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Abstract: A hydrophilic, hydrostable porous metal organic framework (MOF) material-MIL-101

(Cr) was successfully doped into the dense selective polyamide (PA) layer on the polysulfone (PS)

ultrafiltration (UF) support to prepare a new thin film nanocomposite (TFN) membrane for water

desalination. The TFN-MIL-101 (Cr) membranes were characterized by SEM, AFM, XPS, wettability

measurement and reverse osmosis (RO) test. The porous structures of MIL-101 (Cr) can establish

direct water channels in the dense selective PA layer for water molecules to transport through quickly,

leading to the increasing water permeance of membranes. With good compatibility between MIL-101

(Cr) nanoparticles and the PA layer, the lab made TFN-MIL-101 (Cr) membranes integrated tightly

and showed a high NaCl salt rejection. MIL-101 (Cr) nanoparticles increased water permeance

to 2.2 L/m2·h·bar at 0.05 w/v % concentration, 44% higher than the undoped PA membranes;

meanwhile, the NaCl rejection remained higher than 99%. This study experimentally verified the

potential use of MIL-101 (Cr) in advanced TFN RO membranes, which can be used in the diversified

water purification field.

Keywords: metal organic frameworks; MIL-101 (Cr); thin film nanocomposite; reverse osmosis;

desalination; interfacial polymerization

1. Introduction

Reverse osmosis (RO) is a pressure-driven membrane separation technology, which has been

rapidly developing and widely applied in seawater, brackish water and the sewage desalination

process [1–3]. Compared with the conventional thermal-based desalination technologies, RO is more

energy-efficient and can produce fresh water at a lower cost. Most commercial RO membranes

have a thin film composite (TFC) structure with an ultrathin polyamide (PA) selective layer.

The high cross-linked PA selective layer prepared by the interfacial polymerization process has

good hydrophilicity, mechanical strength, thermal/chemical stability, selectivity, and cost advantages.

However, the water permeance of PA composite membranes are slightly low due to the high extent of

cross-linking [4]. Given this situation, there is still an opportunity to improve TFC RO membranes

by enhancing their water permeability. Increased water permeability leads to a reduced membrane
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area and lessened operation pressure, which will further enhance the efficiency of the RO water

treatment process [5]. A recent concept for modification of TFC membranes is incorporating porous

materials into the PA layer to form a thin film nanocomposite (TFN) structure [6]. The majority

of the filled porous materials are inorganic nanoparticles, such as zeolite [7–10], silica [11–13], and

carbon nanotubes [14,15]. The porous nanoparticles can establish direct water channels in the dense

selective PA layer for water molecules to transport through quickly, leading to increasing water

permeance [16,17]. However, nonselective voids in conventional TFN membranes are inevitable due to

the weak affinity between inorganic porous materials and organic PA layer, which might bring adverse

effects to the performance and stability of RO membranes [18–22]. Recently, novel porous materials

have been discovered to be novel membranes materials.

A novel class of porous materials, metal organic frameworks (MOFs), have attracted great

attention due to their structural and functional properties, such as ultrahigh and controlled porosity,

large internal surface areas, tunable pore size and type [23–25]. MOFs are hybrid organic–inorganic

solid compounds constructed from metal containing nodes and organic linkers [26,27]. With better

affinity for organic polymers owing to the organic linkers present in their structure [19–21], MOFs

are expected to be ideal porous materials for preparing TFN RO membranes. MOFs membranes and

MOFs mixed matrix membranes (MMMs) have already been applied widely in gas adsorption and

separation [28–36]. Recent studies also have begun to focus on the application of MOFs in liquid

treatment, such as organic solvent nanofiltration (OSNF) and pervaporation. Basu et al. doped MOFs

[MIL-47,HKUST-1, MIL-53(Al) and ZIF-8] in polydimethylsiloxane (PDMS) membranes to reject Rose

