
 

Highly occupied gauge theories in 2 + 1 dimensions: A self-similar attractor

K. Boguslavski ,
1,2

A. Kurkela ,
3,4

T. Lappi ,
2,5

and J. Peuron
6

1
Institute for Theoretical Physics, Technische Universität Wien, 1040 Vienna, Austria

2
Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland

3
Theoretical Physics Department, CERN, Geneva, Switzerland

4
Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway

5
Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland

6
European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione

Bruno Kessler, Strada delle Tabarelle 286, I-38123 Villazzano (TN), Italy

(Received 24 July 2019; published 21 November 2019)

Motivated by the boost-invariant Glasma state in the initial stages in heavy-ion collisions, we

perform classical-statistical simulations of SU(2) gauge theory in 2þ 1 dimensional space-time both

with and without a scalar field in the adjoint representation. We show that irrespective of the details

of the initial condition, the far-from-equilibrium evolution of these highly occupied systems

approaches a unique universal attractor at high momenta that is the same for the gauge and scalar

sectors. We extract the scaling exponents and the form of the distribution function close to this

nonthermal fixed point. We find that the dynamics are governed by an energy cascade to higher

momenta with scaling exponents α ¼ 3β and β ¼ −1=5. We argue that these values can be obtained

from parametric estimates within kinetic theory indicating the dominance of small momentum transfer

in the scattering processes. We also extract the Debye mass nonperturbatively from a longitudinally

polarized correlator and observe an IR enhancement of the scalar correlation function for low

momenta below the Debye mass.

DOI: 10.1103/PhysRevD.100.094022

I. INTRODUCTION

A characteristic feature of many highly occupied systems

is that they often approach universal self-similar attractors,

also referred to as nonthermal fixed points (NTFP) [1,2].

Examples have been found with classical field methods in

various theories in three spatial dimensions (3D) including

non-Abelian gauge theories, relativistic and nonrelativistic

scalar field theories [1–16], and in two-dimensional scalar

systems [17–20]. Nonthermal fixed points have recently

also been found experimentally in ultracold atom experi-

ments [21,22]. A kinetic theory description of the under-

lying theory is often a natural way to explain the existence

and properties of such fixed points [1,14,23–27]. These

NTFPs appear because the interaction rate of the initial

conditions is faster than that of the final equilibrium state.

Therefore, the system loses memory of its initial conditions

faster than it reaches thermal equilibrium and, hence, stays

in a state that is not thermal yet but does not remember

details of its initial conditions.

Much less is known about two-dimensional (2D) gauge

theories.
1

Differently from the three-dimensional case

where an effective kinetic theory has been formulated to

leading order accuracy [23], IR effects play a stronger role

in 2D due to the lower dimensionality. As we will discuss,

the hard (thermal) loop (HL) treatment used to regulate the

Coulomb divergence of elastic scatterings in 3D is insuffi-

cient in the two-dimensional case. Thus, it is a priori not

obvious whether or to what extent quasiparticle descrip-

tions are applicable and whether the system can exhibit

self-similar behavior.

Apart from these theoretical questions, this uncertainty

has also conceptual consequences for our understanding of

the thermalization (hydrodynamization) process in ultra-

relativistic heavy-ion collisions. In this context, nonlinear

interactions of gluons produced at central rapidities have

been argued to lead to a transverse momentum scale Qs ≫

ΛQCD up to which gluonic fields are of order A ∼ 1=g [29],

where g is the gauge coupling. If this saturation scale is

sufficiently hard, the system is weakly coupled αsðQsÞ≡
g2=ð4πÞ ≪ 1 and consists of highly occupied “Glasma”

color fields [30]. These are initially approximatelyPublished by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
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1
See, however, Ref. [28] where the soft degrees of freedom

(d.o.f.) are treated as 2D, but the hard ones as 3D.
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boost-invariant along the beam axis and can be described

by a 2D classical Yang-Mills field theory. Therefore, it is

interesting to ask to what extent hard-loop theory and

quasi-particle approximations are applicable also to

extremely anisotropic media and to 2D theories.

Adjacent to this is the question of what is the earliest time

during the thermalization process when kinetic theory can

be used to describe the dynamics.

In this paper, we will study whether highly occupied

two-dimensional gauge theories approach a universal self-

similar attractor and whether their scaling properties can be

understood with simple kinetic theory arguments. We will

consider two related SU(2) gauge theory systems using

a classical lattice formulation.
2
The first one of these

systems is a 2þ 1-dimensional gauge theory (2D). The

second theory also includes a scalar field in the adjoint

representation of the gauge group and will be denoted as

“2Dþ sc.” The latter corresponds more closely to the

situation in the initial effectively two-dimensional stage

of a heavy-ion collision, since it is the theory one obtains by

dimensional reduction starting from a 3þ 1-dimensional

pure gauge theory and restricting it to field configurations

(and gauge transformations) that do not depend on the

longitudinal spatial coordinate.

