
mater.scichina.com link.springer.com Published online 15 December 2020 | https://doi.org/10.1007/s40843-020-1508-7

Sci China Mater 2021, 64(4): 808–819

Highly efficient organic solar cells enabled by a
porous ZnO/PEIE electron transport layer with
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ABSTRACT In this study, a porous inorganic/organic (ZnO/

PEIE, where PEIE is polyethylenimine ethoxylated) (P-ZnO)

hybrid material has been developed and adopted in the in-

verted organic solar cells (OSCs). The P-ZnO serving as the

electron transport layer (ETL) not only presents an ameli-

orative work function, but also forms the cratered surface with

increased ohmic contact area, revealing suppressed charge

recombination and enhanced charge extraction in devices.

Particularly, P-ZnO-based OSCs show improved light trap-

ping in the active layer compared with ZnO-based ones. The

universality of P-ZnO serving as ETL for efficient OSCs is

verified on three photovoltaic systems of PBDB-T/DTPPSe-

2F, PM6/Y6, and PTB7-Th/PC71BM. The enhancements of 8%

in power conversion efficiency (PCE) can be achieved in the

state-of-the-art OSCs based on PBDB-T/DTPPSe-2F, PM6/Y6,

and PTB7-Th/PC71BM, delivering PCEs of 14.78%, 16.57%,

and 9.85%, respectively. Furthermore, a promising PCE of

14.13% under air-processed condition can be achieved for P-

ZnO/PBDB-T/DTPPSe-2F-based OSC, which is among the

highest efficiencies reported for air-processed OSCs in the

literature. And the P-ZnO/PBDB-T/DTPPSe-2F-based device

also presents superior long-term storage stability whether in

nitrogen or ambient air-condition without encapsulation,

which can maintain over 85% of its initial efficiency. Our re-

sults demonstrate the great potential of the porous hybrid P-

ZnO as ETL for constructing high-performance and air-stable

OSCs.

Keywords: light trapping, electron transport layer, porous

structure, stability, organic solar cells

INTRODUCTION
Organic solar cells (OSCs), as one of emerging photo-

voltaic technologies, have attracted enormous attention in
view of their unique merits, such as semi-transparency,
solution processability and mechanical flexibility [1–5]. A
high power conversion efficiency (PCE) over 18% has
been realized in single-junction OSCs due to the rapid
progress associated with semiconducting materials and
device innovations [6–9]. In view of photoactive material
aspects, polymers or small molecules have been in-
tensively investigated and developed along with the
combination of binary or multicomponent donor/ac-
ceptor materials [10–19], and optimal nanoscale mor-
phology of bulk-heterojunction (BHJ) active layers [20–
24]. In the sandwiched device architectures, engineering
and optimization of the interfaces between photoactive
layer and metal electrodes are also crucial and challen-
ging, which can promote the photogenerated charge
carrier collection.

In the inverted devices, interfacial engineering of elec-
tron transport layers (ETLs) is widely exploited to im-
plement high-performance OSCs [25–27]. Besides the
principle of energy alignment between the photoactive
layer and metal electrode, the high transparency and
mobility of ETLs are also accounted [28–30]. Up to now,
metal oxides such as zinc oxide (ZnO) and titanium oxide
(TiO2) are frequently served as ETLs to form ohmic
contact for facilitating charge transport and collection
[31,32]. The primary selective sol-gel ZnO is utilized in
numerous efficient OSCs due to its high electron mobility
(~5 cm

2
V

−1
s
−1

) and superior optoelectronic properties
[33]. However, the intrinsic defects and charge traps al-
ways accompany each other at the surface and bulk of
ZnO film depending on the thermal annealing process,
which could lead to severe charge recombination [34]. To
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address these issues, many groups have been engaged to
develop organic ETL materials for OSCs [35]. Recently,
Lin et al. [36] have explored glucose-based biopolymers as
zinc oxide surface modifiers for the inverted OSCs, and
the methyl-cellulose-modified ZnO ETL can enable im-
proved performance in devices. Pan et al. [37] have re-
ported an N-doped (N,N-dimethyl-ammonium N-oxide)
propyl perylene diimide-graphene (PDINO-G) as ETL
through dispersing graphene in the alcohol-soluble PDI-
NO, revealing the enhanced photovoltaic performance in
several derived OSCs. Zhang et al. [38] have developed a
novel interfacial cathode material, named as poly[(9,9-bis
(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-5,5'-
bis(2,2'-thiophene)-2,6-naphthalene-1,4,5,8-tetra-
caboxylic-N,N'-di(2-ethylhexyl)imide] (PNDIT-F3N).
The derived homojunction tandem OSCs have exhibited
remarkable stability with efficiency retaining 93% of their
initial value after thermally aging at 80°C for 1000 h.

