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Highly informative marker sets 

consisting of genes with low 

individual degree of differential 
expression
V. V. Galatenko1,2,*, M. Yu. Shkurnikov3,*, T. R. Samatov2,4,*, A. V. Galatenko1, 

I. A. Mityakina2, A. D. Kaprin3, U. Schumacher5 & A. G. Tonevitsky1,3

Genes with significant differential expression are traditionally used to reveal the genetic background 
underlying phenotypic differences between cancer cells. We hypothesized that informative marker 
sets can be obtained by combining genes with a relatively low degree of individual differential 
expression. We developed a method for construction of highly informative gene combinations aimed 
at the maximization of the cumulative informative power and identified sets of 2–5 genes efficiently 
predicting recurrence for ER-positive breast cancer patients. The gene combinations constructed on 
the basis of microarray data were successfully applied to data acquired by RNA-seq. The developed 
method provides the basis for the generation of highly efficient prognostic and predictive gene 
signatures for cancer and other diseases. The identified gene sets can potentially reveal novel 
essential segments of gene interaction networks and pathways implied in cancer progression.

Transcriptomic analysis is an important tool for both theoretical research and clinical applications, 
including diagnosis, prognosis of disease and the optimal therapy choice1–4. However, it should be noted 
that for both theoretical research and clinical applications transcripts with the highest individual inform-
ative power are commonly used, more speci�cally the ones having the best di�erential expression char-
acteristics including the lowest p-values and the highest fold-changes. �is approach is used not only for 
the analysis related to individual transcriptomic markers, but also for the analysis dealing with combina-
tions of transcripts, in particular, with gene signatures. Gene signatures are traditionally constructed by 
combining top N genes with respect to a certain measure of gene individual informative power, without 
any attempts to maximize the cumulative informative power of a gene combination. �e top-N approach 
was used for the construction of such gene signatures, as Oncotype DX5, MammaPrint6, PAM507. �e N 
value (number of used genes) is typically less than a few hundreds and o�en comprises several dozens: 
16 prognostic (and 5 control/reference) genes for OncotypeDX, 70 for MammaPrint, 50 for PAM50. 
�us the use of top-N approach for gene signature construction automatically excludes all genes with a 
relatively low individual informative power from the scope of the analysis.

At the same time, as the synthetic example in Fig.  1 shows, genes with low individual informa-
tive power can make a signi�cant contribution into the cumulative informative power of transcripts 
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combination. In this synthetic example gene 1 has a high degree of di�erential expression, but does not 
provide the separation of groups. Gene 2 has a low degree of di�erential expression. However, the pair 
consisting of these genes provides ideal separation of groups con�rming a signi�cant contribution of 
gene 2 into the cumulative informative power of the pair.

We hypothesized that genes with low degree of di�erential expression could also work e�ciently for 
experimental datasets. One of the well-known approaches to the utilization of expression data for genes 
with low individual informative power is to analyze gene expression correlations8,9. However, the fact that 
certain genes have highly correlated expression for one group of samples and low correlated expression 
for another group, reveals general di�erences of transcriptomes between groups of samples, but does not 
lead to the reliable conclusion about the attribution of a given individual sample to one of these groups.

In this work we constructed the classi�ers that attributed samples to one of the given classes and 
identi�ed informative combinations of transcripts. �e high informative power of a combination of tran-
scripts was de�ned as high reliability of the classi�er based on this combination. Classi�ers were con-
structed using Support Vector Machine (SVM), more speci�cally so�-margin SVM10 with linear kernel.

A microarray dataset consisting of ER-positive breast cancer samples was taken for the examination 
of the proposed hypothesis that genes with low level of di�erential expression can in combinations nev-
ertheless reliably reveal phenotypical di�erences. Validation procedure used a similar dataset as well as 
an RNAseq-based dataset.

Results
Outline of the experiment. A key step in the present study is the analysis of the informative power 
of all pairs of genes. �e samples were divided into three non-overlapping groups including training 
group, �ltration group (consisting of two sub-groups) and validation (testing) group. �e training group 
comprised microarray data from GSE17705 dataset11, the �ltration sub-groups contained microarray 
datasets GSE1209312 and GSE653213, and the dataset GSE349414 was used for validation. �e numbers 
of patients in each group are indicated in Supplementary Table 2.

Genes with low or constant expression level in the training dataset were excluded from the analysis 
(see Methods). �e analyzed set consisted of 14,712 probesets corresponded to 10,060 genes.

