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better predictors of myocardial infarction
risk early in life than later
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Abstract

Background: Several polygenic risk scores (PRS) have been developed for cardiovascular risk prediction, but the

additive value of including PRS together with conventional risk factors for risk prediction is questionable. This study

assesses the clinical utility of including four PRS generated from 194, 46K, 1.5M, and 6M SNPs, along with

conventional risk factors, to predict risk of ischemic heart disease (IHD), myocardial infarction (MI), and first MI event

on or before age 50 (early MI).

Methods: A cross-validated logistic regression (LR) algorithm was trained either on ~ 440K European ancestry

individuals from the UK Biobank (UKB), or the full UKB population, including as features different combinations of

conventional established-at-birth risk factors (ancestry, sex) and risk factors that are non-fixed over an individual’s

lifespan (age, BMI, hypertension, hyperlipidemia, diabetes, smoking, family history), with and without also including

PRS. The algorithm was trained separately with IHD, MI, and early MI as prediction labels.

Results: When LR was trained using risk factors established-at-birth, adding the four PRS significantly improved the

area under the curve (AUC) for IHD (0.62 to 0.67) and MI (0.67 to 0.73), as well as for early MI (0.70 to 0.79). When

LR was trained using all risk factors, adding the four PRS only resulted in a significantly higher disease prevalence in

the 98th and 99th percentiles of both the IHD and MI scores.

Conclusions: PRS improve cardiovascular risk stratification early in life when knowledge of later-life risk factors is

unavailable. However, by middle age, when many risk factors are known, the improvement attributed to PRS is

marginal for the general population.

Keywords: Coronary artery disease, Ischemic heart disease, Myocardial infarction, Polygenic risk scores, Risk

assessment

Background
Ischemic heart disease (IHD) is the leading cause of

death worldwide and affects more than 110 million

people globally [1, 2]. Although the age-adjusted preva-

lence of IHD has been declining recently in the USA

[3], its global prevalence continues to increase [2].

Several risk prediction models for IHD have been

developed, and these incorporate a number of demo-

graphic, behavioral, lifestyle, and clinical risk factors as

covariates for prediction [4, 5]. Some of the most well-

known models are time-to-event scores, such as the

Framingham Risk Score [6], the European SCORE [7],

and the ACC (American College of Cardiology)/AHA

(American Heart Association) pooled cohort equation

(PCE) [8]. These models can be improved in several

ways. First, there is evidence that individuals with low
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10-year Framingham IHD risk in middle age tend to

have a similar lifetime risk to those with medium and

high 10-year risk [9], which suggests that using preva-

lent risk models along with time-to-event models in

risk prediction can be important. Moreover, research

also argues that including non-conventional biomarkers

in risk models (e.g., apolipoproteins, C-reactive pro-

tein), as was done in the Reynolds Risk Score for

women [10] and in a recent machine learning-based

prediction algorithm [11], can improve prediction. This

motivates the potential for inclusion of genetic data in

IHD risk models, as a baseline lifetime risk estimate,

though we emphasize that the prevalence estimates in

the UK Biobank convenience sample used in our study

are not truly lifetime, as some individuals will experi-

ence heart attacks or attain a diagnosis of heart disease

at some point in the future, while others will have

passed away prior to enrolment.

Genome-wide association studies (GWAS) have

enabled the development of several polygenic risk scores

(PRS) for IHD risk prediction. PRS consist of a selection

of genomic variants and their associated GWAS-derived

weights (effect sizes) for a condition of interest [12, 13].

They can be used to predict individuals’ disease risks

based on their genotypes for each of the selected vari-

ants. The premise behind the use of PRS is that much of

the genetic risk for many common adult-onset diseases

is attributed to the cumulative effect of many common

variants with small effect sizes rather than rare variants

with large effect sizes [14]. PRS have become popular

recently, and have been developed for various diseases,

including breast cancer [15], mental health [16], inflam-

matory bowel disease [17], and many more.

PRS can potentially play an important role in the

primary prevention of IHD, as they allow risk to be

assessed at the time of birth and can thus guide the tar-

geting of interventions early in life. Nonetheless, the

adoption of these scores in routine clinical practice

remains in its infancy [18]. An important unresolved

issue is what proportion of the population may benefit

from PRS assessment. Following [19], we take the view

that the greatest impact is likely to be seen at the tails of

the distribution, typically the top few percent, where

threefold or more elevated risk relative to the population

mean approximately corresponds to the effect of mono-

genic variants that are already regarded as clinically

actionable. Sensitivity is necessarily low with fewer than

10% of cases recalled in these upper percentiles, and cor-

respondingly precision may also be in the same range,

but targeting treatment to just 3% of individuals could

conceivably prevent 10% or more of cases if they are also

particularly responsive [20]. This can also dramatically

reduce the number needed to treat. Conversely, in the

smallest percentiles, very low risk individuals may be

spared expensive and potentially harmful medications

[21]—though that is not a concern for standard blood

pressure and cholesterol lowering drugs.

It is also unclear to what extent PRS enhance heart

disease risk assessment when combined with lifestyle

and clinical risk factors that are commonly used in trad-

itional risk scores. Inouye et al. [22] showed that a

metaGRS polygenic score performs very differently as a

function of the number of conventional risk factors, so

much so that the cumulative risk of CAD between the

ages of 45 and 75 is very similar for individuals in the

bottom quintile of polygenic risk but who have two risk

factors and for individuals with no risk factors in the top

quintile of polygenic risk. They concluded that “the pre-

dictive ability of the metaGRS was largely independent

of established risk factors for CAD, implying that genetic

information complements conventional risk factors.” By

contrast, two recent studies by Mosley et al. [23] and

Elliott et al. [24] came to the conclusion that PRS do not

contribute substantially to prediction accuracy when

data on traditional risk factors is available. Both studies

incorporated PRS into 10-year incident heart disease risk

prediction algorithms using Cox proportional hazards

regression modeling incorporating the ACC/AHA

pooled cohort equations (or the QRISK3 score [25] used

in the UK) and various polygenic risk scores. The per-

formance of the combined models was compared to that

of the original 10-year scores in the relatively small Ath-

erosclerosis Risk in Communities (ARIC) and Multi-

Ethnic Study of Atherosclerosis (MESA) longitudinal co-

horts [23] and UK Biobank (UKB) [24], the latter after

training on prevalent cases. A third study by Mars et al.