To refine the interfacial contact of inorganic ETL,
surface modifiers such as polyethylenimine (PEI) [39],
PEI ethoxylated (PEIE) [40], and poly[(9,9-bis(3'-(N,N-
diethylamino)propyl)-fluorene)-alt-2,7-(9,9-dioctyl-
fluorene)] (PFN) [41] have also been exploited. Benefiting
from the reduced work function and better compatibility
of the optimized ETL, the relative OSCs reveal suppressed
charge recombination with boosted overall photovoltaic
performance. However, there is a fatal drawback, that is,
these polar materials have inherently low electrical con-
ductivity and thus are extremely sensitive to thickness
[42,43]. For the high-throughput solution-coating process
of OSCs, there is a delicate balance to select organic or
inorganic interface materials. Considering the above
trade-offs, developing the promising interface material
with suitable work function and superior conductivity is
still highly desired for efficient and stable OSCs.

In this study, an organic/inorganic hybrid ETL with
porous structure (P-ZnO) has been successfully adopted
in the inverted OSCs, which is composed of PEIE and
ZnO. Herein, the PEIE was well dispersed in the ZnO
precursor solution, and the spin-coated P-ZnO films were
processed with thermal annealing for forming ZnO
crystal, solvent washing for porous structure, and heating
for cleaning in sequence. The P-ZnO serving as ETL not
only presented an ameliorative energy alignment between
the photoactive layer and cathode (indium tin oxide
(ITO)), but also formed a unique surface with increased
ohmic contact area. Three active layer composites, PBDB-
T/DTPPSe-2F, PTB7-Th/PC71BM and PM6/Y6 were uti-
lized to explore the efficacy of P-ZnO as ETL. Conse-
quently, compared with ZnO-based counterparts, P-ZnO-

based OSCs revealed enhanced photovoltaic performance
with improved short-circuit current density (JSC) and fill
factor (FF), which accounted for the suppressed charge
recombination and enhanced charge extraction. Besides,
the P-ZnO-based devices also showed improved light
trapping in the active layer due to the softened reflection
at the interface. High PCEs of 14.78%, 9.85%, and 16.57%
for devices based on PBDB-T/DTPPSe-2F, PTB7-Th/
PC71BM and PM6/Y6 can be realized, respectively.
Moreover, the devices based on P-ZnO/PBDB-T/
DTPPSe-2F exhibited distinguished fabricating flexibility
whether in the nitrogen (N2) or ambient air condition,
delivering comparative photovoltaic efficiencies and sa-
tisfactory long-term storage stabilities. A decent PCE of
14.13% for air-processed OSCs was achieved, which is
among the highest efficiencies reported for air-processed
OSCs in the literature.

EXPERIENTAL SECTION

Porous ETL preparation

The ZnO precursor solution was prepared by dissolving
zinc acetate dihydrate (Zn(CH3COO)2·2H2O, Aldrich,
1 g) and ethanolamine (Aldrich, 0.14 mL) in 2-methoxy-
ethanol (ME, Aldrich, 5 mL). The precursor solution was
stirred overnight to yield a transparent solution. The
35 wt% PEI aqueous solution (PEIE, 80% ethoxylated, Mw

~70,000 g mol
−1

, Aldrich) was diluted to 0.5% with ME
and stirred overnight. Then ZnO precursor and dilute
PEIE solutions were mixed with different volume ratios.
The derived ETL films were spin-coated with the mixed
solution at 5000 r min

−1
for 30 s and annealed at 150°C

for 30 min. Then the films were rinsed with ME at
3000 r min

−1
for 30 s to form P-ZnO films, and heated for

10 min subsequently.

