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ABSTRACT: Among van der Waals (vdW) layered ferro-
magnets, Fe3GeTe2 (FGT) is an excellent candidate material
to form FGT/heavy metal heterostructures for studying the
effect of spin−orbit torques (SOT). Its metallicity, strong
perpendicular magnetic anisotropy built in the single atomic
layers, relatively high Curie temperature (Tc ∼ 225 K), and
electrostatic gate tunability offer a tantalizing possibility of
achieving the ultimate high SOT limit in monolayer all-vdW
nanodevices. In this study, we fabricate heterostructures of
FGT/Pt with 5 nm of Pt sputtered onto the atomically flat
surface of ∼15−23 nm exfoliated FGT flakes. The spin
current generated in Pt exerts a damping-like SOT on FGT magnetization. At ∼2.5 × 1011 A/m2 current density, SOT causes
the FGT magnetization to switch, which is detected by the anomalous Hall effect of FGT. To quantify the SOT effect, we
measure the second harmonic Hall responses as the applied magnetic field rotates the FGT magnetization in the plane. Our
analysis shows that the SOT efficiency is comparable with that of the best heterostructures containing three-dimensional (3D)
ferromagnetic metals and much larger than that of heterostructures containing 3D ferrimagnetic insulators. Such large efficiency
is attributed to the atomically flat FGT/Pt interface, which demonstrates the great potential of exploiting vdW heterostructures
for highly efficient spintronic nanodevices.

KEYWORDS: spin−orbit torque, van der Waals ferromagnets, 2D materials, anomalous Hall effect

F e3GeTe2 (FGT), a layered conducting ferromagnet, is an
important member of the van der Waals (vdW) material

family that has attracted a great deal of attention.1,2 Similar to
other known vdW ferromagnets such as Cr2Ge2Te6 and CrI3,
FGT possesses the magnetic anisotropy perpendicular to the
atomic layers which is retained down to monolayers. Different
from the others, FGT stands out due to the following attractive
properties. First, not only do FGT bulk crystals have the
highest Curie temperature Tc (∼230 K) but monolayer FGT
also has the highest Tc (130 K) when compared to their vdW
ferromagnetic counterparts.1,3,4 Furthermore, the Tc of thin
FGT can be dramatically elevated to room temperature using
electrostatic gating.2 Second, few-layer thick FGT films have
been successfully grown by molecular beam epitaxy,5 which
makes ultimate wafer-scale monolayer all-vdW heterostructure
fabrication possible. Third, although the other vdW magnets
are semiconductors or insulators, FGT is a ferromagnetic metal
which allows for studying its magnetism via magneto-transport
measurements. In conventional devices using conducting
ferromagnets with perpendicular magnetic anisotropy (PMA)
such as CoFeB, spin−orbit torques (SOT) have been exploited

for switching the magnetization.6 SOT efficiency, the figure-of-
merit for this application, contains both intrinsic properties
such as the spin Hall angle of the heavy metals serving as the
spin current source and extrinsic properties such as the
transmission coefficient. The latter depends on the ferromag-
net/heavy metal interface quality. Because of the vdW nature
that provides atomically flat interface, FGT has the potential of
having high SOT efficiency for switching its magnetization,
especially in all-vdW heterostructures.
In this work, we investigate the SOT effects in FGT/Pt

heterostructure devices containing thin exfoliated FGT and
sputtered Pt. In such devices, the spin Hall effect in Pt
produces a pure spin current which enters the FGT layer and
exerts on it both field-like and damping-like torques.7 Different
from magnetic insulator devices in which the magnetization
state is read out by the induced anomalous Hall effect (AHE)
in Pt via proximity coupling,8,9 the large AHE response in FGT

Received: March 13, 2019
Revised: June 4, 2019
Published: June 10, 2019

Letter

pubs.acs.org/NanoLettCite This: Nano Lett. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.nanolett.9b01043
Nano Lett. XXXX, XXX, XXX−XXX

