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Highly accurate protein structure prediction 
for the human proteome
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Protein structures can provide invaluable information, both for reasoning about 
biological processes and for enabling interventions such as structure-based drug 
development or targeted mutagenesis. After decades of e�ort, 17% of the total 
residues in human protein sequences are covered by an experimentally determined 
structure1. Here we markedly expand the structural coverage of the proteome by 
applying the state-of-the-art machine learning method, AlphaFold2, at a scale that 
covers almost the entire human proteome (98.5% of human proteins). The resulting 
dataset covers 58% of residues with a con�dent prediction, of which a subset (36% of 
all residues) have very high con�dence. We introduce several metrics developed by 
building on the AlphaFold model and use them to interpret the dataset, identifying 
strong multi-domain predictions as well as regions that are likely to be disordered. 
Finally, we provide some case studies to illustrate how high-quality predictions could 
be used to generate biological hypotheses. We are making our predictions freely 
available to the community and anticipate that routine large-scale and high-accuracy 
structure prediction will become an important tool that will allow new questions to be 
addressed from a structural perspective.

The monumental success of the human genome project revealed new 
worlds of protein-coding genes, and many researchers set out to map 
these proteins to their structures3,4. Thanks to the efforts of individual 
laboratories and dedicated structural genomics initiatives, more than 
50,000 human protein structures have now been deposited, making 
Homo sapiens by far the best represented species in the Protein Data 
Bank (PDB)5. Despite this intensive study, only 35% of human proteins 
map to a PDB entry, and in many cases the structure covers only a 
fragment of the sequence6. Experimental structure determination 
requires overcoming many time-consuming hurdles: the protein must 
be produced in sufficient quantities and purified, appropriate sample 
preparation conditions chosen and high-quality datasets collected. A 
target may prove intractable at any stage, and depending on the chosen 
method, properties such as protein size, the presence of transmem-
brane regions, presence of disorder or susceptibility to conformational 
change can be a hindrance7,8. As such, full structural coverage of the 
proteome remains an outstanding challenge.

Protein structure prediction contributes to closing this gap by pro-
viding actionable structural hypotheses quickly and at scale. Previ-
ous large-scale structure prediction studies have addressed protein 
families9–12, specific functional classes13,14, domains identified within 
whole proteomes15 and, in some cases, full chains or complexes16,17. In 

particular, projects such as the SWISS-MODEL Repository, Genome3D 
and ModBase have made valuable contributions by providing access 
to large numbers of structures and encouraging their free use by the 
community17–19. Related protein bioinformatics fields have developed 
alongside structure prediction, including protein design20,21, function 
annotation22–24, disorder prediction25, and domain identification and 
classification26–28. Although some of our analyses are inspired by these 
previous studies, here we focus mainly on structural investigations for 
which scale and accuracy are particularly beneficial.

Structure prediction has seen substantial progress in recent years, 
as evidenced by the results of the biennial Critical Assessment of pro-
tein Structure Prediction (CASP)29,30. In particular, the latest version of 
AlphaFold was entered in CASP14 under the team name ‘AlphaFold2’. 
This system used a completely different model from our CASP13 entry31, 
and demonstrated a considerable improvement over previous methods 
in terms of providing routinely high accuracy29,30. Backbone predic-
tions with sub-Ångström root mean square deviation (Cα r.m.s.d.) 
are now common, and side chains are increasingly accurate2. Good 
results can often be achieved even for challenging proteins without a 
template structure in the PDB, or with relatively few related sequences 
to build a multiple sequence alignment (MSA)2. These improvements 
are important, because more accurate models permit a wider range of 
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applications: not only homology search and putative function assign-
ment, but also molecular replacement and druggable pocket detection, 
for instance32–34. In light of this, we applied the current state-of-the-art 
method—AlphaFold—to the human proteome. All of our predictions 
can be accessed freely at https://alphafold.ebi.ac.uk/, hosted by the 
European Bioinformatics Institute.

Model confidence and added coverage

We predicted structures for the UniProt human reference proteome 
(one representative sequence per gene), with an upper length limit of 
2,700 residues6. The final dataset covers 98.5% of human proteins with 
a full chain prediction.

For the resulting predictions to be practically useful, they must come 
with a well-calibrated and sequence-resolved confidence measure. The 

latter point is particularly important when predicting full chains, as 
we expect to see high confidence on domains but low confidence on 
linkers and unstructured regions (Extended Data Fig. 1). To this end, 
AlphaFold produces a per-residue confidence metric called predicted 
local distance difference test (pLDDT) on a scale from 0 to 100. pLDDT 
estimates how well the prediction would agree with an experimental 
structure based on the local distance difference test Cα (lDDT-Cα)35. 
It has been shown to be well-calibrated (Fig. 1a, Extended Data Fig. 2 
and Extended Data Table 1) and full details on how the pLDDT is pro-
duced are given in the supplementary information of the companion 
AlphaFold paper2.

