
Highly Available Systems for Database Applications

WON KIM

IBM Research Laboratory, San Jose, Californm 95193

As users entrust more and more of their applications to computer systems, the need for
systems that are continuously operational (24 hours per day) has become even greater.
This paper presents a survey and analysis of representat~%e architectures and techniques
that have been developed for constructing highly available systems for database
applications. It then proposes a design of a distributed software subsystem that can serve
as a unified framework for constructing database application systems that meet various
requirements for high availability.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey;
C.1.2 [Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors)--interconnection architectures; C.4 [Computer Systems
Organization]: Performance of Systems--reliability, availability, and serviceability; H.2.4
[Database Management]: Systems--distributed systems, transaction processing

General Terms: Reliability

Additional Key Words and Phrases: Database concurrency control and recovery,
relational database

INTRODUCTION

In this pape r we examine major hardware
and software aspects of highly available
systems. I ts scope is l imited to those sys-
t ems designed for da tabase applications.
Da tabase appl icat ions require mult iple
pa ths f rom the processor to the disks, which
gives rise to some difficult issues of sys tem
archi tecture and engineering. Fur ther , they
involve the software issues of concurrency
control, recovery f rom crashes, and t rans-
action management .

In a typical business da ta processing en-
v i ronment , a user message f rom a te rmina l
invokes an appl icat ion program. T h e appli-
cat ion p rogram interacts with a t ransac t ion
manager to init iate and t e rmina te (commit
or abort) a t ransact ion. Once a t ransac t ion
has been initiated, the appl icat ion p rogram
repeatedly interacts with a da tabase man-

ager to retr ieve and upda te records in the
database.

A t ransac t ion is a collection of reads and
writes against a da tabase t h a t is t rea ted as
a uni t [Gray 1978]. I f a t r ansac t ion com-
pletes, its effect becomes pe rmanen t ly re-
corded in the database; otherwise, no t race
of its effect r emains in the database. T o
suppor t the not ion of a t ransact ion, undo
log of da ta before upda tes and redo log of
da ta af ter updates are used~to allow a t rans-
action to be undone or redone af ter crashes.
The Wri te Ahead Log protocol of ten is used
to ensure t ha t the log is f lushed to the disk
before the upda ted da tabase records are
wri t ten to the disk.

T h e mos t fundamenta l requi rement in
const ruct ing a highly available sys tem for
da tabase appl icat ions is t h a t each major
hardware and software componen t mus t a t
least be duplicated. At min imum, the sys-

Author's current address: Microelectronics and Computer Technology Corporation, 9430 Research Boulevard,
Austin, Texas 78759.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0360-0300/84/0300-0071 $00.75

Computing Surveys, Vo~'16, No. 1, March 1984

72 * Won Kim

CONTENTS

INTRODUCTION

1. MACHINE AND STORAGE
ORGANIZATION TAXONOMY

2. INTUITIVE CRITERIA
FOR HIGH AVAILABILITY

3. LOOSELY COUPLED SYSTEMS
WITH A PARTITIONED DATABASE

3.1 Tandem NonStop System
3.2 AT&T's Stored Program

Controlled Network

3 3 Bank of America's Distributive

Computing Facility
3.4 Stratus/32 Continuous Processing System

3.5 Auragen System 4000
3 6 System D Prototype

4. TIGHTLY COUPLED SYSTEMS
WITH A SHARED DATABASE

5. LOOSELY COUPLED MULTIPROCESSOR
SYSTEM WITH A SHARED DATABASE

5.1 GE MARK III
5.2 Computer Consoles' Power System

6. REDUNDANT COMPUTATION SYSTEMS:
SYNTREX'S GEMINI FILE SERVER

7. A FRAMEWORK FOR THE MANAGEMENT
OF SYSTEM CONFIGURATION

8. CONCLUDING REMARKS
ACKNOWLEDGMENTS

REFERENCES

v

tern requires two processors. There may
have to be two paths connecting the pro-
cessors, and it is desirable to have at least
two paths from the processors to the data-
base, that is, two I/O subsystems consisting
of a channel (I/O processor), controller,
and disk drives. The disk controllers must
be multiported, so that they may be con-
nected to more than one processor.

On the software side, the system needs
five essential ingredients: (1) a network
communication subsystem, (2) a data com-
munication subsystem, (3) a database man-
ager (or a file system), (4) a transaction
manager, and (5) the operating system.

The network communication subsystem
must support interprocess(or) communica-
tion withL. ~ cluster of locally distributed
processors. If the highly available system is
a node on a geographically distributed sys-
tem, the communication subsystem must
also support internode communication.

The data communication subsystem is
the terminal handler that receives use r re-
quests, invokes application programs, and
delivers the results that it receives from the
database/transaction manager.

The database manager must supporl; the
two fundamental capabilities of concur-
rency control and recovery. That is, it must
guarantee that the database remains con-
sistent despite interleaved reads and writes
to the database by multiple concurrent
transactions. Techniques such as locking
and time stamping have been developed
and extensively studied for this purpose
[Bernstein and Goodman 1981; Kohler
1981].
The transaction/database manager must

ensure that the database consistency is not
compromised by system failures or trans-
action failures caused by software errors or
deadlocks. In particular, it must be able to
recover from transaction failures and soft
crashes, which corrupt only the contents of
the main memory, as well as from hard
crashes, which destroy the contents of the
disks. For recovery from soft crashes, the
undo and redo logs of transactions are used
[Gray et al. 1981; Haerder and Reuter
1983]. To recover from hard crashes, sys-
tems rely on periodic dumping of the data-
base into archival storage.

The operating system is needed not .only
to run the other software components, but
also to detect most of the common, low-
level software/hardware errors that occur.
Most computer systems rely on progTam
checks (interrupts) and machine checks to
detect such errors. Program checks are used
to detect exceptions and events that occur
during execution of the program [IBM
1980]. Exceptions include the improper
specification or use of instructions and
data, for example, arithmetic overflow or
underflow, and addressing or protection vi-
olation. Machine checks are used to report
machine malfunctions, such as memory
parity errors, I/O errors, and missing inter-
rupts. The hardware provides information
that as~i~s the operating system in deter-
mining the location of the malfunction and
extent of the damage caused by it.

Most systems have been designed to sur-
vive the failure of a single software/hard-

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems for Database Applications . 73

ware component. If a system is to be truly
continuously operational, however, it must
guarantee availability during multiple con-
current failures of software/hardware com-
ponents, during on-line changes of such
components, and during on-line physical
reconfiguration of the database itself. To
support the full range of high-availability
requirements, the operating system must
be supplemented with a software subsystem
that can manage all software and hardware
components of a system. Such a software
subsystem will receive failure reports from
the system components and reconfigura-
tion requests from the system operator. It
will analyze the status of all the resources
it manages, and compute the optimal con-
figuration of the system both in response
to multiple concurrent failures of compo-
nents and requests for load balancing. Fur-
ther, it will initiate and monitor system
reconfiguration, effecting mid-course cor-
rection of a reconfiguration that does not
succeed. Finally, it will diagnose a class of
failures that other components fail to rec-
ognize.

The systems introduced in the following
paragraphs are often considered highly
available, and are used as examples of var-
ious architectures and stratagems throu~h-
out the remainder of this paper, particu-
larly in Sections 3 through 6. A certain
number of these systems do not, in my
opinion, meet the criteria fbr classification
as highly available; these are discussed in
Section 2.

Tandem Computers has been successful
for several years in marketing fault-toler-
ant computer systems, which shield the
users from various types of failures of the
software and hardware components. Other
companies have entered this market, in-
cluding August Systems, Auragen Systems,
Computer Consoles, Stratus Computer,
Synapse Computer, Syntrex, Sequoia, Tol-
erant ,Systems, and others [Electronic
Business 1981; IEEE 1983]. Of these, Aur-
agen, Computer Consoles, Stratus, and
Synapse have focused on transaction pro-
cessing; August Systems aims at industrial
and commercial process control.

A number of other systems address the
issue of reliability and availability: Syntrex

is marketing a local network file server
called GEMINI; the MARK III Cluster File
System, developed by General Electric, pro-
vides time-sharing services for its tele-
phone-switching network users; and the
Distributive Computing Facility developed
by Bank of America automates the teller
functions for accounts.

In addition, the late 1970s SRI SIFT
project for aircraft control evoked the Au-
gust Systems' products; Bolt Beranek and
Newman (BBN) developed the PLURI-
BUS system for use as a highly reliable
communications processor on ARPANET;
and during the 1960s AT&T developed No.
1 ESS and No. 2 ESS (Electronic Switching
System) for telephone switching services.

System D, a distributed transaction-
processing system, was created as a proto-
type at IBM Research in San Jose with
availability and modular growth as its ma-
jor objectives, and there are other research
projects currently under way at IBM Re-
search to investigate availability and per-
formance issues under various software/
hardware structures.

The remainder of this paper is organized
as follows. In Section 1, a taxonomy of
system structures that has been used to
construct highly available systems is devel-
oped, and a discussion is provided of the
advantages and disadvantages of four pos-
sible structures. An intuitive set of criteria
for highly available systems is given in Sec-
tion 2. Systems belonging to each of the
four system structures are §urveyed and
critiqued, where possible, in Sections 3
through 6. The discussions in these sections
focus on various philosophies of system
structure and transaction processing. In
Section 7 the functions and structure of a
software subsystem that provides a frame-
work for high availability are described.

In view of the fact that such issues as
concurrency control, recovery, transaction
model, and network communications have
been extensively addressed elsewhere, these
aspects of highly available systems will not
be given detailed treatment. Further, it is
generally recognized that such mundane
sources as downed telephone lines, careless
computer operators, lack of defensive cod-
ing, and the way in which the operating

Computing Surveys, Vol. 16, No. 1, March 1984

74 • Won Kim

system reacts to failures that it detects can
seriously limit the availability of a system.
Although important, such aspects are not
within the scope of this paper.

1. MACHINE AND STORAGE

ORGANIZATION TAXONOMY

Two fundamental decisions in constructing
a multiple-processor system are the choice
of machine organization and physical stor-
age organization. The discussion in this
section of the advantages and disadvan-
tages of typical machine and storage orga-
nizations significantly benefits from
Traiger [1983]. Two conventional tech-
niques for organizing multiple processors
are loosely coupled and tightly coupled
multiprocessor organizations. In tightly
coupled systems, two or more processors
share main memory and disks, typically
through an interconnection switch, and ex-
ecute one copy of the operating system
residing in the shared main memory. A
local cache memory is usually associated
with each processor to enhance access
speed. In loosely coupled systems, each
processor has not only a local cache mem-
ory but also its own main memory, and may
or may not share disks with other proces-
sors. Each processor executes its own copy
of the operating system from its own main
memory. There are various ways to loosely
couple the processors, including shared bus
structures, cross-point switches, point-to-
point links such as channel-to-channel
adapters, and globally shared memories, as
in Cm* [Swan et al. 1977].

