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In the present work, we experimentally implement, numerically compute with and theoretically
analyze a configuration in the form of a single column woodpile periodic structure. Our main finding
is that a Hertzian, locally-resonant, woodpile lattice offers a test bed for the formation of genuinely
traveling waves composed of a strongly-localized solitary wave on top of a small amplitude oscillatory
tail. This type of wave, called a nanopteron, is not only motivated theoretically and numerically,
but are also visualized experimentally by means of a laser Doppler vibrometer. This system can
also be useful for manipulating stress waves at will, for example, to achieve strong attenuation and
modulation of high-amplitude impacts without relying on damping in the system.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

Introduction. Granular crystals are rapidly becom-
ing a popular vehicle for the theoretical study, numeri-
cal exploration and experimental identification of a wide
range of phenomena ranging from the near linear, to the
weakly or even highly nonlinear limit [1–4]. The relevant
chains consist of assemblies of particles in one-, two- and
three-dimensions inside a matrix (or a holder) in ordered,
closely packed configurations. An especially appealing
characteristic of such structures is the ability to tune
their dynamic response by an applied static load. This
may place the system in a near linear or weakly nonlinear
regime, in the case of precompressed chains, or even in
a highly nonlinear regime, in the absence of such static
load (often termed sonic vacuum, due to the vanishing
sound speed in that case) [1]. It is exactly this dynamic
tunability and the controllability of both the assembly
and the measurement of these settings that has enabled
a wide range of proposals for applications. Among others,
we note shock and energy absorbing layers [5–7], acoustic
lenses [8], acoustic diodes [9], and sound scramblers [10].

While various geometries of building blocks have been
reported (e.g., spherical, toroidal, or elliptical shapes),
granular crystals in woodpile architectures, made of or-
thogonally stacked rods, are largely unexplored. This is
in contrast to their electromagnetic counterpart – called
woodpile photonic crystals – that successfully demon-
strated their efficacy and versatility in manipulating elec-
tromagnetic waves [11, 12]. Even existing studies on
woodpile phononic crystals are limited primarily to their
linear elastic responses [13–15], without addressing their
nonlinear wave dynamics.

In this Letter, we show that periodic structures in
woodpile configurations can be very useful in manipulat-
ing highly nonlinear stress waves at will, including high
wave attenuation and spontaneous formation of novel
traveling waves after an impact excitation. Arguably,
the most fundamental waveform that arises in granular

chains within the sonic vacuum is a solitary wave with a
highly localized waveform [16–21]. Recently, other types
of coherent traveling waves in granular chains, within the
sonic vacuum, were predicted to exist; periodic traveling
waves [19, 22] and static or traveling breathers in granu-
lar chains including on-site potentials [23].

Here, we report experimental evidence of the existence
of a new type of nonlocal solitary wave within the sonic
vacuum. It consists of a highly localized solitary wave-
form on top of an extended, small-amplitude periodic
tail, existing in granular chains with local resonators.
Such a solution, satisfying all the other requirements of
a solitary wave except that it asymptotes not to zero
but to a small amplitude oscillation at infinity, has been
long termed a nanopteron [24]. This nanopteron arises in
numerous models including continuum [25–27] and dis-
crete [28] dynamical systems. Some examples, like the
φ4 breather, have received considerable theoretical atten-
tion [25, 29, 30] and relevant reviews/books have summa-
rized much of this nonlocal solitary wave activity [31, 32].
Nevertheless, experimental studies of the nanopteron are
extremely limited [27].

In what follows, we present the experimental setup
of the woodpile lattice and a brief overview of its de-
scription via an effective discrete element model (DEM).
In different regimes, we experimentally observe (i) the
spontaneous formation and steady propagation of the
nanopteron, (ii) the potential breathing of the solitary
waves, i.e., modulation as they travel or (iii) the decay
of the solitary waves, which is due to the coupling to
the resonators, rather than the damping of the system.
All of the relevant features are corroborated by numer-
ical computations, and some of the salient features are
explained theoretically. We thus believe that this study
provides a roadmap for further exploration and analysis
of highly nonlinear waves in a host of settings, including
most notably granular chain models with the addition of
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FIG. 1: Schematic of (a) experimental setup and (b) discrete
element model; see text for details.

an internal resonator on each node, a context that has
recently been of considerable interest in its own right [33–
37].