[26] similarly found no significant improvement in C-

index when a PRS was added to the ASCVD in the 20,

000-person FinnRisk cohort (0.823 versus 0.820), while

the net reclassification index (NRI) only improved a few

percent for early onset cases and late onset controls.

Here, providing a complementary analysis to the

above-mentioned incident case studies, we generated

several prevalent IHD risk prediction models by training

a logistic regression algorithm on ~ 440K European indi-

viduals in the UKB dataset using as features different

combinations of conventional risk factors, with and

without including four IHD-specific PRS [19, 22, 27, 28].

The features used in these models were extracted from

the UKB questionnaire, Hospital Episodes Statistics

(HES), and genotype datasets. They were categorized as

PRS, set-at-birth (biological sex, ancestry), and non-fixed

(birth year as a proxy for age, body mass index, blood

pressure, the combination of serum triglycerides, choles-

terol and LDL to capture lipidemia, smoking status, dia-

betes status, and family history) based on whether they

are set at birth or change over time. Birth year (as a

proxy for age) was included in the non-fixed category
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because it changes over time and becomes a risk fac-

tor later in life. In addition to IHD, we also generated

models using myocardial infarction (MI) [29, 30] and

first MI at or before age 50 (early MI) as prediction

labels.

This study expands on previous findings in several

ways. First, to determine to what extent the results of

the previous studies of 10-year (incident) risk can be

generalized to lifetime (prevalent) risk prediction, which

has been suggested to be complementary to time-to-

event risk prediction, we focused our analysis on preva-

lent risk prediction using logistic regression. Second, to

assess the degree to which the results are consistent

across different phenotype definitions, we ran all experi-

ments separately using three different heart disease

phenotype definitions (IHD as the broader definition

and MI and early MI as sub-categories of IHD). Elliott

et al. [24] considered a variety of case definitions, but we

expand the analysis to include early MI which, having an

earlier age of onset, may imply more of a genetic basis

for risk prediction as compared with other lifestyle risk

factors. Third, we incorporated multiple PRS together,

rather than just one, in the risk prediction models. This

allowed for a more generalized comparison between PRS

and traditional risk factors compared to including just

one PRS and provides insight into the range of genetic

risk over which PRS may add predictive value. Fourth, to

generalize the results across ancestries, we ran all ana-

lyses both on the full UK Biobank and on the subset of

European-only individuals. Since risk score distributions

differ between ancestry groups, we evaluated the ability

of logistic regression (LR) modeling to adjust for this

bias which otherwise generates prevalence-risk profiles

in which the highest genetic-risk percentiles have re-

duced prevalence. Finally, an additional goal of the study

was to compare estimated prevalent risk for IHD, MI,

and early MI between propensity-matched subpopula-

tions of individuals in the UK Biobank based on blood

pressure and statin medication intake. Considering all of

these perspectives together with a comparison of the

clinical features of individuals with higher total than

genetic risk, we infer that polygenic risk assessment

really is not independent of conventional risk from

middle age since much of the genetic component is

regulating those known risk factors.

Methods
Sample selection

The population sample consisted of the set of individuals

in the UK Biobank (UKB) study for whom genotype and

binary sex data were available [31]. Approximately 50,

000 samples were genotyped using the UK BiLEVE

Axiom array, and the remaining ~ 450,000 samples were

genotyped using the UK Biobank Axiom array. All

samples were imputed by the UK Biobank [31], resulting

in a total dataset of ~ 92.6 million variants in 487,442

individuals accessed August 2018. Out of these, a total

of 62 individuals with missing sample IDs or unknown

sex were excluded, for a final sample size of 487,380

individuals of all ancestries.

For the primary analyses, a genetically more homogeneous

subset of “British and Irish with European Ancestry”

individuals was extracted, based on the combination of self-

reported ancestry (White British and Irish) as well member-

ship in a cluster of European-ancestry individuals defined by

the first two genetic principal components of the entire UK

Biobank sample. This subset of 441,173 individuals indicated

by blue crosses in Additional file 1: Fig. S1 was identified by

performing k-means clustering on the first two principal

components of the genotype matrix for the entire UK Bio-

bank, with k= 4 identifying four major ancestry groups.

Intersection with the self-reported White British (472,233

individuals) and White Irish (14,003) individuals from data

field 21,000 of the UK Biobank registry, resulted in the final

sample. All analyses were thus conducted twice—one time

with the 441,101 cohort of British and Irish European indi-

viduals only and once again with the 487,380 cohort of UK

Biobank individuals of all ancestries.

Polygenic risk score calculations

Four PRS previously developed for IHD risk predic-

tion were used in this analysis. The scores were

somewhat independently developed and, though cor-

related (R ranging between 0.12 and 0.67), are

expected to capture slightly different components of

genetic risk and collectively to provide further

enhanced prediction. Each PRS consists of a list of

single-nucleotide variants and weights derived from

GWAS studies. Scores for each sample individual

were generated using Plink 2.0 software [32], which

calculates a weighted sum of allele dosage by GWAS

weight for each variant. The “FDR202” score consists

of 202 common variants with a false discovery rate q

value of < 0.05 that originate from the CARD

IoGRAM consortium 1000 Genomes GWAS meta-

analysis [22]. Of these 202 variants, we used 194 that

were available in the UKB imputed genotypes data-

base to calculate the PRS. The 1.7M score [22] con-

sists of approximately 1,745,180 variants and their

weights from the same GWAS, of which 1,465,932

were available in the UKB database. The GRS46K

score consists of 46,773 variants identified by Abra-

ham et al. [22, 28] from stage 2 of the CARD

IoGRAM consortium metabochip GWAS [33], of

which 45,498 were available in the UKB database.