For each pair of probesets a binary classi�er was constructed separating the groups of patients with 
recurrence within �ve years a�er surgery and no recurrence. We used the training dataset and the sup-
port vector machine approach (so�-margin SVM with linear kernel) in this step. �e reliability of the 
classi�er was evaluated on the training group as well as on the two �ltration subgroups. If the quality of 
the classi�cation met the accepted criteria, the pair was considered informative and was further used on 
the validation dataset. Filtration based on additional groups along with the training dataset provided the 
removal of gene pairs that worked well for the training dataset solely because of the speci�c properties of 
the training dataset or as a result of a coincidence due to the large number of analyzed classi�ers (more 
than 100 million).

�e general outline of the analysis of gene pairs is shown in Fig. 2.
�is analysis was followed by the construction of larger gene combinations performed by a specially 

developed greedy-type extension algorithm.
�e total amount of computation required for the construction of gene pairs and larger gene combi-

nations exceeded 50,000 CPU-hours.

Figure 1. Synthetic example of a contribution of a gene with a low degree of di�erential expression 

into the cumulative informative power of the pair of genes. (a) Expression of gene 1 in Groups A and B; 

(b) expression of gene 2 in Groups A and B; (c) the joint distribution of the expression of genes 1 and 2 in 

Groups A and B.
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AUC-based study of gene pairs. �e area under the ROC-curve (AUC) is a commonly accepted 
characteristic of the quality of the classi�er. For a random sample attribution AUC equals 0.5, and 
error-free classi�ers have AUC equal to 1. We set the AUC threshold to 0.75 for the training dataset and 
to 0.7 for each �ltration dataset. �is resulted in 570 informative probeset pairs out of more than 100 
million initial pairs (Supplementary File) which corresponded to 547 unique pairs of genes.

�e resulted mean value of AUC for the validation group was 0.662 (95-percent con�dence interval 
for the mean (0.659, 0.665), median 0.663). We tested a null hypothesis that the mean value of AUCs 
of the informative classi�ers for the validation group was 0.5, i.e. corresponded to the reliability of a 
random classi�cation. �e p-value of this hypothesis was less than 2.2 ×  10−15 con�rming the reliability 
of constructed classi�ers.

Notably, the classi�ers comprised 343 genes in total with some genes belonging to more than 20 
classi�ers (Table 1).

Most of these genes are known to be biomarkers of breast cancer or involved in cancer progression, 
including SQLE15, CTTN16,17, TTK18,19, RACGAP120,21, KIF4A22, and CCNA223. However for the gene 
TOMM70A there was no evidence for any role in cancer so far.

We performed category enrichment analysis for all 343 genes (Supplementary Table 1). �e top of 
revealed categories includes phosphoproteins, acetylation, regulation of cell cycle and cell division all 
known to be highly relevant to malignant progression.

Interestingly, the majority of probesets forming informative pairs had low degree of di�erential expres-
sion with respect to 5-years recurrence and recurrence-free patients from the training dataset. More spe-
ci�cally, for the fold change threshold of 1.5×  the number of probesets did not exceed 7% (23 probesets 
corresponding to 22 genes), whereas the total number of probesets having such fold change was 67 (60 
genes). �us the traditional approach focused on the genes having signi�cant di�erential expression 
would exclude the majority of genes forming the informative pairs out of the researcher’s focus.

Remarkably, Table  1 contains only one gene with fold change higher than 1.5× , namely, SQLE. 
Moreover, nearly 90% of informative pairs consisted of probesets having the fold change lower than 

Figure 2. Scheme of gene pairs analysis. 

Gene Symbol Number of informative pairs

SQLE 109

DSCC1 85

CTTN 43

TOMM70A 37

TTK 34

RACGAP1 29

ELOVL5 29

KIF4A 27

CCNA2 23

Table 1.  Genes included in at least 20 informative gene pairs (out of 547).



www.nature.com/scientificreports/

4Scientific RepoRts | 5:14967 | DOi: 10.1038/srep14967

1.5× , and there were no pairs having both probesets of higher fold change. Finally, the reliability of 
classi�cation by the pairs with one probeset of fold change ≥ 1.5×  was equal to the reliability provided 
by pairs without such probesets (t-test two-tailed p-value 0.276).

�e AUC mean values for the training and �ltration datasets and AUC values for the validation 
dataset correlated signi�cantly with the Spearman’s rank correlation p-value 4.4 ×  10−12 which means 
that higher AUC mean value for training and �ltration datasets consistently corresponded to a higher 
AUC for the validation dataset (Supplementary Fig. 1). �us the AUC mean value for the training and 
�ltration datasets is itself an important parameter predicting the classi�cation quality for another dataset 
and can be used as a criterion to rank the identi�ed pairs of genes.

