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Abstract

Background: Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an

important source of calories and a promising source for biofuel production. Although stable gene expression have

been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has

been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced.

Methods: Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of

cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum

conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene

expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization.

Results: In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation

and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the

combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the

high yield (4.4 × 107 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency

(70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We

validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H+/monosaccharide

cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system.

Conclusion: We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and

transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.
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Background

Transient gene expression in plant protoplasts is a power-

ful technique for studying subcellular localization of pro-

teins, gene and promoter activities, protein-protein

interactions, and signal transduction [1–7]. Compared

with the stable gene expression in transgenic plants, tran-

sient gene expression represents a fast, convenient and

efficient alternative system with higher expression levels

[8–10]. Moreover, the transient gene expression assay en-

able the high-throughput analysis of gene functions while

the stable gene expression is relatively expensive and time-

consuming thus limiting the utilization of this technique

for large-scale analyses of plant genes [8–10]. Although dif-

ferent transfection techniques such as polyethylene glycol

(PEG)-mediated, electroporation and microinjection have

been developed to deliver recombinant DNA plasmids into

protoplasts, utilization of the PEG-mediated approach has

high transformation efficiency, so it is widely applied in
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molecular and cellular studies for both model plants and

non-model plants [4, 7, 8, 11–20].

Cassava (Manihot esculenta Crantz) is a perennial

and woody shrub of the Euphorbiaceae cultivated in

tropical and subtropical regions for its starchy storage

roots [21, 22]. These roots have been used as the

sources for dietary carbohydrate, starch processing

and potential biofuel production. Since that cassava is

a staple crop for approximately 800 million people in

developing regions of the tropics [23], many groups

have been intensively performing research on cassava

molecular breeding which relies on the identification

of agronomically important genes and pathways. Re-

cently, the cassava sequencing data set has been pub-

licly released [24] and the determination of gene

function has been a major goal of cassava molecular

biology in genomic and post-genomic era, thus it will

necessitate efficient high-throughput transient gene

expression for gene function analysis.

Stable gene transfer can be developed for gene func-

tion studies at whole plant level. Much progress has

been made in cassava genetic transformation of both

Agrobacterium tumefaciens-mediated and biolistic-

mediated system [23, 25–27]. However, the transform-

ation efficiency is relatively low and genotypic dependent

[28], and the process requires well-trained tissue culture

specialists, is lengthy and difficult to repeat [29, 30].

Hence, the development of an efficient transient gene

expression system that could be exploited to characterize

gene functions and investigate molecular processes in

cassava is required.

Due to the fact that cassava is recalcitrant for plant re-

generation from protoplasts, only two reports about the

protoplast culture and regeneration of cassava have been

published. Shahin and Shephard reported shoot regener-

ation from the isolated mesophyll protoplasts of cassava

[31] and Sofiari et al. reported the plant regeneration

from protoplasts isolated from friable embryogenic

callus of cassava [32]. Anthony et al. developed a proto-

col for the culture of cassava leaf protoplasts but plant

regeneration from protoplasts had not achieved [33]. To

date, transient gene expression in cassava protoplasts

has not been developed. Here we report an effective and

reliable mesophyll protoplast isolation and PEG-

mediated transient gene expression in cassava. The

protocol has been successfully used for subcellular

localization of a sugar transporter, MeSTP7 protein.

Methods

Materials

In vitro plantlets of Manihot esculenta cv. South China 8

(SC8) were used in this study. Cultures were kept on 1/

2MS (Murashige and Skoog) medium (supplemented

with 2% sucrose and 0.8% agarose, pH5.8) at 28 °C,

under lighting with a cycle of 12 h/8 h (light/darkness)

for 6-10 weeks to obtain fully expanded leaves.

Protoplast isolation

Protoplast isolation was conducted using the protocols

described by Yoo et al. [3] and Anthony et al. [33] with

slight modification. The fully expanded green leaves

were cut into about 0.5-1.0 mm strips with sharp razors.