Bengal (RB) from isopropanol, the MOFs doped MMMs showed significantly higher retention of RB

than undoped PDMS membranes [37]. Liu et al. prepared organophilic pervaporation membranes

by adding ZIF-8 nanoparticles into silicone rubber membranes, the ZIF-8 doped membranes showed

promising performance for recovering bio-alcohols from dilute aqueous solution [38]. Sorribas et al.

reported that the permeate fluxes of PA/MOFs [ZIF-8, MIL-53 (Al), NH2-MIL-53 (Al) and MIL-101

(Cr)] membranes were 1.6–5.5 times higher than the pure PA membrane for the separation of styrene

oligomers from methanol and tetrahydrofuran [19]. However, there is few research of MOFs doped

membranes for water treatment in case of the hydration reaction involving ligand displacement and

hydrolysis would destroy the topology structure and affect the properties of some MOFs (e.g., MOF-5

and HKUST-1) [39–42]. Therefore, only hydrostable MOFs materials have the potential application in

water treatment.

In this work, MIL-101 (Cr) (MIL stand for Materials of Institut Lavoisier), a chromium based

porous MOFs material [43], was firstly applied in manufacturing TFN RO membranes for water

treatment. Compared with other water stable MOFs (e.g., ZIF-8 and UIO-66) [20,39,44], MIL-101 (Cr)

possesses larger pore size and surface area, which can provide more and broader water channels.

As a hydrophilic material, MIL-101 (Cr) can upgrade the surface hydrophilicity of membranes by

attracting more water molecules [20]. Furthermore, most windows of the cages of MIL-101 (Cr)

are pentagonal, and the channel architecture without breathing effect is expected to be unyielding

during the water treatment process under the RO operation pressure [45]. Herein, we prepared

MIL-101 (Cr) nanoparticle modified TFN RO membranes by the interfacial polymerization process.

The influence of MIL-101 (Cr) nanoparticles dispersed phases and added amount on RO performance

for rejecting NaCl salt from water were investigated. With increasing the MIL-101 (Cr) concentration,

the water permeance of the TFN-MIL-101 (Cr) membranes increased and the NaCl salt rejection of the

TFN-MIL-101 (Cr) membranes could maintain a high level. This study experimentally verified the

potential of MIL-101 (Cr) in constructing highly and stably water permeable TFN RO membranes for

water treatment.
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2. Materials and Methods

2.1. Materials and Reagents

Chromium(III) nitrate nonahydrate (Sinopharm Chemical Reagent Co. Ltd., Shanghai, China),

terephthalic acid (Sinopharm Chemical Reagent Co. Ltd., Shanghai, China), and methanol

(Sinopharm Chemical Reagent Co. Ltd., Shanghai, China) were used to synthesize MIL-101 (Cr)

nanoparticles. Trimesoyl chloride (TMC; TCI Co. Ltd., Shanghai, China), m-phenylenediamine (MPD;

Sigma-Aldrich, Shanghai, China), and n-hexane (Sinopharm Chemical Reagent Co. Ltd., Shanghai,

China), were used to prepare the PA layer on the polysulfone (PS) support. PS substrate was purchased

from the Hangzhou Water Treatment Center (Hangzhou, China). All chemicals were of analytical

grade and used without further purification.

2.2. Synthesis of MIL-101 (Cr)

Chromium(III) nitrate nonahydrate [Cr(NO3)·9H2O, 2.0 g, 5 mmol], terephthalic acid (0.83 g,

5 mmol), and deionized water (20 mL) were blended and briefly sonicated, resulting in a dark

blue-colored suspension. The suspension was placed in a Teflon-lined autoclave and kept in an oven

at 218 ◦C for 16 h without stirring. After the synthesis and equilibration at room temperature, the MOF

solids were separated from water using a centrifuge (7000 r/min, 5 min) and washed with methanol.

The resulting solids were separated by centrifugation, dried at 75 ◦C overnight, and then put under

vacuum at ambient temperature for 2 days [46].