Device fabrication

All OSCs were fabricated with the inverted structure of
ITO/ETL/active layer/MoO3/Ag. ITO/glass substrates
with a sheet resistance of 15 Ω sq

−1
were ultrasonically

cleaned with detergent, deionized water, acetone, and
isopropanol for 15 min each, and subjected with oxygen
plasma for 180 s for further cleaning. The pristine ZnO
films were spin-coated with the ZnO precursor solution,
which contained dissolved zinc acetate dihydrate (1 g)
and ethanolamine (0.28 mL) in ME (10 mL). The ZnO/
PEIE and P-ZnO films were spin-coated with the pre-
pared mixed solution at 5000 r min

−1
for 30 s, respec-

tively. The BHJ blend films were processed as previously
reported [44–46]. The MoO3 (8 nm) and Ag (150 nm)
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layers were successively deposited by thermal evapora-
tion.

Characterization and device measurements

The current density-voltage (J-V) characteristics of all
devices were measured under AM 1.5 G at 100 mW cm

−2

irradiance (Oriel 300 W Solar Simulator) with a Keithley
2400 Unit. The light intensity was calibrated with a
standard silicon diode (KG5 filter). The typical active area
was 3.97 mm

2
as defined by a metal mask with an aper-

ture. External quantum eciency (EQE) measurements
were carried out from a Solar Cell Spectral Response
Measurement System QE-R3011 (Enlitech Co., Ltd.)
equipped with a standard Si diode. The film thicknesses
were measured using Bruker Dektak XT stylus profiling
system. The X-ray photoelectron spectroscopy (XPS)
measurements were conducted using Thermo Scientific
ESCALAB 250Xi spectrometer. The ultraviolent photo-
electron spectroscopy (UPS) measurements were col-
lected on a Thermo Fisher Scientific Ultra Spectrometer
(ESCALAB 250Xi) He (I) (21.22 eV) radiation line from a
discharge lamp. All measurements were performed at
room temperature (296 K). The contact angle measure-

ments of derived films were performed on SL200C optical
contact angle meter (Solon Information Technology Co.,
Ltd.).

RESULTS AND DISCUSSION

Morphology characterization

To manufacture the P-ZnO films, a certain concentration
of PEIE in ME was added to the ZnO precursor solution
with a volume ratio of 1:2. After spin-coating with the
prepared solution and thermal annealing, ME was utilized
again to scour off PEIE component for forming porous
structure as shown in Fig. 1a. The detailed process is
summarized in Supplementary information. As shown in
Fig. S1, a distinct porous structure in the designed film
(P-ZnO) can be observed from optical microscope ob-
servation. To reveal the progress of porous structure of
P-ZnO, the morphology features of pristine ZnO film,
prepared ZnO/PEIE composite film without washing, and
P-ZnO film were detected with the atomic force micro-
scope (AFM) and scanning electron microscope (SEM)
measurements as shown in Fig. 1b–g. The irregular
morphology and the highest root-mean-squared surface

Figure 1 (a) The fabricating process of P-ZnO. SEM and AFM height images of (b, e) pristine ZnO film, (c, f) ZnO/PEIE composite film without
solvent washing and (d, g) P-ZnO film.
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roughness (Rq of 5.33 nm) of ZnO/PEIE film may result
from the aggregation of PEIE on the surface. After solvent
washing, the Rq of P-ZnO film shows a moderate value of
3.33 nm in the three films, which confirms the removal of
PEIE component on the surface. Compared with the Rq

value (1.31 nm) of pristine ZnO film, the proper in-
creased surface roughness of P-ZnO film may enhance
the ohmic contact, which is beneficial to the charge
transport and electron extraction. As shown in the
Fig. 1d, the diameter scale of porous size in the cratered
P-ZnO film can be defined in 10–40 μm.