Experimental and Theoretical Setup. Figure 1 illus-
trates the experimental setup of our 1D woodpile struc-
ture and the corresponding DEM. The chain is composed
of orthogonally stacked cylindrical rods made of fused
quartz (Young’s modulus E = 72 GPa, Poisson’s ratio v

= 0.17, and density ρ = 2200 kg/m3). We test three dif-
ferent rod lengths: [20, 40, 80] mm, while keeping their
diameters identical to 5.0 mm. We excite the chain by
striking the center of the uppermost rod with a 10 mm-
diameter glass sphere. While we present in this Letter
the results for a measured impact velocity of V 0 = 1.97
m/s, the effect of varying striker velocities can be found
in the supplemental document. We record the transmit-
ted stress waves using a piezoelectric force sensor (PCB
C02) placed at the bottom of the woodpile chain. To
investigate the propagating waveforms along the path,
we alter the number of stacked cylinders from one to N

(total number of cylinders) and synchronize the signals
with respect to the striker impact moment, which is de-
tected by a small piezoelectric ceramic plate bonded on
the surface of the top rod. A particular challenge within
our setup concerns the experimental identification of the
especially weak oscillations of the unit cells that are crit-
ical for our reported observation of the nanopteron. For
this, we introduce a laser Doppler vibrometer (Polytec,
OFV-505), which is mounted on an automatic sliding rail
to detect localized vibrations of each rod in the resolution
of 0.02 µm/s/Hz1/2.

As suggested by Fig. 1(b), the dynamics of the wood-
pile lattice along the axis of the contacts can be effec-
tively described by a system of nonlinear oscillators that
are coupled to adjacent masses. Assuming the principal
nodes (associated with the rods’ axial motion) as having
mass M and a coupling of βc, and the internal resonators
within the rods as having a coupling of k1 and a mass of

FIG. 2: Numerical (solid black) and experimental (dashed
red) force profiles in space-time (measured in ms) in 1D wood-
pile crystals composed of (a) 20 mm and (b) 40 mm rods.
The insets show the numerical magnified force profiles of
nanoptera, while the colormap represents the magnitude of
the contact force.

m1, we propose the following generalized Hertzian DEM,

Müi = β(ui−1 − ui)
3/2 − β(ui − ui+1)

3/2

+ k1(vi − ui), (1)

m1v̈i = k1(ui − vi). (2)

This model allows us to describe longitudinal excitations
along the axis of the contacts in the presence of internal
vibration modes that can store energy in their own right.
The effective parameters m1,M and k1 of this DEM

description are determined via an optimization process
based on the envelopes of propagating waves (see the
supplemental material for further details). Note that in
Eq. (1), β assumes the value βc within the chain, while
it is βs for the coupling of the striker to the first bead
and βw for the coupling of the last bead to the wall (cf.
Fig. 1). In what follows, we will rescale the time t →
t
√

βc/M and the coupling κ = k1/βc for the purposes of
our analysis. The mass ratio is denoted as ν = m1/M .
Experimental Observations, Numerical Corroboration

and Theoretical Analysis. Figures 2(a) and (b) illustrate
the comparison of the wave propagation in 1D wood-
pile lattices composed of 20 particles of 20 mm and 40
mm rods respectively. Dashed red (solid black) curves
represent the contact force profiles obtained by experi-
ments (numerics). The numerical results are also shown
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in the underlying surface maps to ease visualization of
wave modulation effects. In addition to the accurate rep-
resentation of the experimental findings by the DEM, we
can make a few further observations here. In the case
of 20 mm rods, the striker rapidly settles into a soli-
tary wave (in a way reminiscent of the standard granular
chain [1, 2] – however with a significant difference, as we
will see below). For the 40 mm case, a traveling breather
appears to form in a pattern similar to numerical ob-
servations in [23]. This wave emerges after a transient
period in which a primary wave experiences an exponen-
tial decay (which can be computed semi-analytically; see
supplemental material) and a secondary wave emerges
due to the coupling with the resonators. However, a key
feature shared by both traveling structures is the exis-
tence of a persistent form of background oscillation as
seen in the insets of Fig. 2. We note that here the wake
of the principal pulse has a constant amplitude tail. This
feature which has also been confirmed by means of simu-
lations in considerably larger chains (not shown here) is
different from what is the case in the so-called Kawahara
solitary waves, where the tail is decaying in amplitude
away from the main wave shape [38]. We now explore
this nanopteronic waveform more quantitatively.