We consider a prediction highly accurate when—in addition to a 
good backbone prediction—the side chains are frequently correctly 
oriented. On this basis, pLDDT > 90 is taken as the high accuracy cut-off, 
above which AlphaFold χ1 rotamers are 80% correct for a recent PDB 
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Fig. 1 | Model confidence and added coverage. a, Correlation between 
per-residue pLDDT and lDDT-Cα. Data are based on a held-out set of recent PDB 
chains (Methods) filtered to those with a reported resolution of <3.5 Å 
(n = 10,215 chains and 2,756,569 residues). The scatterplot shows a subsample 
(1% of residues), with the blue line showing a least-squares linear fit and the 
shaded region a 95% confidence interval estimated with 1,000 bootstrap 
samples. The black line shows x = y, for comparison. The smaller plot is a 
magnified region of the larger one. On the full dataset, the Pearson’s r = 0.73 
and the least-squares linear fit is y = (0.967 ± 0.001) × x + (1.9 ± 0.1). b, AlphaFold 
prediction and experimental structure for a CASP14 target (PDB: 6YJ1)64. The 

prediction is coloured by model confidence band, and the N terminus is an 
expression tag included in CASP but unresolved in the PDB structure.  
c, AlphaFold model confidence on all residues for which a prediction was 
produced (n = 10,537,122 residues). Residues covered by a template at the 
specified identity level are shown in a lighter colour and a heavy dashed line 
separates these from residues without a template. d, Added residue-level 
coverage of the proteome for high-level GO terms, on top of residues covered 
by a template with sequence identity of more than 50%. Based on the same 
human proteome dataset as in c (n = 10,537,122 residues).

https://alphafold.ebi.ac.uk/
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test dataset (Extended Data Fig. 3). A lower cut-off of pLDDT > 70 cor-
responds to a generally correct backbone prediction (Extended Data 
Table 2). The accuracy of AlphaFold within a number of pLDDT bands 
is illustrated for an example protein in Fig. 1b.

Of the human proteome, 35.7% of total residues fall within the high-
est accuracy band (corresponding to 38.6% of residues for which a 
prediction was produced) (Fig. 1c). This is double the number of resi-
dues covered by an experimental structure. In total, 58.0% of residues 
were predicted confidently (pLDDT > 70), indicating that we also add 
substantial coverage for sequences without a good template in PDB 
(with a sequence identity below 30%). At the per-protein level, 43.8% of 
proteins have a confident prediction on at least three quarters of their 
sequence, while 1,290 proteins contain a substantial region (more than 
200 residues) with pLDDT ≥ 70 and no good template.

The dataset adds high-quality structural models across a broad 
range of Gene Ontology (GO) terms36,37, including pharmaceutically 
relevant classes such as enzymes and membrane proteins38 (Fig. 1d). 
Membrane proteins, in particular, are generally underrepresented in the 
PDB because they have historically been challenging experimental tar-
gets. This shows that AlphaFold is able to produce confident predictions 
even for protein classes that are not abundant within its training set.

We note that the accuracy of AlphaFold was validated in CASP142, 
which focuses on challenging proteins that are dissimilar to structures 
already available in the PDB. By contrast, many human proteins have 
templates with high sequence identity. To evaluate the applicability 
of AlphaFold to this collection, we predicted structures for 1 year of 
targets from the Continuous Automated Model Evaluation (CAMEO) 
benchmark39,40—a structure-prediction assessment that measures a 
wider range of difficulties. We find that AlphaFold adds substantial 
accuracy over the BestSingleStructuralTemplate baseline of CAMEO 
across a wide range of levels of template identity (Extended Data 
Fig. 4).

Prediction of full-length protein chains

Many previous large-scale structure prediction efforts have focused on 
domains—regions of the sequence that fold independently9–11,15. Here 
we process full-length protein chains. There are several motivations for 
this. Restricting the prediction to pre-identified domains risks miss-
ing structured regions that have yet to be annotated. It also discards 
contextual information from the rest of the sequence, which might be 
useful in cases in which two or more domains interact substantially. 
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Fig. 2 | Full chain structure prediction. a, TM-score distribution for AlphaFold 
evaluated on a held-out set of template-filtered, long PDB chains (n = 151 
chains). Includes recent PDB proteins with more than 800 resolved residues 
and best 50% coverage template below 30% identity. b, Correlation between 
full chain TM-score and pTM on the same set (n = 151 chains), Pearson’s r = 0.84. 
The ground truth and predicted structure are shown for the most 
over-optimistic outlier (PDB: 6OFS, chain A). c, pTM distribution on a subset of 
the human proteome that we expect to be enriched for structurally novel 

multidomain proteins (n = 1,165 chains). Human proteome predictions 
comprise more than 600 confident residues (more than 50% coverage) and no 
proteins with 50% coverage templates. d, Four of the top hits from the set 
shown in c, filtering by pTM > 0.8 and sorting by number of confident residues. 
Proteins are labelled by their UniProt accession. For clarity, regions with 
pLDDT < 50 are hidden, as are isolated smaller regions that were left after this 
cropping.
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Finally, the full chain approach lets the model attempt an inter-domain 
packing prediction.