2.3. Preparation of TFC and TFN-MIL-101 (Cr) Membranes

Our strategy for in situ preparing thin film MIL-101 (Cr) nanocomposite membranes was directly

adding MIL-101 (Cr) nanoparticles (0.025% to 0.1% w/v) into a 0.1 w/v % TMC hexane solution

and then pouring the mixed solution onto a PS ultrafiltration support that had been immersed in

a 2 w/v % MPD aqueous solution for 2 min. After 90 s of interfacial polymerization progress, a PA layer

embedded with MIL-101 (Cr) nanoparticles formed on the PS ultrafiltration (UF) support. The finally

prepared TFN-MIL-101 (Cr) membranes were heat cured at 120 ◦C for 10 min in an oven and then stored

in deionized water before the performance test. TFC membranes without MIL-101 (Cr) nanoparticles

and TFN-MIL-101 (Cr) membranes obtained by adding MIL-101 (Cr) nanoparticles into MPD aqueous

solution were also prepared as controls.

2.4. Characterization Methods

The Attenuated Total Reflection Flourier Transformed Infrared (ATR-FTIR) spectroscopy was

performed using a Tensor 27 spectrometer (Bruker, Karlsruhe, Germany) at room temperature.

The X-ray diffraction (XRD) of the MIL-101 (Cr) was recorded on a Bruker D8 ADVANCE instrument

(Bruker, Karlsruhe, Germany) equipped with a Cu Kα radiation within the range of 2θ = 5◦ to 16◦

at the rate of 1◦/min. The nitrogen sorption isotherm was collected by a Micromeritics ASAP 2420

analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA) at 77 K. A multiple point

Brunauer–Emmet–Teller (BET) method was used to calculate the specific surface area of MIL-101 (Cr).

Water vapor adsorption of MIL-101 (Cr) was measured with a vapor sorption analyzer (TA vti-sa,

New Castle, DE, USA) at 308 K. The water absorption capacity of lab-synthesized MIL-101 (Cr) was

calculated by a water adsorption experiment. Scanning electron microscopy (SEM) (Hitachi S-4800,

Tokyo, Japan) was utilized to investigate the cross section and surface area of the membranes and

the morphology of the MIL-101 (Cr) nanoparticles. Samples were deposited on sample holders with

adhesive carbon foil and were sputtered with gold before measurement. The cross section was obtained

by freezing and fracturing the membrane in liquid nitrogen. The X-ray photoelectron spectroscopy

(XPS) measurement was performed on ESCALAB 250 spectrophotometer (Thermo Fisher, Waltham,

MA, USA) to determine the elemental compositions of the membranes. Atomic force microscopy (AFM)

images were recorded using Multimode-V microscope (Veeco, New York, NY, USA) in contact mode.
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Contact angle measurements were performed with a DSA100 contact angle analyzer (Kruss, Hamburg,

Germany) using a sessile drop technique.

2.5. RO Performance Test

The RO performance of the prepared TFC and TFN-MIL-101 (Cr) membranes were

characterized at room temperature. A Membrane Performance Evaluation Instrument (Figure 1)

(Hangzhou Water Treatment Center, Hangzhou, China) was used to evaluate water flux and rejection

of membranes via cross-flow filtration. The effective membrane area is 11.3 cm2 and operating pressure

is 16 bar. A 2000 ppm NaCl aqueous solution was used as a feed solution. Prior to filtration, the

membranes were wetted by pressurization at operating pressure for 0.5 h. Water flux (F) and solute

rejection (R) are defined as follows:

F =

Q

At
, (1)

R% = 1 −
Cp

C f
× 100, (2)

where Q (L) is the volume of water passing through the membrane of surface area A (m2) during a

certain time t (h). Cp and Cf (ppm) are the concentrations of permeate and feed solutions, respectively.

F = ,
% = 1 − × 100,

 

Figure 1. Schematic representation for the membrane performance evaluation instrument.

3. Results and Discussion

3.1. Characterization of MIL-101 (Cr) Nanoparticles

MIL-101 (Cr) has a hydrophilic porous structure with 1.2 nm pentagonal/1.6 nm hexagonal

openings and 2.9 nm/3.4 nm diameter cages (Figure 2) [43]. The structure of lab synthesized MIL-101

(Cr) was confirmed by XRD (Figure 3a), and the diffraction peaks agree with the reported result [46].