The 6M score consists of 6,630,150 variants identi-

fied by Khera et al. using the LDPred algorithm [34],
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of which 6,629,369 were available in the UKB data-

base [31].

Logistic regression labels

A total of 14 input features were extracted from the

UKB Hospital Episode Statistics (HES) and questionnaire

datasets for inclusion in this analysis. We selected as fea-

tures conventional IHD risk factors that are already in-

cluded in several widely used risk scores, for which UKB

data was available. Note that inclusion of additional

non-genetic attributes such as diet, medication, and life-

style factors would be expected to improve model per-

formance further [11], while also reducing the impact of

the PRS component. Using the logistic regression frame-

work, we generated five different risk prediction models,

each with a different subset of features as summarized in

Fig. 1a: (a) PRS only (4 features), (b) established-at-birth

only (5 features), (c) established-at-birth including PRS

(9 features), (d) non-fixed and established-at-birth with-

out PRS (14 features), and (e) non-fixed and established-

at-birth including PRS (18 features full model). Some

features were categorical while others were continuous,

and missing data for these categories were handled as

indicated in Additional file 2: Table S1. To represent re-

sidual components of ancestry in the White British sub-

set of the UK Biobank, we used as features the first four

genotypic principal components (PC1, PC2, PC3, PC4)

[35, 36] (Additional file 1: Fig. S1), with biological sex as

the third established-at-birth feature. The same four PCs

were also included to capture ancestry in the secondary

analysis of the full UKB.

For prediction, all individuals were given a binary (1,0)

label for prevalent case or control status, respectively,

for each of the three conditions of interest (IHD, MI,

and early MI). An individual was labeled as an IHD case

based on having a primary or secondary diagnosis of any

of a list of ICD-10 codes and on self-reported question-

naire data (Additional file 2: Table S2). We defined MI

as a subset of IHD, with a more restrictive set of ICD-10

codes (Additional file 2: Table S3). Individuals with MI

who had their first MI event by the age of 50 were la-

beled as early MI cases. We used time stamps on HES

data for the MI ICD-10 codes to find the age of an indi-

vidual’s first MI event and excluded questionnaire data

due to lack of information about diagnosis date. The

prevalence and cohort statistics and for each condition

in the European-only population are described in

Table 1.

Cross-validation overview

For each risk prediction model, we embedded the logis-

tic regression (LR) algorithm in a 10-fold cross-

validation framework (Fig. 1b). The outcome variable

was one of the three labels (IHD, MI, or early MI),

which was modeled as a function of a subset of features

from the 14 available. The total samples were randomly

split into 10 non-overlapping groups, and for each fold

of the cross-validation, each group (10% of the data) was

iteratively designated as the test set, while the remaining

nine groups (90% of the data) were set aside as the

training set. In order to avoid bias, the LR algorithm

was trained using a balanced subset of this training

set [37, 38], which consisted of all the cases in the

training set and an equal-sized random set of controls

from the training set (Additional file 2: Table S4).

The test set was unbalanced in order to assess the

performance of the trained algorithm on a completely

random subset of the population.

Statistical analysis

During each fold of cross-validation, each individual was

binned into a percentile and the proportion of cases in

each bin was calculated. Data about the area under the

curve (AUC) and the weights of the features were also

saved. After a given model was trained using ten folds of

cross-validation, the data saved from each fold was used

to calculate 95% confidence intervals for the proportion

of cases (prevalence) in each percentile bin, the AUC,

and feature weights, based on the t-distribution of ten

trials. The resulting trained models represent IHD, MI,

and early MI risk scores and were used to assess disease

risk. In this study, prevalence is considered to be the

proportion of cases in a subset of the population and

represents the probability that a given individual is a

case for the condition of interest. Relative risk is defined

here as the probability that an individual is a case given

that he or she is classified as being at or above a given

percentile threshold of the risk score (e.g., 99th percent-

ile, 90th percentile) over the probability that the individ-

ual is a case given that he or she is classified as being

below that percentile threshold. The ratios between the

prevalence of each condition at different percentiles of

the risk score, and between the prevalence of each con-

dition at a given percentile of the risk score and the

overall population prevalence, were also measured as

proxies for relative risk. The AUC resulting from each

trained model was used as the primary measure of risk

discrimination for each score.

Propensity matching

In order to assess whether risk assessment differs among

individuals as a function of their medication usage, we

re-evaluated overall genetic and modified risk on pro-

pensity matched samples. Individuals were classified

based on self-reported medication intake, by dividing the

sample into three groups of sizes indicated in Additional

file 2: Table S5, based on data from UKB data field 20,

003 (“Treatment/medication code”)—those taking any of
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Fig. 1 Cross-validation scheme for logistic regression training and testing. a Schema indicating how each risk score was generated using a

logistic regression algorithm trained with a selection of variable features and a dependent outcome label (IHD, MI, early MI). Ten folds of cross-

validation were performed after dividing the full UKB dataset into ten equal subsets, each of which was iteratively used as a test set (1/10 of the

data) after training on the others (9/10 of the data). In each iteration of the training, all cases were matched with an equal number of randomly

sampled controls. b List of features included in each of five different LR models
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a list (see Additional file 2: Table S6) of blood pressure

medications and not any statins (“BP Meds Only”), those

taking any of a list of statins but not blood pressure

medications (“Statins Only”: Additional file 2: Table S7),

and those not taking any blood pressure medications

(“Neither”).