Inter-domain accuracy was assessed at CASP14, and AlphaFold out-
performed other methods41. However, the assessment was based on a 
small target set. To further evaluate AlphaFold on long multi-domain 
proteins, we compiled a test dataset of recent PDB chains that were 
not in the training set of the model. Only chains with more than 800 
resolved residues were included, and a template filter was applied 
(Methods). Performance on this set was evaluated using the template 
modelling score (TM-score42), which should better reflect global, as 
opposed to per-domain, accuracy. The results were encouraging, with 
70% of predictions having a TM-score > 0.7 (Fig. 2a).

The supplementary information of the companion AlphaFold paper2 
describes how a variety of useful predictors can be built on top of the 
main model. In particular, we can predict the residues that are likely 
to be experimentally resolved, and use them to produce a predicted 

TM-score (pTM), in which the contribution of each residue is weighted 
by the probability of it being resolved (Supplementary Methods 1). 
The motivation for the weighting is to downweight unstructured 
parts of the prediction, producing a metric that better reflects the 
confidence of the model about the packing of the structured domains 
that are present. On the same recent PDB test dataset, pTM correlates 
well with the actual TM-score (Pearson’s r = 0.84) (Fig. 2b). Notably, 
although some outliers in this plot are genuine failure cases, others 
appear to be plausible alternate conformations (for example, 6OFS 
chain A43 in Fig. 2b).

We computed pTM scores for the human proteome, in an effort to 
identify multi-domain predictions that could feature novel domain 
packings. The criteria applied were a pLDDT > 70 on at least 600 resi-
dues constituting over half the sequence, with no template hit cover-
ing more than half the sequence. The distribution of pTM scores after 
applying the above filters is shown in Fig. 2c. Note that we would not 
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Fig. 3 | Highlighted structure predictions. a, Left, comparison of the active 
sites of two G6Pases (G6Pase-α and G6Pase-β) and a chloroperoxidase (PDB 
1IDQ). The G6Pases are glucose-forming enzymes that contain a conserved, 
solvent-accessible glutamate (red; right) opposite the shared active-site 
residues (middle). b, Left, pocket prediction (P2Rank65) identifies a putative 
binding pocket for DGAT2, which is involved in body-fat synthesis. Red and 
green spheres represent the ligandability scores by P2Rank of 1 and 0, 
respectively. Middle, a proposed mechanism for DGAT151 activates the 
substrate with Glu416 and His415, which have analogous residues in the DGAT2 

pocket. The docked inhibitor is well placed for polar interactions with His163 
and Thr194 (right). The chemical structure (middle) is adapted from ref. 51.  
c, Predicted structure of wolframin, mutations in which cause Wolfram 
syndrome. Although there are regions in wolframin with low pLDDT (left), we 
could identify an OB-fold region (green/yellow), with a comparable core to a 
prototypical OB-fold (grey; middle). However, the most similar PDB chain 
(magenta; right) lacks the conserved cysteine-rich region (yellow) of our 
prediction. This region forms the characteristic β1 strand and an extended L12 
loop, and is predicted to contain three disulfide bridges (yellow mesh).
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expect uniformly high TM-scores to be achievable for this set, as some 
proteins will contain domains that are mobile relative to each other, 
with no fixed packing. Of the set, 187 proteins have pTM > 0.8 and 343 
have pTM > 0.7. Although we expect the inter-domain accuracy of 
AlphaFold to be lower than its within-domain accuracy, this set should 
nonetheless be enriched for interesting multi-domain predictions, 
suggesting that the dataset provides on the order of hundreds of these. 
Four examples—the predictions with the highest number of confident 
residues subject to pTM > 0.8—are shown in Fig. 2d.

Highlighted predictions

We next discuss some case study predictions and the insights that they 
may provide. All predictions presented are de novo, lacking any tem-
plate with 25% sequence identity or more covering 20% of the sequence. 
Our discussion concerns biological hypotheses, which would ultimately 
need to be confirmed by experimental studies.