D
o
w

n
lo

ad
ed

 b
y
 U

N
IV

 O
F

 C
A

L
IF

O
R

N
IA

 R
IV

E
R

S
ID

E
 a

t 
1
3
:4

5
:2

1
:2

0
2
 o

n
 J

u
n
e 

1
4
, 
2
0
1
9

fr
o
m

 h
tt

p
s:

//
p
u
b
s.

ac
s.

o
rg

/d
o
i/

1
0
.1

0
2
1
/a

cs
.n

an
o
le

tt
.9

b
0
1
0
4
3
.

pubs.acs.org/NanoLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.nanolett.9b01043
http://dx.doi.org/10.1021/acs.nanolett.9b01043


lends itself a sensitive detector of its own magnetization state.
To quantify the effects of SOT, we carry out two types of
measurements: pulsed current switching and second harmonic
Hall measurements. From both measurements, we demon-
strate that the SOT efficiency in FGT/Pt is significantly larger
than that in devices containing conventional three-dimensional
(3D) magnetic insulators and comparable with that in the best
devices containing 3D ferromagnetic metals. In addition, we
have observed SOT-induced switching of FGT magnetization
with high switching efficiency.
Fe3GeTe2 crystals were grown by solid-state reaction of the

elements at 800 °C within 5 days. After mixing the elements
Fe, Ge, and Te in their stoichiometric molar ratio, the mixture
was pressed into a pellet, sealed in a quartz glass ampule under
vacuum and loaded into the furnace for reaction. Figure 1A

shows the X-ray diffraction (XRD) pattern of a bulk FGT
single crystal which agrees with the literature.10−14 The XRD
pattern contains only the (0 0 2n) Bragg peaks (n = 1, 2, 3, 4,
5, 6), indicating that the exposed surface is the ab-plane of the
FGT crystal. Indexation of the peaks led to the c lattice
parameter of 16.376 Å, which is consistent with the previously
reported value.10 To characterize the magnetic properties of
FGT, we have carried out AHE measurements. The fabrication
consists of the following steps. We start with FGT crystals.
After exfoliation, we locate a desired flake and perform electron
beam lithography (EBL) and lift-off to fabricate Pt (30 nm)
contacts to the chosen FGT flake. The process for the FGT-
only devices is similar to what will be illustrated in Figure 2 for
FGT/Pt heterostructure devices except that there are fewer
steps here.
The hysteresis loops of the anomalous Hall resistivity ρH for

an FGT device with a thickness of 53 nm are displayed in
Figure 1B,C for different temperatures ranging from 2 to 230 K
(device image is shown in the inset of Figure 1D). Below 180
K, the ρH loops are squared with monotonically increasing

coercive field Hc as the temperature is decreased. Hc reaches
∼7.5 kOe at 2 K, indicating very strong PMA. At 180 K, where
we perform all SOT measurements to be presented later, Hc is
∼0.65 kOe. In hard-axis Hall measurements, we find the
saturation field, denoted as Hk, to be ∼30 kOe, which is 46
times larger than Hc. Above 180 K, the ρH loops deviate from
the squared shape, collapse at ∼210 K, and finally disappear at
∼230 K. In the meantime, the magnitude of ρH loops, that is,
the height between the two saturated values, decreases as the
temperature is raised and vanishes at the Curie temperature Tc

as illustrated in Figure 1D. Tc of this FGT device is found to be
∼225 K. A more accurate determination of Tc from the Arrott
plot gives Tc = 224.5 K for the same device (see Figure S1).
The overall temperature dependence of ρH resembles but is
slightly steeper than the mean-field magnetization of FGT (see
Figure 1D). We note that the low-temperature Ms value ranges
from 285 to 393 emu/cm3.11,15−19 Because most of our SOT
experiments are carried out at 180 K, we take Ms = 170 emu/
cm3 at 180 K from ref 11, which is the lower-bound Ms value
for FGT. Using this Ms value and the measured anisotropy
field Hk, we obtain the minimum uniaxial PMA energy of 1.1 ×
107 erg/cm3 at 180 K, which is nearly 2 orders of magnitude
greater than that of CGT of 1.4 × 105 erg/cm3 at ∼4 K.20

