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Abstract 

Background: Algae have attracted attention as sustainable producers of lipid-containing biomass for food, animal 

feed, and for biofuels. Parachlorella kessleri, a unicellular green alga belonging to the class Trebouxiophyceae, achieves 

very high biomass, lipid, and starch productivity levels. However, further biotechnological exploitation has been ham-

pered by a lack of genomic information.

Results: Here, we sequenced the whole genome and transcriptome, and analyzed the behavior of P. kessleri NIES-

2152 under lipid production-inducing conditions. The assembly includes 13,057 protein-coding genes in a 62.5-Mbp 

nuclear genome. Under conditions of sulfur deprivation, lipid accumulation was correlated with the transcriptomic 

induction of enzymes involved in sulfur metabolism, triacylglycerol (TAG) synthesis, autophagy, and remodeling of 

light-harvesting complexes.

Conclusions: Three-dimensional transmission electron microscopy (3D-TEM) revealed extensive alterations in cellular 

anatomy accompanying lipid hyperaccumulation. The present 3D-TEM results, together with transcriptomic data sup-

port the finding that upregulation of TAG synthesis and autophagy are potential key mediators of the hyperaccumula-

tion of lipids under conditions of nutrient stress.
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Background
Microalgae accumulate oil as storage lipids (TAGs), and 

are ideal species for developing the highly productive 

strains that are essential for biofuel production [1–3]. 

Initial efforts to exploit microalgae for biotechnology 

date back to approximately 140 years ago [4]. Large-scale 

algal cultivation has been optimized since then, but this 

process was, in many cases, driven by trial and error, thus 

hindering the most effective utilization of algal poten-

tial [4]. Clearly, rapid development in this field can be 

achieved only through optimization of growth conditions 

guided by the results of basic research on algal physiol-

ogy, morphology, and genomics.

�e class Trebouxiophyceae is a major group in the 

green algal phylum Chlorophyta [5, 6]. One of the tre-

bouxiophycean genera, Chlorella, has been well-studied 

with regard to its physiology and has been exploited 

industrially due to its high photosynthetic growth rate 

and excellent biomass productivity [7–9]. Recently, Chlo-

rella and the closely related genus, Parachlorella [10], 
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have attracted attention as potential producers of triacyl-

glycerols (TAGs) and high value-added, long-chain fatty 

acid feedstocks [1, 11, 12]. Recently, a new algal species 

closely related to Parachlorella kessleri, which is also a 

high lipid producer, was reported from the Indian Ocean 

[13]. Parachlorella kessleri, one of three commonly 

described Parachlorella species [10, 14], is an organism 

that achieves very high biomass, lipid, and starch produc-

tivities [15, 16]. Importantly, P. kessleri is one of only a 

few species in which lipid productivity has been assessed 

not only under laboratory conditions [15–17] but also on 

a semi-industrial scale in outdoor photobioreactors [18], 

and is considered an ideal microalgal species for biofuel 

production.

Given their industrially verified superior growth prop-

erties, combined with high levels of lipid productivity, 

these species may be sustainable sources of TAG and an 

alternative to petroleum-based diesel fuels in the biofuel 

industry [1, 11]. Of the potential TAG producers, only the 

genome of Nannochloropsis gaditana [19], a member of 

the stramenopiles [20], has been sequenced. Moreover, a 

species from the same genus was shown to be capable of 

homologous recombination, which would thus allow for 

efficient gene targeting [21]. Although some green algae, 

particularly those belonging to the genera Chlorella and 

Parachlorella, are more productive lipid producers than 

Nannochloropsis [22], only few genomic sequence have 

been reported (Chlorella variabilis, an endosymbiont 

of ciliates [23], and Chlorella protothecoides [24]), and a 

genome sequence of autotrophic Chlorella is currently 

lacking, thus limiting potential improvements in growth 

and productivity guided by omics techniques.

