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Abstract
Multiplexed imaging, which enables spatial localization of proteins and RNA to cells within tissues, complements exist-
ing multi-omic technologies and has deepened our understanding of health and disease. CODEX, a multiplexed single-cell 
imaging technology, utilizes a microfluidics system that incorporates DNA barcoded antibodies to visualize 50 + cellular 
markers at the single-cell level. Here, we discuss the latest applications of CODEX to studies of cancer, autoimmunity, and 
infection as well as current bioinformatics approaches for analysis of multiplexed imaging data from preprocessing to cell 
segmentation and marker quantification to spatial analysis techniques. We conclude with a commentary on the challenges 
and future developments for multiplexed spatial profiling.

Keywords CODEX · Spatial profiling · Tissue immunology · Cell segmentation · Spatial analysis · Cellular neighborhoods

Introduction

Microscopy-based technologies enable three-dimensional 
anatomic profiling at single-cell resolution, most often aided 
by visualization of cellular constituents. Determining the tis-
sue architecture of multiple cell types, cell subsets, and their 
activation states requires the simultaneous detection of many 
cellular makers. Traditional immunofluorescence microscopy 
is usually limited to detection of four markers due to spectral 
overlap. Advances in multiplex tissue imaging have allowed 
for the simultaneous spatial detection of 50 + cellular proteins 
and up to 100 RNA markers with single-cell resolution [1]. 

Thus, multiplexed tissue imaging can now localize multi-
ple immune, stromal, and epithelial cell types and subsets 
allowing mapping of tissue architecture and characteriza-
tion of multicellular interactions. Though not covered in this 
review, additional advances allow as well the incorporation of 
genomic information to overlay on more traditional imaging 
techniques to provide deep interrogation of tissue functions.

Several platforms for multiplexed tissue imaging have 
been developed over the past 5 years. Imaging Mass Cytom-
etry and Multiplexed Ion Beam Imaging (MIBI) utilize anti-
bodies conjugated to metal tags to spatially resolve single 
cells by mass cytometry and involves a single round of cel-
lular staining and image acquisition [2, 3]. Other methods 
for multiplexed imaging incorporates cyclic fluorophore 
detection with repeated cycles of tissue staining, reporter/
barcode stripping, image acquisition, and in the case of tis-
sue-based cyclic immunofluorescence (t-CyCIF) [4] include 
multiple cycles of fluorophore bleaching. Co-Detection-by-
InDEXing (CODEX) [5, 6] employs antibodies conjugated 
to barcoded oligonucleotides and is compatible with forma-
lin-fixed, paraffin-embedded and with fresh frozen samples 
that are then stained with a panel of DNA barcoded antibod-
ies [7]. Three fluorescent-dye conjugated oligonucleotides 
complementary to the antibody barcodes are imaged at a 
time; then, the fluorescent oligonucleotides are stripped off, 
and three additional fluorescently labeled oligonucleotides 
complementary to different barcodes are bound and imaged 
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(Fig. 1). This process is iterated until all antibodies in the 
panel are imaged.

As important as the technical advances in multiplexed tis-
sue imaging are the advances in the bioinformatic methods 
used to process and analyze the high-dimensional single-cell 
data to infer biological and clinical insights. Recent develop-
ments in computational analysis enable fast image preproc-
essing, robust cell segmentation, accurate protein marker 
quantification, followed by cell type identification and spa-
tial analysis. These methods quantify marker expression in 
individual cells as well as the multi-scale spatial relation-
ships to characterize tissue architecture and function.

In this review, we discuss use of CODEX to generate a healthy 
tissue cellular atlas and for spatial mapping of the immune, 
stromal, and epithelial landscape in cancer and autoimmunity 
(Table 1). Evaluating immune responses in tissues has revealed 
the wide variety of roles the immune system plays from organ-
ism-wide metabolism to tissue regeneration and repair and has 
highlighted the complex interplay among immune, stromal, vas-
cular, nerve, and epithelial cells during physiologic and patho-
logic processes [8]. In the second part of this review, we outline 
the bioinformatic techniques (Table 2) that can be used to quan-
tify and analyze the large datasets obtained from CODEX. It is 
notable that many of the techniques used for analysis of CODEX 
images can be applied to other imaging modalities and vice versa.

Applications

Molecular and spatial maps 
of the microenvironment of healthy and diseased 
tissues

A comprehensive roadmap of the molecular state of cells and 
its spatial localization in healthy human tissue provides the 
framework from which we can understand disease pathogen-
esis. Recently, multi-site consortia efforts have focused on the 
systematic study of diseased states, regulatory circuitry, and 
cellular interactions. CODEX has been utilized to generate 
detailed molecular and spatial maps of the cellular micro-
environment of tissues from multiple organs in health and 
disease. The Human Cell Atlas Project is an international 
collaborative effort that aims to characterize the distinct 
molecular profiles of all cell types in the human body with 
spatial resolution [9]. The NIH Human Biomolecular Atlas 
Program (HubMAP) consortium coordinates multi-omic plat-
forms spanning genomics, epigenetics, transcriptomics, and 
metabolomics with spatial protein and RNA expression across 
eight different organs [10]. Within these efforts, CODEX has 
been used to provide single-cell spatial data with protein 
expression at steady state in intestinal and colonic tissue. The 
Human Tumor Atlas Network (HTAN) is another multi-site 