The SEM image of lab-made MIL-101 (Cr) nanoparticles (Figure 3b) shows the typical octahedral

shapes of MIL-101 (Cr) crystals, and the nanoparticle size is around 200 nm. The similarity between

MIL-101 (Cr) nanoparticle size and PA layer thickness (100 nm–300 nm) can guarantee MIL-101 (Cr)

establishing longer water channels in the dense selective layer. Moreover, size matched MIL-101 (Cr)

nanoparticles were expected to provide better support for the PA layer to resist the pressure induced

compaction and rearrangement of the polymer chains. The BET surface area of lab-synthesized MIL-101

(Cr) was 3264 m2/g and the water absorption capacity of lab-synthesized MIL-101 (Cr) was 1.67 g/g.
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Encouraged by the high BET surface area and the high water absorption capacity, MIL-101 (Cr)

nanoparticles were used to fabricate TFN RO membranes for water treatment.

 

Figure 2. Schematic representation for the cages and openings of MIL-101 (Cr).

 

Figure 3. (a) XRD pattern of MIL-101 (Cr) nanoparticles; (b) SEM image of MIL-101 (Cr) nanoparticles.

3.2. Characterization of TFC Membranes and TFN-MIL-101 (Cr) Membranes

The cross section morphologies of the TFC membrane and the TFN-MIL-101 (Cr) membranes can

be seen in Figure 4. TFN-MIL-101 (Cr)-O membranes prepared by adding MIL-101 (Cr) nanoparticles

into organic solution (TMC hexane solution) show better integrity than TFN-MIL-101 (Cr)-A membrane

prepared by adding MIL-101 (Cr) nanoparticles into aqueous solution (MPD aqueous solution).

There are no clear boundaries appearing in the TFC (Figure 4a) or TFN-MIL-101 (Cr)-O (Figure 4b–e)

membranes. It is unlikely that there is a clear boundary between the PA layer and the PES support of

the TFN-MIL-101 (Cr)-A membrane (Figure 4f), which means a non-tight adhesion. In the interfacial

polymerization process, the migration of MPD from the aqueous phase to the organic phase, which is

the key step to form PA structure, was affected by MIL-101 (Cr) nanoparticles dispersed in the aqueous

phase [7,13,21,47,48]. The finally formed PA layer of the TFN-MIL-101 (Cr)-A membrane was above

the MIL-101 (Cr) nanoparticles (Figure 4f), which resulted in a weak combination of the PA layer,

MIL-101 (Cr) nanoparticles and the PES UF support. The weak combination might bring risk to the

stability of membranes for a long time under RO operation pressure, while the migration of MPD was

less affected when MIL-101 (Cr) nanoparticles were dispersed in the organic phase. The finally formed

PA layer can wrap MIL-101 (Cr) nanoparticles closely without visible voids (Figure 4b–e).
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Figure 4. (a) cross section SEM image of the TFC membrane; (b) cross section SEM image of the

TFN-MIL-101 (Cr)-O (0.025 w/v %) membrane; (c) cross section SEM image of the TFN-MIL-101

(Cr)-O (0.05 w/v %) membrane; (d) cross section SEM image of the TFN-MIL-101 (Cr)-O (0.075 w/v %)

membrane; (e) cross section SEM image of the TFN-MIL-101 (Cr)-O (0.1 w/v %) membrane; and (f)

cross section SEM image of the TFN-MIL-101 (Cr)-A (0.05 w/v %) membrane.