Propensity matching of individuals within each subset

was performed by first training a standard logistic

regression algorithm on the full dataset of all UKB indi-

viduals using the selection of features the individuals

were to be matched for, namely the 9 non-fixed features.

We then set aside the sample subset which contained the

smallest number of individuals and trained a k-nearest

neighbors algorithm (k-NN) on each of the remaining

subsets using the decision function scores that resulted

from the logistic regression algorithm and fitted the model

to the smallest sample subset. This resulted in a set of in-

dividuals in each of the larger sample subsets that was

matched with the individuals in the smallest sample subset

based on having similar characteristics for the selected fea-

tures. The prevalence for IHD, MI, and early MI for each

decile were then compared between the resulting matched

subpopulations. This process resulted in matched subpop-

ulations for self-reported medication intake. Owing to the

reduced number of individuals on medication, we only

computed the prevalence for each decile of risk, which

was done for the full model with 18 PRS + established-at-

birth + non-fixed features.

Results
Here, we describe (a) to what extent PRS improve pre-

diction when included with established-at-birth as well

as non-fixed conventional risk factors, (b) how PRS

developed for general IHD also predict early onset MI,

(c) an adjustment for ancestry that facilitates risk assess-

ment in a mixed ancestry population, (d) evaluation of

which non-fixed risk factors correlate with genetic risk,

and (e) differences in risk profiles between propensity-

matched individuals taking statins, blood pressure medi-

cations, or neither.

Each of the four PRS (FDR202, GRS46K, 1.7M, and

6M) individually achieves similar accuracy in discrim-

inating cases of IHD, MI, or early MI (Additional

file 2: Table S8). Combining all four PRS together

leads to better performance than any of the individual

PRS. Note that a metaGRS score [22], which is a

weighted sum of FDR202, GRS46K and 1.7M, also

performs better than each individual score, but did

not add to the combined prediction in our logistic re-

gression models. When the results for both the

European-only cohort and the larger UK Biobank co-

hort with individuals of all ancestries were compared,

it was found that the results for all experiments were

nearly the same between the two groups, within the

standard error of each other. To avoid repetition, the

results shown hereafter are those for the European-

only cohort unless otherwise noted.

Table 1 Cohort data for IHD, MI, and early MI, and European UK Biobank Population

Ischemic heart disease (IHD)
(8.96% prevalence, 39,516
total cases)

Myocardial infarction (MI) (3.61%
prevalence, 15,930 total cases)

Early MI (0.15%
prevalence, 669
total cases)

UK Biobank European
Subset (441,101
individuals)

Sex 33% female (12,890)
67% male (26,626)

23% female (3599)
77% male (12,331)

14% female (96)
86% male (576)

54% female (238,358)
46% male (202,743)

Smoking
status

13% current (5199)
47% past (18,387)
40% never (15,930)

16% current (2564)
49% past (7774)
35% never (5592)

28% current (191)
43% past (285)
29% never (193)

10% current (44,710)
35% past (155,055)
55% never (241,336)

Diabetes type
2

19% (7480) 20% (3214) 26% (177) 5% (23,634)

Family history
heart disease

45% (17,970) 48% (7599) 58% (386) 24% (103,639)

Mean systolic
blood pressure

143.5 ± 20.08 mmHg 142.1 ± 20.5 mmHg 133.7 ± 18.6 mmHg 140.1 ± 19.6 mmHg

Mean BMI 29.1 ± 5.0 kg/m2 29.0 ± 4.8 kg/m2 30.3 ± 5.5 kg/m2 27.4 ± 4.8 kg/m2

Mean birth
year

1947 ± 6 years 1947 ± 6 years 1957 ± 6 years 1951 ± 8 years

Mean
Cholesterol

5.2 ± 1.3 mM/L 5.0 ± 1.3 mM/L 4.7 ± 1.2 mM/L 5.7 ± 1.1 mM/L

Mean
triglycerides

2.0 ± 1.1 mM/L 2.0 ± 1.1 mM/L 2.2 ± 1.3 mM/L 1.8 ± 1.0 mM/L

Mean LDL 3.2 ± 0.9 mM/L 3.1 ± 0.9 mM/L 2.9 ± 0.9 mM/L 3.6 ± 0.9 mM/L

All data displayed in this table is for individuals of the European-only subset in the UK Biobank. Entries in brackets indicate number of cases or individuals
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Joint modeling of genetic and clinical factors implies

limited incremental value of PRS

The first step in this analysis was to combine the four

PRS with established-at-birth risk factors—biological sex

and ancestry—as features in the logistic regression algo-

rithm. Before doing so, we trained two univariate logistic

regression models using just sex and ancestry as fea-

tures. Sex alone provides approximately 3-fold discrim-

ination of MI risk, reflecting the observed prevalence of

7% in men and 2.3% in women enrolled in the UKB

population. Residual ancestry captured by the first four

genotypic PC in the European ancestry British subset

had little effect. A model combining all four PRS per-

forms similarly to the 6M SNP PRS alone, with a modal

risk of 3.6% and the risk for those individuals above the

97th percentile at least 3-fold greater than this (Table 2;

red curve in Additional file 1: Fig. S2). When these PRS

are combined with sex and ancestry features, the top

15% of the total sample is at more than 3-fold higher

risk than the average, and the top percentile has a preva-

lence approximately 17%. This alone is a notable im-

provement over the PRS-only scores.

