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Abstract

Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex
chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of
recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be
highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and
female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different
clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding
and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W
chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species
in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid
phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of
these ZW chromosome pairs differed among species. In particular, an (AAT)n microsatellite repeat motif mapped by
fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGG)n motif mapped onto the
W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced
hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest
that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive
sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.
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Introduction

Sex-determining systems are highly divergent between different

lineages of reptiles and birds [1–4]. In particular, three modes of

sex determination, genotypic sex determination (GSD), male

heterogamety (XX/XY) and female heterogamety (ZZ/ZW),

including systems with multiple sex chromosomes, and tempera-

ture-dependent sex determination (TSD), have a haphazard

distribution across the phylogeny in squamate reptiles [3,5,6].

This suggests that transitions between sex determination systems

have occurred in many lineages of squamates [4,7] and it follows

that novel sex chromosomes will have arisen also multiple times

with those transition. The degrees of heteromorphism between sex

chromosomes differ among species [6] but little is known about

how sex chromosomes form and differentiate in reptiles. In

particular, the morphology and degree of Y or W degeneration

show major differences even within a single taxonomic group. For

example, Z and W chromosomes of Gehyra purpurascens (Gekkoni-

dae) have different morphologies between different races [8], the Y

chromosomes of three legless lizards (Pygopodidae) have distinc-

tively different morphologies [9] and the W chromosomes of

snakes show various levels of degeneration compared with a

conserved Z chromosome [10,11]. Y and W chromosomes are

predisposed to accumulate repetitive DNA sequences by suppres-

sion of recombination with their counterparts, X and Z

chromosomes, and such accumulation of repetitive DNA sequenc-

es promotes further differentiation between sex chromosomes [12].

Thus the accumulation of repetitive DNA sequences is thought to

be an important step in sex chromosome differentiation.

Lizards from the family Varanidae are one group of squamates

for which the karyotypes appear highly conserved. This family,

which comprises a single extant genus Varanus, incorporating

seventy-three species is widely distributed through Africa, western,

central, southern and southeastern mainland Asia, Sri Lanka,

Malaysian and Indonesian islands, islands of the Indian Ocean

and the South China Sea, Philippines, Papua New Guinea and

Australia [13]. Molecular phylogenetic studies have showed that

the genus Varanus is divided into three major clades, African

species, Asian species and Australian (Oceania) species [14–18]. In
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the latest study, the phylogeny of 39 Varanus species was analyzed

using 1914-bp nuclear and 1995-bp mitochondrial gene sequences

[18]. The result showed that the genus Varanus was divided into

seven smaller clades, niloticus (African), salvator (Asian), indicus

(Asian), varius (Australian) gouldii (Australian), tristis (Australian),

and acanthurus clades (Australian).

Karyotypes have been reported for 22 Varanus species, four from

the niloticus clade, five from the salvator clade, one from the indicus

clade, one from the varius clade, five from the gouldii clade, three

from the tristis clade and three from the acanthurus clade [19–21].

All species examined so far have an identical chromosome

number, 2n= 40 consisting of 16 macrochromosomes and 24

microchromosomes, indicating that the karyotypes at this level are

highly conserved in this family. This high conservation of

karyotypes makes varanid lizards an excellent model to examine

the fine scale molecular evolution of DNA sequences on some local

chromosomal regions. Sex chromosomes are identified in four

species only – two species from niloticus clade (V. albigularis and V.

niloticus), one species from varius clade (V. varius) and one species

from acanthurus clade (V. acanthurus). All four species have ZZ/ZW

micro sex chromosomes in which the W is distinctively larger than

other microchromosomes [19,20]. The sex chromosomes of the

many remaining species are unknown, and the molecular

composition and constitution of the W chromosomes are yet to

be investigated in any species.

In this study, we extend the comparison of sex chromosomes at

the molecular level to additional varanid species. We examined the

karyotypes of three Varanus species, the ridge-tailed monitor (V.

acanthurus), the sand goanna (V. gouldii) and the heath monitor (V.

rosenbergi). The first species belongs to the acanthurus clade and the

remaining two belong to the gouldii clade [18]. Thus these three

species gave us opportunity to examine molecular evolution on sex

chromosomes between closely related species. We identified sex

microchromosomes of these species using C-banding and com-

parative genomic hybridization. In addition, we conducted

chromosome mapping of eighteen microsatellite motifs to chro-

mosomes of these species. Finally, we prepared chromosome

probes from V. acanthurus microchromosomes including W

chromosome and carried out cross-species chromosome painting

to the other two species. We use those results to infer the evolution

of sex chromosomes in these species.