The ATR-FTIR spectra of the TFC membrane, the TFN-MIL-101 (Cr)-A (0.05 w/v %) membrane,

the TFN-MIL-101 (Cr)-O (0.05 w/v %) membrane, the TFN-MIL-101 (Cr)-O (0.05 w/v %) membrane

after 50 h test and MIL-101 (Cr) powder are shown in Figure 5. Bands between 1700 cm−1 and

1300 cm−1 correspond to ν(C–C), νs(COO), and νas(COO) vibrations, implying the presence of

dicarboxylate linker in MIL-101 (Cr). The most intense peak (1405 cm−1) can be used to confirm

the presence of MIL-101 (Cr) nanoparticles in the PA layer [19]. This peak appears in the spectra of

the TFN-MIL-101 (Cr)-O membrane and the TFN-MIL-101 (Cr)-O membrane after 50 h test, whereas

it is not present in the spectrum of the TFN-MIL-101 (Cr)-A membrane. The peak at 1405 cm−1

cannot be detected by depth limited ATR-FTIR in the TFN-MIL-101 (Cr)-A membrane, confirming

again that MIL-101 (Cr) nanoparticles are under the PA layer, which infers that there are no through

channels existing in the dense selective layer. In contrast, the peak at 1405 cm−1 in the spectrum of the

TFN-MIL-101 (Cr)-O membrane remained about the same even after a 50 h membrane performance

test, indicating that a PA-MIL-101 (Cr) structure was formed and could be maintained for a long time

during the pressure-driven water treatment process. Consistent with the cross section SEM images,

the ATR-FTIR test also indicates that the combination of MIL-101 (Cr) nanoparticles and PA layer is

close in TFN-MIL-101 (Cr)-O membranes, which means that the organic phase is the suitable phase

for MIL-101 (Cr) nanoparticle addition. Hereafter, TFN-MIL-101 (Cr) membrane characterization and

performance tests will focus on TFN-MIL-101 (Cr)-O membranes.

The morphologies of the TFC and the TFN-MIL-101 (Cr)-O membranes with adding MIL-101 (Cr)

nanoparticles in the organic phase were characterized by SEM and AFM. The surface morphology

of a pristine TFC membrane (Figure 6a) shows a typical “ridge and valley” structure of the dense

PA layer [49]. Increasing the addition of MIL-101 (Cr) nanoparticles from 0.025 w/v % to 0.1 w/v %,

surface morphologies of TFN-MIL-101 (Cr)-O (Figure 6b–e) membranes changed from the “ridge

and valley” structures to smoother structures. The different morphologies of the membranes are the

manifestation of the different crosslinking extent. It is widely accepted that high crosslinking extent of

the dense PA layer is requisite to obtain membranes with high rejection and stability. The crosslinking

extent can be reflected by the element ratios of O/N and C/N [20]. The element composition of the

membranes surface (Table 1) was measured by XPS. Both O/N and C/N increase with increasing
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MIL-101 (Cr) loadings, which means less crosslinking extent. High concentration of MIL-101 (Cr)

nanoparticles would reduce the crosslinking extent of PA layer during its forming process, so that

there is a limit of the addition of MIL-101 (Cr) nanoparticles.

Figure 5. ATR-FTIR spectra of the TFC membrane, the TFN-MIL-101 (Cr)-A (0.05 w/v %) membrane,

the TFN-MIL-101 (Cr)-O (0.05 w/v %) membrane, the TFN-MIL-101 (Cr)-O (0.05 w/v %) membrane

after 50 h test and the MIL-101 (Cr) powder.

Table 1. Summary of different prepared membranes.

Code MIL-101 (Cr) (w/v %) Phase for MIL-101 (Cr) Nanoparticles Addition

TFC 0 /

TFN-MIL-101 (Cr)-O

0.025

organic
0.05

0.075
0.1

TFN-MIL-101 (Cr)-A 0.05 aqueoous

 

Figure 6. (a) surface SEM image of the TFC membrane; (b) surface SEM image of the TFN-MIL-101

(Cr)-O (0.025 w/v %) membrane; (c) surface SEM image of the TFN-MIL-101 (Cr)-O (0.05 w/v %)

membrane; (d) surface SEM image of the TFN-MIL-101 (Cr)-O (0.075 w/v %) membrane; and (e)

surface SEM image of the TFN-MIL-101 (Cr)-O (0.1 w/v %) membrane.
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The AFM three-dimensional images of the TFC and TFN-MIL-101 (Cr)-O membranes are shown

in Figure 7, and the results of roughness analysis (Rq) obtained from the AFM test are listed in

