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Abstract

The quantile regression (QR) framework provides a pragmatic approach in understanding the 

differential impacts of covariates along the distribution of an outcome. However, the QR 

framework that has pervaded the applied economics literature is based on the conditional quantile 

regression method. It is used to assess the impact of a covariate on a quantile of the outcome 

conditional on specific values of other covariates. In most cases, conditional quantile regression 

may generate results that are often not generalizable or interpretable in a policy or population 

context. In contrast, the unconditional quantile regression method provides more interpretable 

results as it marginalizes the effect over the distributions of other covariates in the model. In this 

paper, the differences between these two regression frameworks are highlighted, both conceptually 

and econometrically. Additionally, using real-world claims data from a large US health insurer, 

alternative QR frameworks are implemented to assess the differential impacts of covariates along 

the distribution of medication adherence among elderly patients with Alzheimer’s disease.
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1. INTRODUCTION

The quantile regression (QR) framework provides a pragmatic approach in understanding 

the differential impacts of covariates along the distribution of an outcome. For example, in 

line with our empirical example later, when studying determinants for medication 
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adherence, the QR framework can help discover different determinants of medication 

adherence for different groups of patients. It explicitly accounts for the possibility that the 

impact of a covariate for patients who are at, say, the 25th percentile of the adherence 

distribution may significantly differ from the impact for patients at the 90th percentile. It 

naturally provides a more patient-centered approach to understanding determinants of 

adherence.

The most commonly used QR framework is the conditional quantile regression (CQR). It is 

used to assess the impact of a covariate on a quantile of the outcome conditional on specific 

values of other covariates. Such regressions have been widely used in statistics and 

econometrics literature. Examples of its use in health economics literature include modeling 

differential impacts of price on demand for alcohol (Manning et al., 1995), determinants of 

birth weight (Abrevaya, 2001), assessing gender differences in timeliness of thrombolytic 

therapy (Austin et al., 2005), and assessing racial and ethnic disparities along the 

distribution of expenditures (Cook and Manning, 2009), to name a few. As we will show in 

the succeeding text, the interpretation of such effects becomes limited when effects for 

different conditional quantiles vary. Consequently, the estimated effects do not translate to 

relevant policy questions that are linked to these covariates. In contrast, a recently proposed, 

unconditional quantile regression (UQR) approach can be used to overcome the limitations 

of the CQR approach.

In this paper, we attempt to highlight, both conceptually and econometrically, the 

differences between alternative QR frameworks – CQR and UQR. Our main findings 

suggest that in the presence of multiple covariates, it is often more appropriate to use the 

UQR framework and not the CQR that has pervaded the applied literature. We highlight 

some of these differences in an illustrative example of exploring determinants of medication 

adherence among elderly patients with Alzheimer’s disease (AD).

In what follows, we start with a motivating example on medication adherence in AD 

patients. Then, we describe both CQRs and UQRs and present simulation results to highlight 

the differences between these two modeling frameworks. We then illustrate the 

implementation of these two frameworks to assess the determinants of medication adherence 

among AD patients using real-world healthcare claims data from a large US commercial 

health plan. We also provide references on the available software for implementing both 

CQR and UQR techniques. We conclude with a discussion.

2. METHODS

2.1. Motivating example – medication adherence among elderly patients with Alzheimer’s 
disease

2.1.1. General definitions and modeling of medication adherence—Adherence to 

prescribed medications is often necessary for deriving the optimal benefits from any 

pharmacotherapeutic intervention (Myers and Midence, 1998; Encinosa et al., 2010). 

Nonadherence to medication has been found to be associated with poorer health outcomes 

that lead to significantly higher healthcare costs (Kane and Shaya, 2008; Sokol et al., 2005; 

The New England Healthcare Institute, 2009; Cutler and Everett, 2010; Roebuck et al., 
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2011). Approximately one-third to one-half of patients in the USA with prescribed 

medications become nonadherent, and the resulting cost of nonadherence is estimated to be 

approximately $290bn (The New England Healthcare Institute, 2009). Understanding 

determinants of medication adherence is central to addressing this problem so that 

appropriate actions may be undertaken to improve adherence.

Medication adherence is often used interchangeably with the term medication compliance. 

Both refer to the diligence with which the patient takes medications as prescribed by her 

healthcare provider. There has been a proliferation in the research on medication adherence 

in the recent years; a simple search in PubMed with the key words ‘medication adherence’ 

generated 1674 publications in 2011, 6502 and 8466 in the previous 5 and 10 years, 

respectively (as of March 30, 2012). Besides assessing medication adherence or 

nonadherence in general, this line of research has also analyzed medication (non) adherence 

associated with specific disease conditions, as well as other aspects, including barriers to 

medication adherence and potential implications such as costs and morbidity associated with 

nonadherence.(ISPOR Medication Compliance and Persistence Special Interest Group 

(MCP), 2011)

In practice, several operational definitions of medication adherence exist depending on 

specific drug regimens and types of data (Cramer et al., 2008; Hess et al., 2006; Martin et 

al., 2009; Osterberg and Blaschke, 2005; Peterson et al., 2007; Hudson et al., 2007). 

Perhaps the most commonly used measure is medication possession ratio (MPR). The MPR 

is a proportion and is defined as the ratio of the number of days of medication supplied 

within the refill interval to the number of days in the refill interval, where refill interval 

refers to the gap between the first and last fill of the study medication (Peterson et al., 2007; 

Steiner and Prochazka, 1997). Determinants of medication adherence are usually explored 

by studying the impact of different covariates on a dichotomized MPR variable, analyzed 

using a binary probability model (either logit or probit). Although there is no sacrosanct rule 

on the cut-off value for MPR that distinguishes adherent patients from nonadherent ones, the 

rule of thumb in the literature has been that patients with an MPR of 80% or above are 

considered to be adherent (Osterberg and Blaschke, 2005; Hansen et al., 2009). The focus 

on regression coefficients in these models provides estimates for conditional effects. 

However, one can easily obtain unconditional effects using the method of recycled 

predictions (Basu and Rathouz, 2005). Moreover, the 80% cut-off in the MPR scale itself 

may be viewed as representing a specific quantile of the MPR distribution. To that extent, 

the unconditional effect of a binary covariate in a logistic regression may be viewed as the 

difference in the unconditional quantiles of MPR across two levels of the covariate.

An inherent limitation of dichotomizing the continuous MPR measure is that the cut-off 

point that separates adherent from nonadherent patients is rather arbitrary and lacks any 

clinical or pharmacological rationale (Steiner and Prochazka, 1997). For example, a patient 

with an MPR of 75% may not be significantly different from a patient with an MPR of 81% 

in terms of health outcomes; yet, this framework treats these two patients distinctly different 

as far as how medication adherence is operationalized. Moreover, although 80% adherence 

in terms of MPR may be considered optimal for some medications, it may be suboptimal for 

others. Furthermore, using an 80% cut-off mark implies that nonadherent patients with an 
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MPR between 0% and 79% are all lumped into one single group, despite the fact that these 

patients can potentially exhibit several distinct adherence subclasses. A covariate may be a 

determinant of adherence for some subclasses, but not all. In other words, the existing 

framework of exploring the determinants of adherence does not account for the possibility 

that covariates may have differential impacts across various parts of the adherence 

distribution.