Glucose-6-phosphatase

G6Pase-α (UniProt P35575) is a membrane-bound enzyme that catalyses 
the final step in glucose synthesis; it is therefore of critical importance 
to maintaining blood sugar levels. To our knowledge, no experimental 
structure exists, but previous studies have attempted to characterize 
the transmembrane topology44 and active site45. Our prediction has 
very high confidence (median pLDDT of 95.5) and gives a nine-helix 
topology with the putative active site accessible via an entry tunnel 
that is roughly in line with the surface of the endoplasmic reticulum 
(Fig. 3a and Supplementary Video 1). Positively charged residues in our 
prediction (median pLDDT of 96.6) align closely with the previously 
identified active site homologue in a fungal vanadium chloroperoxidase 
(PDB 1IDQ; r.m.s.d. of 0.56 Å; 49 out of 51 aligned atoms)46. As these 
enzymes have distinct functions, we investigated our prediction for 
clues about substrate specificity. In the G6Pase-α binding pocket face, 
opposite the residues shared with the chloroperoxidase, we predict 
a conserved glutamate (Glu110) that is also present in our G6Pase-β 
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corresponding PDB submission (7KPX chain C)66. The globular domain is 

well-predicted but the extended interface exhibits low pLDDT and is incorrect 
apart from some of the secondary structure. a.a., amino acid. d, A high ratio of 
heterotypic contacts is associated with a lower AlphaFold accuracy on the 
recent PDB dataset, restricted to proteins with fewer than 40% of residues with 
template identity above 30% (n = 3,007 chains) (Methods). The ratio of 
heterotypic contacts is defined as: heterotypic/(intra-chain + homomeric +  
heterotypic).
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prediction (Glu105) but not in the chloroperoxidase (Fig. 3a). The glu-
tamate could stabilize the binding pocket in a closed conformation, 
forming salt bridges with positively charged residues there. It is also the 
most solvent-exposed residue of the putative active site, suggesting a 
possible gating function. To our knowledge, this residue has not been 
discussed previously and illustrates the novel mechanistic hypotheses 
that can be obtained from high-quality structure predictions.

Diacylglycerol O-acyltransferase 2

Triacylglycerol synthesis is responsible for storing excess metabolic 
energy as fat in adipose tissue. DGAT2 (UniProt Q96PD7) is one of 
two essential acyltransferases catalysing the final acyl addition in 
this pathway, and inhibiting DGAT2 has been shown to improve liver 
function in mouse models of liver disease47. With our highly confident 
predicted structure (median pLDDT of 95.9), we set out to identify 
the binding pocket for a known inhibitor, PF-06424439 (ref. 48). We 
identified a pocket (median pLDDT of 93.7) in which we were able to 
dock the inhibitor and observe specific interactions (Fig. 3b) that were 
not recapitulated in a negative example49 (Extended Data Fig. 5 and 
Supplementary Methods 2). DGAT2 has an evolutionarily divergent 
but biochemically similar analogue, diacylglycerol O-acyltransferase 
1 (DGAT1)50. Within the binding pocket of DGAT2, we identified residues 
(Glu243 and His163) (Fig. 3b) that are analogous to the proposed cata-
lytic residues in DGAT1 (His415 and Glu416)51, although we note that 
the nearby Ser244 in DGAT2 may present an alternative mechanism 
through an acyl-enzyme intermediate. Previous experimental research 
with DGAT2 has shown that mutating His163 has a stronger deleterious 
effect than mutating a histidine that is two residues away52. Addition-
ally, Glu243 and His163 are conserved across species50, supporting this 
hypothesized catalytic geometry.

Wolframin

Wolframin (UniProt O76024) is a transmembrane protein localized 
to the endoplasmic reticulum. Mutations in the WFS1 gene are asso-
ciated with Wolfram syndrome 1, a neurodegenerative disease char-
acterized by early onset diabetes, gradual visual and hearing loss, 
and early death53,54. Given the lower confidence in our full prediction 
(median pLDDT of 81.7) (Fig. 3c), we proposed identifying regions that 
are unique to this structure. A recent evolutionary analysis suggested 
domains for wolframin, which our prediction largely supports55. An 
interesting distinction is the incorporation of a cysteine-rich domain 
(Fig. 3c, yellow) to the oligonucleotide binding (OB) fold (Fig. 3c, green 
and yellow) as the characteristic β1 strand56. The cysteine-rich region 
then forms an extended L12 loop with two predicted disulfide bridges, 
before looping back to the prototypical β2 strand. Comparing our pre-
diction for this region (median pLDDT of 86.0) to existing PDB chains 
using TM-align42,57 identified 3F1Z58 as the most similar known chain 
(TM-score of 0.472) (Fig. 3c, magenta). Despite being the most similar 
chain, 3F1Z lacks the cysteines that are present in wolframin, which 
could form disulfide cross-links in the endoplasmic reticulum59. As 
this region is hypothesized to recruit other proteins55, these structural 
insights are probably important to understanding its partners.

Regions without a confident prediction

As we are applying AlphaFold to the entire human proteome, we would 
expect a considerable percentage of residues to be contained in regions 
that are always or sometimes disordered in solution. Disorder is com-
mon in the proteomes of eukaryotes60,61, and one previous study62 
estimated that the percentage of disordered residues in the human 
proteome is between 37% and 50%. Thus disorder will have a large role 
when we consider a comprehensive set of predictions that covers an 
entire proteome.