Materials and Methods

Animals
A male and a female of two monitor lizards, Varanus acanthurus

and V. gouldii, were purchased from commercial suppliers. A male

and a female V. rosenbergi were hatched in captivity from eggs

collected for other studies from Kangaroo Island, South Australia.

We identified the species with the aid of keys [22].

Ethics Statement
Animal care and experimental procedures were performed

following the guidelines of the Australian Capital Territory Animal

Welfare Act 1992 (Section 40) and conducted under approval of

the Committee for Ethics in Animal Experimentation at the

University of Canberra (Permit Number: CEAE 11/07).

Cell Culture and Chromosome Preparation
The tail tips were cut from each animal and used for cell

culture. Metaphase chromosome spreads were prepared from

fibroblasts of tail tissue following the protocol described in Ezaz et

al. [23]. Briefly, minced tail tissues were implanted in a T25

culture flask containing AmnioMax medium (Life Technologies,

Carlsbad, California, USA) and were allowed to propagate under

the condition of at 28uC and in an atmosphere of 5% CO2. Once

the fibroblasts had grown to about 80% confluency, cultures were

split intoT75 flasks and subsequently split up to four passages

before the chromosomes were harvested. Colcemid (Roche, Basel,

Switzerland) was added to the culture flask to a final concentration

of 75 ng/ml prior to harvesting. Cultured cells were harvested by

trypsin treatment, suspended in 0.075 M KCl, then fixed in 3:1

methanol:acetic acid and the cell suspension dropped onto glass

slides and air-dried.

C-banding
The C-banded chromosomes were obtained by the CBG

method (C-bands by Barium hydroxide using Giemsa) [24,25].

Slides were soaked in 0.2 N HCl for 40 min and rinsed with

distilled water. Chromosomes were denatured in 5% Ba(OH)2 for

5 min at 50uC. Denaturation was stopped by rinsing the slides in

0.2 N HCl and distilled water, then chromosomes were renatured

by incubation in 26SSC (Saline Sodium Citrate) for 60 min at

60uC. Then the slides were rinsed by distilled water and stained

with 4% Giemsa for 30 min.

DNA Extraction and Synthesis of Microsatellite DNA
Probe
Total genomic DNA was extracted from cultured fibroblasts

using the DNeasy kit (Qiagen, Netherlands) and following the

manufacturer protocols. Cy3-labeled oligonucleotides of 18

microsatellite motifs – (AC)15, (AG)15, (AT)15, (AAC)10, (AAT)10,

(AGC)10, (CGG)10, (GAG)10, (AAAC)8, (AAAT)8, (AAGG)8,

(AATC)8, (AATG)8, (ACGC)8, (AGAT)8, (ATCC)8, (AAAAT)6
and (AAATC)6 – were purchased from GeneWorks (Hindmarsh,

South Australia, Australia).

Microdissection and Preparation of Chromosome Probes
We performed microdissection using an inverted phase contrast

microscope Zeiss Axio vert.A1 (Zeiss, Oberkochen, Germany)

equipped with Eppendorf TransferMan NK 2 micromanipulator

(Eppendorf, Hamburg, Germany). Glass needles were made from

1.0 mm diameter capillary glass using a glass capillary puller,

Sutter P-30 Micropipette Puller (Sutter Instrument, Novato,

California, USA) and sterilized by irradiation of ultra violet.

Microchromosomes including W chromosome were scratched

from freshly prepared chromosome slides of female V. acanthurus

with a glass needle using the micromanipulation system and

transferred into 0.2 ml PCR tubes. Chromosome DNAs were

amplified using GenomePlex Single Cell Whole Genome Ampli-

fication Kit (Sigma-Aldrich, St. Louis, Missouri, USA) according

to the manufacture’s protocol with slight modification. The

volume for all reaction steps was scaled down to half. PCR cycle

for amplification of DNAs was increased to 30.

Comparative Genomic Hybridization (CGH) and
Fluorescence In Situ Hybridization (FISH)
CGH and FISH with microsatellite motifs probes were

conducted using methods described in our previous study [9,25].

