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Highly-accurate metabolomic 
detection of early-stage ovarian 
cancer
David A. Gaul1,2, Roman Mezencev2, Tran Q. Long3, Christina M. Jones1, 
Benedict B. Benigno4, Alexander Gray3, Facundo M. Fernández1,5,* & John F. McDonald2,4,5,*

High performance mass spectrometry was employed to interrogate the serum metabolome of 
early-stage ovarian cancer (OC) patients and age-matched control women. The resulting spectral 
features were used to establish a linear support vector machine (SVM) model of sixteen diagnostic 
metabolites that are able to identify early-stage OC with 100% accuracy in our patient cohort. The 
results provide evidence for the importance of lipid and fatty acid metabolism in OC and serve as the 
foundation of a clinically significant diagnostic test.

Ovarian cancer (OC) is the most lethal of all gynecological malignancies and the fifth leading cause 
of death among women living in the United States1. The disease is essentially asymptomatic until late 
stages when the 5-year relative survival rate is < 44%2. If detected and treated early in its progression, the 
5-year survival rate is ~ 90%. For this reason, considerable effort has been focused on the development of 
a screening test to diagnose OC early in its progression3. This challenge is confounded by the fact that 
because the disease is in low prevalence in the general population (~ 0.1% in USA), a screening test must 
attain a positive predictive value (PPV) of > 10%, with a specificity ≥ 99.6% and a sensitivity ≥ 75% to be 
of clinical relevance in the general population4.

The current standard screening method for OC involves trans-vaginal ultrasound and measurement 
of serum CA-125 levels3. Combined, these tests result in a positive predictive value of only 24%5. A recent 
study reports that monitoring changes in serum levels of CA-125 over time rather than reliance on a sin-
gle predefined threshold level of significance can increase accuracy of detection up to 86%6. In addition, a 
variety of proteomic7 and microarray8 based tests are currently under development but, thus far, no assay 
has attained the stringent level of accuracy required to be of clinical relevance in the general population.

We report here on the combined use of ultra-performance liquid chromatography, high-resolution 
mass spectrometry (UPLC-MS) and tandem MS (MS/MS), combined with a customized support vector 
machine (SVM)-based learning algorithm for identification of 16 diagnostic metabolites that collectively 
are able to distinguish early-stage OC with 100% accuracy in our cohort. The results provide the foun-
dation for clinically-significant diagnostic tests and evidence for the importance of alterations in lipid 
and fatty acid metabolism in the onset and progression of the disease.

Results
Negative ion mode UPLC-MS interrogation of the serum metabolome from 46 early stage (I/II) serous 
epithelial ovarian cancer (EOC) patients and 49 age-matched normal healthy controls (Supplementary 
Table S1) resulted in the detection of > 4000 spectral features (Rt, m/z pairs). After filtering and curation 
to remove inconsistent and/or ambiguous features, a remaining pool of 255 (Supplementary Table S2)  
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was used to build a discriminant linear support vector machine (SVM) model that was evaluated by 
leave-one-out cross-validation (LOOCV)9. Binary classifications (cancer/normal) were established 
through a previously described “metabolic score” decision function that numerically separates the pre-
dicted cancer (positive score) from control (negative score) samples10.

Using all 255 metabolic features, a first SVM model was generated displaying moderate predictive 
accuracy (accuracy 62%; specificity 57%; sensitivity 67%). Since SVM models built upon large datasets 
typically contain uninformative features, a number of feature selection methods have been developed 
to identify subsets with optimal predictive accuracy11. We employed a previously described recursive 
feature elimination (RFE) method9 to select features that distinguished the early-staged EOC samples 
from controls with optimal accuracy. As shown in the Fig. 1 (see also Supplementary Figs S1–2), 100% 
accuracy (100% sensitivity, and 100% specificity) was obtained with a minimum of 16 features. The 
high predictive accuracy of these 16 metabolites was independently validated by orthogonal partial least 
squares-discriminant analysis (oPLS-DA) using a variety of cross-validation approaches (Supplementary 
Table S3, Supplementary Figs S3–4).

The high resolution MS technology employed allowed generation of accurate masses and isotopic pat-
terns for each discriminant feature and therefore establishment of candidate elemental formulas. These 
proposed metabolite identities were confirmed by UPLC-MS/MS, and the resultant tandem MS spectra 
were compared to those in databases or literature, resulting in chemical identification of 11 of the 16 
discriminating features (Table  1, Supplementary Fig. S5, Supplementary Table S4). Two feature identi-
ties were further supported by comparison to a standard (Rt and ion fragmentation pattern). Relative 
concentration levels of about half of the 16 features were elevated and half reduced in cancer samples 
relative to controls (Fig. 2).