The strips of 0.3 ± 0.03 g (for each treatment) were

transferred quickly into 10 mL of enzyme solution (0.1%

BSA, 9% mannitol, 20 mM KCl, 10 mM CaCl2, 20 mM

MES, pH 5.8) with different concentrations of cellulase

R-10 (0.8%, 1.6% or 2.4%) (Yakult, Japan) and macero-

zyme R-10 (0.4%, 0.8% or 1.2%) (Yakult, Japan) for cell

wall hydrolysis by shaking at 45 rpm for 16 h in the dark

(25 °C) for plasmolysis.

The digested tissues were filtered through a 0.75-mm

nylon sieve, collected by centrifugation (80 g for 3 min)

and suspended in 20 mL pre-cooled W5 solution

(154 mM NaCl, 125 mM CaCl2, 5 mM KCl and 2 mM

MES, pH 5.8). The protoplast pellet was purified twice

in W5 solution by repeated resuspension and centrifuga-

tion (80 g for 3 min).

The resulting protoplasts were resuspended in

2 mL W5 solution, placed on the ice for 30 min and

counted under a microscope equipped with a

hemocytometer. The viability of protoplasts was mea-

sured with 0.2% fluorescein diacetate (FDA) staining

and determined as follows: protoplast viability (%)

= (fluorescent protoplast number in view/protoplast

total number in view) × 100%.

Cassava mesophyll protoplast transformation

The protoplasts were collected by centrifugation (80 g

for 2 min) and resuspended in MMg solution (9%

mannitol, 15 mM MgCl2, 4 mM MES) to a density of

1.0 × 107 protoplasts/ml. 15 μg of pA7-GFP plasmid

[34] were mixed gently with 200 μl protoplasts. Then

different concentrations of freshly prepared PEG4000

solutions (9% mannitol, 100 mM CaCl2) were imme-

diately added and mixed by gentle inversion to obtain

a 15%, 20%, 25% or 30% final PEG4000 concentration.

The mixture was incubated at room temperature for

5, 10, 15 and 20 min, respectively. After incubation,

the transfection mixture was gently diluted with three

volumes of W5 solution.

The transfected protoplasts were centrifuged (80 g,

2 min) twice, then resuspended with 300-500 μl WI so-

lution (4 mM MES, 9% mannitol, 20 mM KCl, pH 5.8)

and incubated overnight at room temperature in dark

for the induction of protein expression. Transformation

efficiency was detected under fluorescence microscopy

and the expression of GFP tag was observed by confocal

laser scanning microscope. Transformation efficiency
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was calculated as follows: transformation efficiency (%)

= (bright green fluorescent protoplast number in view/

total protoplast number in view).

Plasmid construction and subcellular localization of

MeSTP7 protein

Total RNA was extracted from cassava leaves with RNA-

plant Plus (Tiangen biotech, Beijing, China) and cDNA

was synthesized using the PrimeScript RT reagent Kit

with gDNA Eraser (TaKaRa, Dalian, China) following

the manufacturer’s instructions.

The specific primers with Xho I and Spe I restriction en-

zyme sites (bold) introduced to their ends respectively,

STP7-F (5'-CCGCTCGAGATGCCTGCAGGAGGTTT-

3') and STP7-R (5'-GGACTAGTGAAAACTGGGTAA-

CAGGATCAA-3'), were designed according to the con-

served region of MeSTP7 (GenBank accession number:

Manes.03G180400). The gene of interest was amplified

using Phusion DNA Polymerase under the following con-

ditions: 98 °C for 30 s followed by 35 cycles of amplifica-

tion (98 °C for 10 s, 57 °C for 30 s, 72 °C for 45 s) and a

10-min final extension at 72 °C.

