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Abstract
Multicolor carbon dots (CDs) possess tremendous potential applications, especially in optoelectronic
devices. However, further applications of multi-color LED have been constrained due to the very limited
researches concerning the wavelength control mechanism of multi-color CDs. In this work, through
theoretical calculation and experimental veri�cation, the regulatory effects of sp2 conjugated domain on
the �uorescence wavelength of CDs were explored. Firstly, through a regulation on the structure size and
the introduction of amide bonds, four kinds of structures were designed in DFT theoretical calculation to
explore the in�uence of sp2 conjugated domain on the �uorescence wavelength of CDs theoretically.
Then, using thiourea and p-phenylenediamine as the precursors and by regulating the reaction solvents,
multicolor CDs with blue, green and red �uorescence emission were prepared to experimentally verify the
emission mechanism. It was con�rmed that the increasing structure size and the introduction of amide
bond would induce an increasing size of the sp2 conjugated domain, leading to the red shift of the CDs
�uorescence wavelength. Finally, in order to suppress the self-quenching performance, the CDs@PVP
�uorescent �lm possessing bright solid-state �uorescence was constructed for a better application in
light-emitting diodes. The approach provided an effective strategy to realize the programmed regulation
on the �uorescence wavelength of CDs, offering us full of potentials for the applications of CDs in the
photoelectric device �elds.

1. Introduction
Carbon dots (CDs), as a new type of zero-dimensional materials with �uorescence luminescence
properties {Zhao, 2022}, have been widely used in biological imaging {Ayiloor Rajesh, 2022}; {Ding, 2018};
{Jiang, 2020}; {Lin, 2022}, �uorescence sensing {Li, 2021}; {Pu, 2021}; {Zheng, 2020}, especially in light-
emitting diodes based on their facile synthesis, environmental stability, low toxicity {Dai, 2022}; {Geng,
2022}; {Li, 2022}; {Liu, 2021}, excellent biocompatibility and photoelectric performance {Jin, 2020}; {Li,
2020}; {Rad, 2021}; {Wang, 2021}. As the core of the new generation of solid-state lighting {Choi, 2015};
{Pattison, 2018}, CDs based LED has the following advantages compared with other lighting display
devices: (1) high luminous e�ciency {Jang, 2020}, (2) long service life, safety and reliability, known as the
"fourth generation lighting source" {Dai, 2014}; {Zhao and Tan 2021} ; (3) small and easy to package {Li,
2020}; {Pu, 2020}. Multicolor CDs have great application potentials in multi-color LEDs due to their
controllable wavelength. However, further applications of multi-color LED have been constrained due to
the very limited researches concerning the wavelength control mechanism of multi-color CDs.

In recent years, researchers have proposed a variety of synthetic routes or reaction methods to satisfy
CDs’ emission {Ji, 2022}; {Li, 2022}; {Qu, 2022}; {Xu, 2022}; {Yu, 2021}; {Zhang, 2022}. Kwon and his
coworkers {Kwon, 2014} have reported a synthetic method and prepared a range of the GQDs (Graphite
phase quantum dots) with certain size distributions via amidative cutting of tattered graphite, which
could achieve a size range of 2 to over 10 nm for GQDs by simply regulating the amine concentration.
Accompanied with the increasing size was the narrowed down energy gaps in the synthesized GQDs,
leading to a red shift of the CDs with colorful photoluminescence from blue to brown. Jin {Jin 2020}
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developed a green hydrothermal method to obtain three emission colors of CDs using l-tyrosine (for blue
CDs), o-phenylendiamine (for green CDs) and l-tyrosine/o-phenylendiamine mixture (for orange-red CDs),
which also proved the dependence of CDs PL properties on their surface group and the exciton-trapping
functions of the surface functional groups. However, the regulation mechanism on the emission
wavelength of CDs still needs to be veri�ed through theoretical calculations and related experiments.