The surface maps in Fig. 3(a) and (b) show the an-
alytical and experimental velocity profiles respectively
of the tails of the observed waveforms that appear in
a 40 particle chain of 20 mm rods. The traveling waves
spontaneously become nanoptera by developing oscilla-
tory patterns of velocity, which clearly follow the prin-
cipal solitary wave (highlighted in red color). It should
be noted that the velocities involved in the nanopteronic
tails are approximately three orders of magnitude smaller
than those of the solitary waves; yet, they can be ac-
curately measured through our laser Doppler vibrom-
eter. The frequency and wavenumber content of the
nanopteronic tail can be obtained by conducting the
fast Fourier transform (FFT) in time- and space-domains
(shown in Fig. 3(c) and (d)). The resonant frequency of
the experimental data shown in panel (c) is 54.93 kHz,
which is found to be directly connected to the relative
motion of the two masses (the primary and the resonator
ones), namely ω0 =

√

κ(1 + 1/ν) (55.45 kHz according
to the DEM). For a traveling wave of speed c, the cor-
responding wavenumber in panel (d) is found to satisfy
the relation ω0 = ck0. In Fig. 3(d), we obtain k0 = 119
m−1 experimentally, which is in agreement with the value
k0 = 120 m−1 obtained via the DEM (see the supplemen-
tal document for details).

We now theoretically justify this feature, namely the
existence of the relative motion between the primary
node and the resonator, in the nanopteronic tail of the
observed wave structure. Setting up the so-called strains
of the two fields ri = ui−1 − ui and si = vi−1 − vi, seek-
ing traveling waves therein as ri(t) = R(i − ct) = R(ξ),
si = S(i − ct) = S(ξ) and then using the Fourier trans-

FIG. 3: (a) Numerical and (b) experimental velocity pro-
files of nanoptera formed in a 40 particle chain of 20 mm
rods. (c) Frequency and (d) wave number contents of the tail
constructed by FFT of velocity profiles in specific time- and
space-domains, respectively (particle spot i = 24 and time t

= 0.4 ms).

form R(ξ) =
∫

∞

−∞
R̂(k)eikξdk (and similarly for S), leads

from Eqs. (1)-(2) to

R̂ =
1

c2
sinc2

(

k

2

)

R̂3/2 +
κ

k2c2
(R̂− Ŝ), (3)

Ŝ =
κ

κ− c2k2ν
R̂. (4)

Substituting Eq. (4) into Eq. (3) and reshaping the rele-
vant expression yields

R̂ =

[

1

c2
sinc2

(

k

2

)

+
1

c4
κ

k2 − k20
sinc2

(

k

2

)]

R̂3/2. (5)

Recall that sinc(x) = sin(x)/x. Invoking the convolution
theorem leads us to write

R(x) = K ∗R3/2 =

∫

∞

−∞

K(x− y)R3/2(y)dy, (6)

where K(x) = Λ(x) + M(x), where Λ(x) =
(1/c2)max(1 − |x|, 0) and appears in the corresponding
calculation for the granular chain without internal res-
onators [18]. For M(x) we find

(2c4k30/κ)M(x) = |1− x|(sinc(k0(1− x))− k0) (7)

−2|x|(sinc(k0x)− k0) + |x+ 1|(sinc(k0(x+ 1))− k0).

