenomenon is the so called antibody-
dependent enhancement (ADE) (69), which is regarded as a great
burden for vaccine development.

The Immune Response to MERS-CoV
The immune response mechanism triggered by MERS-CoV has
still not been fully studied. It is known that the S protein of
MERS-CoV can upregulate the levels of the repressors of the TLR
signaling pathways, such as of IL-1R-associated kinase (IRAK-
M) and peroxisome proliferator-activated receptor-gamma
(PPARY). IRAK-M and PPARY negatively regulate IRF7, which
normally induces the expression of IFN-alpha and IFN-beta
(93). If these negative regulators can maintain their persistence
in the long-term, the clearance of MERS-CoV infections will
be impaired.

Comparatively less is known about the fate of T cells in
MERS-CoV infection and little information is known about
the recognized epitopes (72). Similar to SARS-CoV, MERS-
CoV-specific CD8+ T cells are also important for clearing the
virus (94). Though both SARS-CoV and MERS-CoV infects
monocyte-macrophages, DCs, and activated T cells, only MERS-
CoV was able to replicate in the infected immune cells, which
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consequently resulted in aberrant induction of inflammatory
cytokines in macrophages and DCs (95, 96) and of both extrinsic
and intrinsic apoptosis pathway in T cells (47). Such active
replication ofMERS-CoV in these immune cells may underlie the
comparatively higher fatality rate of MERS disease.

As for humoral immunity, antibody response to MERS-CoV
is typically detected on the second and third week after the
onset of infection. But the longevity of the antibodies seemed
to be correlated to the severity of disease. In patients who
had pneumonia caused by MERS-CoV, the antibodies were
still detectable 13 months after infection (97). However, in
patients after mild or subclinical infection of MERS-CoV, MERS
antibodies were detected at low levels (98). Similar to SARS-CoV,
MAb that has a strong binding affinity to the spike protein of
MERS-CoV also facilitates ADE viral entry into host cells (99).

The Immune Response to SARS-CoV-2
According to case reports, the pathogenesis of SARS-CoV-2
includes immunological responses of both innate and adaptive
immunity systems.

Compared to normal patients, patients requiring ICU
admission had higher concentrations of GCSF, IP10, MCP1,
MIP1A, and TNFα. These cytokines may help to judge the
condition of patients (100).

Secondary hemophagocytic lymphohistiocytosis (sHLH),
which is mostly triggered by virus infection in adults, is a
condition in which the body makes too many activated immune
cells (macrophages and lymphocytes) (https://primaryimmune.
org/disease/hemophagocytic-lymphohistiocytosis-hlh). The
cytokine profile of sHLH is associated with the severity of
COVID-19, which is characterized by increased interleukin
(IL)-2, IL-7, GCSF, IP10 (CXCL10), MCF1 (CCL2), MIP1A
(CCL3), and TNF-α (100, 101). Therefore, it is possible that
this phenomenon happens in COVID-19 patients. The current
explanation for the sHLH phenomenon is that the body has
experienced a cytokine storm caused by excessive immunity.
However, the details of immune and inflammatory response to
SARS-CoV-2 infection are still under scrutiny.

Similar to SARS-CoV, SARS-CoV-2 also targeted
pneumocytes (both types I and II) and alveolar macrophages
(102). Consistently, pathological examination of patients who
were infected by SARS-CoV-2 revealed the infiltration of plasma
cells and macrophages and a high density of macrophages and
foam cells in the alveolar cavities (103). However, compared with
SARS-CoV, SARS-CoV-2 did not significantly induce types I,
II, or III interferons in the infected human lung tissues (102).
As cytokine storm may be the main cause for the severity of
the coronavirus infection, these findings support the relevant
severity of SARS-CoV and SARS-CoV-2.

As for adaptive immunity, it is known that the low levels of
CD4+ and CD8+ T cells are related to the mortality of SARS-
CoV-2 patients (104, 105). The up-regulation of apoptosis and
autophagy in PBMC of SARS-CoV-2 patients (106) suggested
that, similar to how MERS can directly infect T cells and
induce apoptosis (47), SARS-CoV-2 may cause lymphocytopenia
through inducing T-cell apoptosis or autophagic cell death. It was
supported by a recent report showing that SARS-CoV-2 could

infect T cells through receptor-dependent or S protein-mediated
membrane fusion (51).

As for the antibody response, it was reported that in 23
patients with COVID-19, the viral load peaked during the first
week and then began to fall. Both IgG and IgM antibodies
which targeted the nucleoprotein and the surface spike receptor
began to rise around 10 days after symptom onset, and the
seroconversion of most patients happened within the first 3
weeks (107). Another study among 173 patients reported that
the seroconversion rate of Ab, IgM, and IgG was 93.1, 82.7, and
64.7%, respectively. And the median seroconversion time for
Ab, IgM, and IgG were day 11, day 12, and day 14 after onset,
respectively (108). Whether ADE can happen in SARS-CoV-
2 infection is still not confirmed, but as humans have already
experienced a SARS-CoV epidemic and several other coronavirus
infection such as 229E (109), according to former studies of
SARS-CoV (92), it is possible that ADE can also happen in the
infection of SARS-CoV-2 (110).