For chromosome probes, we conducted FISH with slight

modification. Chromosome probes were labelled by nick transla-

tion incorporating SpectrumGreen-dUTP (Abbott, North Chi-

cago, Illinois, USA) or SpectrumOrange-dUTP (Abbott). Each

labelled probe was precipitated with 20 mg glycogen as carrier,

and dissolved in 15 ml hybridization buffer. The hybridization

mixture was placed on a chromosome slide and sealed with a

coverslip and rubber cement. Probe DNA and chromosome DNA
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were denatured by heating the slide on a heat plate at 68.5uC for

5 min. The slides were hybridized overnight in a humid chamber

at 37uC. Hybridization was carried out for 2 days in cross-species

chromosome painting. The slides were then washed by the

following series: 0.46SSC, 0.3% IGEPAL (Sigma-Aldrich) at

55uC for 2 min followed by 26SSC, 0.1% IGEPAL at room

temperature for 1 min. The slides were dehydrated by ethanol

series and air-dried and then counterstained using 20 mg/ml DAPI

(49,6-diamidino-2-phenylindole), 26SSC and mounted with anti-

fade medium, Vectashield (Vector Laboratories, Burlingame,

California, USA).

Results

Karyotyping
DAPI-staining of the karyotypes identified the diploid number

of chromosomes for all three Varanus species to be 2n= 40

(Figure 1). These karyotypes all consist of 16 macrochromosomes

and 24 microchromosomes. The macrochromosomes are all bi-

armed except for the acrocentric chromosome 5 in V. acanthurus

(Figure 1a, b) and acrocentric chromosomes 5–7 in the remaining

two species (Figure 1c–f).

Sex chromosomes were identified by their heteromorphism in

females. The female karyotype of V. acanthurus has two large sized

microchromosomes compared with the male karyotype which has

only one (Figure 1a, b). The two large microchromosomes in the

female karyotype have a different morphology to each other, one

(indicated by ‘W’ in Figure 1a) is acrocentric and the other one

(indicated by ‘Lm’ in Figure 1a) is metacentric, but one of the two

(indicated by ‘Lm’ in Figure 1a) is morphologically similar to the

large microchromosome in the male karyotype (indicated by ‘Lm’

in Figure 1b). It was previously reported that V. acanthurus has a

ZZ/ZW sex chromosome system in which the acrocentric W

chromosome is larger than other microchromosomes [20].

However, the presence of another large size microchromosome

than W chromosome has not previously been reported. Thus, we

conclude that the large metacentric microchromosome observed

in both female and male used in this study is a polymorphism of an

autosome or Z chromosome. In V. rosenbergi, comparison of the

karyotypes between male and female showed that a large

microchromosome is present in female but not in male, so is

presumed to be a W chromosome (Figure 1c, d). No large size

microchromosomes were observed in the karyotypes of V. gouldii

(Figure 1e, f) although W chromosome was identified by C-

banding and CGH as we describe later.

C-banding
C-bands were detected at the centromeric regions of almost all

chromosomes, on interstitial regions of chromosome pairs 1, 2 and

5, and on the telomeric regions of chromosome 1q in the three

species (Figure 2). Small C-bands were also detected on proximal

regions of chromosome pairs 6 and 7 in V. rosenbergi and V. gouldii

(Figure 2c–f).