Fig. 1  CODEX workflow. Fresh frozen tissue or formalin-fixed, par-
affin-embedded (FFPE) tissue is stained with an antibody panel con-
sisting of antibodies conjugated with unique DNA barcodes. Tissue 
is then stained with three complementary DNA oligonucleotides con-
jugated to fluorescent dyes. After imaging, the oligonucleotides are 

stripped off. The next set of fluorescent conjugated complementary 
DNA oligonucleotides are added, and the tissue is imaged. This cycle 
of oligonucleotide addition and stripping is iterated until all antibod-
ies from the panel have been imaged
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collaborative effort that is utilizing molecular and spatial pro-
filing to understand the progression of healthy tissue from a 
pre-cancerous state to localized cancer to metastatic disease 
[11]. This collaboration applies multiple-omic modalities to 
study DNA, RNA, and epigenetics with spatial localization 
at the single-cell and bulk tissue levels in multiple disease 
states. The goal of HTAN is to provide a framework for future 
therapies as part of the NIH Cancer Moonshot Initiative. As 
part of HTAN, CODEX has delineated the immune tumor 
microenvironment in lung cancer to unravel the cellular and 
molecular progression from pre-cancerous lesions to cancer.

One such organ that has been under intense study of this 
nature has been the kidney. Single-cell transcriptional stud-
ies have revealed that multiple cell types reside in human 
kidneys at steady-state and that there are coordinated 
immune, epithelial, and stromal changes following acute 
kidney injury [12]. Renal injury tends to be focal rather than 
diffuse, and understanding the spatial distribution of renal 
immune, stromal, and epithelial cell types following injury 
has provided insight into the localized changes that occur 

during acute kidney injury. CODEX has been used to study 
tissue architecture at the molecular level in two murine mod-
els of acute kidney injury, ischemia/reperfusion injury and 
cecal ligation puncture. Ferreira et al. utilized a 12-maker 
antibody panel to delineate B cells, CD4 and CD8 T naïve 
and memory cells, macrophages, endothelial cells, and other 
leukocytes by CODEX. The authors identified immune-
epithelial interactions within distinct functional anatomical 
areas of the kidney in both models. In the ischemia/reperfu-
sion injury model, neutrophils were primarily localized in 
the outer stripe region of the renal medulla. In the cecal liga-
tion puncture (CLP) model, natural killer (NK) cells were 
primarily localized to the outer stripe region of the renal 
medulla but were also detected in the renal cortex. Addi-
tionally, in the CLP model, migrating macrophages infil-
trated the outer renal cortex and co-localized with proximal 
tubule epithelial cells [12]. These spatial insights revealed 
the coordinated immune response to renal injury in distinct 
anatomic locations. While beyond the scope of this review, 
multiple other organ types including the lung [13], stomach 

Table 2  A summary of computational toolboxes for multiplexed imaging data analysis

Name Preprocessing Cell 
segmen-
tation

Cell 
pheno-
typing

Spatial analysis Language Code source

RAPID √ Matlab https:// github. com/ nolan lab/ RAPID
CODEX Toolkit √ √ Java https:// github. com/ nolan lab/ CODEX
REDSEA √ Matlab https:// github. com/ nolan lab/ REDSEA
CellProfiler √ Python https:// github. com/ CellP rofil er/ CellP rofil er
Ilastik √ Python https:// github. com/ ilast ik/ ilast ik
CellSeg √ Python https:// micha ellee1. github. io/ CellS egSite/
Mesmer √ Python https:// github. com/ vanva lenlab/ deepc ell- tf
Cellpose √ Python https:// github. com/ mouse land/ cellp ose
CELESTA √ R https:// github. com/ plevr itis- lab/ CELES TA
STELLA √ Python https:// github. com/ snap- stanf ord/ stell ar
Astir √ Python https:// github. com/ camlab- bioml/ astir
Cytofkit √ R https:// github. com/ Jinmi aoChe nLab/ cytof kit
Cytomapper √ R https:// github. com/ Boden mille rGroup/ cytom 

apper
ImaCyte √ √ Matlab https:// github. com/ biova ult/ ImaCy tE
CytoMAP √ Matlab https:// gitlab. com/ gerne rlab/ cytom ap/-/ tree/ 

master/ CytoM AP
Cytokit √ √ Python https:// github. com/ hamme rlab/ cytok it
MCMICRO √ √ √ √ Nextflow, Python https:// mcmic ro. org/ overv iew/
SIMPLI √ √ √ Nextflow https:// github. com/ cicca lab/ SIMPLI
histoCAT √ Matlab https:// github. com/ Boden mille rGroup/ histo CAT
SpatialScore √ R https:// github. com/ nolan lab/ Spati alSco re
Cell neighborhoods √ Python https:// github. com/ nolan lab/ Neigh borho odCoo 

rdina tion
Spatial-LDA √ Python https:// github. com/ calico/ spati al_ lda
TissueSchematics √ Python https:// github. com/ nolan lab/ Tissu eSche matics
MISTy √ R https:// github. com/ saezl ab/ mistyR
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[14], and colon [15] have been under similar focused study, 
with considerable success, underscoring the merits of the 
approach and the discoveries yet to be made.