Furthermore, we observed a large difference in the pLDDT distri-
bution between resolved and unresolved residues in PDB sequences 

(Fig. 4a). To investigate this connection, we evaluated pLDDT as a dis-
order predictor on the Critical Assessment of protein Intrinsic Disorder 
prediction (CAID) benchmark dataset25. The results showed pLDDT to 
be a competitive disorder predictor compared with the current state of 
the art (SPOT-Disorder263), with an area under the curve (AUC) of 0.897 
(Fig. 4b). Moreover, the supplementary information of the companion 
AlphaFold paper2 describes an ‘experimentally resolved head’, which 
is specifically trained for the task of predicting whether a residue will 
be resolved in an experimental structure. The experimentally resolved 
head performed even better on the CAID benchmark, with an AUC of 
0.921.

These disorder prediction results suggest that a considerable per-
centage of low-confidence residues may be explained by some form 
of disorder, but we caution that this could encompass both regions 
that are intrinsically disordered and regions that are structured only in 
complex. A potential example of the latter scenario drawn from a recent 
PDB structure is shown in Fig. 4c; chain C interacts extensively with the 
rest of the complex, such that the interface region would be unlikely 
to adopt the same structure outside of this context. In a systematic 
analysis of recent PDB chains, we observed that AlphaFold has much 
lower accuracy for regions in which the chain has a high percentage of 
heterotypic, cross-chain contacts (Fig. 4d).

In summary, our current interpretation of regions in which AlphaFold 
exhibits low pLDDT is that they have high likelihood of being unstruc-
tured in isolation. In the current dataset, long regions with pLDDT < 50 
adopt a readily identifiable ribbon-like appearance, and should not be 
interpreted as structures but rather as a prediction of disorder.

Discussion

In this study, we generated comprehensive, state-of-the-art structure 
predictions for the human proteome. The resulting dataset makes a 
large contribution to the structural coverage of the proteome; particu-
larly for tasks in which high accuracy is advantageous, such as molecular 
replacement or the characterization of binding sites. We also applied 
several metrics produced by building on the AlphaFold architecture—
pLDDT, pTM and the experimentally resolved head—to demonstrate 
how they can be used to interpret our predictions.

Although we present several case studies to illustrate the type of 
insights that may be gained from these data, we recognize that there 
is still much more to uncover. By making our predictions available to 
the community via https://alphafold.ebi.ac.uk/, we hope to enable 
exploration of new directions in structural bioinformatics.

The parts of the human proteome that are still without a confident 
prediction represent directions for future research. Some proportion 
of these will be genuine failures, in which a fixed structure exists but 
the current version of AlphaFold does not predict it. In many other 
cases, in which the sequence is unstructured in isolation, the problem 
arguably falls outside the scope of single-chain structure prediction. It 
will be crucial to develop new methods that can address the biology of 
these regions—for example, by predicting the structure in complex or 
by predicting a distribution over possible states in the cellular milieu.

Finally, we note that the importance of the human proteome for 
health and medicine has led to it being intensively studied from a struc-
tural perspective. Other organisms are much less well represented 
in the PDB, including biologically important, medically relevant or 
economically important species. Structure prediction may have a 
more profound effect on the study of these organisms, for which fewer 
experimental structures are available. Looking beyond the proteome 
scale, the UniProt database contains hundreds of millions of proteins 
that have so far been addressed mainly by sequence-based methods, 
and for which the easy availability of structures could open up entirely 
new avenues of investigation. By providing scalable structure predic-
tion with very high accuracy, AlphaFold could enable an exciting shift 
towards structural bioinformatics, further illuminating protein space.

https://alphafold.ebi.ac.uk/
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Methods

Structure prediction (human proteome)

Sequences for the human reference proteome were obtained from 
UniProt release 2021_026. Structure prediction was attempted for all 
sequences with 16–2,700 amino acids; sequences with residue codes 
B, J, O, U, Z or X were excluded. The length ceiling of 2,700 residues 
does not represent an absolute limit for the method, but was chosen 
to keep run times manageable. The structure prediction process was 
largely as described in the AlphaFold paper2, consisting of five steps: 
MSA construction, template search, inference with five models, model 
ranking based on mean pLDDT and constrained relaxation of the pre-
dicted structures. The following differences were introduced for the 
proteome-scale pipeline. First, the search against the metagenom-
ics database Big Fantastic Database (BFD) was replaced with a search 
against ‘Reduced BFD’ using Jackhmmer from HMMER367,68. Reduced 
BFD consists of a multiline FASTA file containing the first non-consensus 
sequence from each BFD a3m alignment. Second, the amount of ensem-
bling was reduced by a factor of eight. At least four relaxed full chain 
models were successfully produced for 20,296 sequences out of 20,614 
FASTA entries, covering 98.5% of proteins. Sequences with more than 
2,700 residues account for the majority of exclusions. This amounts 
to 10,537,122 residues (92.5% of residues).