Some studies have shown that lipid content in algae can 

be increased by nutrient depletion [1, 4, 25–28]. Among 

the macronutrients (nitrogen, phosphate, and sulfur), 

nitrogen deprivation is widely used for stress experi-

ments [26, 27, 29–34]. However, such stresses lower the 

growth rate and productivity of the system [1, 35], which 

is a major bottleneck for producing biofuels and byprod-

ucts on commercial scales, and therefore some stud-

ies have addressed solutions using genetic engineering 

[36, 37]. Sulfur deprivation is an alternative stressor for 

the induction of starch or TAG biosynthesis [4, 16, 38]. 

Notably, a high starch content was maintained for a long 

period under conditions of sulfur starvation, suggesting 

that sulfur depletion is an effective method of enhancing 

starch productivity [4]. In contrast to Chlamydomonas 

[39], the cellular behavior and metabolic and transcrip-

tomic responses under sulfur-depleted culture condi-

tions are less well-characterized in Chlorella species. 

Here, we first report the reference genome of P. kessleri 

NIES-2152. Second, we also examined the transcript pat-

terns and cellular anatomy to evaluate responses to sulfur 

deprivation in the induction of TAG and carbon hydrate 

production [4] using phenotypic assays, RNA-seq, and 

three-dimensional transmission electron microscope.

Results and discussion
�e Parachlorella genome was sequenced and 27.8-fold 

pyrosequencing reads were obtained (4,365,609 reads 

in total). Reads were assembled into 5168 contigs and a 

total of 400 scaffolds were acquired. �e present scaffolds 

and contigs are from nuclear, plastid, and mitochondria 

genomes. �e total nuclear genome size was estimated 

to be 62.5 megabase pairs (Mbp) and 13,057 genes were 

identified (Table 1, Additional file 1: Figures S1 and S2). 

�irty major scaffolds cover 48.8 % of the genome. Of the 

annotated genes (Additional file  1: Table S1), 49.7  % of 

their proteins were associated with Kyoto encyclopedia 

of genes and genomes (KEGG) orthology numbers.

To characterize the phenotype and transcriptome 

under sulfur deprivation, P. kessleri was batch-culti-

vated under continuous light (LL) and sulfur replete 

and deplete (±S) conditions. Growth was determined as 

biomass dry weight as well as cell density. As expected, 

growth was restricted under sulfur-depleted conditions, 

in contrast to its growth in tris-acetate-phosphate (TAP) 

medium, where a logarithmic growth phase was clearly 

observed (Fig.  1a). Higher starch contents per cell were 

observed after 2 days in culture under conditions of sul-

fur deprivation (6.19- and 6.62-fold changes on days 2 

Table 1 The Parachlorella genome assembly statistics

Characteristic

Genome size 62.5 Mbp

GC (%) 58.30 %

Number of scaffolds 400 scaffolds

Average of scaffold size 156,382 bp

N50 scaffold size (>2k bases: 400 scaffolds) 543,086 bp

N50 scaffold size (>5k bases: 213 scaffolds) 595,262 bp

N50 scaffold size (>10k bases: 193 scaffolds) 595,262 bp

Longest scaffold size 2,165,932 bp

Number of contigs 5168 contigs

Average of contig size 11,748 bp

N50 contig size (>500 bases: 5168 contigs) 32,688 bp

N50 contig size (>5k bases: 2326 contigs) 36,671 bp

N50 contig size (>10k bases: 1643 contigs) 40,504 bp

Longest contig size 198,966 bp

Numbers of genes 13,057 genes

Average of protein length 467.0 aa

Average gene density 4.8 kb/gene

Average number of exons per gene 7.9 exons

Average exon length 176.3 bp

Average coding sequence 29.30 %
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and 3, respectively) (Fig. 1b), consistent with results from 

the previous sulfur-depletion study [38].

�ere was a remarkable difference in total lipid content 

between ±S cultures. After 5 days of cultivation, P. kes-

sleri growing in dSTAP (sulfur-deprived TAP) reached 

a yield of 0.25  mg  mL−1 total lipids, whereas P. kessleri 

in TAP gradually accumulated total lipids over a 10-day 

period of batch cultivation, but achieved a yield of only 

0.14 mg mL−1 total lipid (Fig. 1c). �is finding indicates 

that total lipid yield was accelerated under sulfur depriva-

tion, in contrast to cultivation in TAP medium, so that in 

the 5-day-old, sulfur-deprived culture, the lipid content 

represented up to 50.7 % of the dry weight (Fig. 1d).