The immune tumor microenvironment and spatial 
predictors of response

Cancer treatment has advanced over the past decade with 
the transition from reliance on surgery, chemotherapy, and 
radiation that broadly target cancer toward the use of thera-
pies that enhance the endogenous immune system [16]. 
Immune checkpoint inhibitors that target programmed cell 
death protein PD-1, its ligand PD-L1, or cytotoxic T lym-
phocyte-associated protein CTLA-4 “release the breaks” of 
the immune system to stimulate immune responses that tar-
get cancer cells [17]. Despite the effectiveness of checkpoint 
inhibitor therapies, it is difficult to predict which patients will 
respond [17]. Differentiating checkpoint inhibitor respond-
ers from non-responders is essential both to avoid treatment 
with ineffective therapies and to limit the risk of developing 
complications from checkpoint inhibitor use such as immune-
related adverse events [18]. It has long been the assumption 
that form, positioning, and structure of cell contexts will 
predict function. Similarly, dysfunction though at times in 
cancer apparently random, also will be expected to follow 
some “order.” Based on this, multiplexed imaging platforms 
have been deployed for characterizing the immune tumor 
microenvironment through correlation of disease states with 
the mapping of locations of immune, stromal, epithelial, and 
tumor cellular components augments the phenotypic data 
obtained from DNA and RNA sequencing and epigenetics.

One such opportunity for study was cutaneous T cell 
lymphomas (CTCL), which are aggressive skin cancers that 
derive from  CD4+ T cells. Patients with CTCL have poor 
prognosis, and treatment options are limited [19]. However, 
a subset of CTCL patients respond well to PD-1 blockade 
with robust and durable immune responses. Phillips et al. 
performed CODEX using a 54-marker antibody panel to 
detect T and B cells, macrophages, NK cells, granulocytes, 
dendritic cells, epithelial cells, endothelial, lymphatics, and 
multiple checkpoint markers to identify features that predict 
response to PD-1 blockade in CTCL patients [19, 20]. Over 
70 tumor regions from 14 patients with advanced CTCL 
were evaluated, and given that biopsies were readily acces-
sible from the same patient at the skin surface pre and post 
treatment, there was a unique opportunity to study cellular 
contexts in this disease.

In this study, there were not significant differences 
in the numbers or frequencies of immune or tumor cells 
between responders and non-responders; however, spatial 
analysis revealed that the distances between  PD1+CD4+ T 
cells, tumor cells, and regulatory T cells, a population of 

dominant immune suppressors, predicted response to anti-
PD-1 treatment. The spatial relationships among  PD1+CD4+ 
T cells, tumor cells, and regulatory T cells were quantified 
by a very simple and intuitive “spatial score.” Patients with 
a low spatial score, which indicates that  PD1+CD4+ T cells 
are in closer proximity to tumor cells than to suppressive 
regulatory T cells, were more likely to respond to anti-PD-1 
treatment than were patients with a higher spatial score 
[19]. Thus, incorporating spatial analysis into clinical prac-
tice would allow identification of CTCL patients likely to 
respond to immune checkpoint blockade.

Another example is bladder cancer. For most patients 
with bladder cancer, neoadjuvant chemotherapy and immune 
checkpoint blockade have significantly improved outcomes. 
Those patients who have tumor epithelial cells that express 
the cadherin CDH12 have poor outcomes but respond well to 
immune checkpoint blockade [21]. To understand the under-
lying mechanism, Gouin et al. performed CODEX using a 
35-marker antibody panel to profile tumors from twenty-
five patients with bladder cancer and identified 360,000 
epithelial cells, 140,000 immune cells, and 90,000 stromal 
cells [21]. The  CDH12+ epithelial cells expressed PD-L1 
and PD-L2 and co-localized with  CD8+ T cells, which may 
explain why these tumors are responsive to checkpoint 
inhibitors. The  CD8+ T cells displayed an exhausted pheno-
type as indicated by expression of PD-1 and LAG3. Using 
an unsupervised algorithm to quantify the cellular neigh-
bors of  CDH12+ epithelial cells revealed multiple “cellular 
niches.” Niches associated with  CDH12+ epithelial cells 
tended to have considerable immune infiltration, whereas 
immune infiltration was not observed in  KRT13+ epithelial 
cell niches. Additionally,  CDH12+ epithelial cells in niches 
with immune infiltration exhibited higher PD-L1 expression 
than  KRT13+ epithelial clusters. This study demonstrated 
that spatial information obtained using CODEX can reveal 
the cellular basis of improved response to immune check-
point blockade.

Spatial analysis with CODEX has also been used to char-
acterize colorectal cancer. Based on histology, colorectal 
carcinoma can be split into at least two groups: a Crohn’s-
like reaction (CLR) subset in which tertiary lymphoid struc-
tures are observed at the tumor invasive front and a diffuse 
inflammatory infiltration (DII) subset [7]. Patients with the 
CLR subset have significantly better prognosis than those 
with the DII subset. CODEX with a 56-marker panel was 
used to quantify immune, stromal, and epithelial cells in 
colorectal carcinoma tumors and unsupervised clustering 
identified two clusters corresponding to CLR and DII sub-
sets based on the presence of tertiary lymphoid structures 
[7]. Decomposition of differences in cell types and cellular 
neighborhoods utilizing tensor decomposition revealed that 
there are distinct organizational differences in the immune 
tumor microenvironments of the two subsets.  CD4+ T cell 
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frequency and the  CD4+ to  CD8+ T cell ratio at the tumor 
boundary served as a prognostic indicator and suggested T 
cell activity at the tumor boundary is critical to a productive 
immune response [7].