In addition to these autosomal C-bands, an intense C-band was

detected on a single microchromosome in females, but not in

males, of the three species (Figure 2). This implies that the three

Varanus species have ZZ/ZW sex chromosomes and their W

chromosomes are highly heterochromatic. The W chromosomes

correspond to a large microchromosome in DAPI-stained

karyotypes of V. acanthurus and V. rosenbergi (Figure 1a, c). A

smaller but intense C-band was also detected on the short arm of

large metacentric microchromosome in both female and male of

V. acanthurus (Figure 2a, b).

CGH
CGH images showed a bright hybridization signal produced by

female genomic DNA in metaphase spreads in females, but not in

males, of the three species (Figure 3), implicating a female-specific

W chromosomes. These results confirm that the three Varanus

species all have ZZ/ZW sex chromosomes in which W chromo-

some is easily identified but that the Z chromosomes are not

distinguishable from the autosomes by CGH. In V. acanthurus,

Figure 1. DAPI-stained karyotypes of three Varanus species. Female (a) and male (b) of V. acanthurus, female (c) and male (d) of V. rosenbergi,
and female (e) and male (f) of V. gouldii. Macrochromosomes are numbered according to King and King [19] and King et al. [20]. ‘W’ and ‘Lm’ indicate
W chromosomes in the three species (a, c, e) and large microchromosomes in male and female V. acanthurus (a, b), respectively. Scale bars indicate
10 mm. W chromosome in V. gouldii was identified by C-banding and CGH (Figure 2, 3).
doi:10.1371/journal.pone.0095226.g001
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there was hybridization signal on large metacentric microchro-

mosome that did not show female- or male-bias.

FISH Mapping of Microsatellite Motifs
We examined the chromosome distribution of 18 microsatellite

motifs by FISH in females of the three Varanus species. Two of the

18 were mapped onto the sex chromosomes. Results were

inconsistent between species. The (CGG)10 motif showed hybrid-

ization signals on all chromosomes in all the three species and also

bright hybridization signals on the W chromosomes of V. rosenbergi

and V. gouldii (Figure 4a, b) but not on the W chromosome of V.

acanthurus (Figure 4c). This suggests that W chromosomes of V.

rosenbergi and V. gouldii contain an extensive amplification of the

CGG microsatellite repeat. In contrast, the repeat motif (AAT)10

showed intense hybridization signal on the proximal region of the

W chromosome in the female metaphase of V. acanthurus but not

on other regions (Figure 4d). Specific hybridization signal by this

probe was not observed on metaphases in V. rosenbergi and V. gouldii

(Data not shown).

Chromosome Painting with V. Acanthurus
Microchromosome Probes
We prepared 32 chromosome probes from V. acanthurus

microchromosomes. The first and second ones were amplified

from the W chromosome and the large microchromosome,

respectively. These two chromosomes were easily distinguish-

able from each other and other microchromosomes so that we

collected six W chromosomes and five the large microchro-

Figure 2. C-banded metaphase spreads of three Varanus species. Female (a) and male (b) of V. acanthurus, female (c) and male (d) of V.
rosenbergi, and female (e) and male (f) of V. gouldii. Macrochromosomes are numbered. Arrowheads and arrows indicate W chromosomes in the three
species (a, c, e) and large microchromosome in male and female V. acanthurus (a, b), respectively. Scale bars indicate 10 mm.
doi:10.1371/journal.pone.0095226.g002
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mosomes from multiple metaphases into each one PCR tube

and amplified the chromosome DNAs (data not shown). The

other microchromosomes could not be distinguished from each

other. For this reason, the other 30 probes were amplified from

single microchromosomes randomly collected from eight

metaphases.

Figure 3. Comparative genomic hybridization (CGH) images of three Varanus species. Female (a) and male (b) of V. acanthurus, female (c)
and male (d) of V. rosenbergi, and female (e) and male (f) of V. gouldii. Arrowheads and arrows indicate W chromosomes (a, c, e) and large size
microchromosome in male and female V. acanthurus (a, b), respectively. Scale bars indicate 10 mm.
doi:10.1371/journal.pone.0095226.g003

Figure 4. FISH mapping of microsatellite motifs in three Varanus species. FISH mapping of (CGG)10 microsatellite motif in female V.
rosenbergi (a), female V. gouldii (b), female V. acanthurus (c), and of (ATT)10 microsatellite motif in female V. acanthurus (d). Arrowheads indicate W
chromosomes (a–d). Fluorescent signal of (CGG)10 microsatellite motif was not observed on W chromosome of V. acanthurus (c). Scale bars indicate
10 mm.
doi:10.1371/journal.pone.0095226.g004
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We carried out chromosome painting with the 32 probes to

metaphase spreads of V. acanthurus to test their painting patterns.