To fabricate FGT/Pt bilayer devices for the SOT study, we
adopt the fabrication processes as represented in Figure 2.
FGT flakes are first exfoliated from a small crystal shown in
Figure 2A and placed on a Si/SiO2 wafer. As schematically
shown from Figure 2B−E, a suitable flake is chosen (Figure
2B) and covered with a 5 nm layer of Pt (Figure 2C) by
sputtering. Cr (5 nm)/Au (85 nm) electrodes are formed by
EBL, e-beam evaporation, and lift-off (Figure 2D). The
continuous Pt film covering the flake is etched by inductively
coupled plasma to form isolated Cr/Au electrodes (Figure
2D). The scanning electron micrograph of a final device is
shown in Figure 2F. Atomic force microscopy (AFM) imaging
of both FGT and FGT/Pt (see Figure S2) indicates atomic
level flatness with the root-mean-square roughness of 0.2 nm,
which is smaller than the atomic step height of FGT (0.8 nm).2

Figure 1. Characterization of FGT bulk crystal and flakes. (A) X-ray
diffraction pattern for bulk FGT single crystal’s ab-plane. (B,C) Hall
resistivity as a function of applied field for a 53 nm thick flake of FGT
at selected temperatures from 2−230 K. (D) Measured Hall resistivity
as a function of temperature for the same FGT device with Tc

determined by the Arrott plot (see Figure S1) labeled. Inset shows the
AFM topographic image for our FGT device.

Figure 2. Fabrication process for FGT/Pt hybrid devices. (A) Optical
microscopic image of a bulk FGT piece on scotch tape. (B−E)
Illustration of the fabrication process. First, FGT flakes are exfoliated
onto 300 nm thick SiO2 substrates and a suitable flake is located, (B),
followed by sputtering 5 nm of Pt, (C), then electrodes are placed on
the flake, (D), and last the Pt and FGT is etched in order to define the
Hall geometry and to remove any Pt connections between the
electrodes, (E). (F) False-colored SEM image of the FGT(15 nm)/
Pt(5 nm) device used for SOT-induced magnetization switching. The
device dimensions are 2.75 μm × 1 μm.
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Figure 3A is the schematic illustration of our FGT/Pt device
for the SOT study. When a charge current passes in both Pt

and FGT layers, the former generates SOTs to act on the
magnetization of the latter. In the pulsed current switching
experiments, we pass current pulses increasing in amplitude
and interrogate the FGT magnetization state by measuring the
AHE resistivity, ρH, after each pulse through a small constant
current bias. As the current reaches a threshold, the
magnetization state of FGT switches and produces a sign
reversal of ρH. We measure the critical currents for different in-
plane fields. To more accurately determine the current flowing
in Pt which is responsible for the SOT acting on FGT, we use a
parallel resistor model with resistivities measured separately for
5 nm Pt on SiO2 and 53 nm FGT flake (see Figure S3). To
confirm the resistivity of the 5 nm Pt film, we deposit a 5 nm
thick Pt on Cr2Ge2Te6 which provides a comparable flat
surface to FGT but does not shunt much current due to much
higher resistance than Pt. The measurement results are
compared in Figure S4.
Before turning on sizable SOT, we first prepare the initial

state of the FGT magnetization by applying an in-plane field
Hx. Figure 3B is the AHE response of the FGT(15 nm)/Pt(5
nm) device to an Hx sweep measured at 180 K with a 50 μA