Many of the identified features were lipids or fatty acids. An emerging body of evidence has impli-
cated changes in lipid and fatty acid metabolism with the onset and progression of ovarian12 and other 
types of cancer13. In many cases, these changes have been linked to the aberrant expression of genes 
involved in lipid/fatty acid synthesis. For example, the well-known tumor suppressor gene p53 is mutated 
in > 95% of high-grade serous ovarian cancers14. It has recently been reported that the protein encoded 
by p53 (TP53) interacts with sterol regulatory element-binding proteins (SREBPs) and guanidinoacetate 
N-methyltransferase (GAMT) resulting in the elevated expression of enzymes involved in fatty acid and 
cholesterol biosynthesis and the inhibition of fatty acid oxidation leading to lipid anabolism and accel-
erated tumor growth and progression15.

Two of the identified metabolites are lysophospholipids (LPLs) [lysophosphatidylethanolamine (LPE) 
and lysophosphatidylinositol (LPI)]. Serum levels of LPLs have been previously reported to be elevated in 

Figure 1. Recursive feature elimination (RFE) selects 16 metabolic features that distinguish early stage 
serous epithelial ovarian cancer (EOC) serum samples with high accuracy. (a) Evolution of accuracy using 
support vector machine (SVM)-RFE feature selection for metabolic classifiers. The initial 255 metabolic 
features identified by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) provided 
only moderate predictive accuracy (accuracy 62%; specificity 57%; sensitivity 67%) in distinguishing EOC 
from control samples. SVM-RFE selected a minimum of 16 metabolic features that provided 100% accuracy 
(100% sensitivity; 100% specificity) in distinguishing between EOC and control samples. (b) Visualization 
of the optimal separation between EOC and control samples by the SVM model. The X-axis is the optimal 
weight vector of the SVM model; the Y-axis is the age of donors (EOC patients or normal control women 
at the time of sample collection). The vertical line is the projection of the separating hyperplane generated 
by the SVM model. The discriminant linear SVM model was evaluated by leave-one-out cross-validation 
(LOOCV).
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Feature
Average 

m/z

Average 
Retention 

Time 
(min) Ion Type

Ion 
Theoretical 

m/z

Mass 
Error 
(ppm)

Neutral 
Elemental 
Formula Tentative Metabolite Identification [Database: #]

SVM 
Model 
Weight

279 552.2327 0.70 [M-H]2−

552.2335 − 1.4 C42H80N3O30

[NA] 1.1521552.2342 − 2.7 C43H76N7O26

552.2398 − 12.9 C42H76N9O25

571 329.1733 4.81 [M-CHO-H]− 329.1753 − 6.1 C21H28O5 cortisone [CAS: 53-06-5] 1.0810

286 597.3029 10.89 [M-H]− 597.3040 − 1.8 C27H51O12P lysophatidylinositol(18:1) [CAS: 1246298-13-4] 0.4762

683 261.0727 1.01 [M-H]− 261.0723 1.5 C9H13N2O7 aspartyl-glutamic acid [CAS: 6157-06-8] 0.3967

226 539.4301 14.86 [M-H]− 539.4312 − 2.0 C32H60O6

16-(6-butoxy-3-hydroxy-4,5-dimethylcyclohex-1-en-1-yl)-6,10-
dihydroxy-2,6,10,14-tetramethyl hexadecanoic acid [USPTO: 

document #20100086960]a
0.1748

45 536.5042 18.56 [M-H]− 536.5043 − 0.2 C34H67NO3 ceramide(d18:1/16:0) [CAS: 24696-26-2] 0.1076

64 365.3413 16.97 [M-H]− 365.3425 1.2 C24H46O2 [NA] 0.0847

28 524.2778 12.79 [M-H]− 524.2777 0.2 C27H44NO7P lysophosphatidylethanolamine(22:6) [PUBCHEM: 52925132] 0.0445

105 195.1016 1.01 [M+ Na-2H]− 195.0997 9.7 C9H18O3 2-hydroxyl nonanoic acid [CAS: 617-31-2]a 0.0195