Our main result is that we indeed observe a self-similar

scaling behavior for the hard modes of both theories that

can be explained using parametric considerations in kinetic

theory. Some evidence for such scaling behavior was seen in

[34], where the focus was more on the determination

of the plasmon frequency, and in the present work we

establish with different methods the existence of the NTFP.

While we focus here on the dynamics of hard modes,

questions concerning HL and quasiparticle descriptions of

soft momentum modes p ∼mD will be studied with

unequal-time correlation functions in classical-statistical

simulations in a forthcoming work.

This paper is structured as follows. In Sec. II, we briefly

discuss the two theories we are studying, the initial

conditions used, and the numerical algorithm. Then in

Sec. III we present the results from the numerical calcu-

lations. In Sec. IV, we derive the observed scaling expo-

nents from a kinetic description. We conclude and outline

some potential future work in Sec. V. The appendices cover

details of our approach and of our analysis.

II. THEORETICAL BACKGROUND

A. Theories and initial conditions

We consider non-Abelian SUðNcÞ gauge theories with

Nc ¼ 2 in d ¼ 2 spatial dimensions. The starting point is

the classical gauge field action

SYM½A� ¼ −
1

4

Z

ddþ1xF
μν
a Fa

μν; ð1Þ

with Fa
μν ¼ ∂μA

a
ν − ∂νA

a
μ þ gfabcAb

μA
c
ν, where repeated

color indices a ¼ 1;…; N2
c − 1 and Lorentz indices

μ; ν ¼ 0;…; d imply summation over them. Using the

generators Γ
a of the suðNcÞ algebra, the gauge field in

fundamental representation reads Aμ ¼ Aa
μΓ

a.

We study the following two theories:

2D gauge theory in d ¼ 2 spatial dimensions, with the

Yang-Mills action (1).

2Dþ sc the same gauge theory supplemented with an

additional scalar field in the adjoint representation of

the gauge group. This corresponds to a classical action

S2Dþsc
YM ½A� ¼ S2DYM½A� þ S2Dϕ ½ϕ� ð2Þ

with an adjoint scalar field ϕa and

S2Dϕ ½ϕ� ¼ −
1

2

Z

d2þ1xðDab
j ϕbÞðDj

acϕ
cÞ: ð3Þ

Here the summation is over j ¼ 1, 2 and the covariant

derivative is Dab
j ¼ δab∂j − gfabcAc

j . This theory can

be obtained from Yang-Mills theory in three spatial

dimensions by dimensional reduction, assuming that

the field configurations do not depend on the third

coordinate x3. To maintain this symmetry, also gauge

transformations are not allowed to depend on x3,
turning the third component of the gauge field into a

scalar Aa
3
≡ ϕa.

Note that in 2D the dimensionalities of the fields and

coupling constants are different from the 3D case. The

action must be dimensionless ½SYM� ¼ ½S2DYM� ¼ ½S2Dϕ � ¼ 0,

from which one easily deduces that ½g� ¼ 1=2 and ½A� ¼
½ϕ� ¼ 1=2. The dimensionality of the interaction term of the

covariant derivative has to be that of a derivative ½gA� ¼ 1,

as in three spatial dimensions.

The theory 2Dþ sc is the nonexpanding space-time

analogy of the boost-invariant Glasma, while the 2D theory

also drops the adjoint scalar contribution. Therefore, both

theories can be considered as simplifications of the Glasma

state. Note that there is only dpol ¼ 1 transverse polariza-

tion in 2D, while the 2Dþ sc theory, originating from a 3D

system, has dpol ¼ 2 transverse polarizations: one from

gauge d.o.f. and one from adjoint scalars.

The systems are initialized, using the method described

in Sec. II B, with a field configuration that has a chosen

single-particle distribution function fðt;pÞ at the initial

time Qt ¼ 0. Here Q is a conserved momentum scale

characterizing the system and will be defined in (5). We

consider weakly coupled g2=Q ≪ 1 but highly occupied

f ≫ 1 initial conditions of the form

fðt ¼ 0; pÞ ¼ Q

g2
n0e

−
p2

2p2
0 ð4Þ

2
We expect the results to carry over to SU(3) theories as well.

The qualitative agreement of weakly coupled SUðNcÞ theories far
from equilibrium for Nc ¼ 2, 3 has been observed for different
phenomena [31–33].
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for gauge and scalar fields. Unless stated otherwise, we will

use n0 ¼ 0.1, for which p0 ¼ Q for our chosen definition

as detailed below. As we will show in Sec. III, the exact

form of the initial conditions and the values of p0 and n0
separately are not relevant after a transient time, since the

systems will approach an attractor solution that only

depends on Q.