A previous report showed that lipid accumulation 

under nitrogen-limited conditions was tightly connected 

with cellular processes that are related to lipogenesis, 

macromolecule metabolism, and autophagy in a lipid-

producing yeast [40]. Here, we focus on the autophagy-

related genes to show the transcriptome dynamics. 

During sulfur deprivation, some autophagy-related genes 

were upregulated in the early and late logarithmic-phase 

cultures (Fig.  1e). However, no genes were downregu-

lated in the stationary-phase culture, except for ATG3, 

ATG5, and beclin 1, suggesting that autophagy and recy-

cling of subcellular components are enhanced under sul-

fur-depleted conditions in the early and late logarithmic 

phases.

Transmission electron microscopy allows high-reso-

lution imaging to study cellular anatomy and ultrastruc-

ture, which is inaccessible by other techniques. �is is 

essential when studying cells in which one of the orga-

nelles is enlarged, covering other compartments and thus 

more or less blocking their observation by other means. 

Examples of such situations are cells over-producing 

astaxanthin [41] or lipids [42]. �e main limitation of 

TEM is that it traditionally facilitates only two-dimen-

sional imaging of approximately 80 nm ultrathin sections. 

�is can be overcome by analyzing sequential sections 

of a single cell stacked together using three-dimensional 

transmission electron microscopy (3D-TEM) technology, 

leading to a three-dimensional image of cell ultrastruc-

ture with very high resolution. �e technique was used 

here to study lipid hyperaccumulation within P. kessleri 

cells in the stress experiment.

Representative cells from three phases—logarithmic 

growth (control), starch-rich, and lipid-rich, were ana-

lyzed using 3D-TEM (Fig. 2, Additional files 2, 3, 4 and 

5). In the logarithmic growth phase, little starch was 

accumulated and no lipid bodies were found (Fig. 2a–c, 

Additional file  2). �e chloroplast and mitochondria 

accounted for 38.5 and 5.9  % of the relative volume, 

respectively (Fig.  2j). In the starch-rich phase, many 

starch grains were observed in the chloroplasts (Fig. 2d–f, 

Additional file 3), accounting for 9.7 % of the relative vol-

ume (Fig. 2k), whereas lipid bodies showed less accumu-

lation (0.4  % of the relative volume). In this phase, the 

relative volume of the chloroplasts was 34.3 % (Fig. 2k).

In the lipid-rich phase, the ultrastructure and volume 

of the subcellular components were dramatically changed 

(Fig. 2g–i, Additional files 4 and 5). �e most remarkable 

change from the starch-rich stage to the lipid-rich stage 

was the relative volume of chloroplasts and lipid bod-

ies (Fig.  2i). �e chloroplast was highly degenerate and 

its relative volume was reduced almost tenfold to 4.4  % 

(Fig.  2l); it was also re-located to one side of the cell 

periphery (Fig. 2g, Additional file 4). Concurrently, lipid 

bodies over-accumulated and accounted for 51.7 % of the 

relative volume (Fig. 2l).

Compared to the morphological changes in Chlorella 

sorokiniana under nutrient stress [42], P. kessleri pos-

sessed larger lipid bodies and these accounted for a con-

siderable portion of the cell. �is was accompanied by 

degradation of the chloroplast in the lipid-rich phase of 

P. kessleri growth (Fig. 2g, Additional files 4 and 5), but 

not in C. sorokiniana. �is reflects the main differences 

between P. kessleri and other Chlorella species with 

respect to lipid production. �e subcellular degradation 

process probably, and at least in part, involves autophagy 

through upregulation of ATG-related transcripts, thus 

enabling recycling of subcellular compartments and 

increased lipid accumulation.