2.1.2. Medication adherence among patients with Alzheimer’s disease—
Approximately 5.4 million people in the USA have AD, which is associated with $183bn in 

annual costs (Alzheimer’s Association, 2011). All available evidence-based guidelines 

emphasize the importance of adherence to prescribed medication in AD patients, as 

nonadherence may lead to irreversible cognitive decline (DeLaGarza, 2003). However, 

medication nonadherence in AD patients continues to be a great concern (Small and Dubois, 

2007; Harrold and Andrade, 2009). A recent review of compliance to AD treatment 

identified the following factors as crucial for improving medication adherence: simplifying 

treatment regimens, using reminder packaging, and developing more patient-friendly or 

caregiver-friendly modes of administration (e.g., via transdermal patch) that has been 

recently developed to deliver rivastigmine, a cholinesterase inhibitor (Small and Dubois, 

2007). Given that cognitive disability is an important barrier to medication adherence 

(Pereles et al., 1996), other innovative ways of delivering drugs to AD patients have been 

suggested most of which are at experimental stages (Di Stefano et al., 2011; Small and 

Dubois, 2007).

Another recent study that used healthcare claims data from a large insurer in the USA found 

that age (≥86 years), daily pill burden, and lower formulary tier were associated with higher 

adherence with AD medications (Borah et al., 2010). Out-of-pocket cost of care for AD 

medication has also been found to be a significant barrier to medication adherence 

(Stefanacci, 2011).

Caregiver support, particularly family caregivers, provides a significant amount of care for 

AD patients over the course of the illness, which has bearing on medication adherence as 

well (Cummings and Cole, 2002; Hogan et al., 2007). In addition, collaborative care in 

conjunction with family care giver that is integrated within primary care, was found to 

improve quality of care, potentially improving the medication adherence, which resulted AD 

symptom management (Callahan et al., 2006).

The aforementioned survey of the literature on medication adherence in AD patients 

suggests that nonadherence to medication is an important barrier to achieving optimal 

therapeutic benefit in AD patients and that existing methodology has failed to assess how 

the effects of the covariates of interest vary across the adherence distribution. For example, 

instead of focusing on the effect of a covariate (e.g., tier of the drug, which is a surrogate for 

out-of-pocket payment) on mean adherence, a more meaningful parameter of interest is the 

effect on lower quantile of the adherence distribution. Both CQR and UQR can achieve this 

goal. However, note that conditional quantiles do not average up to their unconditional 

population quantiles, which is where UQR provides the additional advantage over CQR.
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2.2. Conditional versus unconditional distributions

Let Y denote the outcome of interest and FY(y) denote the population (unconditional) 

distribution function of Y in a target population, that is, FY(y) = Pr(Y ≤ y). Interest lies in 

exploring the effect of a covariate X on Y. For the sake of simplicity, let X be a binary 

variable that takes values of x = (0, 1). Let the potential outcomes and their distribution 

function under alternate values of X be denoted as Y1 and Y0, respectively. Therefore, Y = 

X·Y1 + (1 − X)·Y0. We assume that X is statistically independent of Y1 and Y0. Later, we relax 

this assumption to make it independent conditional on other observed covariates; that is, we 

will invoke the selection on observables principle on X. We do not deal with selection on 

unobservables in this paper and delegate those issues to future work. One can express the 

unconditional distribution function for Y as a weighted average of conditional distribution of 

Y given X, weighted by the unconditional distribution of X. The unconditional distribution of 

a random variable is often referred to as the marginal distribution of that variable in the 

statistics literature. However, because we use the term marginal to represent small changes 

in covariate values (as in marginal effect), we stick to using the term unconditional 

distribution following the work of Firpo et al. (2009). In our case, because X is binary,

(1)

In most cases, to understand the relationship between Y and X, one focuses on a particular 

feature of the distribution of Y. For example, in most regression models, the focus is on the 

conditional expectation of Y, E(Y|X) = ∫ dF(Y|X). In the traditional linear model, the 

ordinary least squares (OLS) regression is a consistent estimator of the target parameter 

βOLS representing the incremental effect of X on Y, that is, the difference in the conditional 

expectation of Y for X = 0 and X = 1: βOLS = E(Y|X = 1) − E(Y|X = 0). However, for many 

substantive analyses that are focused on the mean, the real interest lies in understanding how 

the unconditional expectation of Y will change if the unconditional distribution of X 

changes. Consider, for example, that we are interested in the effect of formulary tier status, a 

binary covariate, on the medication adherence for a particular drug treatment. An OLS 

regression will compare the average adherence to a drug under a lower formulary status to 

that under a higher formulary status for the drug. Interest may also lie on what would happen 

to the overall population level adherence rate if the proportion of patients facing a higher 

formulary status changes. This is the effect of a change in the unconditional distribution of X 

on the unconditional distribution of Y. Note that for continuous X (both for single-

dimensional and multi-dimensional X), such questions represent interesting and rich policy 

questions. For example, what would happen to overall adherence rates if the population-

level age-distribution changed or, in the context of racial disparities, what would adherence 

rates among Blacks look like if they shared other demographics and medical utilization 

habits of Whites? Interestingly, in the case of OLS regression, βOLS is also a consistent 

estimator for this marginal effect on the unconditional distribution of Y. This is because, 

following (1),
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(2)

This duality of interpretation of βOLS persists even when there are other covariates (W) in 

the model, as long as the underlying data generating process (DGP) follows a linear-in-

parameters additive model structure (i.e., a pure parallel location-shift DGP).

Let us consider the relationship of X with the quantiles of the distribution of Y. Let qY(τ) 

denote the τth quantile of the unconditional distribution of Y, τ = FY(qY(τ)). Then, following 

(1),

(3)

The effect on the unconditional quantile, dqτ/dp(X), is obtained by implicit differentiation of 

(3):

(4)

Note that the definition of the effect on the unconditional quantile does not change with the 

set of covariates available for conditioning. That is, even in the presence of a vector of 

covariates W, the effect on the unconditional quantile is always evaluated marginally over 

the distribution of W.

It turns out that in the absence of any other covariates with potential effects on outcomes, the 

conditional and the unconditional treatment effects of a binary X are also identical for any 

quantile of Y. Similarly, even in the presence of other covariates (W), under a pure parallel 

location-shift DGP, as assumed in an OLS regression model, where the conditional effect is 

independent of values of other covariates, the conditional and unconditional effects on the 

quantiles converge.

However, when the DGP allows for the conditional effects to be heterogeneous and vary 

over values of other covariates, the definition of the unconditional quantile effect deviates 

from the definition of the effects on the conditional quantiles as the later vary with the set of 

conditioning variables available. Under such DGPs, discrepancies exist even in the 

interpretation of effects on the conditional versus the unconditional mean of Y. For example, 

when the conditional mean is expressed in nonlinear (either in Ws or in parameters) 

formulations, such as OLS regression with interaction terms or the broad class of 

generalized linear models including logit and probit models (Ai and Norton, 2003; Manning 

et al., 2005), the effect on the unconditional distribution of Y must be recovered using 

methods of recycled predictions once the coefficients, which represent conditional effects, 

are estimated (Basu and Rathouz, 2005). Such effects were termed as unconditional average 

partial effects by Wooldridge (2004).
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Similarly, in the case of QR, the unconditional effect can be recovered using a weighted 

average of conditional effects as shown in Firpo et al. (2009). However, such calculations 

are usually fairly complicated because it needs to understand how each of the conditional 

quantiles maps onto the unconditional quantile of Y.