The PCR products were confirmed by sequencing and

inserted between the 35S promoter and the GFP of the

expression vector pA7-GFP, designated as pA7-MeSTP7-

GFP (Fig. 1). The plasmid construct was propagated in

competent Escherichia coli Trans-T1 (TransGen Biotech,

Beijing, China). Subcellular localizations of MeSTP7 pro-

tein in cassava and Arabidopsis mesophyll protoplasts

were carried out according to our transformation pro-

cedure described above and the method established by

Yoo et al [3], respectively.

Results

Isolation of protoplasts from cassava leaves

Different enzyme combinations significantly influenced

the yield and viability of cassava protoplasts. Protoplast

yield increased with increasing concentrations of cellu-

lase R-10 and macerozyme R-10, but protoplast viability

decreased with increasing enzyme concentrations. It was

found that the highest production of protoplasts (5.1 ×

107 protoplasts/ g FW) was obtained with 2.4% cellulose

and 1.2% macrerozyme, with the lowest viability of pro-

toplasts (83.8%). For obtaining the highest number vi-

able protoplasts for the subsequent transfection

experiments, the optimum combination of enzymes for

cassava protoplast isolation was determined as 1.6% cel-

lulase + 0.8% macerozyme. This combination gave the

yield of 4.4 × 107 protoplasts/g FW and the viability of

92.6%. The enzyme solution turned green, indicating the

release of mesophyll protoplasts. Leaf mesophyll proto-

plasts were uniformly spherical, and containing single

intact nucleus and green chloroplasts. (Table 1, Fig. 2).

Establishment of cassava mesophyll protoplast expression

system

In this study, the effects of PEG4000 concentration and

transfection duration on cassava protoplast transform-

ation efficiency was investigated with the transient ex-

pression vector pA7-GFP. The results showed that when

the transfection time was 10 min, the transfection effi-

ciency increased along the increasing concentration of

PEG4000 and reached the maximum level (70.8%) at the

concentration of 25% (Figs. 3 and 4a). When the concen-

tration of PEG4000 was 25%, transfection efficiency in-

creased with increases in the transfection time until it

peaked at 10 min (Figs. 3 and 4b). Therefore, factors af-

fecting transfection efficiency were optimized: 25% of

PEG4000 concentration and 10 min of transfection time.

In addition, stability of transient expression of GFP has

been verified as GFP signal could be detected 8-30 h

after transformation.

Subcellular localization of GFP-fused MeSTP1 protein in

cassava mesophyll protoplasts

To test the feasibility of the protoplast transient expres-

sion system for the subcellular localization of protein in

cassava cells, the transient expression of GFP-fused

MeSTP7 protein in cassava mesophyll protoplasts was

performed. Twelve-eighteen hours after transfection,

brilliant green fluorescence distributed in intracellular

compartments was observed. MeSTP7:GFP was specific-

ally detected in cell membrane, but empty vector control

(GFP) was distributed throughout the nucleus and cyto-

plasm (Fig. 5). Similar pattern of MeSTP7 subcellular

localization in Arabidopsis mesophyll protoplasts vali-

dated the authenticity of the results described above

(Fig. 6).

Discussion

A reliable protoplast isolation with high yield and viabil-

ity is prerequisite for the success of transient gene

Fig. 1 Schematic representation of the pA7-MeSTP7-GFP construct driven by the constitutive CaMV 35S promoter and terminated by nopaline

synthase terminator (NOS)
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expression. Source tissue, the type and concentration of

enzymes are critical factors affecting the release of pro-

toplasts [3, 35, 36]. Leaves from field or greenhouse-

grown plants usually have a thick cuticle and recalcitrant

cell walls, which are likely to be the major limiting fac-

tors for protoplast isolation [12]. In cassava, Shahin et al.

[31] used well expanded leaves which were collected

from preconditioned plants (in growth chamber) and

then incubated on a solution supplemented with

naphthaleneacetic acid (NAA) and benzylaminopurine

(BAP) as protoplast source. Sofiari et al. [32] isolated

cassava protoplasts from friable embryogenic callus

(FEC) and from suspensions derived from FEC. Anthony

et al. [33] took juvenile leaves from axenic shoot cultures

of cassava as protoplast source. For convenience sake,

we chose the leaves from in vitro propagated cassava

plants as the protoplast source.