Structure prediction (recent PDB dataset)

For structure predictions of recent PDB sequences, we used a copy of 
the PDB downloaded on 15 February 2021. Structures were filtered to 
those with a release date after 30 April 2018 (the date limit for inclu-
sion in the training set). Chains were then further filtered to remove 
sequences that consisted of a single amino acid, sequences with an 
ambiguous chemical component at any residue position and sequences 
without a PDB 40% sequence clustering. Exact duplicates were removed 
by choosing the chain with the most resolved Cα atoms as the represent-
ative sequence. Then, structures with fewer than 16 resolved residues, 
with unknown residues and structures solved by NMR methods were 
filtered out. Structure prediction then followed the same procedure 
as for the human proteome with the same length and residue limits, 
except that templates with a release date after 30 April 2018 were dis-
allowed. Finally, the dataset was redundancy reduced, by taking the 
chain with the best non-zero resolution from each cluster in the PDB 
40% sequence clustering, producing a dataset of 12,494 chains. This 
is referred to as the recent PDB dataset.

Computational resources

Inference was run on V100 graphics processing units (GPUs), with each 
sequence inferenced five times to produce five inputs to model selec-
tion. To prevent out-of-memory errors, long sequences were assigned 
to multi-GPU workers. Specifically, sequences of length 1,401–2,000 
residues were processed by workers with two GPUs, and those of length 
2,001–2,700 residues by workers with four GPUs (further details of 
unified memory on longer proteins are provided in the companion 
paper2; it is possible higher memory workers could be used without 
additional GPUs).

The total resources used for inference were logged and amounted to 
930 GPU days. This accounts for generating five models per protein; 
around 190 GPU days would be sufficient to inference each protein 
once. Long sequences had a disproportionate effect owing to the 
multi-GPU workers described above. Approximately 250 GPU days 
would have been sufficient to produce five models for all proteins 
shorter than 1,400 residues. For reference, Extended Data Fig. 6 shows 
the relationship between sequence length and inference time.

All other stages of the pipeline (MSA search, template search and con-
strained relaxation) ran on the central processing unit (CPU) and used 
standard tools. Our human proteome run made use of some cached 
intermediates (for example, stored MSA search results). However, we 

estimate the total cost of running these stages from scratch at 510 core 
days. This estimate is based on taking a sample of 240 human proteins 
stratified by length, timing each stage when run with empty caches, 
fitting a quadratic relationship between sequence length and run 
time, then applying that relationship to the sequences in the human 
proteome. Extended Data Figure 7 shows the data used to make this 
estimate.

Template coverage

Except where otherwise noted, template coverage was estimated on a 
per-residue basis as follows. Hmmsearch was run against a copy of the 
PDB SEQRES (downloaded on 15 February 2021) using default flags67. 
The prior template coverage at residue i is the maximum percentage 
sequence identity of all hits covering residue i, regardless of whether 
the hit residue is experimentally resolved. For the recent PDB analysis, 
only template hits corresponding to a structure released before 30 April 
2018 were accepted.

In the section on full chain prediction, template filtering is based 
on the highest sequence identity of any single Hmmsearch hit with 
more than 50% coverage. This is because high-coverage templates are 
particularly relevant when considering whether a predicted domain 
packing is novel.

GO term breakdown

GO annotations were taken from the XML metadata for the UniProt 
human reference proteome and were matched to the Gene Ontology in 
obo format36,37. One erroneous is_a relationship was manually removed 
(GO:0071702 is_a GO:0006820, see change log https://www.ebi.ac.uk/
QuickGO/term/GO:0071702). The ontology file was used to propagate 
the GO annotations using is_a and part_of relations to assign parent–
child relationships, and accounting for alternative IDs.

GO terms were then filtered to a manageable number for display, 
first by filtering for terms with more than 3,000 annotations, and from 
those selecting only moderately specific terms (a term cannot have a 
child with more than 3,000 annotations). The remaining terms in the 
‘molecular function’ and ‘cellular component’ ontologies are shown 
in Fig. 1d.

Structure analysis

Structure images were created in PyMOL69, and PyMOL align was used 
to compute r.m.s.d.s (outlier rejection is described in the text where 
applicable).

For docking against DGAT2, P2Rank65 was used to identify 
ligand-binding pockets in the AlphaFold structure. AutoDockTools70 
was used to convert the AlphaFold prediction to PDBQT format. For 
the ligands, DGAT2-specific inhibitor (CAS number 1469284-79-4) and 
DGAT1-specific inhibitor (CAS number 942999-61-3) were also prepared 
in PDBQT format using AutoDockTools. AutoDock Vina71 was run with 
an exhaustiveness parameter of 32, a seed of 0 and a docking search 
space of 25 × 25 × 25 Å3 centred at the point identified by P2Rank.

For identifying the most similar structure to wolframin, TM-align42 
was used to compare against all PDB chains (downloaded 15 February 
2021) with our prediction as the reference. This returned 3F1Z with a 
TM-score of 0.472.