To better understand the difference between conditional and unconditional effects, we set up 

a simulation study under different DGPs. But first, we explain the conditional and 

unconditional quantile estimators.

2.2.1. Conditional quantile regression—The terminology ‘quantile regression’, as 

used in the statistics and econometrics literature, commonly refers to the CQR, introduced 

by Koenker and Bassett (1978). Specifically, conditional on the vector of observed 

covariates, Z = {X, W}, let  be the conditional quantile operator such that 

Qτ(Y|Z) = inf q{q : FY|Z (q|Z) ≥ τ}, where inf{} is the infimum operator that represents the 

maximum lower bound of all values of q in the set defined by FY|Z(q|Z) ≥ τ. The conditional 

quantile operator can be expressed as any function of Z: Qτ(Y|Z) = ξ(Z′βτ). Typically, a 

linear function, Z′βτ, is specified for ξ(Z′βτ).

Analogous to the OLS regression of Y on Z, where βs are estimated as a solution to the 

problem of minimizing sum of square residuals, the βτs associated with the τth conditional 

quantile function may be estimated by minimizing a sum of asymmetrically weighted 

absolute residuals (Koenker, 2005; Koenker and Bassett, 1978):

(5)

where ρτ(.) is titled absolute value function defined as ρτ(u) = u · (τ − I(u < 0)) for any τ ∈ 

(0,1). The estimated coefficients (β̂
τs) may be interpreted as marginal or partial effects 

(depending on whether the corresponding covariate is continuous or binary) on conditional 

quantile of interest (Koenker and Hallock, 2001). A coefficient on a binary covariate X from 

a CQR is given by

(6)

where w̄ represents a vector of the sample means for W.

Whether  is a consistent estimator will depend on the underlying DGP. If the DGP is a 

pure parallel location-shift DGP for every covariate, then  is a consistent estimator for 

the effect of X on both the conditional and unconditional quantile of Y.

Under nonparallel location-shift DGPs, where the conditional effect of X varies over levels 

of W,  may be a consistent estimator for the conditional effect of X evaluated at the 

mean values of W, but it is not a consistent estimator of the unconditional effect of X as 

defined in (4). This is mainly because . That is, the 

(say) 95th percentile of the unconditional distribution of Y may not be the same as the 95th 
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percentile on the conditional distribution of Y|X (Firpo et al., 2009). Most modern statistical 

software including SAS, STATA, and R provides standardized routines to estimate CQR. 

The CQR implementation in our example was conducted using the STATA routine ‘qreg’ 

(StataCorp, 2009).

2.2.2. Unconditional quantile regression—There are two ways to obtain a covariate 

effect on the unconditional quantile. The first approach is to use the coefficient estimates 

from the CQR to recover (4). As Firpo et al show, this may be intuitively appealing but 

often practically intractable (2009). Specifically, they show that the partial effect of a 

covariate on an unconditional quantile of Y can be written as a weighted average (over the 

distribution of X) of the partial effect on a specific conditional quantile of Y that corresponds 

to the unconditional quantile that is of interest. For example, the 90th percentile of 

adherence conditional on high-tier status of a drug may only represent the 75th percentile of 

the overall adherence distribution. Therefore, if one can map all of the unconditional 

quantiles of Y to the corresponding conditional quantiles under different conditioning 

arguments, then such weighted approach can be easily implemented. However, it is evident 

that such a task can be quite arduous, requires nonparametric techniques, and is often 

intractable given the data at hand. An alternative to the aforementioned approach was 

proposed by Machado and Mata, who took a change in the unconditional distribution over 

time and decomposed that change into components that are attributable to changes in the 

marginal distribution of different Xs (2005). However, their methods capture the total effect 

of a change in the marginal distribution of X over all unconditional quantiles of Y but not 

just one specific quantile.

A second approach, proposed recently by Firpo et al., circumvents the aforementioned 

problem of intractability and overcomes the limitation of the CQR model (2009). They 

suggest a UQR model based on the concepts of influence function (IF) and recentered 

influence function (RIF), as used in the robust statistics literature (Hampel et al., 1986). An 

IF is an analytical tool that can be used to assess the effect (or ‘influence’) of removing/

adding an observation on the value of a statistic, ν(F), without having to recalculate that 

statistic and is defined as

(7)

where F represents the cumulative distribution function for Y and δy is a distribution that 

only puts mass at the value y.

An RIF is obtained by adding the statistic to its IF:

(8)

One convenient feature of RIF is that its expectation is equal to that of v(F). For example, 

when the statistic of interest is the mean, the IF is simply the residual evaluated at the 

particular value of Y, and the RIF is the value of Y itself:
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(9)

Consequently, regression of the RIF for the mean on X would yield the same coefficients as 

the regression coefficients of the standard OLS regression.

When the statistic of interest is a specific quantile τ of the outcome distribution,

(10)

where qτ refers to the τth quantile of the unconditional distribution of Y, fY(qτ) is the 

probability density function of Y evaluated at qτ, and I{Y ≤ qτ} is an indicator variable to 

denote whether an outcome value is less than qτ or not. By definition,

(11)

Firpo et al. (2009) have shown that when the conditional expectation of RIF(y;qτ) is 

modeled as a function of explanatory variables, that is, E[RIF(Y;τ)|Z = z] = mτ(z), an RIF 

regression can be viewed as a UQR. This is because, as EZE[RIF(Y;τ)|z] = qτ by the 

definition of RIF, EZ(dmτ(z)/dZ) can be shown to be the marginal effect of a small location 

shift in the distribution of covariates on the τth unconditional quantile of Y, keeping 

everything else constant.

The implementation of the UQR, as illustrated in the article by Firpo et al, is straightforward 

and similar to the OLS regression implementation (2009). For a specific quantile τ, the first 

step is to estimate the RIF of the τth quantile of Y following (10) and (11). qτ is estimated 

using the sample estimate of the unconditional τth quantile. Similarly, the density fY(qτ)at 

that point qτ is estimated using kernel (or other) methods. The second step is to run OLS 

regression of the RIF(y, qτ) on the observed covariates, Z.

Firpo et al. also outline the steps to compute the unconditional quantile partial effect that 

measures the effect of an explanatory covariate on the outcome of interest at the specific 

quantile (2009). In the RIF-OLS regression implementation adopted in this paper, which 

assumes that the outcome quantiles are linear function of the observed covariates, the 

unconditional quantile partial effects are nothing but estimated coefficients (Firpo et al., 

2007). The UQR may be implemented by the STATA routines -rifreg- or -ivqte-, available 

at the websites, http://faculty.arts.ubc.ca/nfortin/datahead.html and http://

www.econ.brown.edu/fac/Blaise_Melly/code_ivqte.html, respectively (accessed on March 

30, 2012). For a binary Z variable, the STATA command -rifreg- estimates the effect of an 

epsilon change in the probability distribution of Z on a specific quantile. In contrast, the 

command -ivqte- estimates the full effect when Z is changed from 0 to 1. We use -ivqte- for 

our following simulations.