In this work, through theoretical and experimental veri�cations, the regulatory effects of sp2 conjugated
domain on the �uorescence wavelength of CDs were explored. Firstly, by changing the structural size and
introducing amide groups in DFT theoretical calculation, four kinds of CDs structures were designed to
investigate the structural effect of sp2 conjugated domain on wavelength regulation theoretically.
Secondly, with thiourea and p-phenylenediamine as the precursors, multicolor CDs emitting blue, green
and red �uorescence were prepared by regulating the reaction solvents. The analysis results con�rmed
that the increasing structure size and the introduction of amide groups would induce an increase of sp2

conjugated domain, leading to the red shift of the CDs �uorescence wavelength. Finally, the obtained
multicolor CDs were applied for LED device in the form of CDs@PVP �lms. The schematic illustration of
multicolor CDs is shown in Fig. 1.

2. Experimental
Materials and measurements were shown in SI.

2.1 DFT Simulation calculation
The ground state geometry is optimized using DFT, and the excited states are calculated with linear
response time-dependent DFT (TD-DFT) at the optimized ground state geometry. All calculations are
performed with the Gaussian 16 package (Rev. C.01) using the CAM-B3LYP functional and the 6-311G*
basis set. Grimme's D3BJ dispersion correction was used to improve the calculation accuracy.

2.2 Synthesis of CDs
The d-CDs were obtained via a facile one-step hydrothermal strategy. 0.1 g thiourea and 0.1 g p-
phenylenediamine were dissolved in 10 mL DMF, then the mixture was dispersed by ultrasonic unit for 5
min. The obtained uniform solution was sealed in a Te�on autoclave and heated at 200 ℃ for 8 h. After
that, the suspension was �ltered by a 0.22 µm pore diameter microporous membrane. The puri�ed
solution was freeze-dried to obtain solid-state CDs.

The synthetic method of e-CDs and m-CDs was similar, except that the reaction solvents were changed to
ethanol and methanol, respectively. In addition, to further verify the effect of sp2 conjugated domain on
the �uorescence wavelength of CDs, two kinds of CDs were prepared with the same process except that
the reaction solvents were changed to formamide (f-CDs) and DMA(a-CDs ).

2.3 Preparation of CDs@PVP �uorescent �lm
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1g PVP was dissolved in 20 mL �ltered CDs solution, coated on the template after stirred evenly, then
solidi�ed at room temperature for 24 h. Finally, the blue, green, and red emissive CDs@PVP �lms under
365 nm excitation light were obtained, respectively.

3. Results And Discussion

3.1 Structure design and DFT theoretical calculation
In order to investigate the mechanism of CDs wavelength regulation, by changing the structural size and
by introducing amide groups in the DFT theoretical calculation, four CDs structures were designed to
explore the effect of sp2 conjugated domain size on the wavelength regulation theoretically {Zhang,
2022}. As shown in Fig. 2a, the basic structure from 1 to 3, except the structural size, was similar, which
could effectively verify the effect of structural size on the �uorescence wavelength of CDs. Furthermore,
when the -OH group on the surface of structure 3 was replaced by -CONH- to give structure 4, the effect of
amide groups on the �uorescence wavelength of CDs could be veri�ed. These structures could be used to
explore the in�uence of sp2 conjugated domain on the HOMO-LUMO energy gap of CDs.

DFT theoretical calculations were carried out for HOMO-LUMO energy level of the four mentioned
structures. Detailed calculation process was described in section 2.1 {Grimme, 2011}; {Yanai, 2004}. From
structure 1 to structure 3, in Fig. 2b, a trend of gradual decrease in turns (6.18 ev, 4.92 ev, 4.30 ev) in the
energy gap was depicted, which indicated that the increase of the structural size could lead to a red shift
�uorescence wavelength of CDs (The decrease of the energy gap would lead to the red shift of the CDs
�uorescence wavelength) {Tang, 2022}. In Fig. 2c, the energy level gap of structure 3 and structure 4 was
4.30 ev and 4.28 ev, respectively, which indicated that the introduction of amide groups could induce the
red shift �uorescence wavelength. Through two measures in theoretical calculation, it was improved that
the increasing size of sp2 conjugated domain could lead to the red shift of CDs �uorescence wavelength.