Tightly coupled multiprocessor systems,
such as the Synapse N+I System, and
BBN's PLURIBUS, offer important poten-
tim advantages. First, they naturally pre-
sent a single-system image, since multiple
processors execute one copy of the operat-
ing system and a common job queue. Sec-
ond, the processors do not need to com-
municate via interprocessor messages, with
their inherent overhead. However, this per-
formance advantage may be offset by cer-
tain problems imposed by this architecture.
First, there is contention among processors
for the use of shared memory and other
shared resources. This must somehow be
reduced, especially if the cost/performance

of the system is to keep up with its expan-
sion as extra processors are added. Second,
potentially complex techniques must be
supported to ensure that the contents of
each processor's cache memory are up-to-
date.

In addition to these performance ,con-
cerns, there is a potential availability prob-
lem with tightly coupled multiprocessors.
All processors run the same operating sys-
tem from shared main memory, and thus,
when the operating system is corrupted or
the shared memory system fails, the entire
system must be restarted. Therefore appli-
cation systems designed to run on a tightly
coupled multiprocessor system must be able
to restart very quickly in order to guarantee
high overall availability.

Just as there are two techniques for or-
ganizing multiple processors, there are two
ways to organize disks, and thus the data-
base. One is to assign a set of disks to one
processor and allow access to it only
through that processor; the other is to have
all of the processors share all the disks. The
two techniques of organizing multiple pro-
cessors and the two techniques of organiz-
ing disks are combined to give rise to four
distinct system structures. The tightly cou-
pled multiprocessor organization and the
shared database organization results in a
system structure that is called a tightly
coupled system with a shared database. 'The
loosely coupled multiprocessor organiza-
tion gives rise to three other system struc-
tures. When a database is split into N par-
titions and each partition is stored in one
set of disks assigned to one of N processors,
the resulting system structure is called a
loosely coupled multiprocessor with a par-
titioned database. When each of N proces-
sors can directly access the entire database,
stored in one set of disks, the system struc-
ture is called a loosely coupled multiproces-
sor with a shared database. When an entire
database is replicated in each set of disk
volumes attached to each of N processors,
and each processor computes the same user
request in parallel, the resulting structure
is called a loosely coupled multiprocessor
with redundant computation.
The Tandem NonStop System, the Aur-

agen System 4000, the Stratus Continuous
Processing System, IBM's System D pro-

Computing Surveys, Vol. 16, No. 1, March 1984
t

Highly Available Systems for Database Applications • 75

totype (and its sequel, the Highly Available
Systems project), Bank of America's Dis-
tributive Computing Facility, and AT&T's
Stored Program Controlled Network are
loosely coupled multiprocessors with par-
titioned databases. In this architecture, a
database manager residing in each proces-
sor owns and manages the partition of the
database assigned to that processor. Any
user request (transaction) that requires ac-
cess to more than one database partition is
satisfied by message communication among
the database managers that own the nec-
essary partitions. Communication over-
head is the single most significant disad-
vantage of the loosely coupled system with
a partitioned database. There are two as-
pects to this interprocess(or) communica-
tion overhead: One is the messages sending
requests to servers and receiving results
from servers; another aspect is the mes-
sages and processing involved in the dis-
tributed commit protocol that ensures that
the database, which is distributed across
processors, is left in a globally consistent
state when the transaction completes or
aborts.

Some variation of the two-phase commit
protocol described by Gray is used in com-
mitting or aborting a distributed transac-
tion [Gray 1978]. One of the participating
transaction managers is designated as the
commit coordinator. During phase 1, the
commit coordinator sends a "prepare to
commit" message to all other participants.
The participants reply with "yes" or "no"
messages to the coordinator and enter
phase 2. If the coordinator receives "yes"
votes from all participants, it sends a "com-
mit" message to all participants. If any
participant replied with a "no" vote, the
coordinator sends an "abort" message to all
the participants. During phase 1 all partic-
ipants retain the right to unilaterally abort
the transaction. However, once they enter
phase 2, they no longer can unilaterally
abort the transaction; they must obey the
decision of the commit coordinator.

Loosely coupled multiprocessor systems
with shared database architecture, such as
GE's MARK III Cluster File System, Com-
puter Consoles' Power System, and IBM's
AMOEBA research project [Traiger 1983],
offer a potentially enhanced availability

over a tightly coupled multiprocessor sys-
tem, since the operating system is not
shared among the processors. One disad-
vantage, however, is the lack of a single-
system image; that is, system operators and
system programmers must contend with
multiple copies of the operating system.
One important advantage of this architec-
ture over a loosely coupled multiprocessor
system with a partitioned database is that
it avoids the difficult problem of deciding
which partition of the database should be
stored in which processors' disks. Proces-
sors may be added to the system without
having to repartition the database, and new
disk drives may be added without having to
worry about which processors should own
them.

However, contention on the shared disks
is a potential problem, with each processor
moving the disk arms to random positions.
Further, algorithms for coordinating the
global locking and logging of database up-
dates must be carefully designed. A global
locking technique in which all database
managers must acquire and release locks
through a single global lock manager will
cause excessive communication overhead
and create a bottleneck for performance
and availability.

Loosely coupled multiprocessor systems
with redundant computation, such as Syn-
trex's GEMINI file server, and SRI's SIFT
(as well as its offspring, the Basic Control-
ler of August Systems, Inc.), achieve fault
tolerance by having more than one task
perform the same computation and then
comparing the results of the computation.
In such applications as spacecraft control
and process control in a nuclear power
plant, correct results of computations are
more critical than is the case in typical
database applications. Further, the com-
putations are well defined, and the results
are often known in advance. For such ap-
plications, it makes sense to have multiple
processors perform the same computations
in order to detect and (even correct) con-
flicting results. But for office word-process-
ing or transaction-processing applications,
this approach may not be desirable.

For applications that require time-con-
suming computations and/or disk accesses,
there tend to be ample opportunities for

Computing Surveys, Voi. 16, No. 1, March 1984

76 • W o n K i m

program checks and machine checks to de-
tect low-level failures, and for time-outs or
defensive coding to detect high-level fail-
ures. Unless the need for error detection
and correction is highly critical, the redun-
dant-computation approach appears to
waste the processing power of the system.
Further, the exchange of data and status
information among the replicated tasks for
each input and output is a considerable
performance overhead.

2. INTUITIVE CRITERIA
FOR HIGH AVAILABILITY

Now we must address the problem of what
is meant by availability. The overall avail-
ability of a system may intuitively be de-
fined as the ratio between the time when
the end user and applications actually have
access to all the database and the time
when the end user and applications require
access to the database. For example, if users
require the system to be up for 8 hours a
day and the system is actually up for 6
hours during the 8 hours, the availability
of the system is 6/8 = .75 during the 8-hour
period.

It is more difficult to precisely define a
single measure of availability. In the first
place, it is not clear how to define the
"mission duration" for the system. In
spacecraft control applications, the mission
duration is clearly defined: While the
spacecraft is in orbit, the system must be
available 24 hours per day. In business data
processing applications, however, the mis-
sion duration can be several years. At what
point in the life of a system, and for how
long, should we measure availability? Dur-
ing one arbitrary month, a year after the
installation of the system?

In the second place, should the entire
database be available for access by author-
ized users during the entire duration? For
example, when a single database partition
becomes inaccessible in a loosely coupled
multiprocessor architecture with a parti-
tioned database, one may take the view that
the system is no longer available. In fact,
this is my view for the purposes of this
paper. However, one may equally well take
the more charitable view that the system is
still largely available, since users may ac-

cess other database partitions and perform
useful work [Good 1983].

Similarly, in a geographically distributed
environment, it is not entirely clear where
to draw the line on availability, for e~:am-
ple, when a node of the system cannot
communicate with another node and con-
sequently cannot access data owned and
managed by the other node.

Very few vendors of the systems that we
are considering have provided availability
figures for public review. Suffice it to say
here that, however one may define it, often
a highly available system is expected to
provide higher than 99 percent overall
availability.

We use the following criteria to classify
a system for database applications as highly
available. The first three are hard criteria
and provide the rationale for including and
excluding detailed discussion of various
systems in this paper. The last two are soft
criteria, satisfied by very few existing sys-
tems and mainly included for future consid-
erations.

(1) The system must support transac-
tion-processing or file server capabilities,
specifically concurrency control and recov-
ery techniques, to maintain database con-
sistency. A distributed database system
must support a distributed commit protocol
to ensure global consistency of the data-
base.

BBN's PLURIBUS [Katsuki et al.
1978], SRI's SIFT design [Wensley et al.
1978], the Basic Controller system now
being marketed by August Systems Inc.
[Kinnucan 1981], and AT&T's No. 1 ESS
and No. 2 ESS [Spencer and Vigihmte
1969] do not satisfy this criterion, and will
not be discussed in detail in the system
survey portion of this paper.

(2) The system must support automatic
takeover of full workload by a backup proc-
ess when a primary process fails. This cri-
terion excludes systems that rely on manual
replacement of failed processors to survive
a single failure.

The problem with the manual replace-
ment approach is that (1) the responsibility
of detecting failure often falls on users or
the operators, and (2) the new processor is
aware of either the database or the termi-

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems for Database Applications • 77

nals and hence applications, and the system
must be cold-started.

Japan National Railways' MARS train
seat reservation system, a loosely coupled
multiprocessor system with a partitioned
database, does not support the concept of
backup processes at the present time [Tsu-
kigi and Hasegawa 1983]. Hence, when the
processor that manages one partition of
the database crashes, no user can access
the database partition until the database
manager that owns it can be restarted. This
system is not given detailed treatment here.

IBM's Information Management System
(IMS) with the data-sharing feature [Strick-
land et al. 1982] is a loosely coupled mul-
tiprocessor system with a shared database,
with an IMS/VS system in two different
processors, each able to access the database
in shared disks. When one IMS/VS
crashes, its terminals lose access to the
database until it can be restarted, and the
surviving IMS/VS is not aware of the
transactions in process on the system that
failed, and hence cannot abort or complete
them. We do not consider this system
highly available.