BORAH and BASU Page 9

Health Econ. Author manuscript; available in PMC 2015 January 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://faculty.arts.ubc.ca/nfortin/datahead.html
http://www.econ.brown.edu/fac/Blaise_Melly/code_ivqte.html
http://www.econ.brown.edu/fac/Blaise_Melly/code_ivqte.html


2.3. Simulations to illustrate conditional versus unconditional effects

To illustrate the variations in coefficient estimates generated under the CQR and the UQR 

framework, we employ a simple simulation exercise under different DGPs.

Specifically, we generate three covariates, X ~ I(Uniform() > 0.5) and W = (W1, W2), where 

W1 ~ Uniform (−1, 1) and W2 ~ Normal(0, 1) such that E(W1) = E(W2) =0. Our theoretical 

interest lies on the effects of X on outcome Y in the overall target population from which Y is 

generated. However, we compare the estimated effect of X on Y which may vary under 

alternative DGPs when certain conditionings are implemented

DGP 1: (No covariates DGP)

DGP 2: (Parallel location shift)

DGP 3: (Interactive shift type I)

DGP 4: (Interactive shift type II)

We draw a sample of 10,000 observations under each DGP. We estimate the effects of X on 

the 10th percentile of Y using both the CQR and UQR regression frameworks for each 

sample and under each DGP and average the results over 500 samples. Under each of the 

CQR and UQR frameworks, we consider adjusting for either W1 or W2, or both. The 

documentation including the STATA code for this simulation exercise is provided in 

APPENDIX A.

Table I presents the results from these regressions. Note that, by construction, each of the 

CQR or UQR provides a consistent estimator of the specific target parameter that the 

corresponding CQR or the UQR model seeks to estimate. Although the UQR target 

parameter represents the effect on outcomes in the overall target population, CQR target 

parameters represent effects on outcomes in specific parts of the target population defined 

by the conditioning implemented by CQR. Therefore, even in the absence of omitted 

variables, the CQR may be a biased estimator of the target parameter of a UQR model.

In the absence of additional covariates in the DGP (DGP 1), the effect of X is the same on 

every unconditional quantile of Y. Therefore, all the CQRs and the UQRs are able to 

estimate this constant effect. Even in the presence of covariates, when the DGP follows a 

parallel shift in the distribution of Y in response to X (DGP 2), the effect of X is deemed 

constant across all unconditional and conditional quantiles of Y. Again, both the CQR and 
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UQR are able to estimate this constant effect. However, this luxury of constant covariate 

effect across conditional quantiles of Y changes disappears in DGPs 3 and 4. In interactive 

shift type I (DGP 3) where the effect of X on a conditional quantile of Y conditioned on a 

level of W1 varies, the CQR produces different results depending on whether W1 or W2 or 

both are included in the model. The UQR, on the other hand, estimates the effect on the 

unconditional quantile, which is different from any of the conditional quantile effects but 

does not vary depending on the covariates included in the model. Similar results follow in 

DGP 4.

Overall, the simulations confirm three main differences between CQR and UQR regressions:

1. Estimated effects of a covariate on a specific quantile of outcome are the same 

under CQR and UQR regression framework only if no other covariates influence 

the DGPs, or effect of the covariates is constant across levels of other covariate that 

influence DGPs.

2. When the effect of a covariate on a specific quantile of outcome vary over levels of 

other covariates (interactive shift DGPs 3 and 4), the CQR regression produces 

estimates of the effect on the conditional quantile, conditioned on the mean value 

of all other covariates, which differs from the effect on the unconditional quantile.

3. In the presence of interactive shift DGPs (such as DGPs 3 and 4), inclusion of 

alternate sets of covariates would alter the estimates from the CQR model, whereas 

it would not affect estimates from the UQR model, as long as all covariates are 

exogenous in nature.

We do not study a DGP where W’s are correlated. In that case, as anticipated, the UQR and 

CQR estimates should deviate further.

2.4. Empirical example – medication adherence in patients with Alzheimer’s Disease (AD) 
revisited

We compare the advantages of QRs over the use of dichotomized MPR (using a cut-off 

point of 80%) measure and illustrate the difference between the CQR and UQR methods 

using a case study to evaluate risk factors for medication adherence among patients with 

AD.

2.4.1. Data—The retrospective data for this real-world example come from a large 

managed care health insurer in the USA with nationwide coverage. As of 2006, the plan had 

approximately 14 million enrollees with both medical and pharmacy benefits. For the 

purpose of this study, enrollment information as well as medical and pharmacy claims data 

for commercial and Medicare Advantage health plan members were used. The database was 

accessed in accordance with the Health Insurance Portability and Accountability Act to 

maintain required privacy. Because only de-identified data for patients were used, a full 

Institutional Review Board review was not required for this study.

Subjects included had at least two medical claims with AD or related dementia 

(International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] 

code 290.xx, 294.1x, 331.0, 331.82, 331.83) in either primary or secondary diagnosis 
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position during January 1, 2006, through December 31, 2007. An index date was assigned to 

each study subject based on the first prescription fill date for an oral AD therapy (i.e., 

rivastigmine, donepezil, galantamine, or memantine), so that there was no use of the AD 

therapy 6 months prior to the index date (baseline period). All patients were followed for a 

period of 1 year following their index dates (follow-up period). Patients had to have at least 

one additional fill of the index oral AD medication during the follow-up period and be 

continuously enrolled during the entire study period (i.e., during the baseline and follow-up 

period). Patients on combination AD therapy were not included in the study.

The outcome variable, MPR, was operationalized following standard definition as follows 

(Peterson et al., 2007):

(12)

Patient demographic variables (age, gender, and geographic location) were captured from 

enrollment data. The formulary status of AD medication (whether Tier 2 or Tier 1) was also 

determined from the pharmacy benefit. Note that the copayment amounts in these two tiers 

were not available in the data. Patients’ baseline utilizations were assessed during the 

baseline period. The baseline Charlson–Quan comorbidity score was calculated based on 

baseline comorbid conditions (Charlson et al., 1987; Quan et al., 2005). Baseline costs 

(pharmacy, medical, and total, which is the sum of pharmacy plus medical costs) included 

both health-plan-paid and patient-paid amounts for any medical and pharmacy claims during 

the baseline. We also controlled for the average daily pill burden, a measure that tracked the 

number of pills that the patient consumed each of the 365-day follow-up period. Other 

confounders that were controlled for were baseline utilization measures including office 

visits, outpatient visits, emergency room (ER) visits, and inpatient visits, as well as the 

logarithm of baseline total health care costs.

We highlight the implications of alternative estimating approaches by focusing on the effect 

of four covariates. Although in a more substantive analysis, one must account for the 

endogeneity of some or all of these variables, we only discuss the likely associations for 

illustration.

1. Tier 2 versus Tier 1: Tier 2 status of the AD drugs received by patients may be 

associated with lower adherence via two ways. Patients receiving Tier 2 drugs may 

have more severe disease progression as they may not have responded to Tier 1 

drugs with lower out-of-pocket costs. Hence, compared with patients receiving Tier 

1 drugs, those receiving Tier 2 drugs may be less adherent, as they are more likely 

to be treatment-resistant patients or are more likely to forget to take their 

medications. Furthermore, the higher out-of-pocket costs for Tier 2 drugs may 

make patients less adherent.