To define the characteristic momentum scaleQ, note that

the energy density is a conserved quantity in the systems

studied here and can be computed in a gauge-invariant way

in classical-statistical field theory (e.g., in [5,9]). The

combination that we have access to in the classical field

formulation is the energy density scaled with the coupling

g2ε, which has the momentum dimension ½g2ε� ¼ 4. This

allows us to define a constant momentum scale in a gauge-

invariant way as

Q≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Cg2ε

dpoldA

4

s

; ð5Þ

with the number of transverse polarizations dpol and the

dimension dA ¼ N2
c − 1 of the adjoint representation. The

constant C is taken as C ¼ 20
ffiffiffiffiffiffi

2π
p

≈ 50, a value that has no

physical meaning and has been chosen for convenience

such that for n0 ¼ 0.1 one indeed has p0 ¼ Q. Recall that

the coupling constant g is now dimensionful: if one keeps

the dimensionless combination g2=Q constant, it is easy to

see that (5) leads to the proportionality Q ∝
ffiffiffi

ε3
p

that is

natural for a scale derived from a two-dimensional energy

density. The scale Q will be used to measure all dimen-

sionful quantities.

B. Semiclassical simulations

At high occupation numbers, we can use the classical-

statistical approximation to study the dynamical

evolution of systems far from equilibrium [35,36]. A

description of this standard technique can be found, for

instance, in Refs. [9,37]. Then all fields are classical and

discretized on a cubic lattice of size N2
s with lattice

spacing as. The real-time dynamics results from solving a

gauge-covariant formulation of the classical Hamiltonian

equations of motion in temporal gauge A0 ¼ 0 in a

leapfrog scheme for the gauge-covariant link fields

Ujðt;xÞ ≈ expðiasgAjðt;xÞÞ and chromoelectric fields

E
j
a ¼ ∂tA

a
j . For the theory 2Dþ sc, we use j¼1, 2, 3

in the same scheme.

The fields can be initialized in momentum space by

requiring that the transversely polarized fields
3
at Qt ¼ 0

follow

1

dAV
hAa

Tð0;pÞðAa
Tð0;pÞÞ�i ¼

fð0; pÞ
p

ð6Þ

1

dAV
hEa

Tð0;pÞðEa
Tð0;pÞÞ�i ¼ pfð0; pÞ ð7Þ

1

dAV
hϕað0;pÞðϕað0;pÞÞ�i ¼ fð0; pÞ

p
ð8Þ

1

dAV
hπað0;pÞðπað0;pÞÞ�i ¼ pfð0; pÞ; ð9Þ

with πa ≡ E3
a, while other combinations for two-point

functions vanish, as well as hAi ¼ hEi ¼ 0.
4

Since such initial conditions violate the Gauss law

constraint, the latter is restored with the algorithm from

[38] before starting the dynamical evolution. Alternatively,

we also started with initial conditions with Ej ¼ 0 but twice

the amplitude n0, where the Gauss constraint is automati-

cally satisfied and the energy density approximately the

same. We found that both lead to the same dynamics after a

short transient time.

We will be especially interested in observables in

momentum space. For that, we fix the gauge to

Coulomb-like gauge ∂jAj ¼ 0 at the measurement time

(see also Appendix A) and Fourier transform the fields

according to Aðt;pÞ ¼
R

ddxe−ip·xAðt;xÞ. A central quan-

tity of interest is the single-particle distribution function

fðt;pÞ, which provides the occupation number density of

the system at a given time and momentum. One can define

the distribution function using different correlators, such as

in Eqs. (6)–(9). Unless stated otherwise, our standard

definition will be

fEðt; pÞ ≔
hETE

�
Tiðt; pÞ

ωðpÞ ð10Þ

fπðt; pÞ ≔
hππ�iðt; pÞ

ωðpÞ ; ð11Þ

where we will set the dispersion ωðpÞ ¼ p neglecting soft

scale effects since we are primarily interested in the

dynamics at high momenta. We also used an abbreviated

notation

hETE
�
Tiðt;pÞ ¼

1

dAV
hEa

Tðt;pÞðEa
Tðt;pÞÞ�i ð12Þ

and similarly for other correlators.

3
The fields at each momentum p ¼ ðp1; p2Þ can be split into a

transverse and longitudinal part Aa
j ðpÞ ¼ Aa

T;jðpÞ þ Aa
L;jðpÞ, such

that Aa
TðpÞ · p ¼ 0 while jAa

LðpÞ · pj ¼ jAa
LðpÞjp.