Additional sensitivity- and specificity-based filtering of gene pairs. Even in cases of high AUC 
values using the same classi�er threshold for di�erent datasets can be impossible or may result in a bias 
towards high sensitivity in combination with low speci�city or the opposite bias (high speci�city with 
low sensitivity) depending on datasets. In order to achieve balanced classi�cation results using the same 
threshold we additionally performed �ltration of identi�ed gene pairs with the thresholds for the sensi-
tivity and speci�city. More speci�cally, for each parameter the threshold was set to 0.65 for all datasets. 
�is �ltration resulted in 14 pairs (Table 2) having the AUC mean value 0.697 (median 0.698) and mean 
values of sensitivity 71.0% (median 72.7%) and speci�city 60.7% (median 62.1%) for the validation data-
set. Remarkably, there was only one pair containing a probeset with fold change ≥ 1.5× , namely PRC1 
in the pair of DLG3 and PRC1.

�e pair IGFBP6-ELOVL5 showed the highest AUC mean value (0.765) for the training and �ltration 
datasets. When the same coe�cients and threshold were used, this pair exhibited outstanding classi�-
cation quality for the validation dataset as well (AUC 0.749, sensitivity 81.8% and speci�city 62.5%) 
(Fig. 3). �is remarkable reliability of the classi�cation is similar24 to the one provided by well-known 
gene signatures such as OncotypeDX and MammaPrint6, which however include more genes (21 and 
70, respectively).

We tested the IGFBP6-ELOVL5 classi�er on the breast cancer dataset from TCGA Research Network 
(http://cancergenome.nih.gov/) obtained using RNA-seq. Surprisingly, in spite of completely di�erent 
technologies of microarrays and sequencing, both sensitivity and speci�city of the classi�er exceeded 
80% (Fig. 4). �is observation points out to the fact that classi�ers generated by the presented approach 
may be universal and can be applied to any group of ER-positive breast cancer samples even if they have 
been obtained using other technologies for gene expression analysis.

The construction of larger combinations of genes. We investigated whether the classi�cation 
quality can be improved by increasing the number of genes in the analyzed gene combinations. Since 
the exhaustive analysis for gene triples would already need more than 2,5 million CPU-hours and is 
computationally infeasible, we developed an alternative two-step approach. First we analyzed all possible 
extensions of 570 previously identi�ed informative pairs by one out of the 14,712 probesets and �ltered 
out the triples which did not pass AUC, sensitivity and speci�city thresholds for training and �ltration 
datasets. �e second step consisted in a greedy element-wise optimization. �e optimization started by 

Gene Symbol 1 Gene Symbol 2 AUC Sensitivity Speci�city

IGFBP6 ELOVL5 0.749 81.8% 62.5%

HSPD1 ELOVL5 0.756 72.7% 62.5%

TTK CADPS2 0.721 78.8% 57.8%

RUNX1 SQLE 0.645 72.7% 51.6%

ELOVL5 PPIA 0.721 81.8% 56.3%

PSMD2 TTK 0.679 66.7% 59.3%

LGR4 KIF4A 0.678 69.7% 64.8%

DCTD SQLE 0.635 54.5% 65.6%

ELP4 KIF4A 0.717 78.8% 65.6%

BTN3A3 RACGAP1 0.668 60.6% 71.9%

TTK DIRAS3 0.745 75.8% 61.7%

HSPD1 IL6ST 0.733 75.8% 62.5%

REST SQLE 0.637 63.6% 52.3%

DLG3 PRC1 0.664 60.6% 54.7%

Table 2.  Informative gene pairs that satis�ed the additional constraints the sensitivity and speci�city. 

AUC values, sensitivity and speci�city are shown for the validation dataset.

http://cancergenome.nih.gov/
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the analysis of all possible changes of the �rst element in a triple and selection of the change resulting in 
the maximal AUC mean value for the training and �ltration datasets and passing the additional thresh-
olds on sensitivity and speci�city. �en the same procedure was performed for the second and the third 
element of the triple and then again for the �rst one and so on until there was no further increase of 
the AUC mean value. A similar approach was used to construct quadruples starting from the triples and 
quintuples starting from the quadruples.