2. Daily pill burden: pill burden is naturally expected to reduce adherence, although it 

may not have a significant effect on those who are already substantially 

nonadherent to medications.
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3. Baseline office visits: higher number of office visits at baseline may be a proxy for 

severity of illness or may also be a proxy for a higher level of commitment on the 

patients’ part. In the former case, the effect would be negative, as in the severity 

argument under Tier2 versus Tier1. In the latter case, a higher number of visits 

would lead to increased adherence, but this effect would be muted among those 

who already have high adherence.

4. Baseline emergency visit count: This factor is most likely a proxy for disease 

severity and would lead to decreased adherence.

Descriptive statistics for the study variables are provided in terms of means and standard 

deviations for continuous variables and the frequencies and percentages for categorical 

variables. Unless otherwise specified, a p-value of 0.05 or less was considered to be 

statistically significant. The standard errors for the coefficients in CQR and UQR were 

obtained through 500 bootstrap replications. The analytic data for the study were created 

using SAS, and the descriptive and multivariate analyses were conducted using STATA 

(StataCorp, 2009; SAS Institute Inc, 2003).

3. RESULTS

The final sample comprised 3091 subjects. Table II provides the descriptive statistics for the 

covariates in the study sample. The mean age of the study patients was 80 (SD = 8.25), and 

approximately 36% of the subjects were male. Approximately 35% of the subjects had 

health insurance with pharmacy benefit from the commercial plan, whereas the rest were 

from the Medicare Advantage plan.

The average MPR, the outcome variable, was 82 (SD = 22). The unconditional MPR 

distribution is skewed to the left with a spike at 1 (Figure 1). Approximately 28% of the 

subjects had perfect medication adherence. Consequently, CQR and UQR regression can 

only assess the effect of covariates up to the 70th percentile. The effect of covariates at the 

highest quantile (about 70th percentile in our data) would represent the effects for those 

patients who are almost perfectly adherent. Each QR was carried out at 7 quantiles: 0.1, 0.2, 

…, 0.7.

For τth percentile CQR regression, the intercept represents the τth percentile of the 

conditional distribution of adherence, with all variables being evaluated at zero. The 

coefficient on a covariate represents the marginal (for continuous covariate) or partial effect 

(for binary covariate) on the conditional quantile of the outcome distribution, conditioned on 

the mean values of other covariates. The covariate effects under the UQR framework 

represent the effect of changing that covariate value by one unit keeping the full distribution 

of all other covariates the same.

As previously mentioned, we will describe covariate effects under the logistic regression, 

CQR and UQR frameworks only for the four covariates. Interpretation of the other covariate 

effects will follow similarly.
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3.1. Effects of formulary tier status

Under the logistic regression model, where adherence is defined as MPR ≥80%, patients on 

Tier 2 medication were significantly less likely to be adherent (odds ratio = 0.62, p < 0.05) 

compared with patients on Tier 1 AD medication (Table III). The accompanying marginal 

(unconditional) effect shows that the probability of adherence declined by 10 percentage 

points if patients were on Tier 2 medications.

However, an 80% MPR represents about the 35th percentile of either the conditional or 

unconditional quantile of MPR distribution (as indicated by the intercept terms in Tables IV 

and V). Both the CQR and UQR results show that the effect of Tier 2 shifts the 40th 

conditional and unconditional percentile value significantly. Both frameworks suggest that 

the effect is nonsignificant for the highest quantile, that is, patients with high adherence 

levels (~99% MPR). But the bigger effects of Tier 2 status are concentrated among patients 

who have much lower adherence. The CQR framework suggests that significantly larger 

effects of Tier 2 status prevail for 10th, 20th, and 30th conditional quantiles of MPR (Table 

IV). However, the UQR suggests that that effect is nonsignificant at the 10th unconditional 

quantile, that is, among patients with very low MPR (~20%). Tier 2 status may not have a 

big effect (Table V).

3.2. Effects of daily pill burden

The general effects are very similar to Tier 2 status. Greater daily pill burden was associated 

with a significantly less likelihood of being adherent (odds ratio = 0.59, P < 0.05), and the 

marginal effect on the probability of being adherent was −10 percentage points (Table III). 

Under CQR, all seven conditional quantile effects of daily pill burden considered in the 

study were significant, with the effects being more pronounced in the lower tail of the MPR 

distribution and then tapering off monotonically as one moves through the upper percentiles 

(Table IV). Results are similar under UQR, except that the effect is nonsignificant at the 

10th unconditional quantile (i.e., among patients with MPR ~49%, daily pill burden may not 

have a big effect) (Table V).

3.3. Effects of baseline office visit count

Baseline office visit count was not found to be a significant predictor of adherence in the 

logistic framework (Table III). The conditional quantile effects were significant at only 20th 

percentile of the MPR distribution (Table IV). In general, the unconditional effects of office 

visit count on the percentiles considered were negative and were found statistically 

significant for five of the seven percentiles (Table V). Note, however, that both conditional 

and unconditional effects that were statistically significant were small in magnitude (varying 

between −0.10 and −0.42), perhaps due to the opposing forces that increase in office visits 

signify.

3.4. Effects of baseline emergency room visit count

Baseline ER visit count was not significantly associated with the probability of being 

adherent (Table III). The conditional quantile effect of the same was significant only for the 

10th and 60th percentiles (−3.99 and −0.55, p < 0.05) but not for the remaining five 
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percentiles. Unconditional quantile effects, on the other hand, were significant only in the 

upper tail of the adherence (MPR) distribution (at 50th, 60th, and 70th percentiles). This 

underscores that the conditional and unconditional effects for the same quantile may differ 

substantially depending on the application/data on hand.

Figure 2 presents the conditional and unconditional effects, along with their 95% confidence 

intervals, for the four covariates used to illustrate the differences between CQR and UQR 

estimate of covariate effects. The two panels on the first row of Figure 2 reinforce the 

previous discussion on the heterogeneity of effects of Tier 2 status for medication and daily 

pill burden across different parts of the adherence (MPR) distribution. Furthermore, the 

approximate overlap of the two curves representing conditional and unconditional effects as 

well as their 95% confidence bands indicate that, except for the lower quantiles, the two sets 

of effects did not differ substantially in this specific application. For this application, this 

was expected, given that the intercepts across the CQR and UQR regressions revealed that 

the percentiles of the conditional and unconditional adherence distributions were fairly 

similar (Tables IV and V). However, these similarities were only divulged after running the 

UQR regression. Furthermore, subtle differences between the effects of covariates on 

conditional versus unconditional quantiles, especially at lower percentiles, were revealed.

4. DISCUSSION OF RESULTS – WHAT DID WE LEARN FROM 

ALTERNATIVE ESTIMATORS?