In another example of use of CODEX to determine how 
spatial neighborhoods influence response to therapy, Mon-
dello et al. evaluated samples from patients with follicular 
lymphoma, which is typically an indolent disease with a 
subset of patients who have early relapse with poor out-
comes [22]. The immune tumor microenvironments of 496 
diagnostic biopsies from patients with early follicular lym-
phoma who did not respond to treatment were evaluated. 
The follicular lymphoma immune tumor microenvironment 
was enriched for memory and naïve  CD4+ and  CD8+ T cells, 
B cells, monocytes/macrophages, and endothelial cells. 
The presence of activated central memory T cells within 
tumor follicles was associated with favorable outcomes and 
improved prognosis that was independent from genetic fea-
tures [22]. Thus, combining spatial anatomy of follicular 
central memory T cells with clinical markers improved iden-
tification of high-risk patients.

Spatial microenvironment in infection 
and autoimmunity

To understand host immune responses to pathogens in 
human and primate models requires extensive reagent devel-
opment, and for pathogens that are deadly or highly infec-
tious, optimization for use in inactivated samples may be 
necessary. A 21-marker CODEX antibody panel that delin-
eates multiple immune cell types spanning granulocytes, 
plasma cells, and  CD4+ and  CD8+ T cells and B cells with 
three Ebola virus specific antibodies has been validated for 
study of host responses to Ebola virus [23]. This antibody 
panel has been validated in fully inactivated FFPE samples 
and highlights a platform that can be used to probe cellular 
immune responses to Ebola virus and other pathogens.

CODEX has also been used to study tissue from patients 
with ulcerative colitis, an autoimmune disease with relaps-
ing and remitting inflammation in the large intestine [24]. 
Ulcerative colitis is heterogeneous with a subset of patients 
responding well to antibodies that block activity of TNFa 
[15]. CODEX has been used to characterize the inflam-
matory microenvironment and to identify features that 
predict response to TNFa inhibitors and overall prognosis. 
Mayer et al. profiled 29 patients with ulcerative colitis and 
five healthy controls with a 52-marker antibody panel to 
detect immune, epithelial, and stromal populations and 
identified 13 distinct cell types. In healthy controls, there 
was enriched contact between epithelial and stromal cells. 
In ulcerative colitis patients treated with TNFa inhibitors, 
there were decreased T cell interactions with other adaptive 
immune cells, stroma, and epithelium; however, there was no 

difference between T cell interactions with the innate com-
partment. Cell type neighborhood analysis revealed ten cel-
lular neighborhoods that spanned primarily immune, mixed 
immune epithelial, primary epithelial, inflamed vascula-
ture, stroma, and inflamed stroma. In responders, treatment 
with TNFa inhibitors resulted in a decrease in the adaptive 
immune tissue neighborhoods with a corresponding increase 
in healthy epithelial tissue neighborhoods while frequen-
cies of innate immune predominant tissue neighborhoods 
did not change. A model utilizing CODEX spatial analy-
sis incorporating cell types, cell–cell contact, and cellular 
neighbors was able to predict resistance to TNFa inhibitors 
and outperformed models that relied on transcriptional data 
alone [16]. Incorporating tissue spatial analysis with other 
clinical indicators could direct future therapeutic treatment 
algorithms.

Bioinformatic analysis

Bioinformatics analysis of CODEX multiplexed imaging 
data reveals tissue structure and provides insight into bio-
logical mechanisms. This is typically done by converting the 
high-dimensional raw data into single-cell maps of tissue 
architecture and functional states. This process consists of 
four main steps (Fig. 2): (1) image preprocessing, (2) cell 
segmentation, (3) cell phenotyping, and (4) spatial analysis 
by one or more algorithms that relate cellular contexts to 
some determinative or predictive outcome.

Over the past 5 years, various computational methods 
and software tools have been developed to facilitate each 
of these analytical steps. Most carry out only one of the 
steps (CODEX Uploader [5], RAPID [25], CellSeg [26], 
Mesmer [27], CellPose [28], CELESTA [29], Astir [30], 
CytoMAP [31], histoCAT [32], TissueSchematics [33], and 
MISTy [34]), but a few attempt to address multiple steps or 
the entire workflow (Cytokit [35], MCMICRO [36], SIMPLI 
[37]) (Table 2).

Image preprocessing

Typical CODEX multiplexed imaging data consist of mul-
tiple tiles that correspond to a large tissue region. In each 
cycle, data are collected from four wavelength channels 
and multiple z-planes, resulting in terabytes of imaging 
data for each experiment. To visualize and analyze this 
dataset, it is necessary to convert the raw data into multi-
dimensional hyperstacks (x, y, channel, cycle) by creating 
montages from individual tiles and aligning these montages 
from different cycles to generate a multidimensional tiff 
image. Several challenges are associated with this step: 
First, images can be blurry and noisy due to inherent limi-
tations of microscopes systems (e.g., out-of-focus light 
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and noise from the light source and the camera). Second, 
images can be misaligned due to axial and lateral drift dur-
ing the cyclic imaging process. Third, there is autofluo-
rescence background originating from endogenous tissue 
components such as erythrocytes, collagen, elastin, and 
lipofuscin, and formalin fixation. Finally, rapid process-
ing of the large-scale imaging datasets. These issues are 
generic to all fluorescence-based multiplexed imaging tech-
nologies including CODEX.