Thus, the sinusoidal dependence with the periodicity dic-
tated by k0 within M(x) is directly responsible for the
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FIG. 4: Experimental and numerical space-time wave mod-
ulation results in woodpile woodpile crystals composed of 80
mm rods.

formation of the nanopteronic tails; cf. also the resonant
term in the Fourier space expression of Eq. (5). In the
granular chain without the resonators, the presence of
solely the Λ term in Eq. (5) produces a monotonically
decaying solitary wave according to a double exponential
law [18, 20]. Here, the presence of the sinusoidal terms
within M(x) justifies the form of the nanopteron, where
the localized central wave is supported against the back-
drop of linear relative vibrations between each node and
its corresponding resonator.

Finally, it should be noted that the present setup pro-
vides numerous additional opportunities for a wide range
of studies within this class of models. One such consists
of modifying the rod length. For example, the experi-
mental and numerical results for 80 mm rods is shown in
Fig. 4. In this case, the DEM needs to account for two
internal resonant modes within the rod and hence two
resonators (vi, wi) are attached to each principal node
of the chain (ui). As a result, we observe that in this
case, the large-amplitude striker impact drastically de-
cays through an effective excitation of the internal reso-
nant modes which disperse the energy in both the tem-
poral and the spatial domain. The inset of Fig. 4 depicts
the overlapped profiles of nonlinear waves obtained from
various particle positions, which evidently indicate the
decaying trend of the propagating waves due to the cou-
pling to the resonators. This wave attenuation suggests
that the woodpile periodic structure could be used as an
efficient impact mitigator without relying on damping in
the system. We should note here that although in this ex-
position we have highlighted some of the salient features
of the model, numerous additional details including the
experimental setup, the precise selection of the DEM pa-
rameters and the quantitative nature of the agreement
between theory, numerics and experiment are provided
in the supplemental material (see e.g. Fig. 8 therein).

Conclusions and Future Challenges. In the present
work, we have offered a prototypical example of a wood-
pile granular crystal, consisting of a chain of orthogo-

nally stacked cylindrical rods. In addition to developing
the experimental techniques enabling a distributed space-
time sensing of the chain, we have provided a theoretical
discrete element model that captures the fundamental
experimental characteristics of the system, while gener-
alizing the standard Hertzian chain via the inclusion of
at least one or modularly more on-site resonators. We
have seen that this inclusion provides the possibility for
a potential breathing traveling wave or even decay of the
initial strong impulse. More importantly, the relative mo-
tion between each node and the attached resonator pro-
vides the linear mode which constitutes the background
for the formation of a weakly nonlocal solitary wave, i.e.,
a nanopteron. Despite the small magnitude of the tails
of the nanoptera (differing by three orders of magnitude
with respect to the principal wave), we were able to ex-
perimentally observe and compute these tails and to the-
oretically account for the wavenumber/frequency of their
periodicity.

This study leads to a number of topics for potential
future work. From a rigorous mathematical perspective,
proving the existence of the nanopteron provides a novel
set of challenges. At the discrete element model level,
quantifying the properties of the system in the case of
one or more resonators by detailing the interplay between
principal and secondary waves or the role of parametric
variations (such as tuning the resonant frequency of the
coupling between unit cells etc.) would be of particular
interest. It is also relevant to point out that our nu-
merically/experimentally observed nanoptera have a tail
only on one side (i.e., are “one-sided” nanoptera), while
the typical examples previously known have tails on both
sides. Understanding when one-sided vs. two-sided in-
stallments of such coherent structures may arise could
be of particular interest for future work. In the same
vein, considering the results of collisions of two such (e.g.
counter-propagating) waves could also shed light on the
robustness of such one-sided nanoptera, as well as poten-
tially lead to the formation of two-sided variants thereof.
Finally, several questions naturally emerge in experimen-
tal investigations. This includes examining the problem
in the presence of precompression and its generalization
to higher order settings. From a practical perspective,
this woodpile structure can offer a new way to modulate,
localize, or mitigate external impacts for engineering de-
vices and associated applications.
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EXPERIMENTAL SETUP.