Our results illustrate that the traditional way of modeling MPR as a binary outcome based on 

an arbitrary cut-off point will not provide a full picture of the heterogeneous impacts of the 

determinants across different parts of the adherence distribution (Hansen et al., 2009). As 

seen from Table III, the standard approach did identify four covariates (age, south, Tier 2, 

and daily pill burden) as statistically significant determinants of probability of being 

adherent, as defined by MPR equal to or above 80%. However, note that the CQR and UQR 

frameworks go further in the sense that they identified how these determinants have 

heterogeneous impacts across different parts of the medication adherence distribution. For 

example, both CQR and UQR unequivocally showed that medication adherence was 

significantly lower in the south than in the west and that the impact was higher in the lower 

tail of the adherence (MPR) distribution (Tables IV and V). Similarly, Tier 2, which 

indicates higher copayment, appeared to have significantly higher impact in the lower tail of 

the adherence distribution. Clearly, the policy maker in charge of improving medication 

adherence will find the QR results more useful to indentify subgroups of patients for 

intervention than the logistic regression results that merely identify the determinants of 

probability of being adherent. Furthermore, note that QR results also identified additional 

determinants (baseline office visits and ER visits) that impacted medication adherence only 

on some selected quantiles, which were not revealed in the traditional logistic regression 

framework.

In addition, because the effects of covariates such as Tier 2 and pill burden are shown to be 

stronger at the lower quantiles than at the upper quantiles, both CQR and UQR frameworks 

reveal a change in the dispersion of the conditional or unconditional distribution of 
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outcomes with the covariate levels, a phenomenon that is completely masked by traditional 

methods.

The advantage of UQR over CQR may also be apparent by considering a hypothetical policy 

situation in which the policy maker decides to intervene on all those patients with an MPR 

of 70% or less. Under the CQR, this threshold may fall within different quantiles depending 

upon observed characteristics of the subjects (Firpo et al., 2007). This problem is obviated 

under the UQR framework.

Previous studies have considered the impact of different definitions of MPR on medication 

adherence (Hudson et al., 2007; Martin et al., 2009). Our study, however, employed a 

widely used continuous MPR measure and provided a novel way of assessing the impact of 

observed determinants. Naturally, the CQR and UQR techniques can be extended to other 

continuous measures of MPR.

In our specific application, standard errors for many of the covariates are rather high, 

implying that covariates included in the current model may not be enough to explain the 

overall variation in medication adherence. Given that caregiver support is an important 

component of care delivery for AD patients, the fact that the database used for this study 

does not have any information on caregiver support is an important limitation. Note that this 

is a drawback of the claims database that is deficient of important clinical variables but not 

of the CQR or UQR methods. Our application used healthcare claims data that often lack 

important clinical and socioeconomic information on the subjects. Thus, all the standard 

limitations of observational studies using claims data, including the possibility of selection 

bias, apply to this study as well, and therefore interpretation of the study results must take 

into account these potential limitations (Schneeweiss and Avorn, 2005; Motheral et al., 

2003).

5. CONCLUSION

Despite the widespread use of the CQR framework in the applied literature, we have shown 

how this framework may generate results that are often not generalizable or interpretable in 

a policy or population context. In contrast, the UQR provides more interpretable results, as it 

marginalizes the effect over the distributions of other covariates in the model. We have 

highlighted the conditions under which results from CQR and UQR would vary. However, it 

is important to note that unlike the interpretation of a conditional effect, the unconditional 

effect produced in a UQR framework must be interpreted in the context of a target 

population to which the estimates pertain. Therefore, defining the target population is an 

important step toward interpreting results from UQR. The use of CQR and UQR is 

illustrated in an empirical study of exploring determinants of medication adherence among 

patients with AD. To the best of our knowledge, this is the first attempt in the literature to 

model medication adherence in QR framework. This study demonstrates that, compared 

with the standard approach of modeling medication adherence through logistic modeling, 

the CQR and UQR methods provide additional insights on the potential heterogeneous 

impacts of the determinants on medication adherence, with important differences observed 

between the results of CQR and UQR methods.
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We hope that the UQR framework would gain more popularity in applied research, 

especially given the ease of interpretation of its results and the ease of implementing these 

methods in standard statistical software packages.

Acknowledgments

We thank Denzil Fiebig and participants of the 3rd Australian Health Economics and Econometrics workshop for 
their comments. All errors are ours. Dr. Basu acknowledges financial support from the National Cancer Institute 
research grants RC4CA155809 and R01CA155329.

References

Abrevaya J. The effects of demographics and maternal behavior on the distribution of birth outcomes. 
Empirical Economics. 2001; 26:247–257.

Ai C, Norton EC. Interaction terms in logit and probit models. Economics Letters. 2003; 80:123–129.

Alzheimer’s Association 2011. Alzheimer’s & Dementia. 2011. Alzheimer’s Disease Facts and 
Figures. 

Austin PC, Tu JV, Daly PA, Alter DA. The use of quantile regression in health care research: a case 
study examining gender differences in the timeliness of thrombolytic therapy. Statistics in 
Medicine. 2005; 24:791–816. [PubMed: 15532082] 

Basu A, Rathouz PJ. Estimating marginal and incremental effects on health outcomes using flexible 
link and variance function models. Biostatistics. 2005; 6:93–109. [PubMed: 15618530] 

Borah B, Sacco P, Zarotsky V. Predictors of adherence among Alzheimer’s disease patients receiving 
oral therapy. Current Medical Research and Opinion. 2010; 26:1957–1965. [PubMed: 20569067] 

Callahan CM, Boustani MA, Unverzagt FW, Austrom MG, Damush TM, Perkins AJ, Fultz BA, Hui 
SL, Counsell SR, Hendrie HC. Effectiveness of collaborative care for older adults with Alzheimer 
disease in primary care: a randomized controlled trial. JAMA: The Journal of the American Medical 
Association. 2006; 295:2148–2157.

Charlson ME, Pompei P, Ales KL, Mackenzie CR. A new method of classifying prognostic 
comorbidity in longitudinal studies: development and validation. Journal of Chronic Diseases. 1987; 
40:373–383. [PubMed: 3558716] 

Cook BL, Manning WG. Measuring racial/ethnic disparities across the distribution of health care 
expenditures. Health Services Research. 2009; 44:1603–1621. [PubMed: 19656228] 

Cramer JA, Roy A, Burrell A, Fairchild CJ, Fuldeore MJ, Ollendorf DA, Wong PK. Medication 
compliance and persistence: terminology and definitions. Value in health: the journal of the 
International Society for Pharmacoeconomics and Outcomes Research. 2008; 11:44–47. [PubMed: 
18237359] 

Cummings JL, Cole G. Alzheimer disease. JAMA: The Journal of the American Medical Association. 
2002; 287:2335–2338.

Cutler DM, Everett W. Thinking outside the pillbox--medication adherence as a priority for health care 
reform. The New England Journal of Medicine. 2010; 362:1553–1555. [PubMed: 20375400] 

Delagarza VW. Pharmacologic treatment of Alzheimer’s disease: an update. American Family 
Physician. 2003; 68:1365–1372. [PubMed: 14567491] 

Di Stefano A, Iannitelli A, Laserra S, Sozio P. Drug delivery strategies for Alzheimer’s disease 
treatment. Expert Opinion on Drug Delivery. 2011; 8:581–603. [PubMed: 21391862] 

Encinosa WE, Bernard D, Dor A. Does prescription drug adherence reduce hospitalizations and costs? 
The case of diabetes. Advances in Health Economics and Health Services Research. 2010; 
22:151–173. [PubMed: 20575232] 

Firpo, S.; Fortin, N.; Lemieux, T. Technical working paper. Cambridge, MA: National Bureau of 
Economic Research; 2007. Unconditional quantile regressions. 