Although several computational toolboxes are avail-
able for CODEX image preprocessing, most only address 
a subset of these issues. The CODEX Uploader, the first 
processor developed for CODEX data, was implemented 
as an open-source Java package by the Nolan lab [5–7]. 
This software corrects spatial drifts using 3D drift-com-
pensation, deconvolves the z-stack images using the com-
mercially available Microvolution algorithm, subtracts the 
background obtained by collection of blank image cycles, 
and generates hyperstacks consisting of all fluorescent 
channels and imaging cycles. The CODEX Uploader has 
a graphical user interface (GUI) that allows users without 
any programming background to process the complex mul-
tiplexed imaging data. The main limitations of the CODEX 
Uploader are that it can take several days to process tera-
bytes of imaging data and it does not correct lateral drifts 
among tiles for multi-tile experiments. Cytokit, which was 

implemented in Python, employs a pipeline similar to that 
of the CODEX Uploader [35]. MCMICRO can be used to 
analyze multiplexed imaging data collected with a range of 
technologies (e.g., fluorophore-based, metal-based) [36]. 
The preprocessing pipeline in MCMICRO includes illu-
mination correction, image stitching, and registration, but 
it does not have image deconvolution or autofluorescence 
removal.

RAPID [25] was developed for accurate and fast analy-
sis of large-scale CODEX imaging data by the Nolan lab. 
It reduces processing time by two to threefold compared 
to the CODEX Uploader. RAPID deconvolves large-scale 
CODEX imaging data and stitches and registers images 
with axial and lateral drift correction. Moreover, RAPID 
minimizes intense tissue autofluorescence such as that 
introduced by erythrocytes, thereby improving the immu-
nofluorescence detection of antigens, especially for low-
abundance markers. RAPID incorporates an open-source, 
CUDA-driven, GPU-assisted deconvolution algorithm 
rather than the fee-based commercial software used in the 
CODEX Uploader with no impact on quality of the output.

Cell segmentation

After the raw imaging data is processed and aligned, the next 
step is cell segmentation. During this step, the boundaries of 

Fig. 2  Overview of the computational workflow for CODEX multiplexed imaging data
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single cells are computationally identified and binary masks 
for individual cells are generated. This task has long been 
challenging in fluorescence microscopy image processing. 
While it is relatively easy to segment monodispersed cells in 
images of cultured cells as cells are sufficiently separated, seg-
menting cells that are densely packed in tissues such as lymph 
nodes and spleen is difficult. The accuracy of cell segmenta-
tion significantly influences the quantification of multicellular 
properties such as protein expression and cell morphology. An 
ideal cell segmentation algorithm for imaging data must accu-
rately segment cells of various sizes and shapes independently 
of density across diverse tissue types and must be capable of 
demarcating the membrane, nucleus, and cytoplasm.

Cell segmentation algorithms typically use images of 
cells stained with marker of nuclei and/or membranes as 
input. Some algorithms generate only nuclei masks, but oth-
ers can output both nuclei and whole-cell masks, thereby 
allowing protein quantification in sub-cellular compart-
ments. Watershed nuclei segmentation algorithms are clas-
sical segmentation methods that perform well when seg-
menting cells of relatively homogenous size and shape such 
as lymphoid tissue in CODEX data [5, 6, 38]. However, 
watershed-based algorithms can be sensitive to noise such 
as imaging artifacts and blurred cell boundaries. In addi-
tion, significant tuning for multiple user-defined parameters 
based on the cell morphology and image intensity in the 
tissue images is necessary. Therefore, watershed cell seg-
mentation does not work well for tissues that have cells 
of diverse sizes, shapes, and densities such as those in the 
tumor microenvironment.

Machine learning and deep learning algorithms trained on 
large-scale datasets are more robust to variations of image 
quality and generalize better across tissue types than water-
shed-based algorithms. Machine learning and deep learning 
algorithms differ in the composition and quantity of train-
ing dataset, model architecture, outputs, and post-processing 
methods. CellSeg is a modified Mask R-CNN algorithm that 
accurately segments nuclei in CODEX images and outper-
forms watershed-based nuclei segmentation [26]. CellSeg 
showed robust performance in delineating nuclei bounda-
ries even in noisy images with low signal-to-noise ratio. A 
limitation is that it approximates the whole-cell mask by 
expanding the nuclei mask for a few pixels, which may not 
accurately match the cell boundaries. Cellpose is designed 
as a generalist algorithm for cell segmentation that is capa-
ble of generating both nuclei and whole-cell masks [28]. 
Although Cellpose outperformed several deep learning-
based cell segmentation algorithms including Mask R-CNN, 
Stardist, and standard U-Nets, none of these models were 
trained on a multiplexed tissue imaging dataset; instead, 
training was implemented on cultured cells, animal cells, 
and non-microscopy images of non-cell objects. Recently, 
Noah et al. constructed a large-scale multiplexed imaging 

dataset named TissueNet with more than 1 million manually 
labeled cells [27]. Using TissueNet, they trained a deep neu-
ral network named Mesmer and achieved human-level per-
formance in segmenting whole cells. Mesmer outperformed 
the pre-trained Cellpose model, FeatureNet, RetinaMask, 
and ilastik [39], and enabled both nuclei and whole-cell seg-
mentation, thereby allowing for subcellular localization of 
protein signals. Interestingly, different deep learning mod-
els achieved similar performance when trained on the same 
TissueNet dataset, suggesting the importance of procuring 
large-scale annotated dataset.