Subsequently, we added non-fixed risk factors to the

logistic regression models. Figure 2a contrasts the per-

centile vs. prevalence curves for IHD, MI, and early MI

for the 9-feature (PRS, sex, and ancestry) scores. In this

and related figures, in the left-hand panels, the x-axis

represents the percentile rank for the model, and the y-

axis represents the prevalence, which is equivalent to the

positive predictive value for individuals in that

percentile. Figure 2b contrasts percentile vs. prevalence

curves for the 18-feature full models for IHD, MI and

early MI, and Fig. 2c shows how accuracy increases as

features are added, for MI. The right-hand panels are

the corresponding receiver operating characteristic

(ROC) curves, namely sensitivity against 1-minus-

specificity, the area under the curve (AUC) of which

provides a guide to the overall accuracy of the model.

Similar trends are shown for IHD (Additional file 1: Fig. S3).

Salient results are also reported in Table 2 (preva-

lence by percentile for each model) and Additional

file 2: Table S9 (AUCs).

The combination of genetics and non-fixed risk mark-

edly improves prediction over genetics alone. For MI,

the prevalence at the top percentile of risk increases

from 11% in the genetics only model to 36% in the com-

bined model, and equally notably the prevalence in the

bottom percentile reduces from 0.7 to 0.1%. The AUC

increases from 0.64 to 0.84. Similar improvements are

seen for IHD and early MI, discussed further below.

As importantly, the contribution of the genetic risk

assessment does not simply add to the non-fixed factors

in the full model and is in fact notably limited. It is

greatest in the top two percentiles of risk, rising for

example from 30.6% ± 1.2 prevalence of MI to 35.6% ±

1.9 for the top percentile, which is an approximately

10% relative increase. However, for the remainder of the

percentiles in Fig. 2c, the percentile vs. prevalence points

representing the full model and clinical model without

PRS are essentially overlaid, and the ROC curves are

barely distinguishable. Table 3 shows the weightings for

each factor, with cholesterol, sex, and age (birth year)

making large contributions and the 6M SNP PRS

accounting for most of the genetic contribution.

Table 2 Percentile vs. prevalence statistics for multivariate logistic regression

Percentile PRS only (4-
feature
model)

Established-at-birth
only (5-feature
model)

Established-at-birth
plus PRS (9-feature
model)

Established-at-birth plus
non-fixed (14-feature
model)

Established-at-birth plus non-
fixed plus PRS (18-feature
model)

IHD Top percentile 21.95% ± 1.39 13.52% ± 1.10 29.98% ± 1.65 55.71% ± 1.83 60.25% ± 1.37

IHD Middle
percentile

8.76% ± 0.80 5.48% ± 0.63 7.69% ± 0.89 5.34% ± 0.70 4.50% ± 0.69

IHD Lowest
percentile

3.45% ± 0.47 4.56% ± 0.71 2.79% ± 0.63 0.48% ± 0.18 0.41% ± 0.12

MI Top percentile 11.38% ± 1.05 6.60% ± 0.72 16.78% ± 1.10 30.95% ± 1.63 35.90% ± 1.66

MI Middle
percentile

3.19% ± 0.35 1.72% ± 0.30 1.95% ± 0.42 1.54% ± 0.46 1.11% ± 0.20

MI Lowest
percentile

0.68% ± 0.31 1.98% ± 0.34 0.59% ± 0.22 0.09% ± 0.09 0.14% ± 0.14

Early
MI

Top percentile 0.88% ± 0.32 0.27% ± 0.28 1.34% ± 0.42 4.15% ± 0.52 4.67% ± 0.83

Early
MI

Middle
percentile

0.07% ± 0.08 0.02% ± 0.05 0.07% ± 0.11 0.02% ± 0.05% 0.00% ± 0.05

Early
MI

Lowest
percentile

0.00% ± 0.00 0.02% ± 0.05 0.00% ± 0.00 0.00% ± 0.00 0.00% ± 0.00

Entries are observed prevalence of IHD, MI, or early MI, plus or minus 95% CI from 10-fold cross-validation in each indicated model for the top, middle, and

bottom 1% of polygenic risk
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Fig. 2 Modeling cardiovascular risk in the UKB with genetics and non-fixed factors. Panels on the left-hand side show the prevalence in the

White British and Irish European UKB sample versus modeled risk percentile, for the 9% with ischemic heart disease (IHD, dark blue), approaching

5% who have had a myocardial infarction (MI, cyan), and 0.15% who had MI before the age of 50 (early MI, red). Panels on the right show

receiver-operating curves of sensitivity against specificity. Each curve represents one of 10 cross-validated estimates, with point estimates plus

standard deviation on the left. a 9-feature established-at-birth model. b 18-feature full-model. c Effect of adding features for MI prediction alone,

yielding 4-feature, 9-feature, 14-feature, and 18-feature models as outlined in Fig. 1a
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Additional file 2: Table S10 shows the weightings for the

9-feature established-at-birth model including PRS.

PRS predicts early onset MI

Despite the genetic risk scores being developed to pre-

dict coronary events at any age, and an overall preva-

lence of MI before the age of 50 of just 0.15%, the PRS

models provide significant discrimination of high-risk

individuals for early MI. There is a more than 10-fold

elevated prevalence of early MI in the top percentile of

the 9-feature PRS, sex and ancestry score relative to the

sample mean (almost 1.8% relative to 0.17%), and an

optimal score would identify 50% of cases with a less

than 20% false positive rate (Fig. 3 ROC panel, red

curve). This is a very marked improvement over the

established-at-birth factors alone (Table 2) and is in

Table 3 Feature weights resulting from multivariate logistic regression

Feature Weight (IHD Score) Weight (MI Score) Weight (early MI Score)