Table 1. With the increase of MIL-101 (Cr) loading, the membrane surface became rougher and their

Rq values increased. The roughness properties differences among these membranes were mainly

due to the aggregations of MIL-101 (Cr) nanoparticles. This is consistent with the SEM images

(Figure 6) of the membrane surface. At low concentration (≤0.05 w/v %), MIL-101 (Cr) nanoparticles

were well-dispersed in the organic phase, most of them incorporated in situ during the interfacial

polymerization and finally residing in the middle of the selective layer, so that there were no MIL-101

(Cr) nanoparticles that could be seen from the SEM images of the membrane surface (Figure 6b,c).

When increasing over 0.05 w/v % MIL-101 (Cr) concentration, the aggregations of the nanoparticles,

which existed in the dispersed phase and were then introduced into interfacial polymerization, were

difficult to avoid. The aggregations with a large size affected the film growth and finally resided on the

top of the selective layer (Figure 6d,e). Especially at 0.1 w/v % MIL-101 (Cr) concentration, more and

bigger aggregations can be seen on the membrane surface (Figure 6e). The semi-exposed MIL-101 (Cr)

aggregations brought bumps to the membranes surface, causing a significant increase in roughness

(Table 2).

Table 2. XPS result, surface roughness, water contact angle of TFC and TFN-MIL-101

(Cr)-O membranes.

MIL-101 (Cr) (w/v %) Cr (%) 1 C (%) 1 O (%) 1 N (%) 1 C/N (-) O/N (-) Rq (nm) 2
θ (◦) 3

0 0 76.72 13.82 9.46 8.11 1.46 47 ± 3 62 ± 2
0.025 0.04 76.69 13.93 9.34 8.21 1.49 56 ± 4 55 ± 2
0.05 0.04 76.39 14.25 9.32 8.19 1.53 58 ± 3 52 ± 2

0.075 0.07 76.65 14.11 9.17 8.36 1.54 64 ± 5 48 ± 3
0.1 0.08 76.39 14.62 8.91 8.57 1.64 72 ± 3 46 ± 2

1 Cr, C, O, N element atomic concentration obtained directly from XPS; 2 Root-mean-square surface roughness
obtained from AFM, error bars based on at least three measurements; 3 Apparent water contact angle, error
bars based on at least three measurements.

≤

θ
±

±

±

±

±

 

θ
θ

θ

Figure 7. (a) AFM image of the TFC membrane; (b) AFM image of the TFN-MIL-101 (Cr)-O

(0.025 w/v %) membrane; (c) AFM image of the TFN-MIL-101 (Cr)-O (0.05 w/v %) membrane; (d) AFM

image of the TFN-MIL-101 (Cr)-O (0.075 w/v %) membrane; and (e) AFM image of the TFN-MIL-101

(Cr)-O (0.1 w/v %) membrane.

The wettability of the TFC and TFN-MIL-101 (Cr) membranes were characterized by water

contact angle measurements. The results are listed in Table 2. With increasing MIL-101 (Cr) loadings,

water contact angle value (θ) decreased. In this work, all the prepared TFC and TFN-MIL-101

(Cr)-O membranes have hydrophilic surfaces (θ < 90◦) due to the hydrophilic carboxylic acid groups

of PA and the hydrophilic hydroxyl groups of MIL-101 (Cr) [50]. As already mentioned above,
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with increasing MIL-101 (Cr) concentration, the crosslinking extent of PA layers decrease. The less

crosslinking extent indicates that more unreacted acyl chloride groups in TMC. The unreacted acyl

chloride groups then generate more carboxylic acid groups in the PA layer, which attribute to the θ

decreasing. Moreover, the surface roughness also has influences on the wettability of membranes,

and increased roughness can amplify the θ value decreasing. Therefore, the doped MIL-101 (Cr)

nanoparticles enhanced the hydrophilic of PA membrane, which is beneficial to improving the

membrane performance in the water treatment process by attracting more water molecules.