Protein marker quantification

After cell segmentation, protein marker expression is typi-
cally quantified as the total marker intensity on each cell 
normalized by cell size. However, spatial spillover, which 
is the blending of signals between neighboring cells that are 
tightly packed such as in lymphoid tissue, is a common issue 
complicating the accurate quantification of single-cell pro-
tein expression in multiplexed imaging data. Signal spillover 
is often manifested by the false positive co-expression of 
mutually exclusive markers on the same cell. An example 
is the apparent co-expression of CD3 and CD20, which are 
expressed on T and B cells, respectively. To compensate for 
the cell-to-cell spillover in CODEX images, an adjacency 
matrix is typically calculated by measuring the fraction of 
shared boundary between each pair of cells, and then the 
raw intensity matrix of protein expression is multiplied by 
the inverse adjacency matrix, correcting for the spillover [5]. 
REDSEA is another spillover correction method that has 
been shown to decrease signal contamination from neighbor-
ing cells in MIBI data [40]. However, REDSEA requires that 
the cell mask have zero-pixel value between the adjacent cell 
boundaries, which is not the case with the typical cell masks 
generated by commonly used cell-segmentation algorithms.

Cell type identification

Assignment of cell types, namely, cell phenotyping, to seg-
mented single cells from multiplexed imaging data remains 
a bottleneck for multiplexed image analysis. An ideal algo-
rithm should automatically and precisely define cell types 
and subtypes of various abundances in an objective and 
robust manner with minimal human intervention.

The classical methods for cell phenotyping rely heav-
ily on pathology expertise and are subjective and time-
consuming. One such method employs the manual gating 
strategy that is typically used for analyzing flow cytometry 
or CyTOF datasets (e.g. Cytofkit [41], cytomapper [42]). 
This method is sensitive to signal spillover between adja-
cent cells and to segmentation noise [43]. SIMPLI [37] is 
a toolkit that defines cell types by global thresholding in a 
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fashion similar to the hand-gating method; both are chal-
lenged by poor imaging quality and imaging noise.

Unsupervised clustering followed by manual annotation 
has been widely used for assignment of cell types [5, 7, 
19]. This process typically starts with over-clustering of a 
protein expression matrix with each cell as a row and each 
marker signal as a column. Many clustering algorithms are 
available that can be used to group protein expression into 
clusters; these include X-shift, PhenoGraph, FlowSoM, 
and k-means, etc. Data normalization techniques and 
selection of the optimal cluster numbers can significantly 
influence the clustering results [43]. After the initial clus-
tering, similar clusters are merged, and mixed clusters are 
further separated to finalize the cluster annotation. This 
process works in a bottom-up and iterative fashion. How-
ever, problems such as mixed clusters or unknown clusters 
can persist after many rounds of manual annotations, and 
annotating millions of cells requires significant time [7].

Although efforts have been made to develop new algo-
rithms for automatic and fast cell type identification, robust 
and accurate algorithms that can detect cells of various 
abundances from multiplexed imaging data are still lack-
ing. Astir [30] is a probabilistic machine learning method 
that infers cell types based on protein expression of cells 
and prior knowledge of marker proteins. This algorithm has 
superior accuracy and runtime compared to unsupervised 
clustering methods in mass cytometry data. However, it did 
not outperform supervised classification and cannot iden-
tify novel cell types. Additionally, Astir is sensitive to anti-
body staining quality and signal intensity. Although Astir 
utilizes protein expression profiles, it does not incorporate 
any spatial or morphological information unique to multi-
plexed imaging data. CELESTA is a fast cell-identification 
algorithm designed to leverage both the protein expression 
and spatial information from CODEX imaging data [29]. 
Cells with marker expressions that matches well with the 
pre-defined marker profile are easily identified and defined 
as “anchor” cells. When the marker expressions of cells do 
not match a pre-defined cell type, these cells are assigned an 
identity based on a spatial score of their neighboring cells 
types. One limitation of this method is that it is difficult to 
define rare cell types. CELESTA is also sensitive to marker 
staining quality and imaging noise. STELLAR [44] is new 
cell-type annotation method that uses graph convolutional 
neural network to learn the spatial and molecular similari-
ties of cells. This method requires manually annotated data 
as a reference dataset to learn from.

Spatial analysis

Multiplexed imaging data contains rich information on the 
multicellular tissue ecosystem including cell types, cell 
states, and their coordinated activities across scales. The 

goal of spatial analysis is to decipher how cells and tissues 
are spatially organized and orchestrated in their native envi-
ronment and how this organization influences biological 
function, disease progression, and response to therapies. 
To detangle this multilayered and interrelated spatial infor-
mation, computational methods must dissect the multicel-
lular modules that are coordinated by both the physically 
proximal and distant cell types across a spectrum of length 
scales and determine the associations of these multicellular 
modules with tissue functions and with physiological and 
pathological conditions.

Cell–cell interactions and communications can occur 
across a range of distances [45], broadly categorized as auto-
crine, juxtacrine, paracrine, and endocrine. The developed 
spatial analysis approaches span from identification of pair-
wise cell–cell contacts to higher-order architectures.