FDR202 0.09 ± 0.01 0.14 ± 0.00 0.24 ± 0.01

GRS46K 0.16 ± 0.00 0.23 ± 0.00 0.24 ± 0.02

1.7M 0.12 ± 0.00 0.17 ± 0.00 0.44 ± 0.01

6M 1.83 ± 0.02 1.85 ± 0.02 0.23 ± 0.01

Diabetes type 2 1.00 ± 0.01 0.80 ± 0.01 1.10 ± 0.05

Family History of Heart Disease 1.01 ± 0.00 0.98 ± 0.01 1.54 ± 0.04

Sex 0.65 ± 0.00 1.02 ± 0.01 1.46 ± 0.04

Birth year − 0.78 ± 0.00 − 0.79 ± 0.00 1.22 ± 0.02

Systolic blood pressure − 0.03 ± 0.00 − 0.07 ± 0.00 − 0.37 ± 0.01

BMI 0.23 ± 0.00 0.19 ± 0.00 0.36 ± 0.02

Cholesterol − 0.34 ± 0.01 − 0.39 ± 0.00 − 0.84 ± 0.02

Triglycerides 0.18 ± 0.00 0.19 ± 0.00 0.32 ± 0.01

LDL 0.17 ± 0.01 0.27 ± 0.02 − 0.77 ± 0.07

Smoking status 0.34 ± 0.00 0.45 ± 0.00 0.57 ± 0.02

PC1 0.17 ± 0.00 0.05 ± 0.04 − 0.09 ± 0.48

PC2 0.16 ± 0.02 0.16 ± 0.04 − 0.39 ± 0.30

PC3 0.01 ± 0.00 0.02 ± 0.00 0.05 ± 0.01

PC4 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01

Feature weights from training the 14-feature logistic regression algorithm, with 95% confidence intervals from 10-fold cross-validation

Fig. 3 Prevalence vs. risk percentile and ROC plots for four risk models for early MI. Plots show the predictive> performance and accuracy for the

polygenic risk scores (PRS) only model (yellow), the 9-feature established-at-birth plus PRS model (red), 14-feature established-at-birth plus non-

fixed model without PRS (light blue), and the 18-feature full model (dark blue). Each curve represents one of 10 cross-validated estimates, with

point estimates plus standard deviation on the left
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agreement with the findings of Mars et al. [26] in

FinnRisk that net reclassification of cardiovascular dis-

ease is improved for early onset cases using a similar

PRS. Nevertheless, both the 14-feature clinical model

without PRS and the full 18 feature model with PRS are

both remarkably predictive in the top percentile, each

approximately 5%, but genetics once again adds little

additional discrimination. These results imply that non-

fixed risk factors already impact risk of early onset MI.

Interestingly, the logistic regression weights of the 1.7M,

GRS46K, and FDR202 scores are larger than that of the

6M SNP PRS for the early MI PRS-only and 7-feature

models, in contra-distinction to the IHD and MI

models.

Adjusting for ancestry by logistic regression

As shown by others [39–41], the frequency distribution

of polygenic risk scores derived with weights observed in

one ancestry group are generally shifted in other ances-

try groups due to cumulative subtle differences in allele

frequencies. For example, the metaGRS derived by

Inouye et al. [22] is higher by more than a standard devi-

ation unit in each of the African-, East-Asian-, and

South-Asian ancestry groups in the UKB (Fig. 4d). Since

prevalence of MI is actually lower in the African and

East Asians (Fig. 4e), the raw metaGRS actually predicts

reduced prevalence in the highest risk percentiles for the

full UKB (Fig. 4b).

We adjusted for this bias by including the first four prin-

cipal components of the genotype matrix in the 9-feature

logistic regression model with sex and the four PRS. The

resultant prevalence vs. risk percentile curves with 10-fold

cross-validation are essentially indistinguishable from

those of the White British and Irish European only sample

(Fig. 4c compared to Fig. 4a). This adjustment similarly

controls for ancestry in the models including non-fixed

factors. Though an apparent improvement in relative risk

prediction over failing to account for ancestry, we caution

that there is no guarantee that rank order of risk is pre-

served in other ancestry groups and note that the sample

sizes are too small to evaluate prediction in each popula-

tion. Transfer of the risk scores derived here to other

ancestries is thus not recommended, though we do show

that the simple adjustment accounts for some of the bias.

Non-fixed factors influencing genetic risk effects at birth

and middle age

In order to compare the risk assessments of individuals

“at birth” and “in middle age” after known clinical risk

factors such as BMI, smoking, lipids, and blood pressure

Fig. 4 Adjustment for ancestry by logistic regression. a-c Prevalence vs. Risk percentile plots for MI for the White British and Irish Europeans (a),

full UK Biobank (b) and a model including genotypic PC1 and PC2 to control for ancestry (c). d shows frequency distributions of European-

derived PRS in each of the indicated ancestry groups, standardized to equivalent size (European n = 441,173; African 7190; East Asian 1471; South

Asian 7413). e Prevalence of MI in each ancestry group
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have had time to exert their influence, we contrasted the

9-feature established-at-birth plus PRS score with the

18-feature full model score. Figure 5 shows scatterplots,

where we have also selected four groups of individuals

for additional assessment. The all-features score also

incorporates family history, and age, recognizing that the

cumulative probability of MI increases over the age of

50. The overall Pearson correlation is r = 0.63, implying

that the scores are correlated, but that clinical risk is

modified by both genetics and lifestyle. Those individ-

uals in the two 98th percentile tails for the residual vari-

ance for the regression between the scores at birth and

in middle age were identified and then separated into

two groups, where group A have less-than-expected risk

in middle age relative to their genetic risk at birth, while

group B have greater-than-expected risk. Those individ-

uals at or below the 2nd percentile of residual variance

between their scores at birth and in middle age were also

identified, and then separated into two groups of higher

(group C) or lower (group D) overall risk by both

models.