14 307.2633 14.80 [M+ Na-2H]− 307.2613 6.5 C18H36O2 iso-1,2-octadecanediol [PUBCHEM: 42607317]a − 0.0200

79 245.1378 0.99 [M-H]− 245.1389 − 4.5 C12H22O5 3-hydroxyl dodecanedioic acid [CAS: 34574-69-1]a − 0.0205

80 883.5358 15.40 [M-H]− 883.5337 2.4 C47H81O13P phosphatidylinositol(20:4/18:1) [HMDB: 09901] − 0.0308

123 467.3727 14.61 [M-H]− 467.3737 − 2.1 C28H52O5
7,9,13-trihydroxyoctacosa-16,22-dienoic acid [USPTO: 

document #20120136057]a − 0.0803

231 429.2997 11.49 [M-H]− 429.3010 1.3 C27H42O4 [NA] − 0.3420

261 451.2275 1.58 [M-H]2−

451.2242 7.3 C40H68N6O17

[NA] − 0.4834451.2249 5.8 C41H64N10O13

451.2305 − 6.6 C40H64N12O12

620 129.0909 1.14 [M-H]− 129.0916 − 2.1 C7H14O2 [NA] − 0.9938

Table 1. Chemical identification of 16 features that distinguish early-staged ovarian cancer sera from 
the sera of normal healthy controls with high accuracy (m/z = mass-to-charge ratio, min = minutes, 
ppm = part per million, CAS = chemical abstract service, USPTO = United States Patent and Trademark 
Office, HMDB = the human metabolome database, SVM = support vector machine, NA = not available). 
aAll possible metabolite isomers are not listed. Where indicated, the species in the Table are those for which 
MS/MS data was available in the literature.

Figure 2. Fold-change of average peak areas of each discriminant feature. Positive values indicate higher 
levels of metabolite observed on average for EOC patients compared to control patients, while negative 
values indicate inverse relationship (*p <  0.05; **p <  0.10, Mann Whitney U test).
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OC patients and in matched sets of samples isolated from preoperative vs. postoperative patients16. LPIs 
are also known to bind and activate the orphan G-protein coupled receptor GPR55, which triggers prolif-
eration and anchorage-independent growth of OC cells, as well as activation of Akt and ERK1/2 kinase17.

Phosphatidylinositol is one of several inositol membrane phospholipids known to be responsible for 
recruitment of the serine/threonine kinase Akt to the plasma membrane and its subsequent phospho-
rylation and activation18. Phosphorylation of the inositol ring 3′ -OH group in inositol phospholipids is 
carried out by the enzyme phosphatidylinositol 3-kinase (PI3K). A broad range of functions related to 
cancer onset and progression have been associated with PI3K activity, including proliferation, cell adhe-
sion, apoptosis, and transformation19. Our identification of the sphingolipid ceramide as a differentiating 
metabolite is consistent with its previously proposed roles in ovarian and other cancers20.

Discussion
As demonstrated by the presented work, SVM machine learning is a powerful computational tool for 
the identification of correlated patterns in large datasets. We have previously shown that combining this 
computational approach with high-resolution mass spectrometry of patient sera is a minimally invasive 
and highly accurate method for the detection of prostate10 and late-stage ovarian cancers21.

Because of the extensive genetic diversity known to exist among individual patient tumors of even 
the same type of OC22, it is not surprising that it has proven extremely difficult to identify a single set 
of biomarkers capable of diagnosing the disease with high accuracy23. Although there may be multiple 
genetic lesions and alternative molecular pathways leading to the development of even the same type of 
OC, all of these mutations and pathways converge on a similar cancer phenotype. Thus, molecular fea-
tures closely associated with the cancer phenotype, like metabolites, may be expected to be less variable 
across patients than the broader spectrum of individual mutations and disrupted pathways underlying 
the disease24.

The predictive accuracy of SVM-derived biomarkers is heavily dependent upon the representative 
nature of the biological samples used in building the model. For this reason, we designed our study 
to include samples collected from a broad spectrum of geographic locations in the United States and 
Canada. However, more extensive sampling of patients across a wider diversity of racial and ethnic 
groups will be needed to determine the general robustness of the diagnostic biomarkers presented here. 
Regardless, our results demonstrate that this evidence-based approach to metabolic biomarker discovery 
is conceptually unbiased for the establishment of highly accurate biomarker panels of early-staged OC 
across a broad geographic area. If deemed appropriate by future studies, the method can be equally well 
applied to racial or ethnic sub-populations to obtain optimally accurate panels of metabolic features in 
these cohorts. When combined with experimental chemical identification of these diagnostic features, 
our approach provides valuable insight into the metabolic alterations accompanying the disease and can 
serve as the foundation for clinically significant diagnostic tests.