3.2 Synthesis, basic morphology and structure
Based on the results of DFT theoretical calculation, the effect of sp2 conjugated domain on the emission
wavelength of CDs was expected to be further testi�ed in the experiments. Thiourea and p-
phenylenediamine were selected as precursors, three kinds of CDs, emitting red (d-CDs), green (e-CDs),
blue (m-CDs), were successfully synthesized by one-step hydrothermal reaction with DMF, ethanol and
methanol as the reaction solvents, respectively. In order to optimize the experimental conditions, CDs
were synthesized at 160 ℃, 180 ℃, 200 ℃ and 220 ℃ in each reaction solvent. Accompanied with the
increasing reaction temperature, it could be seen that the �uorescence intensity �rstly increased and then
decreased (Fig. S1a). When the reaction temperature was 200 ℃, the �uorescence intensity was the
highest. In order to explore the optimal reaction time, CDs were synthesized under the reaction time of 3 h,
5 h, 8 h, 10 h and 12 h, respectively. When reaction time was extended, the �uorescence intensity showed
a trend of �rstly increasing and then decreasing (Fig. S1b) and reached the highest �uorescence intensity
at 8 h. Based on this inquiry, the reaction conditions were optimized as follows: thiourea and p-
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phenylenediamine were reacted in methanol, ethanol and DMF for 8 h at 200 ℃, respectively. The
quantum yield of these CDs was tested to be 21.1%(m-CDs), 16.5%(e-CDs), 8.3%(d-CDs), respectively. And
the pH stability, salt resistance and UV absorption of CDs were described in Fig. S1c, Fig. S1d, Fig. S1e,
which combined to indicate that the synthesized CDs presented remarkable conjugate structure (UV
absorption) and had excellent stability in various environments.

For a better demonstration of the CDs structural size, TEM, XRD and Raman spectra were carried out. As
seen in the TEM images (Fig. 3a–Fig. 3c), all three kinds of CDs presented uniform distribution of
morphology and size. The average size of the synthesized CDs was 7.068 nm (d-CDs), 6.098 nm (e-CDs)
and 3.451 nm (m-CDs) (Fig. 3d–Fig. 3f). Considering that the CDs emitting red, green and blue in turns, it
could be concluded that the �uorescence wavelength red shifts took place with the particle size
increasing, which was probably caused by the increased size of sp2 conjugated domain. The XRD test
was carried out to verify whether the CDs have obvious conjugated structures (Fig. 3g). The peak
positions located at 22°, 24° and 25° for the three kinds of CDs belonged to (002) crystal plane of
graphite phase carbon. This indicated that the three kinds of CDs had obvious conjugated structures
{Zhang 2022}. The Raman spectra of the three CDs were presented in Fig. 3h. All the three kinds of CDs
showed obvious D-band (1353cm− 1) and G-band (1561cm− 1). The IG/ID of d-CDs, e-CDs, m-CDs was 1.1,

1.03 and 0.88, respectively, which con�rmed that the order of the decreased size of the sp2 conjugated
domain was d-CDs, e-CDs, m-CDs {Bai, 2021} .

In order to explore the surface groups of the three kinds of CDs, Zeta potential, Fourier transform infrared
spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were carried out. The Zeta potential
results were shown in Fig. 3i, these CDs showed obvious peak at -15.5 mV, -16.1 mV, -23.2 mV. It was
revealed that the surface states of the three CDs were different. From the FTIR spectra shown in Fig. 4a,
these CDs had the same peaks at 820 cm− 1, 1395 cm− 1, 1500 cm− 1 and 3127 cm− 1. Speci�cally, 820
cm− 1 was the characteristic peak of p-disubstituted benzene, 1395 cm− 1 and 1500 cm− 1 could be
attributed to the characteristic absorption peaks of C = S and C = C. And 3127cm− 1 could be regarded as
the stretching vibration of N-H. The characteristic vibration peak of d-CDs was at 1620 cm− 1, related to
the stretching vibration caused by C = O of amide, which was not found in m-CDs and e-CDs. Therefore, it
could be speculated that, amide groups were successfully introduced into the structure of d-CDs.