Figure 5 shows digital images of the experimental woodpile setup constructed in this study. The chain is supported
by vertically-standing guiding rods, which constrain the horizontal, in-plane motions of the cylindrical elements
and prevent buckling of the chain. To align the rods along the chain in parallel, we position soft polyurethane
foam (firmness: 4.1 - 6.2 kPa under 25% deflection) between the tips of the rods. We find that the effect of the
supporting foam on the cylinders’ motions during wave propagation is negligible, because of the orders-of-magnitude
lower stiffness of the foams compared to the rigidity of the cylinders or the contact stiffness of the vertically stacked
cylindrical rods. As a result, we clearly observe the nanopteron tails with the Laser Doppler vibrometer despite that
the amplitude of the vibration is extremely small in the order of tens of nm.

PARAMETER DETERMINATION FOR DEM.

For the construction of the DEM, we need to determine the parameters of a unit cell in terms of its discretized mass
and spring coefficients (e.g., M , m1, and k1 as shown in the boxed region of Fig 1 (b)). In this study, these parameters
are calculated via an optimization process based on the finite element method (FEM) (details are described in the
reference [15] of the main manuscript). For example, Fig. 6(a) shows the temporal profiles of numerically simulated
contact forces in the case of a 40 mm woodpile granular crystal. From the FEM result, it is evident that this locally
resonating structure develops a modulated shape of propagating waves, which is in agreement with the experimental
results as presented in Fig. 2(b). For the optimization process, we extract the overall shape of the modulated
waveform by taking the maximum values of overlapped contact force (see red markers in Fig. 6(a)). The next step
involves tuning the parameters of the DEM to match this baseline curve obtained by the FEM. For this, we begin

FIG. 5: Experimental setup of a woodpile granular crystal composed of orthogonally stacked 40 mm rods. A magnified view
is shown on the right.
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FIG. 6: Contact force profiles for a 40 mm woodpile granular crystal from (a) FEM simulation and (b) DEM simulation with
optimized parameters.

TABLE I: Discretized mass distribution and spring coefficients in woodpile granular crystals.

Rod length Total mass (g) M (g) m1 (g) m2 (g) k1 (kN/m) k2 (kN/m)
20 mm 0.866 0.423 0.443 - 26267 -
40 mm 1.732 0.838 0.894 - 3961 -
80 mm 3.464 1.00 1.80 0.664 532 6423

with an initial mass distribution, M and m1, and compute the stiffness of k1 based on ω0 =
√

κ(1 + 1/ν), where
κ = k1/βc and ν = m/M . Note that ω0 is a resonant frequency of the unit cell (i.e., 40 mm rod) calculated from the
FEM, and βc is given simply by the Hertzian contact law. Based on these mass and stiffness values, we simulate the
wave propagation via the DEM and obtain the modulated waveforms as shown in Fig. 6(b). We then compare it with
the baseline data and iterate this process until we get optimized parameters that yield the best match between the
FEM and the DEM. The optimized parameters for discretized masses and spring coefficients are summarized in Table
I for woodpile granular chains with rod lengths of 20, 40, and 80 mm. Note, from all the possible internal vibration
modes of the rods, only the symmetric bending modes are relevant to the dynamics due to symmetry considerations [1].

FIG. 7: (a) Wavenumber and (b) speed of sonic vacuum nanopteronic (SVN) tails (i.e., wings) as a function of various striker
velocities (20 mm rods). Blue curves denote DEM results, while the start markers are experiment data measured from four
different striker velocities: [0.99 1.40 1.97 2.42] m/s. The wave speed is also calculated alternatively by tracing the solitary
waves (i.e., core part of the nanopteron) as marked by hollow circles.
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EFFECT OF STRIKER VELOCITY VARIATION.