3.3. RO Performance

Figure 8 shows the effects of MIL-101 (Cr) loadings on RO water permeance and NaCl permeance

of TFN-MIL-101 (Cr)-O membranes. Adding a very small amount of MIL-101 (Cr) (0.025 w/v %)

increased water permeance by 40%, and the NaCl rejection of the TFN-MIL-101 (Cr)-O (0.025 w/v %)

membrane maintains a high level (99.2%). At 0.05 w/v %, the water permeance of the TFN-MIL-101

(Cr)-O membrane was 44% higher than the TFC membrane and kept the NaCl rejection higher than 99%.

By increasing the MIL-101 (Cr) loadings up to 0.075 w/v %, the water permeance of the TFN-MIL-101

(Cr)-O membrane was 56% higher than the TFC membrane and the NaCl rejection began to decrease

(97.4%). At 0.1 w/v %, the water permeance of the TFN-MIL-101 (Cr)-O membrane was 96% higher

than the TFC membrane. However, this high water permeance is relative to low NaCl rejection

(93.6%). The water permeance enhancements of the TFN-MIL-101 (Cr)-O membranes are caused by

a combination of the porous structure of MIL-101 (Cr), the hydrophilicity of MIL-101 (Cr) and the

lower crosslinking extent of the PA structure. The micropore structure of MIL-101 (Cr) significantly

contributed to the enhancement of water permeance. The typical direct channel structure provides

preferential flow paths for water molecules. Water molecules can be attracted to the water paths and

transport through quickly, while hydrated ions can be excluded by the MIL-101 (Cr) pores, so that the

NaCl rejection can maintain a high level at a low MIL-101 (Cr) concentration (≤0.05 w/v %). At high

MIL-101 (Cr) concentration, the rejection decrease was mainly caused by the aggregations of MIL-101

(Cr) nanoparticles. Although the better compatibility between MIL-101 (Cr) nanoparticles and the PA

layer than traditional inorganic fillers was beneficial for avoiding nonselective voids formed in the

dense PA layer, inner voids of MIL-101 (Cr) aggregations and interfacial defects between the PA and

the aggregations were inevitable with increasing MIL-101 (Cr) loadings. These nonselective voids led

to the NaCl rejection decrease.

Table 3 compares the TFN-MIL-101 (Cr)-O membranes in this study with other TFN membranes

reported in literature. All TFN membranes give improved flux. With considering a combination of the

flux and rejection, TFN-MIL-101(Cr)-O membranes exhibits better membrane performance than other

TFN membranes.

θ

≤

Figure 8. Effects of MIL-101 (Cr) concentration on water permeance and NaCl rejection of TFN-MIL-101

(Cr)-O membranes, (test conditions: 2000 ppm NaCl feed; 16 bar; 25 ◦C; 11.3 cm2 membrane area).
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Table 3. Membrane performance of TFN membranes.

Filler Concentration (w/v %) Feed Flux Enchancement (%) 1 Rejection (%) Reference

MWNTs 0.1 PTA/water 258 98 [49]
SiO2 0.1 PEG600/water 121 94.7 [51]
TiO2 0.9 PEG1000/water 123 92.2 [52]
ZIF8 0.2 PS(400-800)/water 139 99.6 [19]

UZM5 0.02 Lubeoil/toluebe 102 96.3 [9]
MIL-101 (Cr) 0.05 NaCl/water 144 99.1 This work

1 The flux enhancement is defined by the flux ratio of the TFN membrane to the TFC membrane.

Long time (50 h) tests were used to investigate the stability of TFN-MIL-101 (Cr)-O membranes.

As shown in Figures 9 and 10, the separation performances of the TFN-MIL-101 (Cr)-O membranes

with a small addition of MIL-101 (Cr) (≤0.075 w/v %) were stable in terms of water permeance and

NaCl rejection. The TFC membrane had a 26% water permeance decline after a 50 h stability test.