The Stratus system does not currently
support the concept of primary-backup
processes; however, in view of the great
extent to which the system incorporates
hardware fault tolerance and capabilities
for on-line system reconfiguration, it is
classified as a highly available system.

(3) The system must survive at least a
single failure of such major components as
processor, I/O channel, I/O controller, disk
drives, and interprocessor communication
medium. In particular, a single failure
should not make any part of the database
inaccessible to the users for beyond a rea-
sonable recovery duration. A reasonable re-
covery duration may be I minute for a mini-
and microprocessor system and perhaps 10
minutes for a mainframe, because of the
larger number of terminals and applica-
tions dealt with by a mainframe system.

This criterion does not imply that a sin-
gle point of failure is unacceptable, rather
that when a single point of failure exists, it
must not cause overall availability to suffer.

For example, the Synapse N+I System
has a single point of failure in its shared
main memory, but is designed to recover

quickly and provides high overall availabil-
ity. System D has a single point of failure
in the electronic switch that connects a pair
of processors with the shared disks and
terminals, but the probability of failure of
such a switch is very low and hence does
not severely compromise overall availabil-
ity.

(4) The system should support on-line
integration of repaired or new hardware/
software components. Further, in the case
of a partitioned database, the system
should support on-line migration of the
database from one disk system to another.

(5) Additional features aimed at making
the component failures transparent to the
users may be useful. One is the ability to
automatically restart transactions in prog-
ress when system crash occurs, which may
require the data communication subsystem
to log the transaction request on the disk.
Another is for the interprocessor commu-
nication subsystem to reroute messages
originally targeted to a failed process to its
backup. In view of the fact that transac-
tions in typical business data processing
are short-lived, that is, they complete
within a few seconds, it does not appear
that important to burden a system with
these additional capabilities.

3. LOOSELY COUPLED SYSTEMS
WITH A PARTITIONED DATABASE

This section provides overviews of archi-
tectures and transaction-processing strat-
egies as employed in the Tandem NonStop
System, Auragen System 4000, Stratus/32
Continuous Processing System, AT&T's
Stored Program Controlled Network, Bank
of America's Distributive Computing Facil-
ity, and System D.

It is noted that the Auragen, Stratus,
AT&T, and Bank of America systems are
actually loosely coupled clusters of proces-
sors, in which each cluster consists of two
or more processors and manages one par-
tition of the database. The cluster itself is
not necessarily a loosely coupled multipro-
cessor architecture. Further, the Auragen,
AT&T, and Bank of America systems cur-
rently do not support distributed on-line
transaction processing: User requests are
completely processed within one cluster,

Computing Surveys, Vol. 16, No. 1, March 1984

78 • Won Kim

power
sipply

power

sipply DYNABUS

power
sulply

] I
BUS CONTROL

CPU
MEMORY

I/O CHANNEL

. i ,,

BUS CONTROL
CPU

MEMORY
I/OCHANNEL

CNTL i

CNTL I

I

I i
BUS CONTROL

CPU
MEMORY

I/OCHANNEL

Figure 1. Tandem NonStop system architecture.

without requiring the participation of other
clusters.

3.1 Tandem NonStop System

The NonStop System, developed by Tan-
dem Computers about 1976, has made im-
portant contributions to the area of high
availability [Bartlett 1978; Katzman 1977,
1978]. As shown in Figure 1, each processor
module consists of a central processing unit
(CPU), memory, interface to an interpro-
cessor bus system called Dynabus, and an
I/O channel. Each of the I/O controllers
is connected to two processors via its dual-
port arrangement, and each processor is
connected to all other processors via a dual
Dynabus. Further, as shown in Figure 2,
each processor is connected to a pair of disk
controllers, which in turn maintain a string
of up to four pairs of (optionally) mirrored
disk drives. Mirroring is supported in the
I/O supervisor, which issues two disk writes
for each page of data to be written to the
disk. Thus it is clear that the system pro-
vides many paths to data, and hence the
data are available to the user regardless of
any single failure of a disk drive, disk con-
troller, I/O channel, or processor.

The Tandem system was designed to
continue operation through any single com-
ponent failure, and also to allow the failure
to be repaired without affecting the avail-

ability of the rest of the system. Each pro-
cessor module has a separate power supply,
which can be shut off to replace the failed
module without affecting the rest of the
system. Similarly, each I/O controller is
powered by two power supplies associated
with the two processors to which it is at-
tached, and can be powered down by a
corresponding switch, without affecting the
rest of the system. Thus the I/O controllers
survive a single power failure, and each
I/O controller and processor module can be
repaired without shutting down the rest of
the system.

In order to detect a processor failure in
the Tandem system, each processor broad-
casts an "I-AM-ALIVE" message every 1
second and checks for an "I-AM-ALIVE"
message from every other processor every
2 seconds [Bartlett 1978]. If a processor
decides that another processor has failed to
send the "I-AM-ALIVE" message, it initi-
ates recovery actions, as described later.
Although there is a possibility that differ-
ent processors may reach different deci-
sions as to which processor has crashed,
the single-failure assumption precludes
consideration (and prevention) of such a
possibility.

This "active" failure-detection approach
of the Tandem system helps to detect a
processor failure soon after it occurs. How-
ever, it is not very useful to say that a

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems [or Database Applications • 79

processor "l
i

I processor I

cntl

I

disk

up to
8 disks

disk

I
i

cnt i ~

Figure 2. Tandem NonStop disk subsystem organi-
zation.

processor is "alive" simply because it can
send the "I-AM-ALIVE" message, when
tasks running in it may have crashed. Soft-
ware failures must be detected by message
time-outs.

The operating system that runs on the
Tandem NonStop System is called Guard-
ian. It is constructed of processes that com-
municate by using messages. Guardian pro-
vides high availability of processes by
maintaining a primary-backup pair of pro-
cesses, each in a different processor. The
primary process periodically sends check-
point information to its paired backup
process, so that the backup will stand ready
to take over as soon as the primary process
fails. The checkpoint data from a primary
I/O process contain information about the
files that are opened and closed. The
backup I/O process opens and closes the
checkpointed files while the primary is still
active, so that in the event of failure of the
primary, the backup recovers and proceeds
with normal processing without the time
overhead of opening the files.

An "ownership" bit is associated with
each of the two ports of an I/O controller,
which indicates to each port whether it is
the primary or backup. Only one port is
active for the primary I/O process; the
other is used only in the event of a path
failure to the primary port, and any attempt
to access data through the backup port is
rejected. Upon detecting or being notified
of the failure of the primary process, the

backup process instructs Guardian to issue

a TAKE OWNERSHIP command to the
backup port. This command causes the
I/O controller to swap its two ownership
bits and do a controller reset.

The database/transaction manager that
runs on the Tandem system is called EN-
COMPASS [Borr 1981]. ENCOMPASS
consists of four functional components: a

database manager, a terminal manager, a
transaction manager, and a distributed
transaction manager. The ENCOMPASS
database manager is implemented as a pri-
mary/backup I/O process (called the DISC-
PROCESS) pair per disk volume. In other
words, a primary database manager in one
processor and its backup in another pro-
cessor own the partition of the database
stored in the disk volume to which the two
processors are connected. The primary da-
tabase manager checkpoints to the backup,
so that if the primary fails before complet-
ing a transaction, the backup may take over
the disk volume and redo committed trans-
actions and abort incomplete ones.

To run transactions against the database,
the user provides two sets of programs: the
Screen COBOL program and application
server programs. The Screen COBOL pro-
gram performs screen formatting and se-
quencing, data mapping, and field valida-
tion, and sends transaction requests to
application server programs. The applica-
tion server programs perform application
functions against the database by invoking
the database manager, the DISCPRO-
CESS.

The Screen COBOL program is inter-
preted by the terminal management com-
ponent of ENCOMPASS, called Terminal
Control Process (TCP). TCP is also config-
ured as a process pair; the primary TCP
checkpoints the backup TCP with data ex-
tracted by the Screen COBOL program
from input screens.

The transaction management compo-
nent of ENCOMPASS, which implements
the conventional model of transactions, is
called Transaction Monitoring Facility
(TMF). TMF consists of a lock manager, a
log manager (called the AUDITPRO-
CESS), and a recovery manager (called the
BACKOUTPROCESS) to provide concur-
rency control and recovery of interleaved

Computing Surveys, Vol. 16; No, 1, March 1984

80 • Won Kim

execution of concurrent transactions. The
user's Screen COBOL program interfaces
with TMF to indicate the beginning and
end of a transaction. The Screen COBOL
program receives a transaction identifi-
cation from TMF at the beginning of a
transaction, and attaches the transaction
identification to all transaction request
messages that it sends to the application
server programs. When the Screen COBOL
program notifies end of transaction, TMF
initiates a transaction commit protocol to
complete the transaction and make the ef-
fect of the transaction permanent. TMF
does not support a global deadlock detec-
tion mechanism; deadlocks are detected by
time-out, where the time limit is specified
as part of lock requests.

3.2 AT&T's Stored Program
Controlled Network

AT&T's Stored Program Controlled (SPC)
Network [Cohen et al. 1983] consists of two
key components: the Network Control
Point (NCP) and the Action Point (ACP),
as shown in Figure 3. The NCP is a data-
base system which manages a database of
customer records that is geographically dis-
tributed over a network of computers inter-
connected by the Common Channel Inter-
office Signaling (CCIS) network. The ACP
is a telephone call processing system, and
is a highly reliable No. 4 ESS.

When a call is made to a customer of the
expanded 800 services or Direct Services
Dialing Capability (DSDC) services, the
call is routed to an ACP. The ACP trans-
mits the request to an NCP, which main-
tains the customer record. The NCP re-
turns the response to the ACP, which in
turn routes the call according to the re-
sponse from the NCP. An administrative
system called the User Support System
(USS) is used to insert new customer rec-
ords and update existing ones. The USS
sends records to be inserted or updated
through the Operations Support Network
(OSN).

This system may require several NCPs,
according to NCP capacity, performance
requirements and market forecasts. The
database is partitioned and each partition
is assigned to two NCPs, one primary and

c a l l e r

primary

CCIS

OSN

I

s t a n d b y

I

terminals

Figure 3. AT&T's Stored Program Controlled Net-
work.

one backup, for call processing. A database
partition is replicated in an NCP and its
backup. One NCP may be a backup to
another NCP with respect to one database
partition, and a primary to that NCP with
respect to another partition of the database.
When a primary NCP fails and there are
insufficient data at the site to restore its
operation, its backup takes over while con-
tinuing to function as the primary for an-
other database partition.