Levels of individual transcripts were expressed in a 

heat map and subsequently applied to a metabolic path-

way map (Fig.  3, Additional file  6) and KEGG category 

analysis (Additional file  1: Figures S3–S5). Overall, the 

expression of genes involved in the Calvin–Benson, tri-

carboxylic acid (TCA), glyoxylate, and C4 dicarboxylic 

acid cycles showed decreased expression under sulfur-

depleted conditions. Other metabolic pathways, such 

as fatty acid metabolism, autophagy, TAG, cysteine, and 

methanethiol synthesis were transcriptionally upregu-

lated (Fig. 3). KEGG category analysis also indicated that 

cysteine and methionine metabolism (category 3: minor 

function category) were upregulated during the entire 

cultivation period under sulfur deprivation (Additional 

file 1: Figure S4).

Under sulfur deprivation, the sulfate transporter gene 

(10836_t) was highly upregulated (log2 value = 6.6 in the 

late logarithmic phase, P < 0.0005), together with cysteine 

dioxygenase (6136_t) (log2 value = 2.5 and 5.6 in the late 

logarithmic and stationary phases, respectively; P < 0.05 

at stationary phase) (Additional file  7). �is is in agree-

ment with the induction of transcripts associated with 

sulfur acquisition and assimilation, synthesis of sulfur-

containing amino acids, cysteine degradation, and sulfur 

recycling, as shown in Chlamydomonas [39]. In addition, 
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Genome ID Description 

155_t Beclin 1 

7935_t Autophagy-related protein 4 

4380_t Autophagy-related protein 5 

9402_t Autophagy-related protein 3 

7174_t V-type proton ATPase catalytic subunit A-like 

8008_t Autophagy-related protein 12 

2754_t Apg1/Unc-51-like serine-threonine kinase 

6863_t Autophagy-related protein 7 

892_t Phosphatidylinositol 3-kinase 

7007_t Phosphoinositide-3-kinase 

12392_t V-type H+-transporting ATPase subunit I 

7173_t V-type H+-transporting ATPase subunit A 

4345_t 5'-AMP-activated protein kinase 

7175_t V-type H+-transporting ATPase subunit A 

7893_t Autophagy-related protein 8 

7418_t 5'-AMP-activated protein kinase 

10798_t 5'-AMP-activated protein kinase 

11799_t Autophagy-related protein 101-like 

12432_t Os06g0267600; Autophagy-related 
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Fig. 1 Phenotypic and transcriptomic response to sulfur deprivation. a Average ± SD (n = 3) growth in TAP (circles) and dSTAP (squares). b Time 

course of average ± SD (n = 3) starch accumulation. c Time course of average ± SD total lipid accumulation. d Time course of average (n = 3) 

total lipid yield (% DW). e Heat map of relative expression levels of autophagy-related genes. Values are indicated as the fold change (log2-ratio) of 

transcript levels under sulfur-deprived conditions relative to sulfur-replete conditions for the three culture phases (early and late log phases and 

stationary phase). The dendrogram represents hierarchical clustering based on expression values. TAP (solid line) and dSTAP (dashed line) lines are 

fitted curves as described in “Methods”. Real values and descriptions of autophagy-related genes are as in Additional file 7
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Fig. 2 3D-TEM reconstruction and volumetric analysis of Parachlorella kessleri. a–c 3D-TEM image of a control cell from log-phase culture (stress-free 

conditions). d–f 3D-TEM image of a starch-rich phase cell (stressed conditions). g–i 3D-TEM image of a lipid-rich phase cell (stressed conditions). j–l 

Relative volumes of subcellular components and organelles in control cells, starch-rich, and lipid-rich cells, respectively. In each stage, 3D images are 
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the gene for methionine-gamma-lyase (MGL) was highly 

upregulated (Fig. 3). Degradation of -methionine is cat-

alyzed by MGL, resulting in methanethiol production. 

Because methanethiol is a sulfur-containing compound, 

we suspect that this metabolic pathway may be used for 

recycling of sulfur under sulfur-limited conditions.

It should be emphasized that transcripts responsive 

to sulfur deprivation also included genes for the light-

harvesting complex of PSII (LHCB) (Additional file  7). 