XPS analysis

In order to explore the composition of the derived films,
XPS measurement was employed. Fig. 2 shows the narrow
scans of N 1s, Zn 2p and O 1s core level spectra for ZnO,
ZnO/PEIE and P-ZnO films. It is evident that N 1s peak
can be observed in the P-ZnO film as shown in
Fig. 2a, indicating the hybrid components of P-ZnO. The
shifting binding energy of N 1s core level from pure PEIE
(400.1 eV) to P-ZnO (401.6 eV) implies that chemical
bonding could occur between PEIE and ZnO. The O 1s
spectra were fitted with two Gaussian components as

shown in Fig. 2b. The lower binding energy (530 eV) can
be assigned to the divalent oxygen (O

2−
) state, while the

higher binding energy (532.5 eV) is related to the oxygen-
deficient regions from the hydroxyl bonds on the surface,
indicating the intrinsic defects in the films. As shown in
Fig. 2c, the Zn 2p peaks of ZnO and P-ZnO are located at
binding energies of 1044.4 and 1044.0 eV, respectively
[47–49]. The lower binding energy of Zn 2P core level for
P-ZnO also implies that PEIE can effectively passivate the
defects of ZnO, which is favorable for the charge trans-
port in P-ZnO-based devices.

Miscibility and work function analysis

The surface tensions and contact angles were measured to
explore the miscibility of P-ZnO. As shown in Fig. 3a, the
water contact angle is determined to be 36.0°, 35.4°, 27.5°
and 22.2° for ZnO, P-ZnO, ZnO/PEIE and PEIE, re-
spectively. The similar contact angles of ZnO/PEIE and
PEIE films confirm the above speculation that the ag-
gregation of PEIE would occur on the surface during the
fabricating process of P-ZnO film. The nearly equal
contact angles of pristine ZnO and P-ZnO films suggest
ZnO crystal is dominant on the surface of hybrid P-ZnO

Figure 2 The high-resolution XPS spectra of (a) N 1s, (b) O 1s and (c) Zn 2P of pristine ZnO, PEIE, ZnO/PEIE and P-ZnO, respectively.

Figure 3 (a) Contact angle images on different ETLs. (b) UPS spectra and (c) the schematic energy diagrams of pristine ZnO, ZnO/PEIE and P-ZnO,
respectively.
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film. To explore the distribution of PEIE in the P-ZnO
film, the XPS behaviors with P-ZnO layer of varying
thicknesses (5 and 45 nm) were conducted as shown in
Fig. S2. Clearly, N 1s peak at 45 nm presents an enhanced
intensity, and the N atomic proportion at 45 nm is also
higher than that at 5 nm. The results indicate that re-
sidual PEIE mainly exists at the bottom of P-ZnO which
could prevent the direct contact between the active layer
and ITO. The work function as the critical parameter of
ETL was conducted with the UPS measurement. As
shown in Fig. 3b, the binding energies of cut off region
(Ecutoff) for ZnO, ZnO/PEIE and P-ZnO are 17.06, 17.35
and 17.40 eV, respectively. The work function value is
calculated from the difference between Ecutoff and the
energy of hv, where hv is the incident photon energy of
He (I) source with a value of 21.22 eV. Consequently, the
work functions of ZnO, ZnO/PEIE and P-ZnO are 4.16,
3.87 and 3.82 eV, respectively. The schematic energy
diagrams are summarized in Fig. 3c. The results indicate
that besides a porous structure film formed in the hybrid
P-ZnO, a reduced work function of P-ZnO is also in-

duced, which originates from the intrinsic molecular di-
pole of PEIE. It is beneficial to the charge transport and
electron extraction in devices [50,51].

Photovoltaic performance

To explore the potential of P-ZnO serving as ETL, the
photovoltaic performance of inverted OSCs was system-
atically investigated. The PBDB-T/DTPPSe-2F blend as
shown in Fig. 4a was employed as the active layer, which
was reported in our previous work [45]. As a comparison,
the pristine ZnO, PEIE and ZnO/PEIE-based devices
were also fabricated. The detailed J-V characteristics of
OSCs are plotted in Fig. 4b and Fig. S3 and the related
photovoltaic parameters are summarized in Table 1 and
Tables S1–S3. The optimal condition for P-ZnO layer was
found through tuning the concentration of prepared PEIE
solution and volume ratio of ZnO/PEIE solution (0.5 wt%,
2:1). The pristine ZnO-based device presented a PCE of
13.65% with an open-circuit voltage (VOC) of 0.84 V, a JSC

of 22.03 mA cm
−2

and a FF of 73.77%. As shown in
Fig. S3d, a decreased efficiency of ZnO/PEIE-based OSC