The three possible contributing continuous-trait

explanations for these group differences are consid-

ered in Fig. 5b,c. Individuals in group A tend to be

younger and have a slightly lower BMI than those in

group B, consistent with the expectations that aging

and excess weight gain increase the odds of having

an MI. Interestingly, these two groups do not seem

to differ substantially with respect to systolic blood

pressure. The four possible categorical explanations

are shown in Additional file 1: Fig. S4. Absence of

diabetes, never smoking, and not having a family his-

tory of coronary disease all associate with reduced

mid-life risk compared to baseline genetics. The

Fig. 5 Comparison of MI Risk Scores with and without non-fixed risk factors. a Scatterplots of the full model (18-feature established-at-birth +

non-fixed + PRS score) against the non-modifiable risk model (9-feature established-at-birth + PRS score). Individuals below the regression line

(red, Group A in the middle panel) have comparatively lower predicted risk later in life compared to their predicted risk at birth, whereas those

above the regression line (blue, Group B) have higher predicted risk of MI later in life; both groups represent the 2% extremes. The right -hand

panel highlights individuals with relatively low risk according to both models (Group C, orange) or relatively high risk according to both models

(cyan, Group D). b, c Standardized distributions of indicated non-fixed risk factors for the selected subsets of individuals, implying that high risk

individuals are older and more overweight
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influence of family history may suggest either a gen-

etic predisposition that is not captured by the poly-

genic risk assessment or possibly lifestyle or

socioeconomic predisposition associated with up-

bringing and family influences. These results provide

direct evidence that genetic risk factors can to some

extent be offset or over-ridden by lifestyle choices

and practices that influence the known clinical risk

factors.

The data for the analysis of groups C (high risk at

birth and in middle age) and D (low risk at birth and

in middle age) are also shown in the figures. Those

in group C tend to be older and have higher BMI as

well as systolic blood pressure. High lipids or type 2

diabetes (~ 4% and ~ 6%, respectively) are not strongly

over-represented in this group, but clear differences

in smoking status and family history do discriminate

groups C and D.

Propensity matching risk as a function of medication

regimen

Contrasting Figs. 3 and 5 of Inouye et al. [22], it is

apparent that cumulative risk of incident CAD for those

taking lipid-lowering drugs and/or anti-hypertensive

medicines is elevated as much as 50% for both men and

women across all levels of genetic risk. This is surprising

given the documented effectiveness of these interven-

tions and may reflect differences in clinical features of

those who take them. To examine the impact of medica-

tions in the context of genetic risk, we performed a pro-

pensity matching analysis, identifying all cases and

controls on just blood pressure medications, on just sta-

tins (see Additional file 2: Tables S5, S6, S7), or not tak-

ing medication for cardiovascular prevention. Equal

sized mutually exclusive groups were identified and

matched for all 18 genetic and clinical features. We then

recomputed the multivariable logistic regression models

and evaluated deciles rather than percentiles of risk,

owing to the reduced sample size of the test datasets.

Figure 6 shows that the statin-only and no-medication

groups have similar prevalence vs. risk profiles, whereas

the blood pressure medication group show higher preva-

lence for all individuals in the top half of the risk profile.

Regardless of medication status, there is approxi-

mately 10-fold higher prevalence in the top decile of

risk than the median. To assess the extent to which

adding medications data as features to the standard

logistic regression models described in the previous

section, we additionally ran a 20-feature model that

included binary features for medication intake. This

model is described in Additional file 1: Fig. S5 and in

Additional file 2: Tables S11, S12, and S13 and fol-

lows the same overall trend as the 18-feature model

but actually has a slightly higher AUC and prevalence

at the top percentiles of risk.

Discussion
Considerable interest in the clinical use of PRS to iden-

tify individuals at high risk of coronary artery disease has

been generated by the recent revelation that many more

people are predisposed to cardiovascular disease due to

their genetic background from common variants than

due to rare variants of large effect. Classical risk factors

such as hyperlipidemia do not individually generate such

discrimination, but we show here that smoking, elevated

BMI, hyperlipidemia, hypertension, and family history

when collectively combined with age generate a retro-

spective diagnostic score that is highly accurate for

Fig. 6 Effect of genetics on prevalence as a function of medication. a Prevalence vs. risk decile plots showing overall greater apparent influence

of genetics for patients on blood pressure medication. This analysis is based on the 18-feature logistic regression model run for White British and

Irish-only patients with MI as the label. b Frequency distributions of propensity scores showing close similarity for the three groups
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prevalent MI and IHD in the UK Biobank. In this con-

text, polygenic risk assessment adds very little utility.

A likely reason is that the PRS are indirectly associated

with some or all of the risk factors. Additional file 1: Fig. S6

indicates that this is indeed the case, since the correlation

between the combined PRS and all but smoking status

ranges between 0.05 and 0.10, being highest for lipid status

in males. Though these correlations are low, this is because

known genetics only explains a fraction of each non-fixed

risk factor. Nevertheless, if the genetic risk for IHD is medi-

ated through these factors, then once individuals reach late

middle age, when MI events start to become more preva-

lent, then the genes have already exerted their influence,

and the PRS would not be expected to add appreciably to

risk prediction.

A corollary of this would be that early ascertainment

of elevated risk ought to encourage individuals to pursue

lifestyle or medical interventions to prevent the onset of

sub-clinical disease. Consistent with this notion, the four

PRS also discriminate individuals who experienced an

MI before the age of 50. Even excluding the top 5% of

individuals with respect to combined clinical risk, gen-

etic risk alone provides more than fivefold elevated risk

for one quarter of the sample. The observation that the

PRS derived by Inouye and collaborators make a greater

contribution to the models than the 6M SNP score

derived by [19], which inverts the situation for total MI,

suggests that genetic risk for early onset MI remains to

be well defined. GWAS based on a very large sample of

early onset cases will be needed to establish the genetic

correlation between early and late onset coronary artery

disease and to refine the PRS.