Almost all genes encoding LHCBs were downregulated 

or did not show varying levels of expression between 

the ±S conditions; only one gene, LHCB1 (1779_t), was 

strongly upregulated (P  <  3  ×  10−7). Compared to the 

no-stress condition, transcript levels of LHCB1 under 

sulfur-depleted conditions increased by 2050- and 

5106-fold in the late logarithmic and stationary phases, 

respectively. LHCB1 (1779_t) is a homolog of LHCBM9 

in Chlamydomonas (JGI accession no: 184479). In Chla-

mydomonas [39, 43], LHCBM9 was upregulated dur-

ing sulfur deprivation. In the RNA-seq analysis [39], 
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LHCBM9 transcripts, which were barely detectable 

when cells were grown in +S medium, were upregulated 

by >1000-fold during sulfur deprivation, whereas tran-

script levels of the other LHCBMs declined, similarly 

to P. kessleri (Additional file  7). Because LHCBM9 con-

tains at least three fewer sulfur-containing amino acids 

than other LHCBMs, it was suggested that exchange for 

LHCBM9 might enable recycling of sulfur-containing 

amino acids and their reallocation among other proteins 

with low sulfur amino acid contents. �is process may 

represent an extreme measure for sulfur use that could 

extend cell viability under sulfur-depleted conditions. 

�is notion was further supported by upregulation of 

some autophagy-related genes in the early and late loga-

rithmic phases of sulfur-depleted cultures (Fig. 1e).

Considering transcriptionally upregulated metabolisms 

that involve hyperaccumulation of lipids, TAG synthe-

sis (e.g., DGAT1) and autophagy emerge as candidates 

for the key mediator of lipid hyperaccumulation under 

stress conditions. �e present observation based on the 

3D-TEM data demonstrates that hyperaccumulation of 

lipids and high degradation of the chloroplast occur con-

currently under stress conditions. �ese results illustrate 

that analysis based on 3D-TEM and phenotypic assays 

confirm the finding that the upregulation of a key media-

tor is involved in hyperaccumulation of lipids under 

nutrient stress conditions in P. kessleri.

Overall, this study supports the notion that basic 

research is required to accelerate development in the 

field of algal biotechnology. �e genomic information on 

the industrially verified, biomass-producing algal spe-

cies P. kessleri provided here will facilitate both basic and 

applied research not only in the field of algal-derived bio-

fuels but will also serve as a foundation for future genetic 

manipulation of the TAG biosynthetic pathway (and oth-

ers) in this species. Similarly, the 3D-imaging approach 

is a promising tool for analysis of global ultrastructural 

changes in whole-cells.

Conclusions
We sequenced and analyzed the whole genome of P. 

kessleri, a high-biomass lipid-rich green alga related to 

Chlorella. Transcriptomic analysis suggested that lipid 

accumulation under conditions of sulfur depletion is 

associated not only with the induction of sulfur metab-

olism but also TAG synthesis, light-harvesting com-

plexes, and autophagy. Moreover, the metabolic changes 

under ±sulfur conditions, autophagy-like changes in cell 

anatomy following lipid accumulation, were visualized 

by 3D-TEM ultrastructural analysis. �e Parachlorella 

genome information provided by this study will facilitate 

basic research and further analysis of applied phycology, 

in addition to potential genetic manipulation, of the TAG 

biosynthesis pathway in this industrially verified bio-

mass-producing species.