Firpo S, Fortin NM, Lemieux T. Unconditional Quantile Regressions. Econometrica. 2009; 77:953–
973.

BORAH and BASU Page 17

Health Econ. Author manuscript; available in PMC 2015 January 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hampel, FR.; Ronchetti, EM.; Rousseeuw, PJ.; Stahel, WA. Robust Statistics: The Approach Based on 
Influence Functions. Wiley; New York: 1986. 

Hansen RA, Kim MM, Song L, Tu W, Wu J, Murray MD. Comparison of methods to assess 
medication adherence and classify nonadherence. The Annals of Pharmacotherapy. 2009; 43:413–
422. [PubMed: 19261962] 

Harrold LR, Andrade SE. Medication adherence of patients with selected rheumatic conditions: a 
systematic review of the literature. Seminars in Arthritis and Rheumatism. 2009; 38:396–402. 
[PubMed: 18336875] 

Hess LM, Raebel MA, Conner DA, Malone DC. Measurement of adherence in pharmacy 
administrative databases: a proposal for standard definitions and preferred measures. The Annals 
of Pharmacotherapy. 2006; 40:1280–1288. [PubMed: 16868217] 

Hogan DB, Bailey P, Carswell A, Clarke B, Cohen C, Forbes D, Man-Son-Hing M, Lanctot K, 
Morgan D, Thorpe L. Management of mild to moderate Alzheimer’s disease and dementia. 
Alzheimer’s & dementia: the journal of the Alzheimer’s Association. 2007; 3:355–384.

Hudson M, Rahme E, Richard H, Pilote L. Comparison of measures of medication persistency using a 
prescription drug database. American Heart Journal. 2007; 153:59–65. [PubMed: 17174638] 

Ispor Medication Compliance and Persistence Special Interest Group (MCP). Bibliography of 
Medication Compliance and Persistence (1980–2002) [Online]. International Society for 
Pharmacoeconomics and Outcomes Research (ISPOR); 2011. Available: http://www.ispor.org/
sigs/MCP_pastaccomplishments.asp [Accessed May 20 2011]

Kane S, Shaya F. Medication non-adherence is associated with increased medical health care costs. 
Digestive Diseases and Sciences. 2008; 53:1020–1024. [PubMed: 17934828] 

Koenker, R. Quantile Regression. Cambridge University Press; New York: 2005. 

Koenker R, Bassett G. Regression Quantiles. Econometrica. 1978; 46:33–50.

Koenker R, Hallock KF. Quantile Regression. Journal of Economic Perspectives. 2001; 15:143–156.

Machado JAF, Mata J. Counterfactual decomposition of changes in wage distributions using quantile 
regression. Journal of Applied Econometrics. 2005; 20:445–465.

Manning WG, Blumberg L, Moulton LH. The demand for alcohol: the differential response to price. 
Journal of Health Economics. 1995; 14:123–148. [PubMed: 10154654] 

Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk adjustment of skewed 
outcomes data. Journal of Health Economics. 2005; 24:465–488. [PubMed: 15811539] 

Martin BC, Wiley-Exley EK, Richards S, Domino ME, Carey TS, Sleath BL. Contrasting measures of 
adherence with simple drug use, medication switching, and therapeutic duplication. The Annals of 
Pharmacotherapy. 2009; 43:36–44. [PubMed: 19126828] 

Motheral B, Brooks J, Clark MA, Crown WH, Davey P, Hutchins D, Martin BC, Stang P. A checklist 
for retrospective database studies--report of the ISPOR Task Force on Retrospective Databases. 
Value in health: the journal of the International Society for Pharmacoeconomics and Outcomes 
Research. 2003; 6:90–97. [PubMed: 12641858] 

Myers, LB.; Midence, K., editors. Adherence to Treatment in Medical Conditions. Harwood Academy 
Publishers; Amsterdam, the Netherlands: 1998. 

Osterberg L, Blaschke T. Adherence to medication. The New England Journal of Medicine. 2005; 
353:487–497. [PubMed: 16079372] 

Pereles L, Romonko L, Murzyn T, Hogan D, Silvius J, Stokes E, Long S, Fung T. Evaluation of a self-
medication program. Journal of the American Geriatrics Society. 1996; 44:161–165. [PubMed: 
8576506] 

Peterson AM, Nau DP, Cramer JA, Benner J, Gwadry-Sridhar F, Nichol M. A checklist for medication 
compliance and persistence studies using retrospective databases. Value in health: the journal of 
the International Society for Pharmacoeconomics and Outcomes Research. 2007; 10:3–12. 
[PubMed: 17261111] 

Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, 
Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative 
data. Medical care. 2005; 43:1130–1139. [PubMed: 16224307] 

BORAH and BASU Page 18

Health Econ. Author manuscript; available in PMC 2015 January 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ispor.org/sigs/MCP_pastaccomplishments.asp
http://www.ispor.org/sigs/MCP_pastaccomplishments.asp


Roebuck MC, Liberman JN, Gemmill-Toyama M, Brennan TA. Medication adherence leads to lower 
health care use and costs despite increased drug spending. Health Affairs. 2011; 30:91–99. 
[PubMed: 21209444] 

SAS Institute INC. SAS 9.1. Cary, NC: 2003. 

Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic 
research on therapeutics. Journal of Clinical Epidemiology. 2005; 58:323–337. [PubMed: 
15862718] 

Small G, Dubois B. A review of compliance to treatment in Alzheimer’s disease: potential benefits of 
a transdermal patch. Current Medical Research and Opinion. 2007; 23:2705–2713. [PubMed: 
17892635] 

Sokol MC, Mcguigan KA, Verbrugge RR, Epstein RS. Impact of medication adherence on 
hospitalization risk and healthcare cost. Medical care. 2005; 43:521–530. [PubMed: 15908846] 

STATACORP. Stata Statistical Software: Release 11. College Station, TX: StataCorp LP; 2009. 

Stefanacci RG. The costs of Alzheimer’s disease and the value of effective therapies. The American 
Journal of Managed Care. 2011; 17(Suppl 13):S356–S362. [PubMed: 22214393] 

Steiner JF, Prochazka AV. The assessment of refill compliance using pharmacy records: methods, 
validity, and applications. Journal of Clinical Epidemiology. 1997; 50:105–116. [PubMed: 
9048695] 

The New England Healthcare Institute. Thinking Outside the Pillbox: A System-wide Approach to 
Improving Patient Medication Adherence for Chronic Disease. Cambridge; 2009. 

Wooldridge, JM. Estimating Average Partial Effects Under Conditional Moment Independence 
Assumptions. Michigan State University; 2004. 