current, which produces negligible SOT. This is a typical hard-
axis hysteresis loop for materials with PMA. The easy-axis ρH
hysteresis loops are very similar to those of the FGT-only
device shown in Figure 1 except that the presence of the Pt
layer provides a shunting channel which reduces the ρH
magnitude. At Hx = 0, ρH retains the full saturation value of
FGT/Pt for the easy-axis field sweeps, indicating that the initial
magnetization is perpendicular to the ab-plane of the FGT.
With a sufficiently strong Hx field, the magnetization is aligned
to Hx which results in a vanishing ρH. This saturation field Hk

is related to the strength of PMA field Hu by Hk = Hu−4πMs.
At an intermediate in-plane field Hx = ±10 kOe, the
perpendicular component of the magnetization is reversed,
which is caused by the incidental z-component of the applied
magnetic field due to the misalignment of the applied field with
the ab-plane. In our pulsed current switching experiments, we
set the Hx field bias below this threshold and then apply
current pulses to generate additional SOT fields to induce
switching. Clearly, the effective field from the damping-like
SOT, that is, HDL ∼ σ × m, is responsible for the switching
with σ being the spin polarization direction of the spin current
and m being the unit vector of the FGT magnetization. The
critical current density Jc required to switch the magnetization
depends on the magnitude of Hx. The full Hx-current switching
phase diagram is shown in Figure 3E,F for negative and
positive Hx fields, respectively. Figure 3C,D shows the line cuts
for three selected Hx fields: ±3, ±6, and ±9 kOe. At Hx = −9
kOe, switching occurs at Jc ∼ 1.5 × 1011 A/m2. The negative
and positive in-plane fields are chosen to show the SOT
switching effect in these figures because the in-plane field
usually has a small Hz-component due to slight misalignment
which would produce off-centered current loops if the same in-
plane field is used. It is possible to generate more symmetric
current loops with careful field alignment (see Sections 5−7 in
Supporting Information). Here the Jc value is the critical
current density in Pt, which is the 73.2% of the total current
passing through the FGT/Pt device. This ratio is estimated
based on the resistivity values of FGT and Pt (see Figure S3)
using the parallel resistor model. If the strength of Hx is
decreased to 3 kOe in the negative direction, Jc increases to
∼2.0 × 1011 A/m2. We extrapolate Jc linearly to Hx = 0 along
the line shown in Figure 3E and find Jc(Hx = 0) = 2.5 × 1011

A/m2. A similar Jc value is found for the positive Hx side, by
performing the same extrapolation in Figure 3F. To compare
the effectiveness of the SOT in switching, we calculate the

switching efficiency parameter η using η =
ℏ =

eM tH

J H

2

( 0)x

s c

c

,8

representing the ability of switching the magnetization with
SOT. Hc is ∼0.65 kOe for FGT at 180 K, much smaller than
Hk (30 kOe), indicating that switching is by domain nucleation
and domain wall depinning. If again taking the lower-bound
value for Ms of 170 emu/cm3 for our FGT/Pt device, we
obtain a minimum η value of 1.66. η can be as high as 2.2 if Ms

is taken to be 225 emu/cm3 at 180 K.15 These η values are
higher than those reported in Tm3Fe5O12/W (0.95)8 and
Tm3Fe5O12/Pt (0.014)9 and suggest highly efficient SOT
switching of FGT magnetization via local domain wall
depinning.
To further quantify SOT, we perform second-harmonic

(2ω) Hall measurements on FGT/Pt devices with the
measurement geometry shown in Figure 4a. More details
and application of the method were described in refs 21 and22.
We measure the 2ω responses in the Hall resistance, here ω

Figure 3. Current-induced magnetization switching of FGT. (A)
Schematic illustration of the effective field responsible for switching
the magnetic state of FGT in our FGT/Pt hybrid devices. J is the
injected current density, Hx is the applied in-plane field, HDL is the
effective field from damping-like SOT, and M is FGT’s magnetization.
(B) Hall resistance for an applied in-plane magnetic field at 180 K for
our FGT(15 nm)/Pt(5 nm) device (showing in Figure 2F) with
anisotropy field Hk labeled on the graph. (C−F) Effective switching
current as a function of applied in-plane negative, (E), and positive,
(F), bias field. The color scale represents the switching resistance as a
percentage of the absolute value of the anomalous Hall resistance at
zero current RH0. (C,D) correspond to the line cuts in (E,F).
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being the frequency of the alternating current (ac) passing
through the device. The 2ω signal is present only if there is a
SOT acting on the magnetization. This harmonic signal is
recorded as a function of a rotating in-plane magnetic field. We
rotate the magnetization with an in-plane magnetic field of
fixed magnitudes that are higher than Hk and measure the
second harmonic Hall signal RH