DISCUSSION AND SUMMARY

The recent outbreak of the SARS-CoV-2 infection has caused a
worldwide crisis in the epidemiology and medical systems. Since
SARS-CoV-2 was confirmed to share the same host receptor,
ACE2, with SARS-CoV, the strategies used to tackle SARS-
CoV are under investigation for treating SARS-CoV-2 infection.
However, despite both attacking lungs and using the same host
receptor to enter target cells, the three coronaviruses causing
three serious pneumonia epidemics are different in the range of
infected cell types and their effects on infected cells.

SARS-CoV is mainly replicated in respiratory epithelial cells,
though it can also infect a variety of immune cells such as
monocytes, macrophages, dendritic cells, and activated T cells
(111–114). MERS-CoV, in contrast, not only infects the immune
cells and epithelial cells, but is also able to replicate in the
former cells and lyse them, which may be one of the reasons
for the high mortality of MERS (47, 96, 115). The details of the
infection and lytic replication mechanisms of SARS-CoV-2 in
host cells are currently unclear (Table 1). However, diarrhea, liver
and kidney damage, and hemophagocytic lymphohistiocytosis
have been reported in patients with SARS-CoV-2, indicating that
the host cell range of the virus may be wider than currently
recognized (100).

Following the invasion of a pathogen, the host triggers a
serious response from the immune system. SARS-CoV does
not directly lyse and kill T cells, but indirectly induces T cell
apoptosis (82). MERS-CoV, which is a more severe and aggressive
virus, directly targets T cells and undergoes lytic replication, thus
directly causing their death (47). Therefore, MERS-CoV has a
direct impact on the immune system. SARS-CoV-2 is reported
to infect T lymphocytes (51), but we still don’t know how this
affects the immune system in particular (Figure 2). A severe
reduction of immune cells was observed in patients infected
with SARS-CoV-2, but whether this phenomenon is directly
caused by the virus or indirectly caused by dysregulated cytokine
production by immune cells has yet to be determined (100).
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Direct viral effects require treatment strategies that target viral
replication. Indirect viral effects through dysregulated cytokine
production by residential macrophages/dendritic cells or antigen
presentation by APCs can now be treated by immune therapy
approaches. Understanding the behavior of SARS-CoV-2 in the
host cells of the human body and its effect on the immune system
may provide important tips for combating the disease.

There have already been some studies showing that other
tissues and organs may also be the target of SARS-CoV-2, further
reminding us to focus on other organs besides lungs, such as
the kidneys, spleen, and lymph nodes (52, 116). This may give
us some hints for the multiple organ dysfunction syndrome in
some severe COVID-19 cases (117). Moreover, research on the
expression pattern of ACE2 in different population groups and
races indicates that there is no sex or race bias in susceptibility to
SARS-CoV-2 (118).

It is still unclear whether reinfection with SARS-CoV-2 can
occur in recovered patients. There has been some news about
“reoccurring COVID-19 cases” (https://www.scmp.com/news/
china/society/article/3065091/coronavirus-recovered-patient-
dies-china-reports-139-new-cases), but as they are not formal
case reports, it is not certain whether these patients had fully
recovered from COVID-19 before the symptoms relapse. In
a study on rhesus macaques re-exposed to SARS-CoV-2 after
disappearance of symptoms and positive antibody response to
primary infection, no evidence of reinfection was found (119).
Also, how long the antibodies will remain in recovered patients
is still unclear. Since the vaccine against COVID-19 has still not
been developed, the recommendations of the CDC, which advises
people to wear cloth face masks and keep a 6-foot distance from
others, should be the best way to prevent reinfection (https://
www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/diy-
cloth-face-coverings.html).

To deepen the research on coronavirus, humans must learn
enough lessons from this pandemic. In the wave of globalization
and scientific and technological progress, infectious diseases have
become more prone to spreading, which has made it harder for
humans to deal with them. How to understand the infectious
biomolecularmechanism and immune pathological environment
in the future will be a more important proposition for us than
ever before. According to China’s response to the epidemic, it
did not take long to identify what the pathogen was, but the
imperfect public health emergency system is the main reason for
the spread of the epidemic. Therefore, in addition to developing
drugs, vaccines, and updating treatment plans, scholars should
also call on governments to strengthen the construction and
improvement of social public health emergency systems to
prevent similar pandemics from happening again.
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