Methods
Growth conditions and DNA and RNA extraction

Parachlorella kessleri NIES-2152 was obtained from 

the National Institute for Environmental Studies in 

Tsukuba, Japan. For genomic DNA extraction, P. kes-

sleri cells were grown at 20 ℃ under 70  µmol photons 

m−2 s−1 for 12 h:12 h =  light (L):dark (D) cycle at 20 ℃ 

in TAP medium (Additional file 8: Table S2). Cells from 

2-week-old cultures were harvested by centrifugation 

at 2500g for 10  min at room temperature (r.t.), and the 

resulting pellet (10 g of wet weight) was immediately fro-

zen with liquid nitrogen. DNA extraction was performed 

using the DNeasy Plant Maxi Kit (Qiagen, Hilden, Ger-

many) according to the manufacturer’s protocol. For 

RNA extraction, cells were grown in TAP or dSTAP 

(Additional file  8: Table S3) medium in a 500  ml flask 

(Iwaki, Tokyo, Japan) under 100  µmol photons m−2  s−1 

for 12  h:12  h  =  light (L):dark (D) cycle at 20 ℃. Cells 

from 2-week-old cultures were harvested by centrifuga-

tion at 2500g for 10  min at r.t., and the resulting pellet 

was immediately frozen with liquid nitrogen. Total RNA 

extraction was performed using the Sepasol®-RNA I 

Super G kit (Nacalai Tesque, Kyoto, Japan) followed by 

poly (A) mRNA purification with Dynabeads Oligo (dT) 

(Life Technologies, Carlsbad, USA) in cultures grown 

under conditions of ±sulfur in the early (2  days old) 

and late (4–5  days old) logarithmic phases and station-

ary phase (7–8 days old). In this experiment, 12.5 mL of 

the Sepasol®-RNA I Super G for every 0.5 g of cells were 

used in each experimental group. �e purification was 

performed in three rounds. In the first round, 150 µg of 

total RNA were used for mRNA purification using 1 mg 

of Dynabeads Olig (dT) according to the manufacturer’s 

protocol with modifications. Finally, 500  ng of mRNA 

were obtained.

Genomic and mRNA sequences and annotation

�e genomic sequence of P. kessleri NIES-2152 was 

determined using 454 pyrosequencing for single-end (SE) 

and paired-end (PE, 8  kb-span library) data. We gener-

ated 3,561,169 reads by SE and 804,440 reads by PE, 

which provided 27.8-fold coverage of the genome. �e 

assembly of the obtained sequence data resulted in the 

generation of 400 scaffolds using Newbler version 2.8 

(Roche, Branford, CT, USA). �e total scaffold length was 

2,653,566  bp with a G  +  C content of 58.4  %. Protein-

encoding regions were predicted using the GeneMark-

ES [44]. We annotated 13,057 predicted genes using the 

BLASTP program [45] (e-value cut-off of 1E−5) with the 

NCBI-nr and KEGG databases.
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�e mRNA sequencing libraries of P. kessleri NIES-

2152 were constructed using the ion total RNA-Seq Kit 

v2 (Life Technologies, Carlsbad, USA) and the librar-

ies were sequenced using an Ion PGM sequencer (Life 

Technologies, Carlsbad, USA). We generated 4,220,822 

reads (2d: 2-day-old culture in TAP), 5,681,304 reads (4d: 

4-day-old culture in TAP), 4,742,155 reads (8d: 8-day-old 

culture in TAP), 4,144,745 reads (ds_2d: 2-day-old cul-

ture in dSTAP), 4,220,451 reads (ds_5d: 5-day-old culture 

in dSTAP), and 3,694,851 reads (ds_7d: 7-day-old culture 

in dSTAP) from six mRNA samples. �e Parachlorella 

gene IDs and full descriptions of protein names are given 

in Additional files 6 and 7.

Reconstruction of KEGG pathway map and mRNA 

expression analysis

�e RNA-seq reads were mapped to the predicted genes 

using Newbler v.2.8. Comparative expression analyses 

were performed using standardized reads per kilobase 

of exon per million mapped sequence reads (RPKM) val-

ues. Functional annotation descriptions were assigned 

by BLASTP [45] with the KEGG database (e-value cut-

off of 1E−10). �e metabolic network was reconstructed 

using KEGG mapper (http://www.genome.jp/kegg/) 

with the KO numbers as objects shown in Additional 

file  6. �e resulting KEGG map was redrawn manually 

using Adobe Illustrator v. 16.0.4 (Adobe Systems). An 

abbreviated gene names are given in Additional file 6. A 

heat map of the autophagy-related transcriptomes was 

generated using the heatmap2 function from the Gplots 

package v. 2.16.0 in the R statistical software v. 3.1.0 

(http://www.R-project.org/). Statistical testing for gene 

expression was performed in R with DESeq [46] using 

the no replicate method. �e P values are provided in 

Additional file 9. We performed KEGG category analy-

sis in which different sequences were treated as different 

genes.

