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Abstract A convenient access to cyclic fluoroketones that involves
base-promoted ring-opening of siloxydifluorocyclopropanes is present-
ed. Selective formation of gem-difluorinated cycloalkanones and mono-
fluorinated enones has been achieved.
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Organofluorine compounds are of considerable interest
in various industrial fields,1,2 and the introduction of fluo-
rine atoms often endows organic molecules with attractive
properties. Fluorine is an important element by virtue of
the unique properties associated with the atom and its
bond to carbon, its high electronegativity and its relatively
small size. Given these attractive properties, fluoroorganic
compounds find diverse applications in medicinal, agricul-
tural, and material sciences. In particular, difluoromethy-
lene compounds have received a great deal of attention be-
cause of their biological activities.3,4 A difluoromethylene
carbon atom mimics the steric and electronic features of an
ether oxygen atom or a carbonyl carbon atom. For the syn-
thesis of difluoromethylene compounds, gem-difluorocy-
clopropanes are promising precursors; such compounds are
readily prepared by a wide range of convenient synthetic
routes.5,6 The transformations involving selective ring-
opening of gem-difluorocyclopropanes provides a variety of
useful fluoroorganic compounds.7–13 Meanwhile, siloxycy-
clopropanes are useful precursors of metal homoenolates in
organic synthesis.14 Siloxydifluorocyclopropanes are con-
sidered to be one of the most useful building blocks from
which to obtain various difluoromethylene compounds.
However, because of the lack of stability of fluorosiloxycy-
clopropanes,15 progress in the chemistry of fluorinated ho-
moenolates has been much slower than that of nonfluori-
nated homoenolates. Herein, we report the ring opening of
siloxydifluorocyclopropanes 2 to afford gem-difluorinated
cycloalkanones 3 and monofluorinated enones 4 selectively
(Scheme 1).

Our initial studies focused on exhaustive formation of
gem-difluorinated cycloalkanones 3. Previously, we demon-
strated that sodium bromodifluoroacetate (BrCF2CO2Na)
acts as a powerful difluorocarbene source to give difluori-
nated cyclopropanes and cyclopropenes.16,17 The use of
BrCF2CO2Na was found to be effective for the selective for-
mation of siloxydifluorocyclopropanes (Scheme 2).18

In related pioneering work, in 1979, Kobayashi and
Taguchi reported base-promoted ring-opening reactions of
acetoxycyclopropane 5 (Scheme 3).8a Under their reaction
conditions, a mixture of difluoroketone 6, monofluoro-
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enone 7, and its methanol adduct 8 were obtained due to
the use of the strong bases such as LiOH and NaOH for
deacetylation.

Scheme 3 

Taking advantage of the readily removable trimethylsilyl
(TMS) protecting group, we have developed highly con-
trolled ring-opening reactions of siloxydifluorocyclopro-
panes 2, which provide versatile synthetic routes to cyclic
fluoroketones. To a stirred solution of siloxydifluorocyclo-
propane 2a in methenol was added sodium carbonate. After
the reaction mixture was stirred at room temperature for
30 min, ring opening of 2a proceeded smoothly to provide
difluorinated cycloheptanone 3a in 71% yield (Table 1, entry
1).19 Gratifyingly, no contamination by dehydrofluorinated
product was observed (<1%) under the present conditions.

Other examples of the formation of gem-difluorinated
cycloalkanones 3 are given in Table 1. By the use of alkaline
metal carbonates (Na2CO3 or K2CO3), siloxydifluorocyclo-
propanes 2 underwent ring opening to give medium-sized
difluorocycloalkanones 3 in moderate to good yields.

In contrast, through the use of fluoride such as tetrabu-
tylammonium fluoride (TBAF) as a base, ring-opening dehy-
drofluorination of 2 took place predominantly. After a sur-
vey of suitable reaction conditions, treatment of 2 with
TBAF in THF at –78 °C led to the formation of monofluori-
nated enones 4 (Scheme 4).20,21

In summary, we have demonstrated a convenient and
highly controlled route to gem-difluorinated cycloal-
kanones and monofluorinated enones. In the net transfor-
mations, one-carbon ring-enlargement and insertion of flu-
orinated methylene groups into the α-C–C bond in cycloal-
kanones 9 was achieved (Scheme 5). Further utilization of
siloxydifluorocyclopropanes 2 as homoenolates is under-
way to explore other useful applications.
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Table 1  Selective Formation of gem-Difluorinated Cycloalkanones 3

Entry 2 3 Yield (%)a

1

2a 3a

71

2

2b 3b

51

3

2c 3c

81

4

2d 3d

39

a Isolated yield of 3.
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