4
In practice, this is achieved by setting Aa

j ðt ¼ 0;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðt ¼ 0; pÞ=p
p

caðpÞvT;jðpÞ, and similarly for the other fields,

with complex-valued Gaussian random numbers caðpÞ and the
transverse polarization vector vTðpÞ.
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We note that the classical-statistical framework with

the initial correlators [Eqs. (6)–(9)] corresponds to an

accurate mapping of the corresponding quantum field

theory onto a classical-statistical field theory in the

limit of weak coupling g2 → 0 for g2fðt; pÞ held fixed

[35,36,39]. In this limit, the vacuum 1=2 contribution to

the distribution function is suppressed by g2 and is neg-

ligible for the observables studied here. Therefore, con-

tributions at the order of the lattice cutoff p ∼ 1=as ≫ Λ

are nonphysical in our case and we use different

discretizations to verify that our results are not sensitive

to as (or to the lattice volume).

III. SIMULATION RESULTS

A. Universality and self-similarity

In this section, we demonstrate numerically that starting

from initial conditions with high occupation numbers, both

theories 2D and 2Dþ sc approach a common nonthermal

fixed point at high momenta where the distribution function

follows a self-similar evolution

fðt; pÞ ¼ ðQtÞαfsððQtÞβpÞ: ð13Þ

In order to constitute a universal nonthermal fixed point, the

scaling exponents α, β and the scaling function fsðpÞ in

Eq. (13) must be the same for different initial conditions.

The time evolution at the fixed point only depends on a

single conserved quantity, which is the energy density ε in

the case of an energy cascade to higher momenta [1,25,39],

as is the case here. Hence, the distribution function

becomes insensitive to details of the initial conditions after

a transient evolution when rescaled with the only dimen-

sionful scale Q determined by ε.

This attractor property is illustrated in Fig. 1 where we

show the gauge distribution fE as a function of momentum

in a double-logarithmic plot for both theories. Dashed

lines correspond to different initial conditions at Qt ¼ 0,

where the fields are constructed to reproduce the chosen

momentum distribution according to Eqs. (6)–(9). Each

initial condition was used in both theories and the figure

shows their fE also at the later time Qt ¼ 4000, where

dashed-dotted lines correspond to the 2Dþ sc theory and

full lines to the 2D theory. Although resulting from

different initial conditions and theories, all six distribu-

tions at Qt ¼ 4000 lie indistinguishably on a single curve.

This demonstrates that after some transient time that

depends on details of the initial conditions, systems in

both theories get close to the same attractor. There they

follow a universal evolution, insensitive to their original

initial conditions.

In this universal regime, the distribution function

becomes self-similar, following Eq. (13). This is demon-

strated in Fig. 2 for the 2D theory. The upper panel depicts

the distribution function in the universal regime at several

vastly different times
5
Qt ¼ 75–16000. The lower panel

shows this same data in rescaled coordinates: the rescaled

gauge distribution ðt=trÞ−αg2fE=Q is shown as a function

of rescaled momentum ðt=trÞβp=Q. The scaling indices

α and β have been numerically extracted to produce the best

overlap of the distribution functions at the different times

employing a least-square fit procedure [9,14] as detailed in

Appendix B, leading to best-fit values

αfit − 3βfit ¼ 0.01� 0.02 ð14Þ

βfit ¼ −0.19� 0.015: ð15Þ

The first combination results from energy conservation and

that its best-fit value is consistent with zero is a consistency

check of the procedure. For Fig. 2 (as well as for all the

following figures), we use the values that will be derived in

Sec. IV,

α ¼ 3β; β ¼ −
1

5
; ð16Þ

FIG. 1. The gauge distributions fE at the initial time Qt ¼ 0

for three different initial conditions are shown by dashed lines;

note that these same initial conditions are used for both 2D and

2Dþ sc theories. At a later time Qt ¼ 4000, full lines show the

distributions from these initial conditions in the 2D theory and

dashed-dotted lines in the 2Dþ sc theory. These six curves

overlap so well that they are indistinguishable in this plot,

demonstrating the attractor property of the common nonthermal

fixed point for both theories.

5
ForQt ≤ 4000 a 7682 lattice with lattice spacingQas ¼ 1=12

has been used, for the later time we used a 2562 lattice with
Qas ¼ 1=16, where the first two points of the latter were omitted
due to volume artefacts. These artefacts occur when the lattice is
too small to contain the screening mass mD. In this situation, the
smallest momentum modes are artificially enhanced. We checked
that simulations of both discretizations coincide otherwise for
Qt ≤ 4000.
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which are consistent with the extracted ones in Eqs. (14)

and (15). The good overlap of the different curves obtained

at different times demonstrates scaling behavior.

A similar conclusion can be drawn for the 2Dþ sc

theory. In Fig. 3, the rescaled gauge and scalar distributions

fE and fπ are shown in the upper and lower panels,

respectively.
6
For comparison, the original curves are

depicted in the insets. For the rescaling of amplitudes

and momenta, the same exponents α and β have been used

as in Fig. 2 for the 2D theory. One indeed observes that at

high momenta the rescaled gauge distributions as well as

the scalar curves lie on top of each other within error bars.

This form also agrees with the 2D theory, which can be

seen by comparison to the dark-blue curve.