Importantly, the results for all experiments in the

European-only cohort mirrored those of the full UK Bio-

bank cohort, possibly suggesting that the findings of this

paper apply broadly across ancestries. However, it is

worth noting that the European-only cohort comprises

over 90% of the full UK Biobank cohort in this study.

Thus, after adjustment of the logistic regression models

for ancestry, individuals of non-European ancestries may

not have comprised a large-enough proportion to impact

the overall prediction accuracy. In general, it is thought

that PRS need to be specific to each ancestry in order to

optimize the amount of variance explained and hence

accuracy [40–42]. The issue of how to adjust for admix-

ture in mixed ancestry individuals remains to be

addressed, possibly including local as well as global (PC)

estimates in the modeling.

The results of the propensity-matched medication analyses

were surprising in two regards. First, since it is established

that statin usage generates significantly greater reduction in

prevalence of MI in high PRS strata [43], a flattening and

overall reduction of the prevalence vs. percentile score might

have been expected. Instead, the statin curve overlays closely

on that for individuals not taking medications. If the statins

were prescribed prior to initial measurement of the clinical

factors that were used in the computations, then they may

have already reduced risk in those individuals who propen-

sity match with non-medicated individuals. Second, the

curve for blood pressure medication lies significantly above

the other two from the 5th to the 10th deciles, indicating

that these individuals remain at higher risk than their

matched peers. This implies prima facie that the genetics

captured by the PRS has a greater impact for individuals on

blood pressure medication than those on statins [44] and,

alternatively, that statins effectively blunt the impact of the

genetics, whereas the blood pressure medications do not,

and hence that the PRS does not efficiently capture some

aspect of risk that is independent of lipids and BMI but is

correlated with hypertension. Possibilities include inflam-

mation and endothelial cell function. Incorporation of

PRS for biomarkers of these and other cardiac endophe-

notypes may improve the accuracy of genetic prediction

of MI even further.

Limitations

In this study, we assessed the additive value of PRS in

IHD, MI, and early MI risk prediction when included in

risk assessment along with conventional risk factors, but

there were several limitations. First, because the study

did not assess longitudinal 10-year risk but rather

assessed risk based on risk factor burden at a given age,

the 14- and 18-feature scores that include non-fixed risk

factors are not directly comparable to time-to-event risk

scores, such as the Framingham Risk Score, which are

most commonly used in the literature [4]. However,

given that scores that provide stable risk estimates based

on risk factor burden at a given age are currently being

recommended for clinical use by Canadian Heart Associ-

ation guidelines [9], these scores can complement time-

to-event (for example 10-year) risk scores. Furthermore,

we note that our results are in good agreement with

those based on incidence in the UKB reported by others.

The AUCs for IHD reported for PRS alone by [22, 24]

and here are 0.61, 0.62, and 0.61 respectively, for con-

ventional risk factors are 0.76, 0.67, and 0.80, and for the

combined models 0.78, 0.70, and 0.81, in each case

implying just a modest increment due to PRS. It is

known that prevalent versus incident comparisons tend

to inflate model performance, but the suspicion that

Elliott et al.’s modeling [24] improves on that of Inouye

et al. [22] because the former used quantitative rather

than categorical measures of hyperlipidemia is not con-

firmed by our analysis because slightly higher accuracy

was attained with the categorical data as shown in

Additional file 2: Table S14.

A second limitation was due to the quality and avail-

ability of UKB data. For example, lifestyle or clinical risk
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factor data from early life or young adulthood was not

available, given that the UKB population was mostly

between the ages of 40 and 69 at the time of recruitment

[27]. Thus, the 14- and 18-feature early MI scores clas-

sify individuals as cases or controls based on their risk

factor burden in middle age rather than earlier in life.

Additionally, limiting the analysis only to incident cases

reduces the sample size substantially, since many indi-

viduals in the analysis were diagnosed as cases prior to

recruitment into the UK Biobank. In fact, 73% of the MI

cases and 49% of the IHD report or can be inferred to

have been diagnosed prior to enrolment in the study

(Additional file 2: Fig. S7 which shows the distribution

of times to incidence for both diagnoses). Furthermore,

the timing of onset of certain risk factors as compared

to diagnosis of disease is not clear, and it could be that

some patients were diagnosed with IHD or experienced

an MI prior to the elevation of their BMI or lipids. This

may have resulted in inflated performance of the clinical

risk factors in the scores. We refer readers to the discus-

sion in [24] of the impact of model calibration on their

analysis of incident risk.

Another limitation is that the LR algorithm was trained

and tested on the same dataset. Although we used a ten-

fold cross-validation approach, which has been shown to

be better than splitting the dataset into a training set and

just one validation set, an even better approach would be

to externally validate the study one or more independent

datasets. It should also be noted that some of the PRS in-

cluded here were partially trained on UK Biobank data,

which will also inflate their performance.

Finally, the PRS analysis is also limited by the quality

of the available UKB genotype data which relies on

imputation for many of the markers. Moreover, it has

been established [45] that the UKB should not be

assumed to be an accurate representation of the British

population in general, due to ascertainment biases in the

location of recruitment centers and nature of voluntary

participation. Although the 6M SNPs score was pub-

lished as recently as 2018, and had the highest weighting

compared to the other PRS scores in most analyses, it is

to be expected that even more accurate PRS will be

developed that may further elucidate the role that

genetics plays in heart disease risk prediction.

Conclusions
The results of this study confirm and expand upon recent

studies, collectively establishing that elevated risk of car-

diovascular disease in middle age is mostly influenced by

clinical and lifestyle factors rather than by independent

genetic susceptibility. However, polygenic risk scores may

nevertheless be useful for predicting risk at birth, when

other risk factors are unknown, helping to identify individ-

uals most susceptible to development of heart disease.
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