2ω. As indicated in eq 1 below,
RH
2ω consists of both cos φ and cos(3φ) terms, here φ being the

azimuthal angle between the magnetic field and current
direction

φ φ

= + +
+

* +
+

ω ω ω

ω ω

ω ω

Ä
ÇÅÅÅÅÅÅÅÅÅÅ

É
ÖÑÑÑÑÑÑÑÑÑÑR R R

R R

R R

2

cos
2

cos(3 )

H
2

DL
2

TH
2 Oe

2
FL
2

Oe
2

FL
2

(1)

In eq 1, the cos φ term contains the damping-like SOT
contribution RDL

2ω via AHE, thermoelectric contribution RTH
2ω via

anomalous Nernst effect, Oersted field contribution ROe
2ω, and

the field-like SOT contribution RFL
2ω via the planar Hall effect.

The cos(3φ) term contains the Oersted-field and the field-like
SOT contributions ROe

2ω + RFL
2ω. Figure 4B,C displays the total

RH
2ω signals from FGT(23 nm)/Pt(5 nm) device for different

magnetic fields with the ac amplitudes of 2.2 mA and 2.4 mA
in Pt, respectively. These results can be fitted very well by the
cos φ-function only, indicating the negligible effect from the
field-like SOT and the Oersted field, which is usually the case
for ferromagnetic metal/heavy metal heterostructures. In

FGT/Pt devices, the planar Hall resistance is found to be
nearly 2 orders of magnitude smaller than the anomalous Hall
resistance (Figure S5), which is the primary reason that the
contributions from the field-like SOT and the Oersted field are
negligibly small compared to the damping-like SOT. Further
analysis of the external field strength dependence allows us to
separate the damping-like SOT effect from the thermal effect,
as shown in Figure 4D, which yields an effective SOT field HDL

for each current. Using the smallest Ms value of 170 emu/cm3

for FGT at 180 K, we calculate the lower-bound damping-like
torque efficiency ξDL in FGT/Pt bilayer and obtain ξDL = 0.11
± 0.01 for 2.2 mA and ξDL = 0.14 ± 0.01 for 2.4 mA. In our
ξDL calculations, we only use the current in Pt based on the
parallel resistor model; therefore, it should be valid to compare
this ξDL for FGT/Pt with the available ξDLvalues for both
ferrimagnetic insulator/heavy metal and ferromagnetic metal/
heavy metal heterostructures. We note that even the minimum
ξDL value for FGT/Pt is significantly larger than ξDL in
Tm3Fe5O12/Pt (0.058 in ref 9 and 0.015−0.02 in ref 23).
Interestingly, our minimum ξDL compares very well with the
highest value of ∼0.15 for CoFeB/Pt in literature.24

Both the switching efficiency η and SOT efficiency ξDL in
FGT/Pt are higher than or comparable with those in
conventional SOT devices fabricated with 3D magnetic
materials. It is worth pointing out that the single-domain
requirement for eq 1 is fulfilled in the second harmonic Hall
measurements, so that ξDL extracted from our experiments is
reliable. By using the minimum Ms, this ξDL represents the
lower bound value for SOT efficiency. The reason for this very
high SOT efficiency in FGT/Pt is currently not completely
understood. Here we believe that the excellent interface
resulting from atomically flat FGT surface plays an important
role; therefore, the high SOT efficiency may be common to
heterostructures fabricated with other vdW ferromagnets.
In summary, using both pulsed current switching and

harmonic Hall measurements, we have demonstrated highly
efficient SOT effects and magnetization switching in
heterostructures containing a few-layer vdW ferromagnet and
Pt. Because the atomic flatness of the vdW ferromagnets is an
inherent property of the materials, it is expected that the high-
quality interface can be retained even down to monolayers.
Because of the strong PMA, switching of monolayer FGT can
be potentially achieved with a much lower critical current
density, which leads to much more efficient spintronic
nanodevices.