Each NCP is constructed using a 3B-20D
processor [Mitze et al. 1983]. A 3B-20D
consists of two identical processors: One
component processor is active and the
other is a standby at any given time. Each
has its own main memory and control unit.
Further, both processors share all the disks,
and each processor has indirect access to
the main memory of the other.

During normal operation, the active
processor updates the main memory of the
standby processor, which is ready at all
times to take over if the primary should
fail. At each NCP, the I/O channel, disk
controller, and links to its standby NCP
are duplicated. Further, the database par-
tition managed by an NCP is quadrupli-
cated, and stored in four separate sets of
disk drives connected to the 3B-20D. The
standby NCP in turn keeps four copies of
the database partition.

For a customer record to be updated un-
der normal conditions, a transaction is sent
to the primary NCP with which the record
is associated. The primary NCP checks the

Computing Surveys, Vol. 16, No. 1, March 1984

I

Highly Available Systems for Database Applications

intermodule links 1

MHP

Figure 4.

cnt I

line
cnt I

intramodule link

disk
cnt 1

disk •
cnt I

A module of Bank of America's DCF.

81

transaction for consistency and authoriza-
tion; if it is valid, the primary NCP logs the
transaction on the disk and sends an ac-
knowledgment to the user. The primary
NCP makes changes to its database and
sends the update to its backup. The backup
NCP applies the update to its database and
acknowledges the primary, at which point
the primary inserts a record in the trans-
action log and finishes the transaction. In
the event of a network partition, when a
primary NCP is disconnected from its
backup NCP due to failure of the commu-
nication line, the primary updates its da-
tabase without requiring agreement from
its backup, but maintains a special history
log of database changes, which it sends to
its backup when communication is re-
stored.

3.3 Bank of America's Distributive
Computing Facility

Bank of America developed the Distribu-
tive Computing Facility (DCF) around 1978
to automate teller functions for customer
checking and savings accounts [Good
1983]. By leased lines, branch offices access
a customer accounts database in two data
centers in Los Angeles and San Francisco.
Each data center houses a DCF cluster,
which consists of eight DCF modules inter-
connected by a local-area network. Each

DCF module is a local-area network of four
GA16/440 minicomputers, which manages
one partition of the customer accounts da-
tabase. Two of the four processors in a DCF
module are communications front ends
called Message Handling Processors
(MHP). The other two are database back
ends called File Management Transaction
Processors (FMTP). The four processors
communicate via a bus called the intramod-
ule link.

As shown in Figure 4, each module is
configured such that, under normal opera-
tion, each M H P is paired with one FMTP
to operate on half the module's lines and
database. When one M H P fails, the other
takes control of all the lines. When one
F M T P fails, the other takes control of the
entire database of the module.

The DCF uses a simple scheme for de-
tecting processor failures. Each processor
has a watchdog timer, which it periodically
resets. If the timer is not reset on schedule,
the DCF module shuts the processor down
and notifies the peer processor to assume
full work load. When an M H P times out
on a transaction request to an FMTP, it
assumes that the F M T P is dead and starts
sending subsequent transactions to the
other FMTP. The transaction messages are
not logged, and so any transaction in prog-
ress on a failed M H P or F M T P is lost.

Computing Surveys, V0L 16, No. 1, March 1984

82 • Won Kim

i CPU

Memory - -
Memory-

C o n t r o 1 l e r

D i s k
C o n t r o l l e r

Commun- I
icat ions

Cont ro i Ier

Tape
Controller

StrataLINK
Bus

C o n t r o l l e r

I
StrataLINK Bus

Figure 5.

[cPu I
Memory
Memory-

control ler

Disk
Controller

Commun-
ications I

Controller I

StrataLINK
Bus

J Controller

,, I
StrataLINK Bus

A Processing Module of Stratus/32.

3.4 Stratus/32 Continuous
Processing System

The Stratus/32 Continuous Processing
System [Kastner 1983; Stratus 1982] con-
sists of 1-32 Processing Modules, where
each Processing Module consists of dupli-
cated CPU, memory, controller, and I/O as
shown in Figure 5. The memory may be
configured to be redundant or nonredun-
dant, as the two memory subsystems are
not paired with the two CPUs. In a redun-
dant configuration, the CPUs read from
and write to both memory subsystems si-
multaneously; in a nonredundant configu-
ration, each memory subsystem becomes
an independent unit and the memory ca-
pacity is doubled. Each Processing Module
has duplicated power supplies. The Pro-
cessing Modules are connected through a
dual-bus system called the StrataLINK.

Computing Surveys, Vol. 16, No. 1, March 1984

The duplicated components (CPU and
controllers) of a Processing Module each
perform the same computation in parallel.
Each component (board), in turn, consists
of two identical sets of hardware compo-
nents on the same board. As shown in
Figure 6 for a disk controller, a hardware
logic compares the results of the computa-
tion by the duplicated boards. If the results
are identical, they are sent to the bus or
device. Otherwise, the results are not sent,
the board is automatically disabled, and an
interrupt signal is sent to the Stratus VOS
operating system. However, processing
continues with the duplexed board of the
Processing Module.

All detected hardware malfunctions are
reported to a maintenance software, which
determines the cause and nature of the
malfunction. The board is automatically
restarted if the malfunction was caused by

Highly Available Systems for Database Applications

I L° ' ic I

Disk-Cont ro i
Logic I

Disk-Control
Logic

Bus A
Bus B

Figure 6. Self-checking disk controller in a Stratus/32.

• 8 3

a transient error, whereas permanent errors
result in the board remaining out of service
and a report being sent to an operator
terminal.

The Stratus system supports optional
mirroring of disk volumes. It also allows
on-line removal and replacement'of all du-
plexed boards and associated peripheral de-
vices; in particular, it allows on-line inte-
gration of a new Processing Module. When
a duplexed component is replaced, the new
component is automatically brought to the
same state as its partner. For example, the
second disk in a dual-disk system is brought
up-to-date while the first disk is used for
normal processing. The VOS operating sys-
tem accomplishes this by writing new
blocks of pages to both disks and copying
blocks from the first disk to the second
concurrently with normal processing.

Further, the Stratus system allows the
memory subsystems to be dynamically re-
configured to redundant or nonredundant
mode, without taking the Processing Mod-
ule off line.

The Stratus system supports transaction
processing by providing a Transaction
Processing Facility (TPF), VOS File Sys-
tem, the StrataNET network communica-
tions subsystem, and a Forms Management

Facility. The system does not currently
support a database management system;
TPF invokes the File System to manipulate
the database. TPF supports a two-phase
commit protocol for on-line distributed
transaction processing.

The Stratus system's continuous com-
parison of the results of computation from
duplicated hardware components on the
same board significantly reduces the prob-
ability of a hardware-induced error from
propagating and corr~apting the system and
data integrity, provided that the hardware
that compares the results does not mal-
function. Further, the Stratus hardware
and operating system provide protection
against some system crashes induced by
software errors, such as attempts by one
user's program to cross another user's ad-
dress space, to read or write into the oper-
ating system, to write into executable code,
or to execute data.

The Stratus system does not currently
support the concept of a backup subsystem,
and hence applications running on Stratus
may not survive software-induced crashes.
The Stratus fault-tolerance philosophy is
based on the view that the hardware can
detect errors and automatically shut down
a malfunctioning component while an iden-

ComputlngSm~eys, Voi. 16, No. 1, March 1984

.... i ~ o ~ ~ ~T~ o~? . ~

84 • W o n K i m

tical component operating in parallel con-
tinues to function, thus ensuring database
integrity and providing continuous process-
ing of user requests. In my opinion, this
approach does not safeguard the system
against crashes induced by a class of errors
that even the most sophisticated operating
systems cannot cope with. For instance,
IBM's System/370 and its Multiple Virtual
System (MVS) operating system [IBM
1979] provide extensive measures to detect
hardware and software failures and to re-
pair and recover from them. Yet, applica-
tions running on MVS, and MVS itself, do
occasionally crash, usually as a result of
software failures.

3.5 Auragen System 4000

The Auragen System 4000, developed at
Auragen Systems Corp., New Jersey, con-
sists of 2-32 clusters of tightly coupled
multimicroprocessors interconnected by a
dual-bus system [Gostanian 1983]. Each
cluster consists of three MC68000s, its own
local memory, several types of I/O control-
lers, power supply, and battery backup. One
of the 68000s is used exclusively to execute
the operating system, whereas the other
two are used to execute user tasks. Each
cluster periodically broadcasts an "I-AM-
ALIVE" message to detect failure of other
clusters; the time-out mechanism is used to
detect process failures. All peripheral de-
vices are dual ported and are attached to
two different clusters. The Auragen system
allows disks to be configured in mirrored
pairs, and mirroring may be specified on a
file basis.

The Auragen database system, called
AURELATE, is based on the ORACLE
relational database system [Weiss 1980].
As in the Tandem system, Auragen 4000
supports a primary-backup pair of pro-
cesses, implemented within the AUROS
operating system, which is an enhanced
version of UNIX III. To reduce the number
of checkpoint messages, the AUROS oper-
ating system sends a collection of transac-
tion messages to both the primary and the
backup. After the primary has processed a
predetermined number of these transaction
messages, the backup is notified to process
the checkpoint message. Once the backup

finishes processing the checkpoint mes-
sage, it is removed from the message queue.

The Auragen system's current recovery
technique is based on the roll-forward ap-
proach. When the backup takes over for
the primary, it begins execution at the last
point of synchronization with the primary.
That is, it begins with the last checkpoint
message in its message queue. A technique
has been proposed that does not allow the
backup to redo work that already may have
been done by the primary before the crash
[Gostanian 1983].

The recovery technique requires an undo
log to allow transaction abort. However, a
redo log is optional and is used for recovery
from a single disk crash, when disk mirror-
ing is not used. Since a backup process will
redo in-progress transactions, Auragen's
proposal for commit processing does not
call for the Write-Ahead Log protocol.
However, this leaves the system unpro-
tected from simultaneous failures of both
the primary and backup processes.

3.6 System D Prototype

System D is a distributed transaction-pro-
cessing system designed and prototyped at
IBM Research, San Jose, as a vehicle for
research into availability and incremental
growth of a locally distributed network of
computers [Andler et al. 1982]. The system
was implemented on a network of Series/1
minicomputers interconnected with an in-
sertion ring, and was the predecessor to the
Highly Available Systems project currently
under way at IBM Research, San Jose [Ag-
hili et al. 1983; Kim 1982]. Although Sys-
tem D is not itself a highly available system,
its rather novel transaction-processing and
failure-diagnosis strategies warrant discus-
sion here.