Pair-wise cell–cell interactions: The most basic method 
for cell interaction analysis is to measure the pair-wise 
cell–cell interactions to infer attraction or repulsion between 
two cell populations. To measure these physical cell–cell 
contacts (i.e., juxtacrine contacts), Goltsev et al. identified 
pairs of neighboring cells from Delaunay graphs and calcu-
lated the odds ratio of the co-occurrence of two cell types 
[5]. This analysis showed that the most dominate pairwise 
cell–cell contacts are homotypic (e.g., T cells with T cells, 
B cells with B cells) and mostly reflect anatomic compart-
ments in the tissue [5, 7]. histoCAT was originally designed 
for cell-interaction analysis in multiplexed image cytometry 
data [32]. It examines the significance of pairwise interac-
tions by comparing the number of cell–cell interactions at 
a user-defined distance (e.g., 4 pixels) to that of a matched 
control containing randomly shuffled cell phenotypes [46]. 
This test can reveal significant enrichments or depletions of 
a cell in another cell’s neighborhood. Strategy used by Keren 
et al. [3] measured pair-wise interactions within 100 pixels 
(39 µm) of an index cell. Similar to the method developed 
by Goltsev et al., these pair-wise enrichment analysis [3, 
46] identified mostly homotypic interactions between similar 
cells, suggesting that this might be a limitation of pair-wise 
analysis. Additionally, several spatial descriptive functions, 
including the K-function, L-function, and pair correlation 
function, can also be used to evaluate the spatial relation-
ships between two cell populations [47].

Cell neighborhood, niche, or community analysis: Cell 
neighborhood analysis identifies higher-order (rather than 
paired) interactions between one or more cell phenotypes, 
which provides a catalog of repeating architectural units for 
tissues. Many methods are available to identify cell neigh-
borhoods. A neighborhood is defined as a locally spatially 
homogeneous mixture of cell types [33]. The neighborhood 
identification methods typically raster scan each cell across 
the tissue with a pre-defined window that consists of N near-
est neighboring cells (e.g., N = 10 was found to be suitable 
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for colorectal tumor microenvironment [7]) or all the cells 
within a certain physical distance of the center cell, which 
is the strategy used in CytoMAP [31]. Jackson et al. used 
a graph-based method to identify spatially connected cell 
clusters, which they called cell communities [46]. These 
windows or graphs are grouped into cell neighborhoods by 
unsupervised clustering of the cell type composition of the 
windows. The size of these windows influences the type of 
cell neighborhoods identified. Spatial-LDA [48] is another 
method to identify cell neighborhoods with smooth bound-
ary transitions, but it is very slow for large image data. Cell 
neighborhoods are composed of distinct spatial patterns of 
cell organization, thus reflecting characteristic local pro-
cesses. Some neighborhoods correspond to known tissue 
microanatomies, such as tertiary lymphoid structure and 
bulk tumors, whereas others are novel such as the granulo-
cyte-enriched cell neighborhood identified by Schürch et al. 
in their analysis of colorectal tumors [7]. In addition, other 
computational methods have been used to identify patterns 
of cell types and cell neighborhoods from multiplexed imag-
ing data. For example, non-negative Tucker tensor decom-
position and canonical correlation analysis have been used 
to evaluate cell type and cell neighborhood interactions 
[7]. “SpatialScore” was shown to predict immunotherapy 
response by measuring the physical distance ratio of each 
CD4 + T cell and its nearest tumor cell relative to its near-
est Treg [19]. The tumor-immune mixing score is another 
spatial metric that has been used to quantify the degree of 
mixing between tumor and immune cells [3].

Higher-order functional units: It remains understudied 
how cell neighborhoods are assembled into higher-order, 
repetitive structures that coordinate complex tissue func-
tions and promote disease development and progression. 
To infer the design principles of spatial organization of 
tissues, Bhate et al. proposed a conceptual and analytical 
framework to define and quantify tissue architectural units 
and their assembly at both the local and global level from 
multiplexed imaging data like CODEX [33]. Development 
of the framework, which Bhate et al. called the tissue sche-
matic, starts by identification of cell neighborhoods from 
recurring patterns of spatially proximal cell types, next a 
graph is constructed using cell neighborhoods spanning the 
entire tissue sections, and finally recurring cell neighbor-
hood combinations are classified as “motifs.” The junctions 
between two cell neighborhood boarders are the sites of pos-
sible interactions between the two local tissue processes; 
thus, “motifs” could have emergent functionality arising 
from signal propagation between cellular neighborhoods. 
Applied to CODEX imaging data of lymphoid tissues, tissue 
schematics identified the assembly rules shared by tonsils, 
lymph nodes, and spleen. In addition, this method revealed 
that the insertion of a tumor cell neighborhood into assem-
bled regions of the T cell-enriched, macrophage-enriched, 

and vasculature neighborhoods was associated with poor 
survival outcomes. These results suggested the basic and 
translational utility of tissue schematics to understand tissue 
function and malfunction.