The scaling function fsðpÞ of the gauge distribution

consists of a power law ∝ ðp=QÞ−σ at lower momenta and a

steep drop at high momenta. This closely resembles the

nonthermal fixed point in 3D theory [3,5,8], which also

consists of a power law at low momenta and a steep

decrease at high momenta. The power law at small

momenta is consistent with σ ¼ 1, which can be seen in

the lower panel of Fig. 2, where a power law with σ ¼ 1 is

also displayed. Small deviations from this power law occur

at very low momenta below the Debye mass that is

indicated by the blue arrow. This value σ ¼ 1 corresponds

to a classical thermal distribution Teff=p at low momenta

with a time-dependent effective temperature Teff [24].

Analytical considerations in effective kinetic theory sug-

gest that the form of the distribution function in the infrared

should take this form also out of equilibrium [25].

However, numerical classical Yang-Mills simulations in

FIG. 2. Spectra prior to rescaling (top) and rescaled occupation

numbers and momenta (bottom) are shown for the 2D theory at

different times. For the rescaling, we used the reference time

Qtr ¼ 500 and the scaling exponents β ¼ −1=5 and α ¼ 3β. The

gray dashed line corresponds to a power law p−1. The blue arrow

indicates the maximal value of the Debye mass mD for the times

displayed.

FIG. 3. Self-similar evolution of the 2Dþ sc theory for differ-

ent times with rescaled occupation numbers and momenta for the

gauge distribution fE (top) and the scalar distribution fπ
(bottom). The same values for α and β as in Fig. 2 are used.

For comparison, we show the corresponding fE of the 2D theory

for Qt ¼ 2000 as a dark-blue line.

6
For Qt ≤ 4000 a 5122 lattice with spacing Qas ¼ 1=8 has

been used, for the later time we used a 2562 lattice with
Qas ¼ 1=16. We checked that both discretizations coincide for
Qt ≤ 4000.
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3D theory have found large corrections to this quantity at

early times leading to extractions of σ ≈ 1.3 [3,5]. Such

corrections to the classical thermal distribution seem to be

absent in these 2D theories.

The main difference between gauge and scalar distribu-

tions is that the scalar curves fπ are enhanced for low

momenta p≲mD roughly below the Debye mass that will

be discussed in Sec. III C. This IR enhancement can be seen

in the lower panels of Fig. 3 and, further below, of Fig. 6. It

may seem similar to the case of OðNÞ-symmetric scalar

field theories where an IR region has been observed [2,17]

or may even be connected to nontrivial topological struc-

tures [40]. However, since this enhancement is not part of

the self-similar region at high momenta, a detailed study is

beyond the scope of this work and is left for further study

elsewhere.

B. Gauge-invariant hard scales

So far, we have observed that the gauge-fixed distribu-

tion functions lose their memory on details of their initial

conditions and approach a self-similar attractor. To confirm

this behavior with gauge-invariant observables, we also

compute the time evolution of manifestly gauge-invariant

measures of the hard scale [5,8]

Λ
2
EðtÞ¼

g2

dAQ
4

X

k;l;i¼1;2

hðDab
k Fb

kiðt;xÞÞðDad
l Fd

liðt;xÞÞi ð17Þ

Λ
2
πðtÞ ¼

g2

dAQ
4

X

k;l¼1;2

hðDab
k Dbc

k ϕcðt;xÞÞðDad
l Dde

l ϕeðt;xÞÞi:

ð18Þ

These provide typical hard momentum scales that are

expected to grow as Λ2ðtÞ ∼ t−2β in the self-similar regime.

This can be seen from their perturbative expressions

Λ
2

pert;E=πðtÞ ¼
Z

d2p

ð2πÞ2
p3

Q3

g2fE=π

Q
; ð19Þ

where all higher powers in the field amplitude were

neglected and the Coulomb gauge condition was used.

Note that because of Q4 ∝ g2ε, the hard scales can be

interpreted as ratios ∝
R

d2pp2ωðpÞf=
R

d2pωðpÞf, char-
acterizing the momentum scale that dominates the energy

density.

The gauge-invariant hard scales Λ2ðtÞ, rescaled with t2β,
are shown in Fig. 4 in a linear-logarithmic plot as dashed

lines for the gauge and scalar sectors of 2D and 2Dþ sc

theories for p0 ¼ Q initial conditions. The data points

of matching color indicate the respective perturbative

expressions Λ
2
pertðtÞ that are obtained by integrating the

gauge-fixed distribution functions according to Eq. (19).

The good agreement between points and lines of the same

color confirms our interpretation of the hard scales as

Λ
2

E=π ≈ Λ
2

pert;E=π . Moreover, hard scales from different sec-

tors and theories agree well Λ2
E ≈ Λ

2
π . One observes that for

Qt≳ 75, the rescaled hard scales become approximately

constant, indicating Λ2

E=πðtÞ=Q2 ∝ ðQtÞ−2β. The onset time

of self-similar scaling and the value for β employed in Fig. 4

are the same as used for the self-similar evolution in Fig. 2.