The System D transaction-processing
software consists of three distinct types of
modules: application, data manager, and
storage manager modules. A module is a
function that exists in a node and may
consist of one or more processes called
agents. The application module, called A,
provides user interfaces for interactive
users or application programmers. The data
manager module, called D, transforms the
record-level requests from the A module to

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems for Database Applications

I Processor I I Processor [

Figure 7. Processor pair in System D.

• 8 5

page-level requests for the storage module.
All the changes made by an application are
kept locally in the data manager module,
which sends them to the storage manager
only when the application commits the data
changes to stable storage. The storage man-
ager module, called S, supports multiple
concurrent transactions against the physi-
cal database and database recovery from
failures.

As shown in Figure 7, terminals and
shared disks are connected to a pair of
processors through an electronic switch,
called a Two-Channel Switch (TCS). Only
one of the processors has access to the
shared disks and terminals at any given
time. The processor periodically resets the
timer in the TCS; if this does not occur on
schedule, the TCS switches the shared
disks and terminals over to the other pro-
cessor. Thus, rather than requiring the pro-
cessors to communicate with each other,
System D gives the TCS the task of detect-
ing the failure of a processor. Moreover, the
TCS prevents a processor that is declared
dead from writing to the disk.

System D provides a software subsystem
called the Resource Manager (RM), which
is responsible for diagnosing and taking
appropriate actions to recover from the fail-
ures of modules and agents. The basic
premise of its design is that the time-out
mechanism detects all failures, including
deadlock, agent or module crash, commu-
nication medium failure, or processor fail-
ure. Failures are detected only when service
requests are sent.

Rather than the Tandem-like notion of
primary and backup processes, System D

supports multiple agents of a module run-
ning in the same processor. The Resource
Manager attempts to bring down and re-
start failed agents, while normal service
requests are handled by other agents. In
the event of a processor failure, agents are
brought up in the backup processor and all
transactions in progress are aborted. The
initial program load (IPL) of a low-end
processor normally takes under 1 minute,
which was considered a reasonable recovery
duration, and System D was designed to
avoid the overhead of maintaining synchro-
nized pairs of primary and backup pro-
cesses.

The failure-diagnosis logic described be-
low was necessary because of the inade-
quate failure-detection capabilities of the
operating system on which System D ran.
The RM attempts to diagnose the problem
by first attempting to establish communi-
cation with the node in which the agent is
running. If the response is positive, the
RM issues an "ABORT,TRANSACTION"
command to the agent. The rationale here
is that the service-request message may
have experienced a data- or timing-depend-
ent error that may not recur if the trans-
action is aborted and resubmitted. Success-
ful processing of the "ABORT_TRANS-
ACTION" command also indicates that the
agent involved probably has not crashed.

If the transaction cannot be aborted, the
RM attempts to bring down and restart the
agent, since the code ore the control struc-
ture of the agent may have been destroyed.
If the agent cannot be brought down, the
RM attempts to shut down and restart the
module itself, since the control structures

Computing Surveys, Vol. 16, No. 1, Ma~ch 1984

86 • W o n K i m

shared by the agents of the module may
have crashed. If the RM fails to shut down
and restart the module, probably the re-
mote RM or the operating system has
crashed, in which case an IPL must be
executed remotely for the node in question.

Now, if the RM fails to establish com-
munication with the node in which the
resource resides or if the remote IPL was
not successful, it will try to communicate
with the RM in the backup node of the
resource, since the TCS has probably
switched. If the TCS has not switched over,
the RM attempts to remotely execute an
IPL for the node in which the resource
resides. The reason is that initially it may
have failed to communicate with the RM
in that node because the RM, the CSS, or
the operating system in that node may have
crashed.

The standard two-phase commit protocol
allows each node to unilaterally abort the
transaction as long as the commit protocol
has not entered the second phase. The de-
sign of System D recognizes that this priv-
ilege, often called site autonomy, is not so
important in a locally distributed environ-
ment, and implements a different commit
protocol [Andler et al. 1982]. In a sense,
the System D protocol requires just a single
phase and as soon as the commit coordi-
nator decides to commit; no other node may
abort the transaction.

In System D, actual updates to the da-
tabase are not made until the transaction
commits. At transaction commit, the trans-
action's log, maintained by the D module,
is sent to the S module that is designated
the commit coordinator, the first S module
that receives page request from the D mod-
ule. The commit coordinator writes the log
to the disk and acknowledges the D module.
The D module then sends "commit" mes-
sages to the other participating S modules.
Each participant writes its log to the disk
and then makes database changes.

The recovery procedure for this commit
protocol is as follows. Upon restart, an S
module re-DOes the changes in its local
transaction log. The module then requests
complete logs from any commit coordina-
tors for transactions that are known to
them but unknown to the recovering rood-

ule, and runs these transactions serially in
any order.

4. TIGHTLY COUPLED SYSTEMS

WITH A SHARED DATABASE

The Synapse N+I Computer System is an
on-line transaction-processing system, de-
veloped by Synapse Computer Corporation
[Jones 1983], which provides a dual path
from a processor to the database stored in
secondary storage devices. As Figure 8
shows, Synapse N+I is a tightly coupled
multiprocessor system with shared mem-
ory, in which processing is divided between
general-purpose processors (GPP) and I/O
processors (IOP), each of which is based on
the Motorola 68000. Currently, up to 28
processors may be attached to a dual-bus
system called the Synapse Expansion Bus.

GPPs execute user programs and most of
the Synapse's Synthesis operating system
from the shared memory. IOPs each man-
age up to 16 I/O controllers or communi-
cations subsystems. IOPs have direct mem-
ory access (DMA) capability to the shared
main memory, but execute part of Synthe-
sis from their own local memory. The Ad-
vanced Communications Subsystem (ACS)
is a 68000-based communications control-
ler, and the Multiple-Purpose Controller
(MPC) is a controller for various devices.
Whereas the Tandem NonStop system
powers each processor with a separate
power supply, the entire Synapse N+I is
powered by one set of duplicated power
supplies.

Synapse enhances availability simply by
having one additional processor, disk con-
troller, and disk drive than what is neces-
sary for satisfactory performance. This ex-
tra component is not an idle backup; it is
used for normal transaction processing.
When a component fails, the system some-
times has to restart, and reconfigure itself
without the failed component.

The Synapse system also supports mir-
roring of disks. Mirroring is supported in
the IOP, where two disk writes are issued
for each page of data to be written to the
disk. It is interesting that the Synapse sys-
tem allows mirroring of disks on a logical
volume basis, rather than physical volume.

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems for Database Applications

up t o 16 Mbytes o f s h a r e d main memory

shared shared shared [

l memory memory memory

I I I I
I I I

up to 28 processors

up to 16
adapters
per lOP

• •

up to
8 disks

up to 16
comm. lines

up to 16
comm. lines

Figure 8. Synapse N+I System architecture.

• 8 7

A logical volume may be all or part of a
physical volume. Mirroring a logical vol-
ume is more flexible than mirroring a phys-
ical volume; for example, it allows storage
on the same physical volume of a separate
database that does not require high availa-
bility (and its associated overhead)•

Synapse N + I supports recoverable
transactions using the Write-Ahead Log
protocol. The Synapse database manager is
a relational system. Further, the database
may be migrated from one physical disk
volume to another and may undergo struc-
tural changes without taking the applica-
tions off line.

The Synthesis operating system incor-
porates various techniques to optimize the
performance of production transaction-
processing systems. One is the placement
of its database system directly above the
kernel of Synthesis, rather than on top of
the file system as has been the case with
most database systems. The reason for this

decision was to reduce the overhead asso-
ciated with I/O requests from the database
system to the operating system, both to
retrieve data from disk, and to store the log
of database changes after transaction pro-
cessing.

An interesting side benefit of this ap-
proach is that higher levels of the Synthesis
operating system can use the capabilities of
the database system to query and manipu-
late data about operating system objects,
such as files and devices. In particular, a
higher level of the Synthesis operating sys-
tem, called the transaction-processing do-
main, records the state of currently active
applications in the database. An applica-
tion consists of a number of programs; each
program takes as input a screenful of infor-
mation, processes it, and outputs a screen.
The state information of an active appli-
cation consists of a user identification, the
identification of the current screen, the
contents of its variable fields, and the next

Computing Surveys, "Col. 16, No. 1, March 1984

88 • Won Kim

program to execute. During restart follow-
ing a crash, the transaction-processing do-
main creates and dispatches a task for each
terminal using this state information.

Another performance optimization in
Synthesis is the elimination of task-switch
overhead by replacing task switches with
cross-domain (address space) calls. In other
words, each of the domains (layers) of Syn-
thesis has direct addressability to a parti-
tion of the segmented virtual address space,
and a request from a task for an operating
system service is implemented as a jump to
the address space of the server's domain.

In order to reduce contention on the
shared memory, Synapse adopted a caching
scheme in which modifications to the cache
in each GPP are not written through (to
the shared memory), and fetch requests for
the portion of the shared memory read and
modified by another GPP in its cache are
resolved between the processors.

The Synapse system has implemented
failure detection, reconfiguration, and re-
start procedures in a read-only memory
(ROM). Its failure detection distinguishes
two classes of failures: process-fatal failure
and system-fatal failure. A process-fatal
failure causes the process and its associated
transaction to be aborted and restarted,
whereas a system-fatal failure results in a
restart of the entire system.

The kernel of the operating system is
capable of recognizing any failures caused
by internal machine checks and is respon-
sible for initiating the reconfiguration and
restart of the system. In particular, it acti-
vates self-test code to verify whether each
major hardware component is operational.
After any failed components are configured
out of the system, each domain (layer) of
the operating system is reinitialized. Since
the database system is a layer directly
above the kernal operating system, trans-
action restart and recovery take place at
this time.

Since the processing is divided between
the GPPs and IOPs, and the IOPs run part
of the operating system from their own
local memories, the risk of total system
failure due to corruption of the operating
system is somewhat reduced. However, as
long as the GPPs execute most of the op-
erating system out of shared main memory,

this risk is still present. This problem can-
not be resolved even if shared memory is
made redundant. Synapse N+I does not
support a redundant shared memory.

5. LOOSELY COUPLED MULTIPROCESSOR
SYSTEM WITH A SHARED DATABASE

General Electric's MARK III Cluster File
System and Computer Consoles' Power
System use the loosely coupled multi-
processor architecture, in which each pro-
cessor may access any of the disks. The
AMOEBA project [Traiger 1983] at IBM
Research, San Jose, also uses the same
architecture, but is still in the research
stage.

