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Swift/T is a key success from the ExM: System
support for extreme-scale, many-task applica-
tions1 X-Stack project, which proposed to use
concurrent dataflow as an innovative programming
model to exploit extreme parallelism in exascale
computers. The Swift/T component of the project
reimplemented the Swift language from scratch to
allow applications that compose scientific modules
together to be build and run on available petascale
computers (Blue Gene, Cray). Swift/T does this
via a new compiler and runtime that generates and
executes the application as an MPI program.

Approach: We assume that mission-critical emerg-
ing exascale applications will be composed as scal-
able applications using existing software compo-
nents, connected by data dependencies. Develop-
ers wrap native code fragments using a higher-
level language, then build composite applications to
form a computational experiment. This exemplifies
hierarchical concurrency: lower-level messaging li-
braries are used for fine-grained parallelism; high-
level control is used for inter-task coordination.
These patterns are best expressed with dataflow,
but static DAGs (i.e., other workflow languages)
limit the applications that can be built; they do not
provide the expressiveness of Swift, such as condi-
tional execution, iteration, and recursive functions.

Technique: We reimplemented Swift with separa-
ble compiler and runtime components. The com-
piler is a source-to-source translator based on
ANTLR that generates textual code for the new
runtime, Turbine (hence /T). The runtime is based
around ADLB [1], a previously developed MPI-
based task distributor extended by ExM. The com-
piler contains novel optimizations for distributed-
memory dataflow processing, and the runtime sys-
tem evaluates the optimized code at unprecedented
rates (1.5 B tasks/s on 512K cores of a Cray).

1PIs: Michael Wilde, Daniel S. Katz, Matei Ripeanu, Rusty
Lusk, and Ian Foster.

Innovations: The Swift/T project made several
technical computer science contributions. It
demonstrated that high-level, functional dataflow
programming can be deployed on extreme-scale
computers through the application of ExM/X-Stack
-developed techniques and technologies. We pre-
sented these to the dataflow community [2], [3], and
they were the subject of an SC paper [4], a book
chapter [5], and a Ph.D. dissertation at U. Chicago.
It made use of a novel distributed-memory dataflow
processing architecture [6], [7], [8].

The programming model accommodates multi-
ple hybrid levels of parallelism; for example, it
can drive subtasks that are themselves parallel MPI
components [9] or it can be called as a subordinate
part of a larger MPI job [10]. It also can be used to
access heterogeneous systems. For example, it can
distribute work to GPUs on Blue Waters at very
high rates [11], [12]. It integrates well with (embed-
ded) high-level language interpreters [10], [13],
[14], [15], enabling scientific developers to mix
scripted and compiled code, a prevalent practice in
the scientific community with the growth of Python,
R, and Julia. It is also important that the model and
tools can debug and perform performance analysis
on high-level programs [16], [17] with graphical
tools such as Jumpshot.

Swift/T can elegantly solve problems intractable
in prior, more cumbersome, less scalable workflow
languages or less extensible architectures. Its mix of
automated task placement with customizable user
hints can be used to target node-local storage for
data-intensive applications [18], [19], [20]. These
data-aware features enable Swift/T to compactly
express MapReduce and its generalizations (e.g.,
iterative MapReduce), without the typical barrier
between phases [21]. It enables users to drop in pre-
viously developed metaheuristics (in Python or R)
to implement complex ensemble algorithms [22].
Such algorithms benefit from the ability to use
locality to target program state (not just bulk data).



Applications: ExM reached out to many user
groups and gained promising trial usage, feedback,
and endorsement from a diverse range of users.
The ExMatEx co-design center evaluated Swift/T
along with Charm++ [23], [24], [25]. We collabo-
ratively studied the use of Swift/T to implement a
multiscale materials model, and demonstrated how
the small, sequential, C-based coarse-grained model
(300 lines) could be translated into a Swift/T script;
only the Swift/T script could call the fine-grained
molecular model concurrently.

Swift/T was used by multiple materials science
teams at the Advanced Photon Source at ANL and
at the Cornell CHESS synchrotron [21], [26], [27],
[28], [29], [30], [31]. In this role, Swift was used for
bulk cluster data analysis, high-performance data
analysis on the Blue Gene/Q (supported by MPI-
IO integration), and complex crystal structure fitting
algorithms powered by evolutionary algorithms. We
used high-performance transfer techniques to load
data onto the compute nodes before running data
analysis tasks. Based on our initial investigations
into managing streaming data from Swift/T [32],
we believe that workflow languages like Swift will
be a key factor in the streaming and steering of
experimental and simulation data streams.

Swift/T can be used to tie together in situ work-
flows, integrating well with tools like Decaf [33]
(SDAV). This is enabled by the ability to construct
multiple multi-node tasks from Swift, start them,
allow them to yield but stay resident in memory,
send tasks to those task locations to perform in situ
analysis, and then resume computation.

It is also a promising tool for constructing com-
plex ensembles, such as replica exchange molec-
ular dynamics [10] or genetic algorithms to
perform parameter fitting in epidemics [22]. Such
complex workflows are constructed by managing
many high-performance simulations from Swift,
with control logic implemented in a scripting lan-
guage such as Python, R, or Tcl. We are cur-
rently developing an architecture where third-party
machine learning, optimization, and metaheuristics
from the Python and R communities can be easily
plugged in to control Swift/T workflows.

Swift/T was also used to evaluate power grid
planning scenarios on the Blue Gene at large
scale [7], a naturally parallel problem that inte-
grated well with previous techniques for this integer
linear programming-based application. We made

initial efforts to express branch-and-bound algo-
rithms in Swift/T and developed features in support
of this area; further collaboration in this area could
be fruitful. We have recently made initial progress
running an engine optimization ensemble [34].

Related ExM products: Swift/T was a partner
project to other ExM efforts, including the proto-
type DAG runtime AMFORA (the integration of
AME and AMFS) [35], [36], [37] and workflow-
aware storage efforts [38], [39].

Computational experiments: Ensemble-based
computations will be a key part of scientific
computing at exascale. These naturally combine
multiple modes and levels of programming
complexity. The scripts that drive such
computational experiments must be developed,
maintained, and retained with the same rigor as the
rest of the scientific software. Thus, high-quality,
efficient workflow languages capable of utilizing
the largest machines must investigated.

Emerging exascale roadmaps now emphasize the
explosive growth in on-node concurrency, fea-
turing many integrated cores or accelerators, in-
stead of continued growth in node counts. Leading-
edge parallel programming design must therefore
shift from automating and enhancing multi-node
concerns (e.g., messaging) to managing the op-
portunities and complexities in recently revealed
massively concurrent NUMA computers. Wozniak
has proposed work on multiple aspects of this
challenge in his Early Career proposal, which is
relevant outside the Swift ecosystem as well.

Wozniak and Wilde have fostered and developed
connections with other exascale research projects,
such as Argo. Swift has a naturally hierarchical pro-
gramming model and rich available runtime infor-
mation. These enable power-related optimizations
through critical path analysis, task type segregation,
load balancing, and other techniques. Swift also
provides a naturally fault-tolerant model at a
coarse granularity, as the runtime could automat-
ically restart tasks that fail.

Further information: All Swift documentation and
papers may be found at the following locations:

• Swift home page
http://swift-lang.org

• Wozniak home page
http://www.mcs.anl.gov/˜wozniak
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