The full spectrum speci�c results of XPS were shown in Fig. 4b. The peaks of the four constituent
elements C1s, N1s, O1s and S2p were observed at about ~ 284.18 eV, ~ 398.93 eV, ~ 531.81 eV and ~ 
162.23 eV for the CDs (The speci�c peaks of the three CDs were shown in Tab S1), respectively {Sun,
2020}. In the high-resolution XPS spectra of C1s, four types of carbon signals at about 284.0 eV, 284.4 eV,
285.3 eV and 287.4 eV could be found in the high-resolution C1s for d-CDs (Fig. 4c), which was in
corresponding with C = C/C-C, C-O, C-N and -CONH- bonds, respectively. There were three types of carbon
signals at 283.7 eV, 284.4 eV and 285.3 eV for e-CDs and m-CDs (Fig. 4d, Fig. 4e), corresponding to C = N,
C-O and C-N bonds respectively. The XPS results proved that amide groups were successfully introduced
into the structure of d-CDs.
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Moreover, the contents of C = C/C = N in the three kinds of CDs were 31.25% (m-CDs), 37.11% (e-CDs) and
46.84% (d-CDs), respectively (Table 1). N1s spectra of the �uorescent CDs simulated three characteristic
peaks at 397.5 eV, 398.8 eV and 400.0 eV, which were corresponded to pyridine type N, graphite type N
and pyrrole type N respectively (Fig. S2, Fig. S3, Fig. S4). The content of graphite type N was 32.01% (m-
CDs), 45.99% (e-CDs) and 49.83% (d-CDs). It was showed that the sp2 conjugated domain was increasing
in turns, which furtherly proved the connections of amide group introduction and the increasing size of
sp2 conjugated domain (Table 1).

Table 1
Element content of the CDs

  C(%) N(%) O(%) S(%) sp2 C domain sp2 N domain -CONH-

C = C/C = N(%) Graphitic N(%) -CONH-(%)

D-CDs 76.27 13.12 8.26 2.35 46.84 49.83 5.94

e-CDs 74.17 7.96 16.37 1.49 37.11 45.99 0

m-CDs 72.35 18.04 5.39 4.23 1.25 32.01 0

3.3 Fluorescence properties of CDs
CDs emitting red (d-CDs, Em = 620 nm), green (e-CDs, Em = 520 nm), (m-CDs, Em = 445 nm) were
presented at Fig. 4f. Excitation-emission maps of m-CDs, e-CDs, and d-CDs were shown in Fig. 5a, Fig. 5b,
Fig. 5c. The m-CDs exhibited multiple luminescence centers covering from 400 nm to 480 nm, with the
main emission center in blue region at 445 nm (Fig. 5a). The e-CDs exhibited a main green emission
center at 520 nm (Fig. 5b). The d-CDs exhibited multiple luminescence centers covering from 605 nm to
635 nm, with the main emission center in red region at 620 nm (Fig. 5c). Combined with the above
analyses, it could be proved that the increasing size of sp2 conjugated domain could induce a red shift of
the �uorescence wavelength.