Additional metrics

The implementation of pTM is described in supplementary information 
section 1.9.7 of the companion AlphaFold paper2 and the implementa-
tion of the experimentally resolved head is described in supplementary 
information section 1.9.10 of the companion AlphaFold paper2. The 
weighted version of pTM is described in Supplementary Methods 1.

Analysis of low-confidence regions

For evaluation on CAID, the target sequences and ground-truth labels 
for the Disprot-PDB dataset were downloaded from https://idpcentral.

https://www.ebi.ac.uk/QuickGO/term/GO:0071702
https://www.ebi.ac.uk/QuickGO/term/GO:0071702
https://idpcentral.org/
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org/. Structure prediction was performed as described above for the 
recent PDB dataset, with a template cut-off of 30 April 2018. To enable 
complete coverage, two sequences containing non-standard residues 
(X, U) had these remapped to G (glycine). Sequences longer than 2,000 
residues were split into two segments: 1–2,000 and 2,000–end, and the 
pLDDT and experimentally resolved head arrays were concatenated 
for evaluation. The two evaluated disorder predictors were taken to 
be 1 −0.01 × pLDDT and 1 − predicted resolvability for Cα atoms.

To obtain the ratio of heterotypic contacts to all contacts (Fig. 4d), 
two residues are considered in contact if their Cβ atoms (or Cα for 
glycine) are within 8 Å and if they are separated in primary sequence 
by at least three other residues (to exclude contacts within an α-helix). 
Heteromers are identified as protein entities with a different entity_id 
in the structure mmCIF file.

Comparison with BestSingleStructuralTemplate

CAMEO data for the period 21 March 2020 to 13 March 2021 were down-
loaded from the CAMEO website. AlphaFold predictions were produced 
for all sequences in the target.fasta files, using the same procedure 
detailed above but with a maximum template date of 1 March 2020. Pre-
dictions were scored against the CAMEO ground truth using lDDT-Cα. 
For BestSingleStructuralTemplate, lDDT-Cα scores were taken from the 
CAMEO JavaScript Object Notation ( JSON) files provided. Structures 
solved by solution NMR and solid-state NMR were filtered out at the 
analysis stage. To determine the template identity, templates were 
drawn from a copy of the PDB downloaded on 15 February 2021 with a 
template search performed using Hmmsearch. Templates were filtered 
to those with at least 70% coverage of the sequence and a release date 
before the query. The template with the highest e-value after filter-
ing was used to compute the template identity. Targets were binned 
according to template identity, with width 10 bins ranging from 30 to 
90. Extended Data Figure 4 shows the distribution of lDDT-Cα for each 
model within each bin as a box plot (horizontal line at the median, box 
spanning from the lower to the upper quartile, whiskers extending to 
the minimum and maximum. In total 428 targets were included in the 
analysis.

Reporting summary

Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability

Structure predictions by AlphaFold for the human proteome are avail-
able under a CC-BY-4.0 license at https://alphafold.ebi.ac.uk/. All input 
data are freely available from public sources. The human reference 
proteome together with its XML annotations was obtained from Uni-
Prot v.2021_02 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previ-
ous_releases/release-2021_02/knowledgebase/). At prediction time, 
MSA search was performed against UniRef90 v.2020_03 (https://ftp.
ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2020_03/
uniref/), MGnify clusters v.2018_12 (https://ftp.ebi.ac.uk/pub/data-
bases/metagenomics/peptide_database/2018_12/) and a reduced 
version of BFD (produced as outlined in the Methods using the BFD 
(https://bfd.mmseqs.com/)). Template structures, the SEQRES fasta 
file and the 40% sequence clustering were taken from a copy of the 
PDB downloaded on 15 February 2021 (https://www.wwpdb.org/ftp/
pdb-ftp-sites; see also https://ftp.wwpdb.org/pub/pdb/derived_data/ 
and https://cdn.rcsb.org/resources/sequence/clusters/bc-40.out for 
sequence data). Experimental structures were drawn from the same 
copy of the PDB; we show structures with accessions 6YJ164, 6OFS43, 
1IDQ46, 1PRT72, 3F1Z58, 7KPX66 and 6VP051. The template search used 
PDB70, downloaded on 10 February 2021 (http://wwwuser.gwdg.
de/~compbiol/data/hhsuite/databases/hhsuite_dbs/). The CAID 
dataset was downloaded from https://idpcentral.org/caid/data/1/

reference/disprot-disorder-pdb-atleast.txt. CAMEO data was accessed 
on 17 March 2021 at https://www.cameo3d.org/static/downloads/
modeling/1-year/raw_targets-1-year.public.tar.gz. A copy of the cur-
rent Gene Ontology database was downloaded on 29 April 2021 from 
http://current.geneontology.org/ontology/go.obo. Source data are 
provided with this paper.