The speed of solitary waves in a discrete chain connected with Hertzian-type contact depends on the wave amplitude,

i.e., c ∝ F
1/6
m where Fm is the force magnitude of propagating waves. This force magnitude is strongly dependent on

striker velocity [2]. Thus, it can be interpreted that the speed of nanopteron (i.e., both of the solitary wave part and
tail) increases as we impose a higher striker velocity on the woodpile granular crystal. This is because the wave speed
of the nanopteronic tail is the same as the speed of the core, namely c = ω0/k0, where ω0 and k0 are the frequency
and wavenumber of the nanopteronic, respectively. We numerically verify this using the chain composed of 20 mm
rods under various striker velocities (Fig. 7). Specifically, we first compute velocity profiles of all particles in the chain
using the DEM. Based on the velocity profiles of the nanopteronic tails, we obtain wavenumbers and frequencies by
conducting FFT in the space- and time-domain, respectively. The wavenumber varies as a function of striker velocity
as shown in Fig. 7(a), while the extracted frequencies coincide with the natural frequency of the cylindrical elements.
The wave speed is obtained directly from ω0/k0 (blue curve in Fig. 7(b)). This is in agreement with the speed of the
core part of the nanopteron (i.e., solitary waves’ speed) as marked by hollow circles in Fig. 7(b). Experimental results
corroborate the numerical simulations by the DEM (star markers in Fig. 7).

SEMI-ANALYTICAL DESCRIPTION OF WAVE PROPAGATION

In the absence of the local resonators, Eq. (1) possesses exact traveling wave solutions [3–5]. Two classical approaches
to obtain an analytical approximation to the evolution of the traveling wave in the presence of perturbations are the
map approach [6] and the binary collision approximation (BCA) [7]. In this section, we amend these two methods
in order to study the traveling waves in the presence of the local resonators. It should be noted here that the map
approach presented below in the presence of resonators was already developed in the work of [8], whose discussion we
adapt for our present comparison with the experimental results.

A Map Approach

Ignoring the boundary effects (i.e. considering an infinite chain), we write the equations of motion in terms of the
strain variables ri = ui−1 − ui and si = vi−1 − vi

r̈i = [ri−1]
3/2
+ − 2[ri]

3/2
+ − [ri+1]

3/2
+ + κ(si − ri), (8)

s̈i + ω2si = ω2ri (9)

where ω2 = ω2
0−κ = κ/ν. Viewing the right hand side of Eq. (9) as an inhomogeneity suggests expressing the solution

in terms of the Green’s function of the operator [ d
2

dt2 + ω2]

si(t) = ω

∫ t

−∞

sin(ω(t− τ))ri(τ)dτ.

Substituting this expression into Eq. (8) yields

r̈i = [ri−1]
3/2
+ − 2[ri]

3/2
+ + [ri+1]

3/2
+ + κ

(

ω

∫ t

−∞

sin(ω(t− τ))ri(τ)dτ

)

− κri. (10)

In the absence of the local resonators (κ = 0), it is well known that Eq. (10) possesses solitary wave solutions [3–5].
One of the earlier results of Nesterenko relates the amplitude A of the traveling wave to its velocity [9]

ri(t) = A · S(A1/4t− i)

where S(ξ) is the profile of the wave. While there are several analytical approximations of this profile, based on e.g.
a long wavelength approximation [9–11], we use the one recently developed in [11], which has the form

S(ξ) =

(

1

q0 + q2ξ2 + q4ξ4 + q6ξ6 + q8ξ8

)2

(11)
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where q0 ≈ 0.8357,q2 ≈ 0.3669, q4 ≈ 0.0831, q6 ≈ 0.0125 and q8 ≈ 0.0011. If we assume that traveling wave form is
maintained in the presence of the local resonators, but has a possibility decaying amplitude, then we have

ri(t) = AiS(A
1/4
i t− i), (12)

where S is given by Eq. (11). Substituting this expression into Eq. (10) yields

A
3/2
i S′′

i = [Ai−1Si−1]
3/2
+ − 2[AiSi]

3/2
+ + [Ai+1Si+1]

3/2
+ + κAi

(

ω

∫ t

−∞

sin(ω(t− τ))S(A
1/4
i τ − i)dτ

)

− κAiSi (13)

where we used the notation Si = S(A
1/4
i t− i). Since the peak of the traveling wave occurs for Ti = iA

−1/4
i , and the

tail of the solutions asymptotes monotonically to zero, we can write Eq. (13) as a discrete map by integrating from
(−∞, Ti)