In order to further verify the above-mentioned mechanism, another two kinds of CDs (f-CDs, a-CDs) were
prepared using thiourea and p-phenylenediamine as the precursors and formamide/DMA as the reaction
solvents. The normalized �uorescence emission diagram was shown in Fig. 5d. In a comparison of the
m-CDs and f-CDs, amide group was introduced in f-CDs, the �uorescence wavelength of f-CDs increased
from 445 nm to 605 nm, which proved that the introduction of amide group on CDs could lead to the red
shift of CDs �uorescence wavelength. As for the d-CDs and a-CDs, the size of sp2 conjugated domain in
d-CDs was enlarged (Fig. S5), and the �uorescence emission wavelength was increased from 620 nm to
650 nm. It could be veri�ed again that the enlarged size of sp2 conjugated domain could cause the red
shift of the �uorescence wavelength of CDs.

3.4 Luminescent properties of LEDs based on CDs@PVP
�uorescent �lms
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The aggregation quenching effect of CDs, caused by direct π - π interaction or excessive resonance
energy transfer, may seriously limit the further application of CDs. To avoid this phenomenon, CDs was
doped into PVP (Polyvinylpyrrolidone) to suppress the aggregation induced luminescence quenching. The
abundant surface chains of PVP could be able to prevent the graphitizing cores from π - π interactions.
Thus, the CDs particles embedded in the PVP kept an appropriate distance from each other, which
effectively avoided the consequent �uorescence quenching of solid-state CDs. For a better application in
LED devices, CDs@PVP �uorescent �lms were prepared, as shown in Fig. 6.

The CDs@PVP �uorescent �lm under the irradiation of 365nm ultraviolet lamp was shown in the Fig. 6a-
Fig. 6c. The bright blue, green and red �uorescence could be observed with naked eyes under the
irradiation of 365 UV lamp, which indicated that aggregation quenching effect could be effectively
suppressed. Furthermore, The CDs@PVP solution was uniformly coated on commercial UV chips (365
nm) to prepare multicolor CDs@PVP based LED. The corresponding CIE color coordinates of the
CDs@PVP based LEDs (m-CDs@PVP in (0.17, 0.14), e-CDs@PVP in (0.36, 0.51), d-CDs@PVP in (0.59, 0.
4)) were described in Fig. 6d- Fig. 6f. The results indicated that the synthesized CDs could be used in
multicolor LED and would have excellent development in the �eld of photoluminescence.

4. Conclusions
In summary, through DFT theoretical calculation and experiments, it was found that the size of sp2

conjugated domain could regulate the wavelength of CDs. Meanwhile, multicolor CDs (emitting red (620
nm), green (520 nm), and blue (445 nm) �uorescence) with the designed structures, in accordance with
the DFT theoretical calculation results, were successfully prepared by the hydrothermal reaction. The
CDs@PVP solid-state �uorescent �lms could be furtherly applied to multicolor LEDs. The approach
provided an effective and novel strategy to realize the programmed regulation on the �uorescence
wavelength of CDs, offering us full of potentials for the applications of CDs in the photoelectric device
�elds.
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Figures

Figure 1

Schematic illustration of multicolor CDs.
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Figure 2

(a)The scheme of four kinds of designed structures; (b) (c) DFT theoretical calculation of the designed
four kinds of structures.
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Figure 3

TEM of (a) d-CDs (b) e-CDs (c)m-CDs, size distribution diagram of (d) d-CDs (e) e-CDs (f)m-CDs, (g) XRD
(h) Raman (i) Zeta potential of the CDs.
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Figure 4

(a) FT-IR, (b)XPS survey, High-resolution C1s spectra of (c) d-CDs (d)e-CDs (e) m-CDs, (f) The
corresponding normalized maximum emission spectra of m-CDs, e-CDs, d-CDs.
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Figure 5

Excitation-emission maps of (a) m-CDs (b)e-CDs (c) d-CDs, (d) Normalized �uorescence emission
diagram of m-CDs, f-CDs, d-CDs, a-CDs.
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Figure 6

(a) m-CDs@PVP, (b)e-CDs@PVP, (c) d-CDs@PVP �uorescent �lm under 365 nm excitation, the
corresponding CIE color coordinates of the (d) m-CDs@PVP, (e)e-CDs@PVP, (f) d-CDs@PVP based LEDs.
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