A similar power law evolution of the hard scale in 2Dþ sc

theory has been observed in Ref. [34]. This consistency

between gauge-invariant and gauge-fixed observables con-

firms the emergence of a self-similar attractor.

In general, the approach to the attractor depends on the

initial conditions and on the observables. This is illustrated

for the 2D theory in Fig. 5, which shows the evolution of

FIG. 4. Different hard scales Λ
2ðtÞ for the 2D and 2Dþ sc

theories. The gauge-invariant definitions (17) and (18) are shown

with dashed lines compared to the perturbative integral expres-

sions Λ2
pertðtÞ in (19) as points. The curves are rescaled with t2β

with β ¼ −1=5.

FIG. 5. Hard scales Λ2
EðtÞ for different initial conditions in 2D

theory. The gauge-invariant definition (17) is shown as dashed

lines and the perturbative integral expressions (19) as points. The

curves are rescaled with t2β with β ¼ −1=5.
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the hard scale in the 2D theory for initial conditions with

different values of p0. The flattening of this observable

indicates the onset of a power-law evolution. One observes

that for the hard scales, the onset of scaling becomes slower

with larger p0 or, equivalently, with lower amplitude n0
(cf., Fig. 1).

C. Longitudinal polarization and Debye mass

While distribution functions are useful for a comparison

to kinetic theory, one can extract further information

about a system by studying more general correlation

functions. Due to our definition of distribution functions

in Eq. (10), we have already discussed the evolution

and properties of the transversely polarized equal-

time correlator hETE
�
Tiðt; pÞ≡ pfEðt; pÞ and its scalar

analogy hππ�iðt; pÞ≡ pfπðt; pÞ. Let us now focus on

the longitudinally polarized equal-time correlation function

hELE
�
Liðt; pÞ. It is shown in Fig. 6 at fixed timeQt ¼ 2000,

together with the transverse polarization and the scalar

correlator for 2D in the upper and for 2Dþ sc theory in the

lower panel. Every correlation function is shown for two

different sets of discretization parameters, written in terms

of the lattice length L ¼ asNs and the lattice spacing as.
The good agreement among curves of different volumes

and lattice spacings indicates the absence of numerical

lattice artefacts.

The correlators hETE
�
Ti in Fig. 6 are flat up to a high

momentum p ∼ Λ beyond which they decrease rapidly,

which is, of course, equivalent to our previous observation

that fðt; pÞ ∼ 1=p up to a hard scale. Similarly, we have

observed the IR enhancement of the hππ�i correlator and its
agreement with hETE

�
Ti at higher momenta already at the

example of fπ . The longitudinally polarized correlator

hELE
�
Li approaches hETE

�
Ti at the lowest momenta, while

strongly differing for momenta above the Debye mass mD.

Indeed, as known in thermal equilibrium [5] and also

observed far from equilibrium in the 3D theory [37], the

longitudinal correlation function follows the form:

hELE
�
Li ≈

A

1þ ðp2=m2
DÞ1þδ

; ð20Þ

for momenta p≲ Λ. In the late-time limit and in thermal

equilibrium, one then expects δ ¼ 0. We have fitted this

form to hELE
�
Li and included the fits in Fig. 6 as black

dashed lines. They are seen to accurately describe the

correlator.

Fitting this form to the longitudinal correlator at different

times, we have extracted the evolution of the fitting

parameters A, δ and mD. As expected from our previous

discussions, the amplitude quickly approaches an A ∼ tα−β

power law and the deviation δ monotonously decreases

from δ ≈ 0.2 to 0.3 at early times to δ ≈ 0.08–0.12 at time

Qt ¼ 2000 for both theories.

Most interestingly, the fitting procedure allows us to

extract an estimate for the Debye mass mD from the

p-dependence of the correlator. Its time evolution is shown

in Fig. 7. In the main figure, the normalized m2
D=dpol is

plotted as a function of time on a double-logarithmic panel.

One observes that the curves stemming from the different

theories almost coincide while they lie far apart in the inset

where m2
D is depicted. This indicates that m2

D scales with

the number of d.o.f. dpol, which are 1 for 2D and 2 for

2Dþ sc theory. Moreover, m2
D is observed to approach a

t2β power law evolution that is represented by a black

dashed line. Its power law evolution sets in roughly at the

same time scale as for the hard scale in the upper panel of

Fig. 4. These observations suggest a relation

m2
D ∼ dpol

Q4

Λ
2

∼ dpolg
2fΛ; ð21Þ

where we used energy conservation in the last line and

where f is the amplitude at hard momenta p ∼ Λ. Since

FIG. 6. Correlation functions at Qt ¼ 2000 for 2D (top) and

2Dþ sc theories (bottom) shown for different discretization

parameters. Black dashed-dotted lines correspond to fitting

hELE
�
Li to the functional form (20).
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Eq. (21) leads to mD=Λ ∼ ðQtÞ2β ≪ 1, the scale separation

between the soft scale mD and the hard scale Λ increases

with time. This should in general allow for a perturbative

(HL) expansion with the ratio mD=Λ as the expansion

parameter.