We obtained 426 triples, 291 quadruples and 414 quintuples. As expected, the increase of the number 
of genes in a classi�er resulted in a more reliable classi�cation (Supplementary Fig. 2a). More speci�cally, 
the transition from pairs to triples was accompanied by the increase of the AUC median value for the 
validation dataset from 0.663 to 0.669 (two-tailed U-test p-value 1.7 ×  10−6) and the AUC mean value 
from 0.662 to 0.679. �e transition from triples to quadruples consistently resulted in further increase of 
the AUC median value up to 0.694 (two-tailed U-test p-value when comparing with triples 3.9 ×  10−5) 
and the AUC mean value up to 0.690. During the transition from quadruples to quintuples we observed 
saturation or even overtraining, namely the increase of AUC on the training dataset did not lead to the 
similar change of this value on the validation dataset. We even found a decrease of AUC value for the 
validation dataset comparing to the quadruples and triples (AUC median value down to 0.669 and AUC 
mean value down to 0.670). At the same time, the transition to quintuples led to a signi�cant decrease 
of AUC deviation (Supplementary Fig. 2b).

Figure 3. �e properties of the classi�er based on the gene pair IGFBP6 and ELOVL5 for the validation 

dataset. (a) ROC-curve. (b) Kaplan-Meier curves. RFS – recurrence free survival.

Figure 4. �e expression levels of IGFBP6 and ELOVL5 for patients with and without recurrence 

measured by RNA-sequencing. (a) Log-scaled expression of IGFPB6. (b) Log-scaled expression of ELOVL5. 

(c) �e joint distribution of expressions of IGFBP6 and ELOVL5.
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Interestingly, we directly compared this greedy approach with the exhaustive analysis described above 
and found that the exhaustive analysis had signi�cantly higher e�ciency for gene pairs (Supplementary 
Text).

Discussion
Genome-wide expression analysis is a common tool, which is routinely used nowadays to identify genes 
which are associated with disease. It is accepted by de�nition to consider only the most di�erentially 
expressed so-called «top-genes» when comparing expression pro�les of sample groups25–27. However this 
traditional approach omits the majority of yet moderately di�erentially expressed genes completely. �e 
approach presented here proves that these genes can contribute signi�cantly to the construction of highly 
informative gene signatures.

We have compared SVM-based exhaustive search and a greedy-type extension algorithm and found 
that the gene signatures with the highest informative power are identi�ed by the exhaustive search. �e 
limitation of this method is the necessity of the use of a supercomputing facility. However, the signif-
icance of this limitation will probably be reduced due to the technical progress within the next years. 
�e greedy-type extension algorithm is also resource-consuming, but it still allows construction of larger 
gene signatures in comparison with the exhaustive search construction.

We investigated the number of genes comprising the signatures and found that the informative power 
increases during the transition from 2 to 3 and then to 4 genes in a single signature. Further increase 
was diminished which can be explained by over-training of the classi�er. �is observation suggests that 
the optimal number of genes in an informative signature is limited to 3 or 4 providing a solid basis for 
the identi�cation of pathways or gene cascades potentially involved in the biological processes of interest.

�e reported approach identi�ed highly informative gene signatures (pairs) using microarray expres-
sion datasets, and these signatures turned out to work e�ciently on RNA sequencing-based dataset of 
ER-positive breast cancer patients. �is points out to the fact that the classi�ers constructed using our 
method may be universal and applicable to any other datasets of ER-positive breast cancer patients irre-
spectively of the gene expression analysis platform used.

�e reported method allows to go beyond the limitation of the “top-genes” and covers the majority of 
analyzed genes. �is broad approach could explain the robustness of gene signatures28 identi�ed by our 
method and the observed inconsistencies of many marker genes claimed to be of prognostic or predictive 
value for cancer patients in other reports.

We suppose that the presented approach can potentially be applied not only for RNA expression 
datasets but for any other kind of biological high-throughput data including metabolome and proteome 
and can be adapted to SNP and methylome datasets.

Methods
Microarray datasets. All analyzed microarray datasets used A�ymetrix U133A platform. Raw data 
(CEL �les) corresponding to patients with ER-positive breast cancer and the known recurrence sta-
tus were downloaded from Gene Expression Omnibus (GEO) and jointly preprocessed using RMA 
method29. �e pre-processing used RMA Bioconductor30 package xps.

�e pre-processed set included samples from the GSE1770511 dataset used for training, data-
sets GSE653213 and GSE1209312 used for �ltration, and GSE349414 used for validation. �e number  
of ER-positive samples with known recurrence status for these datasets is presented in Supplementary 
Table 2.