The W chromosome probe produced bright hybridization signals

on the whole region of W chromosome and weak signals on some

microchromosomes (Figure 5a). The large microchromosome

probe produced bright hybridization signals on the whole region

of large microchromosome and weak signals on the centromeric

region of the short arm and on the telomeric region of the long

arm of chromosome 2 (Figure 5b). Four of the other 30 probes did

not show specific painting signals on any microchromosomes (data

not shown). One of the remaining 26 probes showed intense

hybridization signals on four pairs of microchromosomes and

weak hybridization signals on the W chromosome (data not

shown). All of the remaining 25 probes produced painting signals

on a single pair of microchromosomes. All of the 25 probes were

hybridized not only on themselves but also on W chromosome and

many of other microchromosomes (e.g. Figure 5c, d), indicating

that W chromosome shared repetitive sequences with other

microchromosomes. One of the 25 probes was hybridized on a

normal size microchromosome and the large microchromosome in

both male and female metaphase spreads (Figure 5c, d). This result

indicates that the large microchromosome is a polymorphism of an

autosomal microchromosome.

Cross-species chromosome painting with the V. acanthurus W

chromosome probe showed weak hybridization signals on the

centromeric region of W chromosomes in the female V. rosenbergi

and V. gouldii (Figure 5e, f).

Discussion

We found the total chromosome number, number of macro and

micro-chromosomes and morphologies of macrochromosomes of

the six individuals from three species examined in this study were

identical to those reported previously [19,20] confirming that at a

gross morphological level, the karyotypes of Varanus species are

conservative. However, we also identified a large polymorphic

microchromosome in V. acanthurus that had not previously been

reported. This large metacentric microchromosome is a polymor-

phism of an autosomal microchromosome and may have been

enlarged by the accumulation of repetitive sequences on the short

arm.

A comparison among karyotypes of the three species reveals

other distinct morphological differences between the acanthurus

clade (represented by V. acanthurus) and the gouldii clade (repre-

sented by V. gouldii and V. rosenbergi), where chromosomes 6 and 7

are bi-armed in the former and acrocentric in the latter clade

(Figure 1). V. varius (the varius clade) and two species from the

salvator clade, V. bengalensis and V. salvator, have similar karyotypes

with V. acanthurus; chromosomes 6 and 7 are bi-armed in the three

species (Figure 6) [19]. This suggests that pericentromeric

inversions had occurred on chromosomes 6 and 7 in the gouldii

clade (Figure 6). However, chromosomes 6 and 7 are acrocentric

in V. exanthematicus and V. niloticus (Figure 6) [19], both from the

niloticus clade which was diverged first from the common ancestor

of extant varanids [14–18]. Recently, comparisons of gene

locations among V. salvator (salvator clade), V. exanthematicus (niloticus

Figure 5. Chromosome painting with V. acanthurus microchromosome probes. Painting with the W chromosome probe in female V.
acanthurus (a), the large microchromosome probe in female V. acanthurus (b), an autosomal microchromosome probe in male (c) and female V.
acanthurus (d), and the W chromosome probe in female V. rosenbergi (e) and V. gouldii (f). Arrowheads indicate hybridization signals. ‘W’, ‘Lm’ and ‘m’
indicate W chromosomes in the three species (a, b, d–f), large microchromosomes in male and female V. acanthurus (a–d), and microchromosome to
which the probe has been hybridized in male and female V. acanthurus (c, d), respectively. Scale bars indicate 10 mm.
doi:10.1371/journal.pone.0095226.g005
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clade), an agamid (Leiolepis reevesii rubritaeniata) and a snake (Elaphe

quadrivirgata) revealed that chromosome 6–8 of V. exanthematicus

retained the gene orders inherited from their common ancestor

whereas some intrachromosomal rearrangements probably oc-

curred on chromosome 6–8 of V. salvator [26]. Thus an alternative

scenario in which the inversions have occurred on the ancestral

acrocentric chromosomes 6 and 7 in the varius and the acanthurus

clades might still be possible. Molecular cytogenetic studies

involving representatives of each clade and including appropriate

outgroup taxa will be necessary to infer the chromosome

rearrangements in varanid lizards.