APPENDIX A: STATA CODES FOR GENERATING SIMULATION RESULTS

clear

set obs 1

gen simul = .

save qte1, replace

qui forv i = 1(1)500{

clear

set obs 10000

gen u = uniform()

gen x = (u > 0.5)

gen w1 = -1 + 2*uniform()

gen w2 = invnormal(uniform())

summ w1

replace w1 = w1-r(mean)

summ w2

replace w2 = w2-r(mean)

/* The following needs to be run one by one for each of the DGPs separately 

*/

gen y = 1+ 2*x + 0*w1 +0*w2 + 0*x*w1 + 0*x*w2 + invnorm(uniform()) /*[DGP 

1]*/

*gen y = 1+ 2*x + 1*w1 +1*w2 + 0*x*w1 + 0*x*w2 + invnorm(uniform()) /*[DGP 

2]*/

*gen y = 1+ 2*x + 1*w1 +1*w2 + 2*x*w1 + 0*x*w2 + invnorm(uniform()) /*[DGP 
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3]*/

*gen y = 1+ 2*x + 1*w1 +1*w2 + 2*x*w1 + 2*x*w2 + invnorm(uniform()) /*[DGP 

4]*/

/* Conditional Quantile Regression: Using -ivqte- command */

ivqte y w1 (x), quantiles(0.10)

gen cqte1 = _b[x]

ivqte y w2 (x), quantiles(0.10)

gen cqte2 = _b[x]

ivqte y w1 w2 (x), quantiles(0.10)

gen cqte12 = _b[x]

/* Conditional Quantile Regression: Using -qreg- command */

qreg y x w1, q(10)

gen c1qte1 = _b[x]

qreg y x w2, q(10)

gen c1qte2 = _b[x]

qreg y x w1 w2, q(10)

gen c1qte12 = _b[x]

/* Unconditional Quantile Regression: Using -ivqte- command */

ivqte y (x), continuous(w1) quantiles(0.10)

gen uqte1 = _b[Quantile_1]

ivqte y (x), continuous(w2) quantiles(0.10)

gen uqte2 = _b[Quantile_1]

ivqte y (x), continuous(w1 w2) quantiles(0.10)

gen uqte12 = _b[Quantile_1]

/* Unconditional Quantile Regression: Using recentered influence function 

(RIF) estimated manually */

egen pct10 = pctile(y), p(10) by(x)

kdensity y, at(pct10) generate(newvar_d1) kernel(gaussian) nograph

gen rif = pct10 + (.10 - (y =pct10))/newvar_d1

reg rif x w1

gen mqte1 = _b[x]

reg rif x w2

gen mqte2 = _b[x]

reg rif x w1 w2

gen mqte12 = _b[x]

gen simul = ‘i’

keep if _n==1

keep cqte* c1qte* uqte* mqte* simul

append using qte1

save qte1, replace

noi di’i’

}

use qte1, replace

sum, sep(3)
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Figure 1. 
Unconditional distribution of medication possession ratio
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Figure 2. 
The plot of the conditional and unconditional quantile regressions for medication possession 

ratio (adherence)

Note: The red line traces the conditional quantile regression (CQR) point estimates, while 

the blue line traces the unconditional quantile regression (UQR) point estimates. The light 

shade is the 95% confidence bands for the CQR estimates, and the darker shade represents 

the 95% confidence bands for the UQR estimates. The straight line at 0 helps assess the 

differences of the quantile effects from zero.
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Table I

Simulation results – average (SD) coefficient estimates of X on the conditional versus unconditional 10th 

percentile of Y

DGP 1 DGP 2 DGP 3 DGP 4

CQR

Y ~ X, W1 2.00 (0.03) 2.00 (0.05) 2.00 (0.06) −0.31 (0.08)

Y ~ X, W2 2.00 (0.03) 2.00 (0.04) 0.84 (0.05) 0.73 (0.07)

Y ~ X, W1, W2 2.00 (0.03) 2.00 (0.03) 2.00 (0.05) 2.00 (0.10)

UQR

Y ~ X, W1 2.00 (0.03) 2.00 (0.05) 1.03 (0.06) −0.67 (0.09)

Y ~ X, W2 2.00 (0.03) 2.00 (0.05) 1.03 (0.06) −0.67 (0.08)

Y ~ X, W1, W2 2.00 (0.03) 2.00 (0.05) 1.03 (0.06) −0.67 (0.08)

DGP, data generating process.

These simulation results are based on STATA’s -ivqte- command for both conditional quantile regression (CQR) and unconditional quantile 
regression (UQR). The STATA Code provided in the APPENDIX 1 also demonstrates how CQR estimates may be obtained by the standard 
STATA command -qreg- and UQR estimates may be obtained by first estimating the recentered influence function (RIF) and then regressing on the 
covariates of interest as outlined in the work of Firpo et al. (2009).

The numbers are rounded to two decimal places.
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Table II

Descriptive statistics (N = 3091)

Variable Mean SD

Age as of the index year 79.81 8.25

Baseline Charlson–Quan comorbidity score 1.84 1.8

Daily pill burden 1.24 0.43

Baseline office visits count 6.13 6.5

Baseline outpatient visits count 2.62 4.08

Baseline emergency room visits count 0.61 1.1

Baseline inpatient visits count 0.38 0.71

Baseline pharmacy cost ($) 966.28 1407.50

Baseline medical cost ($) 7848.52 16819.55

Baseline total cost ($) 8814.81 17007.25

Baseline logged total costs 7.99 1.71

Medication possession ratio 82.31 21.75

n %

Male 1100 35.59

Northeast 509 16.47

Midwest 1211 39.18

South 1082 35

West 289 9.35

Insurance type (commercial) 1070 34.62

Drug formulary Tier 2 2121 68.62

Quantiles # Value

MPR quantiles 0.1 49.34

0.2 65.22

0.3 77.25

0.4 85.47

0.5 91.56

0.6 95.93

0.7 99.34

0.8 100

0.9 100
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Table III

Logistic regression for adherence (whether MPR ≥80%)

Variables Odds ratio 95% CI
Average marginal effect 

(dy/dx) 95% CI for marginal effects

Age 1.01 (1.00, 1.02) 0.002 (0.000, 0.004)

Male 0.92 (0.79, 1.09) −0.017 (−0.052, 0.018)

Northeast (ref: west) 0.89 (0.64, 1.25) −0.024 (−0.097, 0.048)

Midwest (ref: west) 0.88 (0.64, 1.19) −0.029 (−0.096, 0.038)

South (ref: west) 0.70 (0.52, 0.95) −0.076 (−0.141, −0.011)

Whether commercial (ref: Medicare Advantage) 1.19 (0.99, 1.42) 0.037 (−0.002, 0.076)

Baseline comorbid score 1.04 (0.99, 1.10) 0.008 (−0.003, 0.020)

Tier 2 0.62 (0.46, 0.83) −0.103 (−0.166, −0.040)

Daily pill burden 0.59 (0.43, 0.81) −0.113 (−0.180, −0.046)

Baseline office visit count 0.99 (0.98, 1.00) −0.002 (−0.005, 0.000)

Baseline outpatient visit count 1.00 (0.98, 1.02) 0.000 (−0.005, 0.004)

Baseline ER visit count 0.96 (0.88, 1.04) −0.010 (−0.028, 0.009

Baseline inpatient visit count 1.05 (0.90, 1.23) 0.011 (−0.023, 0.045)

Log of total costs 1.12 (1.05, 1.19) 0.024 (0.011, 0.037)

MPR, medication possession ratio; ER, emergency room.

Boldfaced estimates indicate statistical significance (p-value ≤0.05).
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