5.1 GE MARK I I I

MARK III is a time-sharing system devel-
oped by the Information Services Business
Division of General Electric to provide its
customers with local-call access to MARK
III computing capabilities [Weston 1978].
The primary objectives of the system were
high availability, reliability, and maintain-
ability. Three supercenters (computing
centers), located in Ohio, Maryland, and
Amsterdam, provide computing power to
the users. The computing facilities at a
supercenter typically consist of front-end
processors, MARK III foreground proces-
sors, and MARK III background proces-
sors, as shown in Figure 9.

The front-end processors are network
front-end processors (central concentra-
tors). The foreground processors support
interactive users, whereas the background
processors provide batch-processing capa-
bilities. The foreground and background
processors are interconnected via a Bus
Adapter, which allows job and file move-
ment between the foreground and back-
ground systems.

The Bus Adapter consists of a micro-
processor, programmable read-only mem-
ory (PROM) control memory, and channel
interfaces to the background systems. The
microprocessor polls each of the channel
interfaces for data transfer requests; each
request is fully processed before the next
request is serviced.

In 1975 GE developed new software to
allow a single foreground processor of the

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems [or Database Applications

Front End Communications Processors

4020 4020 40 0

I I
RK III Foreground Processors

IH'sl I "1 6080 6080 60 ,0

BUS ADAPTER J

MARK III Background Processors

Figure 9. GE's MARK III Cluster File System architecture.

89

I GEPAC [
4020

6080

I

MARK III system to access more than one
disk system at a time. This new system,
called the Cluster File System, controls
concurrent access to multiple-disk systems
from multiple foreground processors by
maintaining the access-conflict tables in
one stable memory device accessible to all
foreground processors. The Scratch Pad
(SPAD) was developed to provide the high
reliability, nonvolatility, and fast access
time that such a memory device requires.
All data transfers to and from the disk
systems take place over normal I/O chan-
nels, but access-control decisions are made
through use of the access tables in the
SPAD.

Since the SPAD is the central point
through which all requests are funneled, it
was built with redundancy to prevent total
failure of the cluster system resulting from
the SPAD and Bus Adapter failure. As
shown in Figure 10, the MARK III Cluster
File System has two Bus Adapters, primary
and secondary. Each foreground processor
has access paths to both Bus Adapters. The
memory and devices in SPAD dedicated to
each disk system are themselves duplicated.
Each of the Bus Adapters can access both
the primary and backup elements of SPAD.
The Bus Adapter was augmented to sup-
port the functions of, and dual access paths
to, the SPAD, and the microcode in the
Bus Adapter does dual read and write to
the SPAD memory.

The SPAD contains 16 memory and logic
devices (8 primary and 8 backup), each for
a separate disk system. The Maryland su-
percenter supports seven disk systems.
Each device contains the access-conflict ta-
ble, which indicates whether a particular
file in a disk system is in use and if so
whether the file is sharable by other users.

One device, called the Cluster Control
device (CLUSCON), is used for such global
functions as processor status and recovery
status. Each foreground processor periodi-
cally places its status in CLUSCON and
checks to see if any other foreground pro-
cessor has failed to do so in the previous
interval. If it finds that another processor
failed to update its status, it proceeds to
clean up all resources belonging to the
failed processor.

The MARK III Cluster File System is
protected from single failures by redun-
dancy in the interconnections between the
front-end and foreground processors and
between the foreground and background
processors. The front-end processors (net-
work central concentrators) are connected
to remote concentrators, to which user ter-
minals are connected. The connection be-
tween the central concentrators and remote
concentrators is accomplished via redun-
dant network-switching computers.

An obvious drawback of the MARK III
Cluster File System is that the SPAD may
become a performance bottleneck, espe-

Computing Surveys, Vol. 16, No. 1, March 1984

90 • Won Kim

MARK III Foreground Processors

primary
bus

adapter

backup
bus

adapter

L i% I I I I

SPAD SPAD

devices 0-3 devices 4-7

Figure 10. Redundancy in the Bus Adapter and
SPAD.

cially with an expanded system, since each
front-end processor must access it before
accessing a shared file.

5.2 Computer Consoles' Power System

The Power Series systems have been de-
veloped at Computer Consoles, Inc., Roch-
ester, New York [West et al. 1983]. The
system is based on Motorola 68000s, and
consists of a number of application pro-
cessors and two coordination processors
with front-end processors. The processors
communicate via a dual-bus system called
the Data Highway, as shown in Figure 11.

Each application processor (AP) is di-
rectly connected to all disks, and independ-
ently executes different user applications
in parallel. The interprocessor coordina-
tion controllers (ICC) synchronize global
operations among the APs, which consist
mostly of lock requests to gain access to the
shared database and system status changes
due to reconfiguration. At any given time,
one ICC is active and the other is a standby.
The standby ICC is the only idle compo-
nent of the system. The front-end proces-
sors (FEP) perform screen formatting, dis-
tribute transactions to APs, receive replies
from APs, and assist in recovery from some
system failures. Further, FEPs attempt to
balance the load on the APs by distributing
the transactions to the APs on the basis of
application configuration and flow control
information.

Unlike many systems that implement
transaction management on top of a gen-
eral-purpose operating system, the Power
System combines process management and
transaction management into its PERPOS
operating system. The PERPOS operating
system supports a number of features to
enhance performance of critical applica-
tions. To allow concurrent execution of
transactions with different response re-
quirements, it provides facilities to fix crit-
ical applications in memory and run them
before other applications.

Since the database manager in each AP
can access the entire database, the Power
System only needs the standard concur-
rency control and recovery techniques used
for a central database. In particular, it does
not need the coordinated commit protocol
required by loosely coupled multiprocessors
with partitioned databases.

Transaction recovery is done in a
straightforward manner. The AP that re-
ceives the transaction from the FEP logs
the transaction on the disk. When the FEP
detects that the AP crashed, it requests
another AP to abort the transaction and
restart it from the log of the failed AP.

As in other systems, interprocessor mes-
sage time-outs are used to detect processor
failures. In addition, the primary ICC pe-
riodically polls the APs and FEPs to detect
failures of processors that do not happen
to be in communication with other proces-
sors. The ICC supports on-line system re-
configuration after a disk crash and on-line
integration of new or repaired disks.

The primary ICC does not keep the
standby up-to-date on the global lock table
and the system configuration information.
Rather, when the primary ICC fails, the
standby requests status and lock informa-
tion from all the APs and reconstructs the
global lock table.

In order to reduce the communication
overhead resulting from lock requests to
the ICC, the system distinguishes shared
files and nonshared files. When an AP
opens a file for the first time, it considers
the file nonshared, and does not make a
lock request to the global lock manager in
the ICC. When an AP opens a file currently
owned by another AP, that file becomes a

Computing Surveys, Vol 16, No. 1, March 1984

Highly Available Systems for Database Applications

I

to terminals and other systems

~
Data Highway~

] i] I I I

Figure 11. Power System architecture.

• 9 1

shared file under the jurisdiction of the
global lock manager.

One potential drawback of the Power
System architecture is that, as the number
of APs increases, the ICCs may become a
performance bot t leneck. Further , the
Power System's performance may be en-
hanced by generalizing its locking tech-
nique to the lock hierarchy technique sim-
ilar to that found in IMS/VS [Strickland
et al. 1982]. In this scheme, the database is
logically partitioned, with each partition
assigned to a different data manager that
can acquire and release locks on data ob-
jects within its partition. The data manager
consults the global lock manager only when
it must lock and unlock objects outside its
partition. This strategy potentially allows
transfer of updated data pages from the
buffer pool of one partition's data manager
to another data manager. Traiger [1983]
speculates on this in more detail.

6. REDUNDANT COMPUTATION SYSTEMS:
SYNTREX'S GEMINI FILE SERVER

GEMINI is a file server developed by Syn-
trex, Inc., with the objective of uninter-
rupted operation, without backup, in the
event of a single failure of any hardware or
software component [Cohen et al. 1982].

Up to 14 workstations (word-processing
terminals) connected to a GEMINI file
server on a local-area network can share
files and printers. A GEMINI system may
be connected to other GEMINI systems
through an Ethernet-like network.

As shown in Figure 12, GEMINI consists
of two identical halves. Each half has the
Aquarius interface (AI), a disk controller
(DC), and a shared memory (SM), as well
as a secondary storage system. The AI is a
communications subsystem, implemented
on an Intel 8088 microprocessor, that op-
erates between GEMINI and the worksta-
tions, and between the AIs in each half.
The DC, implemented on an Intel 8086,
provides file storage and management for
the workstations. Communication between
an AI and a DC takes place through the
shared memory (SM).

The two halves of GEMINI perform
identical computations. Each half receives
the same request from the workstations and
retrieves and updates files in its secondary
storage. When both halves are operational,
one is designated the master and the other
the slave. The only difference between
them is that only the results from the mas-
ter are returned to the workstations.

Each half continuously monitors the
well-being of the other half. When one half

Computing Surveys, Vol. 16, No. 1, March 1984

92 Won Kim

f

I
AI

I

AI

U q

Figure 12. Syntrex's GEMINI file server architecture.

crashes, it is powered off and the other half
continues as the master. While one half is
down, its secondary storage system be-
comes out of date; when it is repaired, a
utility is run to bring its secondary storage
system up-to-date. The active system is
suspended until copying is completed. Thus
GEMINI does not support on-line reinte-
gration of repaired components.

A time-out mechanism is used in the
communication between the AIs of GEM-
INI and the workstations. If the worksta-
tion times out on its request, it retransmits
the request; if GEMINI times out, it goes
to receive mode and waits for the worksta-
tion to time out and retransmit the request.
This means that the workstation time-out
value is longer than the GEMINI time-out.

Another aspect of the reliability meas-
ures incorporated in the AI is the periodic
self-checks, including auditing of input
buffers, checking of the clock, memory
tests, and testing of the DC and the com-
munication link between the AIs. If any
test fails, the AI logs the failure and, if
possible, informs the other AI.

The heart of mutual checking in GEM-
INI is embedded in the AI-AI communi-
cations procedures. The availability and re-
liability of GEMINI critically depends on

the assumption that the disk controllers
(DC) of both halves receive and perform
the same computation, and therefore that
the two secondary storage systems are left
with the same data at the end of computa-
tion. Since it is possible for one AI to re-
ceive a correctly transmitted request while
the other receives the request with a trans-
mission error, the two AIs are required to
exchange status information about the re-
quests that they received. The request is
processed only when both AIs agree that
they received the same request [without a
character redundancy check (CRC) error].