For a given species and source tissue, suitable enzymo-

lysis time and enzymolysis composition are vital for

protoplast isolation. Anthony et al. [33] had established

an improved protocol for cassava protoplast isolation

with an enzyme mixture for 16 h. Referring to the

method described by Anthony et al. [33], optimization of

the enzymolysis composition was conducted in this

study. The combinations of cellulase and macerozyme

which have been commonly used for protoplast isola-

tion, were evaluated to obtain protoplasts with the high-

est yield and viability. As the concentration of total

enzyme in the mixture increased, protoplast yield

seemed to increase but protoplast viability to decrease.

High levels of cellulose R-10 and macrerozyme R-10 in-

creased protoplast yield but decreased the viability of

protoplasts, possibly due to the influence of enzymes on

the integrity of membrane and the physiological activ-

ities of protoplasts [37, 38]. The highest yield (5.1 × 107

protoplasts/ g FW) and the lowest viability of protoplasts

(83.8%) were recorded with the 2.4% cellulose and 1.2%

macrerozyme, which was the most concentrated enzyme

mixture in our study. This lowest viability of protoplasts

may not be suitable for subsequent experiments. How-

ever, the lowest concentrations of enzymes in the isola-

tion mixture gave a lower yield (1.8 × 107 protoplasts/g

FW) but with a slightly higher viability of protoplasts

(93.6%). The enzyme mixture containing 1.6% Cellulase

R10 and 0.8% macerozyme R10 was the best mixture in

terms of both yield (4.4 × 107 protoplasts/g FW) and via-

bility (92.6%) of protoplasts. The maximum yield and

viability of leaf mesophyll protoplasts achieved in our

study were substantially higher than the results previ-

ously reported [28, 30]. The reason possibly attributed

to the differences in tissue source used [31, 32], and/or

the type and concentration of enzymes [32, 33]. In

addition, the high yield (4.4 × 107 protoplasts/g FW) and

vitality (92.6%) of cassava mesophyll protoplasts ob-

tained in our study were comparable to the values re-

ported for Populus (1 × 107 protoplasts/g FW, more than

90%) [13], Brachypodium distachyon (1.7 × 107 proto-

plasts/g FW, more than 90%) [19], cucumber (6-7 × 107

protoplasts/g FW, about 90%) [15]. The high yield and

viability allowed the application of this system for the

subsequent transfection experiment.

Although heterologous transient gene expression

systems with Arabidopsis and tobacco protoplasts are

commonly adopted for studying gene function in

non-model plants such as cassava, these heterologous

systems may display aberrant results due to a foreign

genetic background. In this study, we established an

efficient cassava protoplast transfection system by op-

timizing PEG4000 concentration and transfection

time. This protocol will be an extraordinarily valuable

tool for cassava gene functional study. In addition,

transfection efficiency over 50% is generally required

for obtaining reliable and reproducible results with

the protoplast system [3]. The highest transfection ef-

ficiency (70.84%) with strong GFP signal was obtained

with 25% of PEG4000 concentration for 10 min of

transfection time. This result demonstrated that the

transfection efficiency of cassava protoplasts was

Table 1 Effects of enzyme combinations on the yield and viability of protoplasts isolated from leaves of cassava

Cellulase R-10 (W/V) Macerozyme R-10 (W/V) Protoplast yield (107#/g FW) Protoplast viability (%)