With the addition of MIL-101 (Cr) nanoparticles, the downward trend of water permeance is lessened.

At 0.025 w/v % MIL-101 (Cr) concentration, the rate of water permeance decline of the membranes after

50 h test is 6.2%. At 0.05 w/v % and 0.075 w/v % MIL-101 (Cr) concentration, the water permeance of

the membranes after 50 h test could remain the same. MIL-101 (Cr) is a hydrostable MOF material

without breathing effects, and the rigid pore structure of MIL-101 (Cr) would not be damaged under

the RO operation pressure in the membrane stability test process. MIL-101 (Cr) nanoparticles can

play a supporting role to resist the RO operation pressure induced compaction and rearrangement of

polymer chains, which leads to the stability of the water permeance. With increase of the MIL-101 (Cr)

concentration up to 0.1 w/v %, the water permeance of the membrane has a 6.1% water permeance

increase. In combination with the NaCl rejection results, the abnormal increase of water permeance

is unstable. The NaCl rejection of the TFN-MIL-101 (Cr)-O membranes can remain stable during the

50 h stability test except for the TFN-MIL-101 (Cr)-O 0.1 w/v %. At high MIL-101 (Cr) concentration,

the aggregations of MIL-101 (Cr) nanoparticles are inevitable. The aggregations may be dropped off

under the high RO operation pressure during the long time test, which can bring non-selective defects

to the membranes. The addition of MIL-101 (Cr) in a range of 0.025–0.075 w/v % can bring stable

water performance increase to the membranes without sacrificing high NaCl rejection. The membrane

selectivity cannot be improved by further increasing the MIL-101 (Cr) addition. The lower and unstable

rejection at higher MIL-101 (Cr) concentration may be expected to be improved by improving MIL-101

(Cr) dispersion to avoid aggregations and defects.

≤

 

Figure 9. Water permeance of TFN-MIL-101 (Cr)-O membranes during 50 h stability test with 2000 ppm

NaCl aqueous solution at 16 bar and 25 ◦C.
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Figure 10. NaCl rejection of TFN-MIL-101 (Cr)-O membranes during 50 h stability test with 2000 ppm

NaCl aqueous solution at 16 bar and 25 ◦C.

4. Conclusions

A hydrophilic, microporous, hybrid MOF material-MIL-101 (Cr) was systematically investigated

to prepare new TFN RO membranes by the interfacial polymerization method. With a good affinity

for the PA dense layer owing to the organic linkers present in MIL-101 (Cr), the formed TFN-MIL-101

(Cr) membranes integrated tightly. Doped MIL-101 (Cr) nanoparticles can enhance the performance

of membranes by providing direct water channels to the dense selectivity layer and changing the

morphologies, roughness, crosslinking extent and wettability of membranes. At 0.05 w/v % MIL-101

(Cr) concentration, doped MIL-101 (Cr) nanoparticles increased water permeance up to 44% while

maintaining NaCl salt rejection higher than 99%. With good compatibility between MIL-101 (Cr)

nanoparticles and the PA layer, the increase in water permeance and the high rejection of membranes

can remain stable for a long time. We believe that the new TFN-MIL-101 (Cr) RO membranes with

high and stable water permeance have wide applications in the water purification field.
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Abbreviations
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RO Reverse Osmosis
TFC Thin Film Composite
PA Polyamide
TFN Thin Film Nanocomposite
MOFs Metal Organic Frameworks
MMMs Mixed Matrix Membranes
NF Nanofiltration
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PDMS Polydimethylsiloxane
RB Rose Bengal
XRD X-ray Diffraction
SEM Scanning Electron Microscopy
BET Brunauer–Emmet–Teller
ATR-FTIR Attenuated Total Reflection Flourier Transformed Infrared
XPS X-ray Photoelectron Spectroscopy
AFM Atomic Force Microscope
TMC Trimesoyl Chloride
MPD M-phenylenediamine
PS Polysulfone
UF Ultrafiltration
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