Spatial patterns of protein distribution: In addition to the 
geospatial distribution of cells in tissues, the expression lev-
els and spatial patterns of protein markers are also important 
indicators of tissue functions. Goltsev et al. showed that cell 
surface marker expression is dependent on immediate neighbor 
cells [5]. For example, levels of CD79b and B220 are niche 
dependent in spleens of mice. These data suggested that geo-
spatial location of cells within a tissue could be an indicator 
of potential functions. Keren et al. found that the expression 
of immunoregulatory proteins in distinct cell types correlates 
with the tissue architecture (mixed and compartmentalized) 
and their distance to tumor-immune borders in MIBI of human 
breast cancer tissue [3]. Recently, MISTy, a machine learning 
framework to quantify and predict the relationships between 
marker expression and the local cellular neighborhood (jux-
taview) and broader tissue structure (paraview) was introduced 
[34]. Interestingly, using this algorithm to analyze imaging 
mass cytometry data of human breast cancer tissue, Tanevski 
et al. showed that broader tissue structure has more effect on 
the protein marker expression than do immediate neighbors.

Challenges and future directions

The past half-decade has witnessed rapid technological 
development and increasing biomedical applications of 
highly multiplexed imaging technologies including CODEX. 
These technologies quantify cell types and states and reveal 
the spatial organization and coordinated actions of cell 
types and multicellular modules in the native microenvi-
ronments of healthy and diseased tissue. In this short review, 
we discussed how application of CODEX has improved our 
understanding of the immune tumor microenvironment and 
has identified features that are predictive of prognosis and 
response to immune checkpoint inhibitors. For diseases that 
encompass autoimmunity, CODEX has been used to spa-
tially map the immune, stromal, and epithelial cell types 
involved in ulcerative colitis and has identified a cellular 
neighborhood that did not resolve after treatment with TNFa 
inhibitors. Though the number of studies on autoimmunity 
and host–pathogen response are limited relative to cancer 
studies, we expect that in the upcoming years, multiplexed 
technologies will delineate the complex interactions between 
multiple cell types in various autoimmune diseases such as 
type 1 diabetes and in host–pathogen responses to viruses 
such as SARS-CoV-2. An inherent difficulty with fluores-
cence based multiparameter imaging is autofluorescence. 
Despite techniques to limit autofluorescence such as pho-
tobleaching or post-processing tools, certain tissues, for 
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example bone marrow or cartilage, remain difficult and mass 
spectrometry-based platforms may be more suitable.

The newest CODEX multiplexed imaging system enables 
imaging of 100 markers, compared to 50 with the earlier 
system, and the imaging time has also been reduced. With 
these technological advancements, high-plex, large-scale 
multi-omic datasets for various diseases will be generated. 
However, computational methods that can effectively con-
vert these datasets into single-cell maps of tissue architec-
ture and function are still lacking. Although CODEX image 
processing and cell segmentation methods are available, 
computational methods are needed to address several major 
issues. First, automatic cell type identification methods that 
are accurate, fast, and robust to imaging noise and staining 
intensity to result in high-quality and have multi-level granu-
larity for cell phenotypes must be developed. Second, spatial 
analysis methods must be created that can identify the multi-
cellular modules coordinated by both the physically proximal 
and distant cell types across a spectrum of distances in the 
same sample or patient.

Although not reviewed here, new technologies for 
directly visualizing RNA at the single-cell resolution are 
being developed by several academic and commercial 
groups. Recently a method called PANNINI [49] has been 
developed and integrated with MIBI to visualize viral 
DNA, RNA, as well as protein makers. This opens up new 
opportunities for simultaneous multiplexed nucleic acid 
and protein imaging in situ. In addition to technological 
advancement, new computational methods are being devel-
oped to integrate and match complementary multimodal 
information (e.g. proteomics, transcriptomics, epigenet-
ics, genomics, and metabolomics) cross tissue (e.g. spleen 
to tonsil) and cross species (e.g. non-human primates to 
humans), thereby providing a systems-level understanding 
of biological processes. One such method named MARIO 
[50] is capable of integrating single-cell RNA sequencing 
data (CITE-seq) with multiplexed single-cell protein imag-
ing (e.g., CODEX, MIBI), which could link protein states 
to gene regulatory states.

Multiplexed imaging studies have uncovered cell–cell 
interactions associated with disease conditions. We envi-
sion that future effort will focus on:

(1) Measuring these multicellular interactions and 
functions with high temporal resolution in three-
dimensional space. Experimental and computational 
approaches need to be developed to dissect the mul-
ticellular communications at higher spatial, temporal, 
and molecular resolution.

(2) Designing basic mechanistic studies to identify causal 
relationships beyond the correlative studies. We predict 

that in the next few years, researchers will perturb the 
cellular microarchitecture to determine the functions 
of particular cell subsets and cellular neighborhoods or 
motifs. Efforts from these studies will enable the devel-
opment of more accurate in silico and in vitro models 
such as organoids or systems-on-a-chip.

(3) Translating predictive and prognostic biomarkers to 
improve patient outcomes in the clinic. As the num-
ber of studies from CODEX and other multiparameter 
imaging platforms increase in throughput, we predict 
that we will better understand human disease hetero-
geneity. Prospective clinical studies will be conducted 
to validate the clinical utility of these biomarkers in 
large-scale patient populations.

In the future, multiparameter imaging could be incorpo-
rated to stratify patients with diseases such as rheumatoid 
arthritis, ulcerative colitis, and cancers. Although biologics 
have greatly improved patient health in the treatment of vari-
ous autoimmune diseases, identifying which biologic class 
will be effective in which patient has relied on a “trial and 
error” approach. We anticipate that as high-throughput, mul-
tiparameter imaging modalities are incorporated into hospi-
tal laboratories, disease features derived from multiplexed 
imaging that are predictive of treatment response could be 
incorporated into clinical guidelines.
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