Figure 4 (a) The chemical structures of PBDB-T and DTPPSe-2F. (b) J-V curves and (c) EQE curves of PBDB-T/DTPPSe-2F-based OSCs with
different ETLs.
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was revealed due to the simultaneously reduced VOC, JSC

and FF, which could be attributed to the poor charge
mobility of PEIE. For the P-ZnO-based OSCs, a highest
PCE of 14.78% was achieved with a slightly increased JSC

of 22.96 mA cm
−2

and a notably improved FF of 76.62%.
To confirm the accuracy of J-V measurements, the cor-
responding EQE curves of OSCs were tested as shown in
Fig. 4c. The calculated values of JSC are summarized in
Table 1, which are matched well with the measured ones.
It is worth noting that the P-ZnO-based device sub-
stantially exhibits a distinct enhanced response in the
region of 450–800 nm as compared with the reference
device, which directly induces the improved photo-
current. To further understand the improvement of
photoresponse in the range of 450–800 nm, optical si-
mulations based on the transfer matrix formalism (TMF)
method were performed. For a multilayered system, the
energy distribution (Q) of each layer is a function of
wavelength (λ) and position (x), which can be calculated
by Equation (1):

Q x y c E x( , ) = 0.5 ( ) , (1)0
2

where c is the speed of light, ε0 is the permittivity of
vacuum, α is the absorption coefficient, and |E(x)| is the
optical electric field [49]. The two-dimensional (2D) color
filled contour plots of the calculated squared optical
electric field strength |E(x)|

2
distribution for the ZnO-

and P-ZnO-based devices are exhibited in Fig. 5a, b.
Consequently, light intensity at 450–800 nm wavelength
in the P-ZnO/BHJ layer is apparently higher than that of
ZnO/BHJ layer, which is in according with the EQE result
[52–55]. The exciton generation rate within PBDB-T/
DTPPSe-2F film was calculated with different ETLs
through optical simulations as shown in Figs S4, S5. In-
deed, the exciton generation rate of P-ZnO/PBDB-T/
DTPPSe-2F film also presents an enhancement than that
of ZnO-based one. The enhanced photon harvesting in P-
ZnO-based OSCs is ascribed to the porous structure

which could soften reflection at the interface.
To analyze the accurate photon harvesting of OSCs, the

absorption of active layer in the device was conducted to
investigate the parasitic photon loss. The control devices
were fabricated with poly(methyl methacrylate) (PMMA)
instead of the PBDB-T/DTPPSe-2F blend for eliminating
other effects [56]. The reflection spectra of all devices are
shown in Fig. 5c. Clearly, the P-ZnO-based control device
has a higher reflection than the ZnO-based counterpart.
Whereas, the P-ZnO-based OSC presents a lower reflec-
tion in the cell. These results manifest that enhanced light
trapping can occur in the P-ZnO-based OSCs due to the
unique porous structure. The calculated absorption and
light harvesting efficiency of active layer in devices are
shown in Fig. 5d, and the detailed calculation methods
are summarized in the Supplementary information. It is
evident that more incident photons can be absorbed by
the PBDB-T/DTPPSe-2F blend when employing the P-
ZnO layer, which accounts for the increased JSC in devices
[57,58].

To analyze the variation of charge recombination
properties in the derived devices, the dependences of JSC

and VOC versus light intensity (Plight) were studied. As
shown in Fig. S3f, the Plight dependence of JSC is described
as JSC∝Plight

α
, where the power-law exponent α reflects the

bimolecular recombination behavior in device. The α

values of ZnO- and P-ZnO-based devices are 0.96 and
0.99, respectively, indicating the bimolecular recombina-
tion is effectively suppressed in the P-ZnO-based OSCs.
Through analyzing the relationship between VOC and Plight

in Fig. 5e, the slopes of VOC versus ln(Plight) for ZnO- and
P-ZnO-based devices are 1.32kT/q and 1.12kT/q, respec-
tively, where k is the Boltzmann constant, T is Kelvin
temperature, and q is the trap-assisted charge re-
combination which can be suppressed in the P-ZnO-
based OSCs. The charge collection and exciton dissocia-
tion can be investigated from the dependence of photo-
generated current density (Jph) on effective voltage (Veff).