The leading order HL expression for the Debye mass

is [41]

m2
D;HL ≈

Z

d2p

ð2πÞ2
g2ðNcfEðt; pÞ þ Ncfπðt; pÞÞ

p

¼ dpolNc

Z

d2p

ð2πÞ2
g2fðt; pÞ

p
; ð22Þ

where fπ ≡ 0 for the 2D theory and where fðt; pÞ is an

average distribution. Because of f ∼ 1=p at low momenta,

or even steeper for the scalar distribution, the integral

diverges in the IR in two spatial dimensions and needs to be

regularized by some cutoff at the scale mD. This leads to

m2
D;HL ∼ g2fΛdpolNc lnðΛ=mD;HLÞ; ð23Þ

bringing a logarithmic correction to the estimate (21). The

HL expression (22) was used in Ref. [34] as one of three

methods to extract the mass scale. In all the methods

employed, the mass followed an approximate power law

evolution with mD=Q ∼ ðQtÞβ with values for β that are

roughly consistent with our results. We will return to the

discussion of the physical interpretation of this logarithm

in Sec. IV.

IV. SCALING BEHAVIOR IN A KINETIC

THEORY PICTURE

The nonequilibrium evolution of gauge theories can also

be studied using an effective kinetic theory setup. In [23],

an effective kinetic theory has been formulated for d ¼ 3

spatial dimensions which is defined by a Boltzmann

transport equation

∂fðt; pÞ
∂t

¼ −C½f�ðt; pÞ; ð24Þ

where f is the distribution function of gluons and where the

effective collision kernel C½f� is the sum over the relevant

elastic and inelastic scattering processes between the

particles. Many of the features of the over-occupied UV-

cascading system have been well understood in terms of

such a kinetic theory description [4,5,25]. This effective

kinetic theory describes the evolution of modes at momen-

tum scales well above the screening scale p ≫ mD. With

the assumption that scattering against modes that carry soft

momenta is subdominant compared to the scattering with

the hard particles, this effective description may be used to

follow the time evolution of the hard scale at late times

when a scale separation between the soft and hard scales

has developed.

The soft scale makes its entrance to the kinetic theory

because of the Coulomb-divergent t- and u-channel elastic

scattering amplitudes
7 jMj2vacuum ∼ g4=ðq2⊥Þ2 appearing in

the elastic part of the collision kernel

C2↔2½fp� ¼
1

2

Z

k;p0;k0
jMj2ð2πÞdþ1δdþ1ðPþK−P0−K0Þ

fpfkð1þfp0Þð1þfk0Þ− ð1þfpÞð1þfkÞfp0fk0 ;

ð25Þ

with
R

k ≡
R

ddk=ð2πÞd, fp ≡ fðt;pÞ and (dþ 1)-momenta

P. In medium, the Coulomb divergences are regulated by

the physics of screening, taking place at the momentum

transfer scale q⊥ ∼mD. In d ¼ 3 dimensions, the particles

at the hard scale screen the most, and the scale separation

between the soft and the hard scales allows one to describe

the screening in simple effective theory, the hard-loop

effective theory. Because of this simplification, the effective

screened matrix elements may be solved analytically to

complete the effective kinetic theory.

Similarly, in d ¼ 2 dimensions, the soft and hard scales

are parametrically separated at late times allowing for a

quasiparticle description of the hard modes. In contrast to

three dimensions, however, the equation for the Debye

mass (22) in two dimensions gets equal contributions from

all momentum scales mD < p < Λ, such that soft modes

contribute equally to screening. This implies that the modes

at the soft scale mD interact among each other in a

nonperturbative way, reminiscent of the ultrasoft magnetic

FIG. 7. Time evolution of m2
D extracted from fits of the form

(20) to the longitudinal correlator in Fig. 6 and shown for 2D and

2Dþ sc theories. The black dashed line corresponds to a power

law t2β with β ¼ −1=5, leading to Eq. (21).

7
Here jMj2 is expressed in a nonrelativistic normalization

related to the usual relativistic normalization by jMj2 ¼ jMj2=
ð16pkp0k0Þ.
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scale in three spatial dimensions. The practical implication

of this is that the dynamics of the soft modes is no

longer governed by a simple effective hard-loop theory.

Because of this complication, it is not straightforward to

analytically find the forms of the required effective matrix

elements and formulate a leading-order accurate kinetic

theory.