Methods. Device Fabrication. For the FGT device, the
flake is exfoliated onto a Si/SiO2 substrate followed directly by
spin coating 200 nm of PMMA and baking on a hot plate in air
at 120 °C for 3 min. This low temperature helps protect the
FGT flake from degradation and oxidation. Electrode patterns
are then formed by EBL followed by sputtering a 30 nm of Pt.
Before deposition of the electrodes, the contact region is
plasma cleaned in the sputtering chamber with 15 W Ar plasma
at a pressure of 30 mTorr for 30 s. Directly after lift-off, the
device is mounted and loaded into an evacuated cryostat where
the transport measurements are performed.
For the FGT/Pt devices, the flakes are exfoliated onto a Si/

SiO2 substrate and instantly transferred into the loadlock of
our sputtering system which is evacuated to a base pressure of
10−7 Torr. Once the base pressure is reached, the entire
substrate is plasma cleaned with 15 W Ar plasma at a pressure
of 30 mTorr for 30 s. Then a 5 nm layer of Pt is sputtered
forming a continuous Pt film on the substrate. Once removed

Figure 4. Determination of SOT efficiency from second harmonic
Hall measurements. (A) Schematic illustration of 2ω Hall measure-
ment in FGT/Pt device. Iac represents the injected ac current
amplitude, H0 and M are the applied in-plane field and magnetic
moment, respectively, and φ is the azimuthal angle. (B,C) The 2ω
Hall resistance of a FGT(23 nm)/Pt(5 nm) device as a function of
azimuthal angle for I = 2.2 mA (B) and I = 2.4 mA (C). The width
and the length of the Hall bar are 6 and 11 μm, respectively.
Approximately 65% of the injected ac flows in Pt based on the parallel
resistor model estimation. The symbols represent the raw data and
red solid lines represent the fit to the theoretical model using eq 1
Amplitude of the cos(φ) coefficient from the fitting as a function of
1/(H0 − HK). HK is 26.5 kOe at 180 K. The slope is used to
determine the SOT efficiency of the system.
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from the sputtering chamber, an optimal FGT/Pt flake is
chosen by optical microscope and then EBL is performed to
define an electrode pattern followed by immediate deposition
of Cr(5 nm)/Au(85 nm) by electron beam evaporation. One
last EBL step is then performed to define a mask to etch the
FGT/Pt flake into the Hall geometry and remove all Pt
connections between the electrodes. Inductively coupled
plasma etching with Ar is then performed on the device and
the completed device is placed into an acetone bath to remove
the PMMA mask.
Electrical Transport Measurements. All transport measure-

ments for the FGT and FGT/Pt devices are performed in the
Physical Properties Measurement System by Quantum Design
in a temperature range of 300 to 2 K. For the FGT device we
kept a fixed current of 50 μA in the flake with a Keithley 2400
source meter which also monitored the two-terminal
resistance. To monitor the longitudinal and Hall resistances,
two Keithley 2182A nanovoltmeters were used. For the direct
current (dc) switching measurements in the FGT/PT
heterostructures, a similar setup was used to monitor the
response of the Hall and longitudinal resistances whereas a
Keithley 6221 ac source was used to pulse a square 0.5
microsecond dc through the device. For the 2ω Hall
measurement, we fixed a constant ac at a frequency of
13.113 Hz in the device with the Keithley 6221 ac source. The
1ω and 2ω Hall responses were monitored with two Stanford
Research SR830 AC lock-ins.
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