Methods
Chemicals. Ultrapure water with 18.2 MΩ cm resistivity (Barnstead Nanopure UV ultrapure water 
system, USA) was used to prepare all mobile phase components. Chromasolv® (Fluka) LC-MS grade 
methanol was purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). Lysophatidylinositol (18:1) 
and ceramide (d18:1/16:0) were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA).

Sample Preparation. All samples were collected after informed consent under approved IRB pro-
tocols. Serum samples were thawed on ice, and protein precipitation was performed by the addition of 
methanol in a 3:1 volume ratio to 50 μ L of serum. Aliquots of 10 μ L from each sample were combined to 
create a pooled sample, which was split into 50 μ L portions before protein precipitation. Samples were 
vortex-mixed for 10 s and centrifuged at 13,000 g for 7 min. After centrifugation, 150 μ L of supernatant 
was mixed with 400 μ L of ultrapure water prior to solvent removal using a VirTis benchtop freeze dryer 
(Warminster, PA). Samples were stored at − 80 °C until analysis. Samples were separated into 8 batches 
with equal representation of epithelial ovarian cancer (EOC) and control samples from each collection 
site in each group. All samples were thawed, reconstituted with 80:20 (v:v) H2O: MeOH, and analyzed 
in duplicate. Samples were run in alternating fashion so that duplicate runs for a specific sample were 
not consecutive. Pooled quality control serum samples were analyzed every eight sample runs. The mass 
spectrometer was mass calibrated before analysis; and solvent, sample preparation blanks, and pooled 
samples were analyzed jointly with the EOC and control samples.

UPLC-MS. UPLC-MS was performed using a Waters ACQUITY Ultra-Performance LC system 
(Waters Corporation, Manchester, UK), fitted with a Waters ACQUITY UPLC BEH C18 column 
(2.1 ×  50 mm, 1.7 μ m particle size), coupled to a high-resolution accurate mass Synapt G2 high-definition 
mass spectrometry system (Waters Corporation, Manchester, UK). The Synapt G2 HDMS is a hybrid 
quadrupole-ion mobility-orthogonal acceleration time-of-flight instrument with a typical resolving 
power of 20,000 FWHM and mass accuracy of 9 ppm at m/z 544.2615. The instrument was operated 
in negative ion mode with a probe capillary of 2.0 kV and a sampling cone voltage of 35 V. The source 
and desolvation temperatures were 150 and 500 °C, respectively, and the nitrogen desolvation flow rate 
was 1000 L h−1. The mass spectrometer was calibrated across the range of m/z 50–1200 using a 0.5 mM 
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sodium formate solution prepared in 90:10 (v/v) 2-propanol:water. Data were mass corrected during 
acquisition using a leucine enkephalin reference spray (LockSpray) infused at 3 μ L min−1. Data were 
acquired in the 50–1200 m/z range, and the scan time was set to 1 s. Data acquisition and processing 
were carried out using MassLynx V4.1 and MZmine V2.0, respectively. The chromatographic method for 
sample analysis involved elution with ultrapure water (mobile phase A) and methanol (mobile phase B) 
using the following gradient program: 0–15 min 80–10% A; 15–23 min 10% A. The flow rate was constant 
at 0.40 mL min−1 for 23 min. The gradient was returned to its initial conditions with a solvent blank 
run of 11 min. The column temperature was set to 60 °C, the autosampler tray was set to 5 °C, and the 
injection volume was 8 μ L. UPLC-MS/MS experiments were performed by acquiring mass spectra with 
applied voltages between 5 and 50 V in the trap cell, using ultra high purity grade argon (> = 99.999%) 
as the collision gas.