0.8 0.4 1.08 ± 0.14f 93.64 ± 1.00a

0.8 0.8 1.45 ± 0.09ef 93.05 ± 3.00a

0.8 1.2 1.89 ± 0.14e 91.32 ± 1.00a

1.6 0.4 3.08 ± 0.14d 93.43 ± 2.00a

1.6 0.8 4.42 ± 0.29b 92.60 ± 2.00a

1.6 1.2 3.25 ± 0.39 cd 90.14 ± 3.00a

2.4 0.4 1.80 ± 0.15e 88.38 ± 4.00ab

2.4 0.8 3.66 ± 0.18c 87.67 ± 1.00ab

2.4 1.2 5.06 ± 0.25a 83.82 ± 5.00b

Note: The averages of three technical replicates ± standard error of the mean (SEM) are shown. The different letters indicate significant differences (P ≤ 0.05)

according to the Duncan test
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sufficiently high to be used for gene functional ana-

lysis in the future.

Using the optimized protocol that we developed,

subcellular localization of MeSTP7 was investigated.

Cassava MeSTP7 is a homologous gene of STP1

(SUGAR TRANSPORTER PROTEIN 1) in Arabidopsis

thaliana and Nicotiana tabacum, which encodes an

H+/monosaccharide cotransporter containing 12 puta-

tive transmembrane domains and is a putative plasma

membrane protein [39–41]. Our results showed that

MeSTP7 have been likely localized to the cassava

plasma membrane. Similar to the localization in

Fig. 2 The viability assays of cassava mesophyll protoplasts using the

optimized protocol, i.e. preparation of mesophyll protoplasts in an

enzyme solution (1.6% cellulase + 0.8% macerozyme) incubated at 25 °C

(45 rpm) for 16 h in darkness. a Bright field image of protoplasts; (b)

Protoplasts stained with FDA; (c) Merged image of protoplasts

(Scale bar = 100 μm).

Fig. 3 High-efficiency transformation of cassava mesophyll protoplasts

with pA7-GFP plasmid. a Bright field image of protoplasts; (b) Image of

GFP; (c) Image of GFP merged with chlorophyll autofluorescence

(Scale bar = 100 μm)
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cassava protoplasts, the MeSTP7 protein was distrib-

uted in Arabidopsis plasma membrane using a heter-

ologous transient gene expression system. This

confirmed that the cassava mesophyll protoplast ex-

pression is a reliable procedure for subcellular protein

localization.

Conclusions

In summary, a highly efficient protocol for cassava

mesophyll protoplast isolation and PEG-mediated

transient expression was obtained through optimization

of the type and concentration of enzymes for proto-

plast preparation, and PEG4000 concentration and

treatment time for transfection. The method reported

here can thus be very useful for molecular and cellu-

lar studies in cassava, especially combined with genet-

ics, genomics, transcriptomics and proteomics. It is

noteworthy that the simple incubation buffers de-

scribed in this article do not support division of

mesophyll protoplasts. Therefore, the system will not

Fig. 4 Effects of PEG4000 concentration (a) and transfection time (b) on cassava protoplast transformation efficiency. Values are expressed as

mean ± SEM, the error bars represent at least five independent replicates. The different letters indicate significant differences (P ≤ 0.05) according

to the Duncan test

Fig. 5 Subcellular localization of MeSTP7 in cassava mesophyll protoplasts. Transient expression of GFP, showing that the GFP is distributed

throughout the nucleus and cytoplasm (a-d). The laser-scanning confocal microscopy images are the bright field image (a), fluorescence image

(b), merged image (c) and autofluorescence image (d), respectively. The transient expression of GFP-fused MeSTP7 protein, showing that the

MeSTP7-GFP fusion protein is likely localized to plasma membrane (e-h). The laser-scanning confocal microscopy images are the bright field

image (e), fluorescence image (f), merged image (g) and chloroplast fluorescence (H), respectively. The bars = 5 μm.)
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appropriate to evaluate the expression of cassava genes in-

volved in, e.g., cell cycle, plant dedifferentiation, or

genes that require long-term follow-up (several cycles

of cell division). The protoplast regeneration protocols

developed by Shahin and Shephard [31], Sofiari et al

[32] and Anthony et al [33] can be used for this

purpose.
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