0 = A
3/2
i−1

∫ Ti

−∞

S3/2(A
1/4
i−1

t+ i− 1)dt− 2A
3/2
i

∫ Ti

−∞

S3/2(A
1/4
i t+ i)dt+A

3/2
i+1

∫ Ti

−∞

S3/2(A
1/4
i+1

t+ i+ 1)dt

+κAi

(

ω

∫ Ti

−∞

∫ t

−∞

sin(ω(t− τ))S(A
1/4
i τ − i)dτ dt

)

− κAi

∫ Ti

−∞

S(A
1/4
i t+ i)dt

where we assumed Ai > 0 and Si > 0. Several of the integrals appearing in this expression can be evaluated after a
change the variable t → A1/4t+ i. Thus we define

f1 =

∫ 0

−∞

S3/2(t− 1) dt ≈ 2.5051,

f2 =

∫ 0

−∞

S3/2(t) dt ≈ 1.3215,

f3 =

∫ 0

−∞

S3/2(t+ 1) dt ≈ 0.1379,

g =

∫ 0

−∞

S(t) dt ≈ 1.2551

such that

0 = A
5/4
i−1

f1 − 2A
5/4
i f2 +A

5/4
i+1

f3 + κAi

(

ω

∫ Ti

−∞

∫ t

−∞

sin(ω(t− τ))S(A
1/4
i τ − i)dτ dt

)

− κA
3/4
i g.

Assuming that local resonators create small perturbations of size ǫ such that Ai−1 = Ai +O(ǫ) finally yields a one
dimensional discrete map

Ai+1 =





A
5/4
i f1 + κAi

(

ω
∫ Ti

−∞

∫ t

−∞
sin(ω(t− τ))S(A

1/4
i τ − i)dτ dt

)

− κA
3/4
i g

2f2 − f3





4/5

. (14)

By construction, the arrival time at the ith lattice site will be Ti = iA
−1/4
i + φ0, where φ0 is used to calibrate the

position of the first peak. To check the validity of this approximation, we compare the approximate decay of the peaks
and corresponding arrival times to the DEM simulations. In Fig. 8 we consider the parameter values determined by
the optimization procedure described in Table I for a rod length of 40 mm. In this case, the arrival time and strain
value r of the initial traveling wave front compare favorably among the experiment, full DEM calculation, and map
based on Eq. (14).

In the main text, three types of behavior are observed based on rod length, namely (i) the spontaneous formation
(and steady propagation) of the nanopteron (found in the 20mm rod), (ii) the potential breathing of the traveling
solitary waves (in the 40mm rod) or (iii) the decay of the solitary waves (in the 80mm rod) without relying on internal
damping. This is due to the fact that each rod length yields different values of the resonant frequency. Thus, varying
the resonant frequency will allow one to observe behavior ranging from modulated waves (i.e., breathing) to sonic-
vacuum-nanoptera. For example, Fig. 9 compares simulations of the DEM model and the map (Eq. (14)) for other
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FIG. 8: Arrival times and corresponding strains ri of the initial traveling wave front in the 40 mm rod set up as predicted by
the DEM simulation (black line), the discrete map (blue points) and the TCA (red circles). The squares with error bars are
the experimentally measured values, where the standard deviations were computed using five experimental runs.

values of the local resonant frequency κ, while keeping the other parameter values fixed. The modulation effect, which
is due to the presence of secondary waves, is not captured by the map approach, which only takes into account the
effects of the initial wave. Smaller values of the parameter κ correspond to slower decay of the initial traveling wave
front, which is captured well by the map approach. Likewise, as κ is increased, the decay rate increases. However, in
the full DEM model, the secondary wave effects have an immediate impact, which the map approach fails to predict,
see Fig 9(c) and (d). In panel (d), one sees the development of the nanopteron. Note that the role of the secondary
wave in numerical observations was also discussed in [8]. In Figs. 8 and 9 the predictions based on a ternary collision
approximation (TCA) are also shown, which is detailed in the following section.