Similarly, the AIs exchange information
about the results of the computation to
verify their correctness. It is possible for
one AI to have completed a computation
before the other is done. In such a situation,
the slow half sends a notice that it is "work-
ing on the request," to prevent the other
half from concluding that it is down. GEM-
INI takes precautions against an infinite
sequence of "I am done" and "I am working
on it" messages between the AIs. Since the
results of computations may be too long,
sometimes only the types of results are
exchanged between the AIs. Therefore it
appears that sometimes GEMINI may not
detect conflicting results generated by the

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems for Database Applications • 93

two AIs. Further, when GEMINI does de-
tect conflicting results, it arbitrarily as-
sumes that the master is correct. A mean-
ingful vote really cannot be taken with less
than three processors.

7. A FRAMEWORK FOR THE MANAGEMENT

OF SYSTEM CONFIGURATION

It is clear from the preceding discussions
that the design of existing systems has been
guided by the single-failure assumption;
that is, these systems can become unavail-
able if a software or hardware component
fails while another related component has
failed. Despite the general success of some
of these systems, notably the Tandem sys-
tem, the single-failure assumption may not
be valid. Future systems may be required
to tolerate multiple concurrent failures.

Most existing systems and those that are
currently being developed are constructed
with mini- and microcomputers. If rela-
tively expensive medium- to high-end pro-
cessors were to be used, it might not be
economically feasible to keep spares around
for use as replacements for malfunctioning
processors. In that case, the mean time to
repair such processors could be relatively
long, increasing the probability that other
subsystems or processors might go down
before the failed processors are repaired.

In addition, the software in most existing
systems was developed from scratch to run
on minicomputers and to support only pro-
spective new customers. Existing database
and operating systems required by medium-
to high-end processors tend to be complex,
and the mean time between failures for
these systems due to software-induced fail-
ures is expected to be shorter than that for
simple transaction-processing systems that
run under relatively simple operating sys-
tems.

If a system is to be continuously opera-
tional, it must guarantee availability not
only during multiple concurrent failures of
software and hardware components, but
also during on-line changes of software and
hardware components and on-line physical
reconfiguration of the database and data-
base backups. The latter problems do not
appear to he properly addressed by most
systems. Syntrex GEMINI, for example,

requires system shutdown when a repaired
processor is reintegrsted into the system,
and in general most systems force applica-
tions off line when the database is physi-
cally reorganized.

An architecture of a distributed software
subsystem that can serve as a framework
for constructing database application sys-
tems to meet most availability require-
ments is outlined in the remainder of this
section. This software subsystem is called
an auditor. The description of the functions
and architecture of the auditor given here
is based largely on my own research. A
design based on this is currently being im-
plemented for the Highly Available Sys-
tems project at IBM Research, San Jose
[Aghili et al. 1983].
An auditor is a framework for total co-

herent management of software and hard-
ware components of a highly available
distributed system. It will serve as the re-
pository of failure reports from various
components of the system and reconfigura-
tion requests from the system operator (for
on-line changes). It will analyze the status
of all resources it manages, and compute
the optimal configuration of the system in
response to multiple concurrent failures of
components and requests for load balanc-
ing. Further, it will initiate system recon-
figuration and monitor its progress in order
to effect mid-course correction of a recon-
figuration that does not succeed, and fi-
nally, it will diagnose a class of failures that
other components fail to recognize.

From the discussions of the survey por-
tion of this paper, it should have become
clear to the reader that most systems pro-
vide many of the functions outlined for the
auditor. All systems discussed support au-
tomatic detection of process and processor
failures, followed by automatic switchover
to a backup or notification to the service
center. Many systems also support on-line
integration of new or repaired software
(process) and hardware components (proc-
essor, I/O controller, disk drives).

However, the implementation of the aud-
itor functions in many systems suffers from
two shortcomings. First, these functions
have often been implemented as a loose
collection of specialized routines, rather
than as a single coherent subsystem. Sec-

Computing Surveys, Vol. 16, No. I, MJrcb 1964

94 • Won Kim

ond, the functions often are implemented
to tolerate only a single failure of the sys-
tem resources; as a result, the systems can-
not. cope with multiple faih]res, even when
they have sufficient hardware redundancy.

Within this framework, one auditor will
reside in each processor, but only one of
the auditors may be designated as the audit
coordinator. As pointed out by Garcia-Mol-
ina [1982], to allow each auditor to initiate
reconfiguration may cause confusion or re-
sult in a less than optimal system configu-
ration, and the notion of the audit coordi-
nator is therefore central to the operation
of the audit mechanism. If the coordinator
crashes, a new coordinator must first be
established, either by an election, as sug-
gested by Garcia-Molina [1982], or by
means of a dynamic succession list to which
all the auditors have previously agreed
[Kim 1982]. A succession list contains the
system-wide unique rank for each auditor
to indicate which subordinate auditor will
take over the responsibilities of the audit
coordinator once the corrent coordinator
crashes. The authenticated version of the
Byzantine consensus protocol proposed by
Dolev and Strong [1982] and the version-
number method discussed by Kim [1982]
are possible techniques to ensure agree-
ment on the succession list in the presence
of failures of communication lines, pro-
cesses, and processors.

The audit coordinator should be respon-
sible for analyzing the states of all other
subordinate auditors, analyzing the reports
and initiating system reconfiguration, the
replacement of failed subsystems or pro-
cessors with their backups, and (re)inte-
gration of repaired (or new) subsystems or
processors. The audit coordinator will also
serve as the arbitrator of conflicting reports
from different auditors, and is responsible
for maintaining a stable configuration da-
tabase which contains information about
the status and physical location of each of
the subsystems.

Such an auditor may be implemented as
a collection of six asynchronous tasks: con-
figuration-database task, audit task, recon-
figuration task, state-report task, diagnose
task, and operator-control task. The task
structure of an auditor and the flow of

control among the auditor tasks are illus-
trated in Figure 13.

The configuration-database task main-
tains a consistent and up-to-date configu-
ration database. All queries and updates to
the configuration database by other auditor
tasks are directed to this task. Changes to
the configuration database are exclusively
handled by the configuration-database task
of the audit coordinator. After each change,
the configuration-database tasks of the
subordinate auditors are given the most
up-to-date copy of the configuration data-
base° Although the configuration database
viewed by a subordinate auditor may be
temporarily out of date, consistency of the
system configuration is not compromised
since critical decisions can only be made b3
the audit coordinator.

The audit task is primarily responsible
for coordinated surveillance of process and
processor failures. The audit task of a sub-
ordinate auditor coltects the local state
reports from the state-report task, and de-
livers them to the audit task of the coordi-
nator. The audit task of the coordinator
receives these state reports from subordi-
nate auditors, and analyzes them to deter-
mine whether any process or processor has
failed.

One way for the audit coordinator to
receive state reports is to periodically poll
the subordinate auditors. An interesting
alternative to polling by the audit coordi-
nator is the approach proposed by Walter
[1982], which requires each "auditor" to
periodically send an "I-AM-ALIVE" mes-
sage to its immediate neighbor on a virtual
ring of "auditors." When an auditor does
not receive the "I-AM-ALIVE" message
within a certain time interval, it may re-
quest the audit coordinator to initiate re-
configuration.

When the audit task of the coordinator
decides that a failure has occu~ed, or when
it receives a reconfiguration request from
the operator control task, it activates the
reconfiguration task. Changes to system
configuration are reflected in the configu-
ration database after the reconfiguration
task completes. The audit task of the co-
ordinator iS also responsible for preparing
the succession list and securing its trans-

Computing SurveyB, Vo|. 16. No. 1, March 1984

Highly Available Systems for Database Applications

from operating system
and appllcation subsystems

operator

config I ~ report

aud!t l ig

' operator
task

to and from
! ~ application

subsystems

I, diagnose I
~I task I '

to audit task to reconfig task to diagnose t ask
of other auditors

Figure13. Thetaskstructu~ofan au~tor.

• 95

mission to the audit tasks of subordinate au-
ditors.

The reconfiguration task is responsible
for processing the reconfiguration requests
received from the audit task of the audit
coordinator. Upon receiving a request, it
initiates reconfiguration and monitors its
successful completion. If the audit coordi-
nator fails during a reconfiguration process,
then the new coordinator completes the
reconfiguration. Any change to the system
configuration is stored in the configuration
database. A report is sent back to the audit
task of the coordinator upon completion of
a reconfiguration request.

The state-report task receives state re-
ports from the local database subsystems,
interprocessor communication subsystem,
and the operating system, as well as recon-
figuration requests from the system opera-
tor. It manages this collection of state re-
ports and makes it available to the local
audit task and other auditor tasks.

The diagnose task is responsible for ex-
posing process failures that may have gone
undetected by the operating system or the
process itself. It may also collect complaints
from database subsystems about possible
misbehavior of other subsystems (e.g.,
time-outs and lost messages). To establish
availability or misbehavior of subsystems,
it may resort to functional tests, such as
checking if messages pass through queues,
tracking down the messages exchanged by
subsystems, and executing simple transac-

tions whose results are k n o w n . This some-
times will require collabo~tion among the
diagnose tasks of several auditors. Its find-
ings are packaged into a state report and
sent to a database subsystem (e.g., to report
the loss of a message and the need for its
retransmission) or to the state-report task
(e.g., to report a subsystem crash that has
remained undetected by the operating sys-
tem).

The complexity of the diagnose task de-
pends on the extent to which other software
subsystems assist in identifying failures. If
the operating system is capable of serving
as a repository of hardware and program
failures, and application software contains
a reasonable amount of defensive code to
detect impossible software states, the di-
agnose task can be quite simple. If this is
not the case, the diagnose task may have to
be designed in a manner similar to the
Resource Manager of System D to expose
the nature of failures.

The operator-control task is the auditor's
interface to the system operator. By using
this interface, the operator may query the
system configuration or request a system
reconfiguration.

8. CONCLUDING REMARKS

This paper has provided a survey and anal-
ysis of the architectures and availability
techniques used in database application
systems designed with availability as a pri-

Computing Surveys, VoL 16, No. 1, March 1984

96 • W o n K i m

mary objective. We found that all existing
systems have been designed under the sin-
gle-failure assumption, but that some of the
systems contain single points of failure and
cannot survive failures of some single com-
ponents. Rather, these systems are de-
signed to restart quickly to provide high
overall availability.