Data processing/analysis. Metabolic features (retention time (Rt), m/z pairs) were extracted from 
chromatograms using MZmine V2.0 software and Excel. A five point Savitzky Golay smoothing function 
was applied to each scan of the raw data prior to peak detection. After chromatogram alignment, the 
subsequent peak list was conservatively filtered by elimination of peaks that were not present in at least 
40 of the 237 collected runs prior to gap filling. The exported peak areas for each sample were normalized 
by division of the total peak area sum for that sample in Excel. Potential features in which the slope of 
the peak area of the pooled samples vs. time changed more than one standard deviation away from zero 
were removed from the peak list. The potential features list was further constrained by purging features 
that were not present in 50% of sample groups (all samples, EOC samples, or control samples) at ten 
times the baseline, defined as the maximum peak area observed in the sample blank and ten mobile 
phase runs (one from each day of analysis). The duplicate sample peak areas were averaged to create a 
matrix containing sample peak areas for each feature (average Rt, average m/z).

The data set was scrutinized for the presence of experimental and instrument bias with principal 
component analysis (PCA) using MATLAB R2012b (Version 8.0.0.783 The MathWorks, Inc., Natick, 
MA, USA) and the PLS Toolbox (v.6.71, Eigenvector Research, Inc., Wenatchee, WA, USA). Peak area 
data were labeled with the corresponding collection day, analysis batch, or sample origin. Data were 
preprocessed by autoscaling, and PCA run with leave-one-out cross-validation. Sample clustering was 
assessed with the plot of the first versus second principal component.

Linear support vector machine (SVM) analysis of the feature matrix was performed with 
in-house-developed code utilizing liblinearSVM25. Recursive feature elimination (RFE) was used to find 
the minimum set of discriminant features that maximized accuracy in the classification9. For a binary 
classification problem, linearly-separable samples represented as a row vector x, had membership of two 
classes g (= N or C), where N stands for normal or control patient samples and C represents EOC disease 
patient samples with class value c (= − 1 for class N, and + 1 for class C). The decision function that 
separated the two classes, defined here as the “EOC metabolic score”, was as follows:

∑= +
=

EOC metabolic score b w x
[1]J

J

j ij
1

where w and b are the weight and bias parameters that were determined from the training set and J is 
the total number of features. The sign of the EOC metabolic score determined which class a sample was 
assigned to: class N if negative and class C if positive. In this classification function, the two classes were 
divided in the dataspace by a hyperplane wx’ +  b =  0 that maximized the margins between samples of 
different classes. The margin between the two classes was defined such that:

′ + ≥ , = +x b cw 1 1 [2]

′ + ≤ − , = −x b cw 1 1 [3]

The RFE method involved an “outer” matrix with 95 columns (equal to the number of serum samples) 
and 255 rows (equal to the number of features). Each row in the outer matrix represents a subset of fea-
tures to be tested for discriminatory power. Each subsequent row examines a feature subset that contains 
one less feature than the previous row. For each row, a set of 95 “inner” matrices is constructed, each 
one containing a subset of samples to build an SVM model and one sample left out for testing, follow-
ing standard LOOCV practice. After model building, the SVM feature weights were calculated for each 
inner matrix, and these weights were summed across the inner matrix. The average feature weight was 
then calculated across the outer matrix row. The least important feature was then discarded. This process 
was subsequently repeated for every outer matrix row. A panel of optimal features was determined by 
examining which feature set had maximized accuracy, sensitivity, and specificity. Data were preprocessed 
by autoscaling the features across the samples prior to SVM-RFE.

Orthogonal partial least squares discriminant analysis (oPLS-DA9) was performed to inspect data 
after discriminant feature selection via SVM-RFE. oPLS-DA models were internally cross validated using 
leave-one-out, venetian blinds (10 data splits and 10 samples per blind), contiguous block (10 splits), 
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or random subsets (10 data splits and 10 iterations) approaches. Permutation testing was performed by 
randomizing the class labels for all samples. Data were preprocessed by autoscaling the features’ peak 
areas across the samples.

Metabolite Identification. Compound identification was carried out for the 16 discriminant fea-
tures obtained after the feature selection processes. Elemental formulas were generated based on the 
mass accuracy of the peak of interest and isotopic patterns with a mass error of 10 mDa using MassLynx 
4.1. The chemical formulas were searched against the following publically-available databases: Metlin, 
the human metabolome database (HMDB), Metabolomics Workshop, LIPID Metabolites and Pathways 
Strategy (LIPID MAPS), and MassBank to determine possible endogenous metabolite candidates. Entries 
in the MS/MS Metlin database, MassBank, and Lipid Maps, together with literature searches subsequently 
confirmed the identity of putative candidates. When available, metabolite standards were analyzed to 
support identification. Identification of metabolites was pursued according to established criteria26.
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