Our C-banding and CGH data identified conclusively that all

three species have ZZ/ZW sex microchromosomes and the W

chromosomes are highly heterochromatic with the accumulation

of large amount of female specific DNAs during their differenti-

ation from Z chromosomes. Although we could not obtain Z

chromosome probes and therefore could not investigate homol-

ogies of Z chromosomes among species, we did show that the V.

acanthurus W chromosome probe hybridized to the centromeric

Figure 6. Schematic model for karyotype and sex chromosome evolution in varanid species. Phylogeny and clade names are referred to
Vidal et al. [18]. Divergence times were estimated to be ca. 41, 32, and 27 million years ago (MYA) for nodes between African species and rests,
between Asian and Australian species, and among the three clades in Australian species, respectively [18]. Karyotypes of V. niloticus (niloticus clade), V.
salvator (salvator clade) and V. varius (varius clade) are referred to King and King [19]. The CGG repeat motif (light and dark blue) was widely
distributed over the genome of the common ancestor of acanthurus and gouldii clades, and, then, was rapidly amplified on the W chromosome in the
common ancestor of V. gouldii and V. rosenbergi. Further amplification of the CGG repeat motif occurred on the W chromosome in V. rosenbergi. The
AAT repeat motif (red) and other specific repetitive sequences (green) were independently accumulated and amplified on the W chromosome in V.
acanthurus. Pericentromeric inversions had occurred on chromosomes 6 and 7 in the common ancestor of V. gouldii and V. rosenbergi.
doi:10.1371/journal.pone.0095226.g006
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regions of W chromosomes in the other two species. This suggests

that the sex chromosomes of the three species were probably

derived from the one ancestral pair of chromosomes. An absence

of hybridization signals on the Z chromosomes, suggest that the

hybridization signals we did see on the W were probably from

some repetitive sequences common to the W chromosomes of the

two clades. The inclusion of the data reported here brings to six

out of the six Varanus species that have been examined (from the

niloticus, acanthurus, varius and gouldii clades) which exhibit ZZ/ZW

sex chromosomes as a pair of microchromosome (Figure 6) [19].

This suggests that the common ancestor of the extant Varanus

species also had a ZZ/ZW sex chromosome. However, the sex

determination systems of most Asian species of Varanus have not

yet been sufficiently investigated [27] so further study of

homologies among the sex chromosomes of each clade will be

required to confirm or refute this proposition.

Our FISH analyses with microsatellite motifs indicate that the

(CGG)n repeat motif has been highly amplified on the W

chromosome and has become the main component of the long

arm of the W chromosome in V. gouldii and V. rosenbergi. In

contrast, fluorescent signal from the repeat motif (CGG)n was not

detectable on the W chromosome of V. acanthurus. Instead, a

different microsatellite repeat motif, (AAT)n, was mapped with

intense signals on the proximal region of the W chromosome in V.

acanthurus. Furthermore, V. acanthurus W chromosome probe

produced hybridization signals only on the centromeric regions

of W chromosomes of the other two species. These results suggest

that most sequences are not conserved between the W chromo-

somes of the two clades, gouldii and acanthurus clades, that diverged

around 27 million years ago [18]. The repeat motif CGG showed

hybridization signal across the entire karyotype in all three species,

suggesting that this motif was widely distributed across the genome

of the common ancestor of the two clades, but subsequently was

rapidly amplified on the W chromosome in the gouldii clade after it

diverged from other clades (Figure 6). This process of differential

amplification of the (CGG)n repeat motif has also continued

within the gouldii clade with the W chromosome of V. rosenbergi

being comparatively larger than that of V. gouldii. On the other

hand, the (AAT)n repeat motif and other specific repetitive

sequences were probably amplified on the W chromosomes in V.

acanthurus independent from the gouldii clade (Figure 6). The W

chromosomes are distinctively larger than the Z chromosomes in

V. albigularis, V. niloticus and V. varius [19] as well as those of V.

acanthurus and V. rosenbergi studied here, so it is likely that the W

chromosomes are highly differentiated from their Z partners in all

varanid lizards. It will be interesting to widen this study to

molecular cytogenetic studies of African and Asian species to infer

the evolution of the sex chromosomes in varanid lizards.

Our comparative study of sex chromosomes in the monitor

lizards presents direct evidence that rapid evolution of repeat

sequences is associated with the differentiation of sex chromo-

somes. The accumulation of repetitive sequences has frequently

occurred on the sex chromosomes in various animals and plants

[28–35]. Whether this accumulation of repetitive sequences has

initiated other associated mechanisms, such as suppression of

recombination, is yet to reveal through further studies including

linkage mapping and high resolution comparative analysis of sex

chromosomes at sequence level. In addition, comparative studies

of repetitive sequences on sex chromosomes in diverse taxa will

provide further molecular evidence about the mechanism behind

evolution and degeneration of sex chromosomes.
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