All of the systems may be classified into
four distinct architectures: loosely coupled
multiprocessor systems with a partitioned
database, tightly coupled multiprocessor
systems with a shared database, loosely
coupled multiprocessor systems with a
shared database, and multiprocessor sys-
tems that perform redundant computations
and compare the results. Of these, the
loosely coupled multiprocessor with either
a partitioned or shared database appears to
offer the best framework for building a
highly available system. Either architecture
is conducive to incremental expansion and
offers a natural boundary between data
managers, which makes it difficult for a
malfunctioning data manager to corrupt
other data managers. Of course, both ar-
chitectures require a low-overhead com-
munications subsystem to process user re-
quests that require access to more than one
database partition. A difficult problem
posed by the partitioned database, however,
is that of deciding which database partition
should be owned by which processor, so as
to minimize the volume of processing re-
quiring collaboration among more than one
data manager. Potential drawbacks of the
shared database approach are contention
on shared disks and the difficulty of coor-
dinating the global locking and the logging
of database changes.

The tightly coupled multiprocessor ar-
chitecture with a shared database compro-
mises availability in favor of a potential
performance advantage over the loosely
coupled system with a partitioned database.
However, before this potential advantage
in performance can be realized, the prob-
lems of contention among processors for
the use of shared memory and other shared
resources, especially as more processors are
added, must be resolved.

Although the redundant-computation
approach may make sense for applications

such as spacecraft and industrial process
control, it does not appear particularly suit-
able for typical database applications. The
exchange of status information among the
replicated tasks to verify correctness of
each input and output could seriously
impede the performance of a production
system.

A continuously operational database ap-
plication systems must guarantee availabil-
ity not only during multiple concurrent fail-
ures of software and hardware components
but also during on-line changes of software
and hardware components, on-line physical
reconfiguration of the database, and gen-
eration of backup databases. An architec-
ture was outlined in Section 7 of a distrib-
uted software subsystem called an auditor,
which can serve as a framework for con-
structing database application systems to
meet these requirements.

ACKNOWLEDGMENTS

Irv Traiger (IBM Research, San Jose) read an initial
version of this paper and made numerous valuable
suggestions that helped to significantly improve the
technical contents and presentation of the paper. John
West of Computer Consoles, Richard Gostanian of
Auragen Systems, Bob Good of Bank of America,
Steve Jones of Synapse Computer, and Dave Cohen
of AT&T Bell Labs kindly provided answers to various
technical questions I had about their systems. The
referees and Randy Katz made various constructive
comments on an earlier version of this paper. Finally,
a technical editor did a superb job of shaping the paper
into publishable form.

REFERENCES

AGHILI, H., ASTRAHAN, M., FINKELSTEIN, S., KIM,
W., MCPHERSON, K., SCHKOLNICK, M., AND
STRONG, M. 1983. A prototype for a highly
available database system. IBM Res. Rep.
RJ3755, IBM Research, San Jose, Calif., Jan. 17.

ANDLER, S., DINe, I., ESWARAN, K., HAUSER, C.,
KIM, W., MEHL, J., AND WILLIAMS, R.
1982. System D: A distributed system for avail-
ability. In Proceedings of the 8th International
Conference on Very Large Data Bases (Mexico
City, Mexico D.F., Sept.), pp. 33-44.

BARTLETT, J. 1978. A nonstop operating system. In
Proceedings o[the 1978 International Conference
on System Sciences (Honolulu, Hawaii, Jan.).

BERNSTEIN, P., AND GOODMAN, N. 1981. Concur-
rency control in distributed database systems.
ACM Comput Surv. 13, 2 (June), 185-221.

BORE, A. 1981. Transaction monitoring in ENCOM-
PASS (TM): Reliable distributed transaction

Computing Surveys, Vol. 16, No. 1, March 1984

Highly Available Systems for Database Applica~ons

processing. In Proceedings of the 7th International
Conference on Very Large Databases (Cannes,
France, Sept. 9-11). IEEE, New York, pp. 155-
165. ACM, New York.

COHEN, D., HOLCOME, J. E., AND SURY, M. B.
1983. Database management strategies to sup-
port network services. IEEE Q. Bull Database
Eng. 6, 2 (June), special issue on Highly Available
Systems.

COHEN, N. B., HALEY, C. B., HENDERSON, S. E., AND
WON, C. L. 1982. GEMINI: A reliable local
network. In Proceedings of the 6th Workshop on
Distributed Data Management and Computer
Networks (Berkeley, Calif., Feb.), pp. 1-22.

DOLEV, D., AND STRONG, H. R. 1982. Polynomial
algorithms for multiple processor agreement. In
Proceeding of the 14th ACM Symposium on The-
ory of Computing (San Francisco, May 5-7).
ACM, New York, pp. 401-407.

ELECTRONIC BUSINESS 1981. October issue.

GARCIA-MOLINA, H. 1982. Elections in a distributed
computing system. IEEE Tran8 Comput. C-31, 1
(Jan.), pp. 48-59.

GOOD, B. 1983. Experience with Bank of America's
distributive computing System. In Proceedings o[
the IEEE CompCon (Mar.). IEEE Computer So-
ciety, Los Angeles.

GOSTANIAN, R. 1983. The Auragen System 4000.
IEEE Q. Bull• Database Eng. 6, 2 (June), special
issue on Highly Available Systems.

GRAY, J. N. 1978. Notes on data base operating
systems. IBM Res. Rep. RJ2188, IBM Research,
San Jose, Calif., Feb.

GRAY, J. N., MCJONES, P., BLASGEN, M., LINDSAY,
B., LOBIE, R., PRICE, T., PUTZOLU, F., AND
TRAIGER, I. 1981. Recovery manager of a data
management system. ACM Comput. Surv. 13, 2
(June), 223-242.

HAERDER, T., AND REUTER, A. Principles of trans-
action-oriented database recovery. ACM Comput.
Surv. 15, 4 (Dec.), 287-317.

IBM 1979. OS/VS2 MVS multiprocessing: An intro-
duction and guide to writing, operating, and re-
covery procedures. Form No. GC28-0952-1, File
No. $370-34, International Business Machines.

IBM 1980. IBM System/370 principles of operation.
Form No. GA22-7000-6, File No. $370-01, Inter-
national Business Machines.

IEEE 1983. IEEE Q Bull. Database Eng. 6, 2, (June),
special issue on Highly Available Systems.

JONES, S. 1983. Synapse's approach to high appli-
cation availability. In Proceedings of the IEEE
Spring CompCon (Mar.). IEEE Computer Soci-
ety, Los Angeles.

KASTNER, P. C. 1983. A fault-tolerant transaction
processing environment. IEEE Q. Bull. Database
Eng. 6, 2 (June), special issue on Highly Available
Systems.

KATSUKI, D., ELSAM, E. S., MANN, W. F., ROBERTS,
E. S., ROBINSON, J. G., SKOWRONSKI, F. S., AND

• 9 7

WOLF, E. W. 1978. Plutibus--An operational
fault-tolerant multiprocessor. Proc. IEEE 66, 10
(Oct.) 1146-1159.

KATZMAN, J. A. 1977. System a~chitectu~ for
NonStop computing. In Proceedings of the
CompCon (Feb). IEEE Computer Society, Los
Angeles. pp. 77-80.

KATZMAN, J. A. 1978. A fault tolerant computer
system. In Proceedings of the 1978 International
Conference on System Sciences (Honolulu, Ha-
waii, Jan.).

KIM, W. 1982. Auditor: A framework for highly
available DB/DC systems. In Proceedings of the
2nd Symposium on Reliability in Distributed Soft-
ware and Database Systems (Pittsburgh, Pa.,
July). IEEE Computer Society, Silver Spring,
Md., pp. 76--84.

KINNUCAN, P. 1981. An industrial computer that
'can't fail.' Mini-Micro Syst. (Mar.), 29-34.

KOHLER, W. 1981. A survey of techniques for syn-
chronization and recovery in decentralized com-
puter systems. ACM Comput. Surv. 13, 2 (June),
149-183.

MITZE, R. W., ET. AL. 1983. The 3B-20D processor
and DMERT as a base for telecommunications
applications. Bell Syst. Tech. J. Comput. Sci. Syst.
62, 1 (Jan.), 171-180.

SPENCER, A. C., AND VIGILANTE, F. S. 1969. System
organization and objectives, Bell Syst. Tech. J.
(Oct.), 2607-2618, special issue on No. 2 ESS.

STRATUS 1982 Stratus/32 System Overview. Stratus
Computers, Natick, Mass.

STRICKLAND, J. P., UHROWCZIK, P. P, AND WATTS,
V. L. 1982. IMS/VS: An evolving system. IBM
Syst. J. 21, 4, 490-510.

SWAN, R., FULLER, S. H., AND SIEWIOREB, D. P.
1977. Cm*--A modular, multi-microprocessor.
In Proceedings of the National Computer Confer-
ence (Dallas, Tex., June 13-16), vol. 45. AFIPS
Press, Reston, Va., pp. 637-644.

TRAIGER, I. 1983. Trends in systems aspects of da-
tabase management. In Proceedings of the British
Computer Society 2nd International Conference
on Databases (Cambridge, England, Aug. 30-
Sept. 2).

TSUKIGI, K., AND HASEGAWA, Y. 1983. The travel
reservation on-line network system. IEEE Q.
Bull. Database Eng. 6, 1 (Mar.), special issue on
Database Systems in Japan.

WALTER, B. 1982. A robust and efficient protocol for
checking the availability of remote sites. In Pro-
ceedings of the 6th Workshop on Distributed Data
Management and Computer Networks (Berkeley,
Calif., Feb.), pp. 45-68.

WEISS, H. M. 1980. The ORACLE data base man-
agement system. Mini-Micro Syst. (Aug.), 111-
114.

WENSLEY, J. H., LAMPORT, L., GOLDBERG, J.,
GREEN, M., LEVITT, K., MELLIAR-SMITH, P. M.,
SHOSTAK, R., AND WEINSTOCK, C. 1978. SIFT:
Design and analysis of fault-tolerant computer

Computing Su~eys, V~I. 16, No. 1, March 1984

9 8 • Won Kim

for aircraft control. Proc. IEEE 66, 10 (Oct.),
1240-1255.

WEST, J. C., ISMAN, M. A., AND HANNAFORD, S. G.
1983. Transaction processing in the PERPOS
operating system. IEEE Q. Bull. Database Eng.

6, 2 (June), special issue on Highly Available
Systems.

WESTON, J. 1978. General Electric's MARK III
Cluster System. Presented to the American In-
stitute of Industrial Engineers, Jan. 31.

Received April 1983; final revision accepted February 1984.

Computing Surveys, Vol 16, No. 1, March 1984