Phenotypic assays for biomass and lipid production

Pre-cultures were grown under 100  µmol photons 

m−2 s−1 for 12 h:12 h = L:D cycle at 23 ℃. Cells of 4-day-

old cultures were centrifuged at 1500g for 5  min at r.t. 

and collected as a pellet. �e pellet was re-suspended and 

inoculated into 500  mL of TAP or dSTAP medium (the 

initial concentration of the culture was ~7  ×  106 cells 

mL−1). �e batch cultures were grown under continu-

ous illumination (100 µmol photons m−2 s−1) at 21–23 °C 

and agitated with a magnetic stirrer (MGM-66, Shibata, 

Tokyo, Japan) at 100–150 rpm.

Cells were counted using a particle counter (CDA-

1000, Sysmex, Kobe, Japan). A general linear model 

was fit to values of the cell numbers in each condition 

for growth curves. For dry weight determination, an 

aliquot of cell culture was sampled into a pre-weighed 

sampling tube and centrifuged at 6000g for 5  min at 

r.t. The supernatant was then removed and the cell 

pellet was dried for at least 3  h to a constant weight 

at 105 ℃. The sampling tube was weighed using a pre-

cision analytical balance (NewClassic MS, Mettler 

Toledo, MD). For total lipid extraction and measure-

ments, we used a previously described method [16]. 

Briefly, total lipids were extracted using methyl-tert-

butyl ether (MTBE) [47], and the weight of total lipids 

was measured gravimetrically using a precision ana-

lytical balance. Starch content was quantified using 

the Lugol staining method as described [48]. Growth 

curves were estimated using a general linear model 

(glm function), and other curves (except for starch 

assay) were fitted using the ksmooth function in R sta-

tistical software v. 3.1.0.

3D-TEM analysis
We observed three representative stages: control (4 days 

old in TAP under LD), starch-rich [6 days old in dSTAP 

under light/dark cycle (LD)], and lipid-rich (6  days old 

in dSTAP under LL). Cells at each stage were pre-fixed 

for 2  h with 2.5  % glutaraldehyde, post-fixed with 1  % 

OsO4 for 2 h at r.t., and then rinsed with 0.05 M sodium 

cacodylate buffer (pH 7.2). �e fixed cells were then 

dehydrated using a graded ethanol series, incubated in 

ethanol:acetone = 1:1 and finally suspended in 100 % ace-

tone at r.t. �e dehydrated samples were infiltrated with 

increasing concentrations of Spurr’s resin [49] in acetone 

and finally with 100 % Spurr’s resin. Ultrathin serial sec-

tions were cut on a Reichert Ultracut S ultra-microtome 

(Leica, Vienna, Austria) using a diamond knife. Serial 

sections were mounted on copper grids coated with pol-

yvinyl formvar films and stained in 3  % aqueous uranyl 

acetate and lead citrate [50]. �e sections were observed 

at 100 kV using an H-7650 transmission electron micro-

scope (Hitachi High Technologies, Tokyo, Japan).

3D-TEM imaging followed a previously described 

method [41]. Briefly, contours of each subcellular ele-

ment (e.g., nucleus, chloroplast, lipid body) were traced 

manually. After binarization of the traced subcellular 

elements, 3D images were reconstructed using TRI/3D 

SRFIII software (Ratoc System Engineering, Tokyo, 

Japan). Voxel-based volumetric analyses were performed 

using the TRI/3D SRFIII system and data were presented 

as the means of two representative cells.

Nucleotide sequence accession numbers

�e P. kessleri NIES-2152 whole genome has been depos-

ited in DDBJ/EMBL/GenBank under the accession 

BBXU01000001-BBXU01003651 (BioProject number: 

PRJDB3487).

http://www.genome.jp/kegg/
http://www.R-project.org/
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