Sequencing dataset. �e RNASeq data and clinical annotations were downloaded from TCGA 
BRCA databank31. Gene-level expression data for ER-positive patients (er_status_by_ihc =  Positive) with 
no recurrence (vital_status =  Alive, tumor_status =  TUMOR FREE) within at least 7 years a�er surgery 
and ER-positive patients with death (vital_status =  Dead, tumor_status =  WITH TUMOR) within 5 years 
a�er surgery were extracted from UNC IlluminaHiSeq_RNASeq 01A-data�les. �e data were available 
for 17 patients without recurrence and 15 patients with death. RPKM (Reads Per Kilobase per Million 
mapped reads) value was used as an expression level characteristic32.

Classification reliability parameters. �e standard de�nitions of classi�cation reliability parame-
ters were used. �e sensitivity was de�ned as the ratio of the number of correctly predicted recurrences 
(tp) to the total number of samples corresponding to patients with recurrence (i.e., the sum of (tp +  fn)). 
�e speci�city was de�ned as the ratio of correct predictions for recurrence-free patients (tn) to the total 
number of samples corresponding to recurrence-free patients (i.e., the sum of (tn +  fp)). For measuring 
the sensitivity and speci�city as percentage, corresponding ratio was multiplied by 100%.

�e ROC-curves were constructed as graphs of the parametric dependence of false positive rate (equal 
to (1 - speci�city), plotted against the X-axis) and sensitivity (plotted against the Y-axis) on the classi-
�er threshold which varied from − ∞ to + ∞. AUC was de�ned as the area between the X-axis and the 
ROC-curve. Since the ROC-curve is a polygonal line consisting of vertical and horizontal segments the 
area calculation was performed using a straightforward decomposition of the area under the ROC-curve 
into non-overlapping rectangles and summation of areas of these rectangles.
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�e calculation of sensitivity, speci�city, and AUC included only the samples corresponding to patients 
with recurrence within the �rst �ve years a�er surgery and patients without recurrence within at least 7 
years. �e remaining samples comprising a “gray zone” were not considered.

Kaplan-Meier curves were plotted using all samples, including the “gray” zone.

The filtration of probesets. �e �ltration of probesets was based solely on the training dataset with 
the excluded “gray zone” samples. Probesets without associated Gene Symbols were excluded from the 
analysis along with probesets with constantly low expression (expression level less than 128, i.e., log-scale 
7, for all samples) and probesets with low changes in expression (the ratio of maximum expression and 
minimum expression in standard scale lower than 2).

The construction of classifiers. Classi�er construction utilized so�-margin Support Vector Machine 
(SVM) approach10 with a linear kernel and penalty weights inversely proportional to the number of sam-
ples in each class. Within the construction, three di�erent values of penalty factor C were taken: 1, 16 and 
256. �ese values were determined by cross-validation in the preliminary analysis of random combina-
tions of genes. If thresholds for AUC, sensitivity and speci�city were met for two or three values of C, the 
classi�er which provided a higher mean value of AUC for the training and �ltration datasets was chosen.

�e classi�er construction used log-scaled expression levels. Prior to the SVM utilization log-scaled 
expression levels for each probeset were linearly normalized: the mean expression level of the probeset 
was subtracted and then the values were divided by the standard deviation of the expression level of the 
probeset. �e computation of means and standard deviations used only data from the training dataset 
with the excluded “gray zone” data.

�e constructed classi�ers were applied to the �ltration and validation datasets without any changes 
in coe�cients, threshold or normalization parameters (shi�s and contraction coe�cients).

Thresholds used. �resholds used for the selection of informative gene combinations are summa-
rized in Supplementary Table 3. �ese thresholds provided comparable numbers of the selected pairs, 
triples, quadruples and quintuples, which had an order of several hundred.

Statistical analyses. To identify the relationship between the variables Spearman’s rank corre-
lation coe�cient was used. Means for normally distributed variables were compared using Student’s 
two-sample t-test. Comparisons of means of normally distributed variables with a speci�ed value was 
performed using Student’s one-sample t-test. Variables with non-normal distribution were compared 
using Mann-Whitney U-test. �e normality check was performed using the Shapiro-Wilks test. �e 
calculation of con�dence intervals for means of normally distributed variables was based on quantiles of 
Student’s t-distribution. �e statistical analysis of Kaplan-Meier curves used the log-rank test. Category 
enrichment analysis was performed using DAVID33.

Software implementation. �e so�ware implementation of the described method was performed 
in C/C+ +  programming language. It used libsvm34 implementation of SVM. �e data-level MPI-based 
parallelization was done for e�cient employment of supercomputing resources.
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