Table 1 Photovoltaic parameters of OSCs with different ETLs

Active layer ETL VOC (V) JSC (mA cm
−2

) JSC,cal
a

(mA cm
−2

) FF (%) PCE (%)

PBDB-T/DTPPSe-2F
ZnO 0.84(0.84±0.00) 22.03(21.92±0.12) 21.18 73.77(73.57±0.16) 13.65(13.50±0.15)

P-ZnO 0.84(0.83±0.01) 22.96(22.87±0.06) 22.21 76.62(76.15±0.53) 14.78(14.56±0.23)

PM6/Y6
ZnO 0.85(0.85±0.00) 24.93(24.82±0.12) 24.07 72.57(71.93±0.61) 15.38(15.22±0.15)

P-ZnO 0.85(0.85±0.00) 25.70(25.52±0.13) 24.80 75.84(75.37±0.42) 16.57(16.42±0.13)

PTB7-Th/PC71BM
ZnO 0.80(0.80±0.00) 16.70(16.35±0.19) 15.54 68.32(67.27±0.18) 9.12(8.91±0.25)

P-ZnO 0.80(0.80±0.00) 17.26(17.07±0.13) 16.22 71.31(70.98±0.42) 9.85(9.72±0.13)

a) The values are integrated JSC from EQE spectra. Optimal and statistical results are listed outside.
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The exciton dissociation and charge collection efficiency
can be evaluated by the values of Jph/Jsat under short-
circuit current and maximal output conditions, where Jsat

is the saturation photocurrent [59–61]. Herein, the

pseudo Jsat values were selected at 2.1 V reverse bias for
equitable comparison. As shown in Fig. 5f, the Jph/Jsat

values under short-circuit current and maximal output
conditions were calculated to be 97.6% and 82.4% for

Figure 5 2D color filled contour plots of the normalized optical electric field |E(x)|
2

for (a) ZnO- and (b) P-ZnO-based devices, respectively. (c)
Reflection spectra of normal and control devices. (d) Absorption spectra of active layers in cells. The reduced figure illustrates the light harvesting
efficiency. (e) VOC versus light intensity and (f) Jph-Veff characteristics for ZnO- and P-ZnO-based OSCs using PBDB-T/DTPPSe-2F as active layer.
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ZnO-based device, 98.9% and 85.1% for P-ZnO-based
device, respectively. The higher Jph/Jsat values of P-ZnO-
based devices indicate more efficient exciton dissociation
and charge collection, which can arouse the improved JSC

and FF.

Long-term storage stability and generality of P-ZnO-based

OSCs

The long-term storage stability of PBDB-T/DTPPSe-2F-
based OSCs was also performed. The P-ZnO-based de-
vices without encapsulation present enhanced storage
stability whether in the N2 or ambient air condition, as
shown in Fig. 6a, b and Figs S6, S7. The P-ZnO/PBDB-T/
DTPPSe-2F-based device can maintain its initial effi-
ciency of 90% after 1000 h of storage in N2, while only
72% of its original PCE can be obtained for ZnO-based
device. In the air condition, the P-ZnO-based device also
reveals laudable storage stability, delivering a PCE of
12.41% (86% of its original performance) after 1000 h
aging. Inspired by the superior storage stability in ambi-
ent air, all air-processed OSCs were fabricated. The
photovoltaic parameters are provided in Table S4, and the
related J-V and EQE curves are plotted in Fig. 6c, d. For

the air-processed OSCs, the P-ZnO-based device also
achieved an enhanced photoresponse and a higher PCE of
14.13% than that of ZnO-based one (12.35%). The pro-
mising PCE of 14.13% is among the highest efficiencies
reported for air-processed OSCs in the literature as
summarized in Tables S5, S6.