An Extension of the BCA: A Ternary Collision Approximation

The main purpose of the binary collision approximation (BCA) is to offer an approximation of the solitary wave
velocity, or rather, the arrival time of the pulse for a given bead. The idea is to solve a simplified set of equations over
a time scale where the dominant effects are between two adjacent beads only. In some cases, the resulting simplified
equations can be solved exactly, the solution of which can be used to initialize the following step. Stringing the
approximations together yields an approximation over the desired time span.

Employing the same procedure for the DEM model, Eqs. (1) and (2) in the main manuscript leads to a ternary
collision approximation (since two primary masses and a local resonator are now involved). The simplified equations
in the rescaled variables have the form

ü0 = [u0 − u1]
3/2
+ − κ(u0 − v),

ü1 = [u0 − u1]
3/2
+ ,

v̈ = ω2(u0 − v).

where u0 is the displacement of the impacted bead, u1 is the displacement of the bead adjacent to it, and v is the
displacement of the local resonator of the impacted bead. Now define r = u0 − u1 and s = u0 − v. We have then

r̈ = −2[r]
3/2
+ − κs,

s̈ = −[r]
3/2
+ −

(

κ+ ω2
)

s.
(15)

The goal is to use these equations to obtain an approximation for the arrival time of the pulse. Recall that the
arrival time at the ith site corresponds to the time where ri(t) obtains its first local maximum, or equivalently when
the velocities of the adjacent beads become equal, since by definition ri = ui−1 − ui. For the first iteration, we use
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FIG. 9: Plot of the strain ri for beads i = 1, . . . , 15 from the full DEM simulation (black lines) and the decay of the peaks as
predicted by the map approach (blue points) and the TCA (red circles). All parameter values correspond to those determined
by the optimization procedure described in Table I with the exception of the resonant frequency k1 (kN/M), which has the value
(a) k1 = 788, (b) k1 = 3961, (c) k1 = 15760, and (d) k1 = 23641. The resonant frequency of panel (b), k1 = 3961, corresponds
to the value in Table I for the 40mm rod. Due to the immediate effect of the secondary waves in the higher frequency cases
shown in panels (c-d), both the map approach and TCA are inaccurate. In panel (d) one can see how the core part of the
nanopteronic forms. The tail part, however, cannot be discerned at this resolution.

the initial value r(0) = s(0) = 0 and ṙ(0) = ṡ(0) = V0, where V0 is the velocity of the striker bead. Upon solving
system (15), we define the first arrival time t1 such that ṙ(t1) = 0. For the subsequent iterations, we use the initial
value r(0) = s(0) = 0 and ṙ(0) = ṡ(0) = Vi. In the absence of the local resonator, the traveling wave does not decay,
and hence Vi = V0. We assume however, that resonator will indeed cause the peak to decay. We estimate the decay
based on the first iteration. Namely, we define

Vi = V0 a
i−1, a =

ṙ(t1;κ)

ṙ(t1; 0)

where r(t1; 0) is the solution of (15) at time t = t1 with the resonator parameter κ = 0 and r(t1;κ) is the solution
of (15) at time t = t1 with the resonator parameter κ 6= 0. In other words, a is the decay between the first and second
peak, and we assume the decay rate remains constant. Since the TCA is an iterative procedure, the ith arrival time
ti is based on an initial time of t = 0. Thus, the actual arrival time at site i is Ti =

∑i
n tn. The pulse arrival times

based on the TCA using the parameter values corresponding to the 40 mm rod are shown as the red circles in Fig. 8,
where we found a ≈ 0.8. This method also compares favorably to the experiment, full DEM simulation and the map
approach. To estimate the amplitude of peak i, we used the formula A0a

i, where A0 is the amplitude of the first peak
computed from the DEM. These predictions are shown as red circles in Fig. 9.

Here, the TCA reduced an infinite dimensional system of ODEs into a system of two second order equations (see
e.g. Eq. (15)). However, the simplified system does not lend itself to a closed form analytical solution, and thus
we resorted to numerical simulations of Eq. (15). Nonetheless, the favorable agreement between the TCA and full
DEM simulations demonstrates that the predominant features of the initial traveling wave front at a given time are
adequately captured by the simplified model bearing two primary masses and a local resonator.
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