Code availability

Source code for the AlphaFold model, trained weights and an inference 
script are available under an open-source license at https://github.
com/deepmind/alphafold. Neural networks were developed with Ten-
sorFlow v.1 (https://github.com/tensorflow/tensorflow), Sonnet v.1 
(https://github.com/deepmind/sonnet), JAX v.0.1.69 (https://github.
com/google/jax/) and Haiku v.0.0.4 (https://github.com/deepmind/
dm-haiku).
 For MSA search on UniRef90, MGnify clusters and the reduced BFD, 
we used jackhmmer and for the template search on the PDB SEQRES 
we used hmmsearch, both from HMMER v.3.3 (http://eddylab.org/
software/hmmer/). For the template search against PDB70, we used 
HHsearch from HH-suite v.3.0-beta.3 14/07/2017 (https://github.com/
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Extended Data Fig. 1 | Example full chain outputs containing both high- and 

low-confidence regions. Q06787 (synaptic functional regulator FMR1) and 
P54725 (UV excision repair protein RAD23 homologue A) are predicted to be 

disordered outside the experimentally determined regions by MobiDB73. 
Q92664 (transcription factor IIIA) has been described as ‘beads on a string’, 
consisting of zinc-finger domains joined by flexible linkers74.



Extended Data Fig. 2 | Distribution of per-residue lDDT-Cα within eight 

pLDDT bins. This represents an alternative visualization to Fig. 1a that does 
not sample the data. It uses the recent PDB dataset (Methods), which is 
restricted to structures with a reported resolution of <3.5 Å (n = 2,756,569 
residues). Residues were assigned to bins of width 10 based on their pLDDT 

(minimum, 20; maximum, 100). Markers show the mean lDDT-Cα within each 
bin, while the lDDT-Cα distribution is visualized as a Matplotlib violin plot 
(kernel density estimate bandwidth, 0.2). The smallest sample size for the 
corresponding violin is 5,655 residues for the left-most bin.
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Extended Data Fig. 3 | Relationship between pLDDT and side-chain χ1 

correctness. Evaluated on the recent PDB dataset (Methods), which is 
restricted to structures with a reported resolution of <2.5 Å (n = 5,983 chains) 
and residues with a B-factor of <30 Å2 (n = 609,623 residues). Residues are 
binned by pLDDT, with bin width 5 between 20 and 70 pLDDT and bin width 2 

above 70 pLDDT. A χ1 angle is considered correct if it is within 40° of its value in 
the PDB structure75. Markers show the proportion of correct χ1 angles within 
each bin; error bars indicate the 95% confidence interval (two-sided Student’s 
t-test). The smallest sample size for the error bars is 193 residues for the 
left-most bin.



Extended Data Fig. 4 | AlphaFold performance at a range of template 

sequence identities. lDDT-Cα for AlphaFold and BestSingleStructuralTemplate  
on 1 year of CAMEO targets39. Targets are binned according to the sequence 
identity of the best template covering at least 70% of the target, and a box plot 

is shown for each bin. The horizontal line indicates the median, boxes range 
from the lower to the upper quartile, and the whiskers extend from the 
minimum to the maximum. In total, 428 targets are included (see Source Data); 
the smallest number of targets in any bin is 18.
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Extended Data Fig. 5 | Docking poses for a DGAT1-specific inhibitor in 

DGAT2. a, Top binding pose from Autodock Vina for a DGAT1-specific inhibitor 
in DGAT2, which does not match the predicted binding pocket for a 
DGAT2-specific inhibitor. b, Next best binding pose, which matches the 

binding pocket for the DGAT2-specific inhibitor, but does not contain 
components that satisfy the polar side chains His163 and Thr194. c, Relative 
positions of both binding poses.



Extended Data Fig. 6 | Relationship between sequence length and inference 

time. On the basis of logs from our human proteome set. All of the processed 
proteins are shown (n = 20,296). Each point indicates the mean inference time 

for the protein over the models produced. Vertical lines show the length 
cut-offs above which sequences were processed by multi-GPU workers.
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Extended Data Fig. 7 | Relationship between sequence length and run time 

for the non-inference stages of the pipeline. On the basis of 240 human 
protein sequences, chosen by stratified sampling from the length buckets: 
[16, 500), [500, 1,000), [1,000, 1,500), [1,500, 2,000), [2,000, 2,500) and 

[2,500, 2,700]. The relax plot shows five times more points, since five relaxed 
models are generated per protein. Coefficients for the quadratic lines of best 
fit were computed with Numpy polyfit.



Extended Data Table 1 | lDDT-Cα distribution in various 
pLDDT bins

Data are based on the per-residue lDDT-Cα and per-residue pLDDT of resolved regions. This 

table uses the recent PDB dataset (Methods), which is restricted to structures with a reported 

resolution of <3.5 Å. The total number of chains included is 10,215.
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Extended Data Table 2 | Relationship between pLDDT and 
TM-score

Binning is based on the mean pLDDT over each chain, weighted by the output of the experi-

mentally resolved head. This table uses the recent PDB dataset (Methods), which restricted to 

structures with a reported resolution of <3.5 Å. The total number of chains included is 10,215.
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