To explore the generality of P-ZnO serving as ETL for
efficient OSCs, two frequently used BHJ systems (PM6/
Y6 and PTB7-Th/PC71BM) were utilized as shown in
Fig. 7a. For an intuitional comparison, OSCs using ZnO
as ETL were also carried out. As summarized in Fig. 7 and
Table 1, the P-ZnO-based devices indeed present higher
efficiencies compared with the counterparts. In the con-
trast, for the ZnO-based device, the PCEs of 15.38% and
9.12% were achieved for PM6/Y6- and PTB7-Th/
PC71BM-based OSCs, respectively, which are close to the
reported value in the literatures [46,47]. Herein, the P-
ZnO/PM6/Y6-based device achieved an optimal PCE of
16.57% with simultaneously increased JSC of
25.70 mA cm

−2
and FF of 75.84%. An enhancement of 8%

in PCE (from 9.12% to 9.85%) can also be achieved in the
representative PTB7-Th/PC71BM-based OSCs with simi-
lar improvement. These results demonstrate the gen-

Figure 6 The variation of PCEs for ZnO- and P-ZnO-based OSCs using PBDB-T/DTPPSe-2F as active layer after aging in (a) N2 and (b) air. (c) J-V

curves and (d) EQE curves of the air-processed OSCs using PBDB-T/DTPPSe-2F as active layer with different ETLs.
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erality of P-ZnO serving as ETL for efficient OSCs.

CONCLUSION
In summary, a porous inorganic/organic (ZnO/PEIE)
hybrid ETL, P-ZnO can be successfully adopted for effi-
cient OSCs. The derived P-ZnO presents a unique porous
surface feature with distinct distribution with residual

PEIE mainly at the bottom of ETL. And a reduced work
function of P-ZnO is induced, which is beneficial to the
suppressed charge recombination and enhanced charge
extraction in devices. P-ZnO-based OSCs also present an
enhanced light trapping in the active layer compared with
ZnO-based counterparts. The increased light harvesting
efficiency can account for the increased JSC. Conse-

Figure 7 (a) The chemical structures of PM6, Y6, PTB7-Th and PC71BM. (b) J-V curves and (c) EQE curves of PM6/Y6-based OSCs with different
ETLs. (d) J-V curves and (e) EQE curves of PTB7-Th/PC71BM-based OSCs with different ETLs, respectively.
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quently, the enhancements of 8% in PCEs have been
achieved with enhanced JSC and FF for P-ZnO-based
OSCs, delivering higher PCEs of 14.78%, 9.85% and
16.57% for devices based on PBDB-T/DTPPSe-2F, PTB7-
Th/PC71BM and PM6/Y6, respectively. The P-ZnO/
PBDB-T/DTPPSe-2F-based OSCs without encapsulation
also present improved long-term storage stability whether
in the N2 or ambient air condition. Furthermore, the air-
processed OSCs based on P-ZnO/PBDB-T/DTPPSe-2F
possess a promising PCE of 14.13%, which is among the
highest efficiencies reported for air-processed OSCs in the
literature. These results demonstrate the great potential of
the porous hybrid P-ZnO as ETL for constructing high-
performance and air-stable OSCs.
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一种可增强光陷阱效应的多孔ZnO/PEIE电子传
输层在高效有机太阳能电池中的应用
屈沈雅1,2

,俞江升1*
,曹金如2

,刘鑫1
,王宏涛1,2

,光顺1,2
,唐卫华2*

摘要 在本工作中, 我们制备了一种多孔的有机/无机复合电子传
输层(P-ZnO), 并将其成功用于反向有机太阳能电池中. P-ZnO不
仅拥有适宜的功函, 且可形成较大欧姆接触面积的独特表面, 有利
于器件中的电荷提取. 与ZnO基器件相比, P-ZnO基器件的活性层
具有增强的光陷阱效应. 在PBDB-T/DTPPSe-2F, PM6/Y6和PTB7-

Th/PC71BM三个活性层体系中, 基于P-ZnO的器件都可实现8%增
幅的效率提升. 尤其是P-ZnO/PBDB-T/DTPPSe-2F的未封装器件
无论在氮气还是空气氛围下, 均表现出良好的长期稳定性. 在空气
中制备的P-ZnO/PBDB-T/DTPPSe-2F器件仍可实现14.13%的高效
率, 这是目前文献报道的空气氛围制备有机太阳能电池的最高效
率之一. 实验结果表明, P-ZnO作为电子传输层在构建高性能和空
气稳定的有机太阳能电池方面具有巨大的应用潜力.
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