Nevertheless, while we do not have access to a formu-

lation of the kinetic theory that would be accurate at a

numerical level, we may still include parametric consid-

erations in this picture following Ref. [24]. In particular,

even while we do not know analytically how the effective

elastic scattering matrix element looks like, the elastic

scattering amplitude for t-channel is regulated by the soft

scale and to parametric accuracy is

jMj2 ∼ g4

ðq2⊥ þm2
DÞ2

; ð26Þ

where q⊥ is the transverse momentum transfer and the

regulatormD is at the correct scale but its form is simplified

and not correct at a numerical level. The hard particles

moving in the medium experience then soft scatterings with

other particles in the medium with a (soft) elastic scattering

rate of

dΓ

dq⊥
∼

g4

ðq2⊥ þm2
DÞ2

Z

d2pfð1þ fÞ: ð27Þ

This is a two-dimensional version of the usual kinetic

theory relation expressing the rate in terms of the cross

section and number density of scattering targets. In two

dimensions, there is only one transverse direction, and thus

the squared amplitude gives a rate differential in a one-

dimensional transverse momentum dq⊥. The factor
R

d2pf

accounts for the number of density particles in the medium

against whom the collision occurs and ð1þ fÞ ∼ f is the

final state Bose enhancement factor. For a thermal-like

infrared spectrum f ∼ T�=p with an effective temperature

T�, the integral over dp gets equal contributions from all

scales, such that collisions with soft particles are equally

frequent as those with hard ones. This is in contrast to 3D,

where because of the higher dimensionality and larger

phase space at high p most of the scatterings take place

against hard particles. Because the kinetic theory describes

the evolution of hard modes only, the kinetic theory

framework does not numerically describe the collisions

against the soft particles. We will, however, neglect this

complication here and proceed with our analysis assuming

that p ∼ Λ in Eq. (27), with the understanding that our

accuracy is purely parametric.

The repeated collisions with the medium particles lead to

an integrated momentum transfer of Δp2 ∼ q̂t, with the

momentum diffusion coefficient of

q̂ ∼

Z

dq⊥
dΓ

dq⊥
q2⊥ ð28Þ

∼g4
Z

dq⊥
q2⊥

ðq2⊥ þm2
DÞ2

Z

d2pfð1þ fÞ: ð29Þ

In two dimensions, the integral over the momentum transfer

q⊥ is dominated by the softest collisions with q⊥ ∼mD.

Using further that m2
D ∼ g2fΛ from Eq. (21), and

reminding the reader that the coupling is dimensionful in

2D with ½g2� ¼ 1, the momentum broadening coefficient is

parametrically of order

q̂ ∼
Λ
2ðg2fÞ2
mD

∼ Λ
3=2ðg2fÞ3=2: ð30Þ

Energy conservation dictates a relation between the ampli-

tude and the hard scale

g2f ∼
Q4

Λ
3
; ð31Þ

corresponding to α ¼ 3β. With this, the momentum trans-

port coefficient at a given value of the hard scale reads

q̂ ∼
Q6

Λ
3
: ð32Þ

During the nonequilibrium cascade, elastic scatterings push

hard scales to harder momenta and the highest momenta

reached at time t are given by

Λ
2 ∼ q̂t: ð33Þ

This equation governs the evolution of the hard scale.

Combining it with Eq. (32) gives the time evolution of the

hard scale

Λ ∼QðQtÞ1=5; ð34Þ

corresponding to the value β ¼ −1=5. These values for the
scaling exponents are summarized in Eq. (16) and were

used in all the plots of Sec. III. They are consistent with the

numerically determined values in Eq. (15).

We expect that, as in 3D [24], the inelastic scattering rate

at the hard scale plays an important role as well. An

important qualitative feature of inelastic scatterings is that

they do not conserve particle number. As a consequence,

there is no strong buildup of particle number in the infrared.

While the UV-cascade shares commonalities with the

one in 3D, we emphasize one important difference between

2D and 3D. In 3D, elastic scatterings of large (q⊥ ∼ Λ) and

of small (q⊥ ∼mD) momentum transfers both lead to the

same scaling exponent β ¼ −1=7. This would also be the

case in 2D if hard scatterings with q⊥ ∼ Λ were dominant.

This can be seen from Eq. (28), where the hard scales
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q⊥ ∼ Λ give a contribution ∼Λðg2fÞ2 to the estimate (30).

If this contribution from the hard scales were the dominant

one for q̂, the resulting q̂ ∼ Λðg2fÞ2 together with Eqs. (31)
and (33) would lead to Λ ∼QðQtÞ1=7 as in 3D. Such a hard
scattering dominance is clearly disfavored both by our

numerical results and the above analytical arguments.

Instead, collisions with small momentum transfer dominate

the momentum diffusion, resulting in a different value for β.

Since the 2Dþ sc theory results from a dimensionally

reduced three-dimensional theory, and the scalar field is

identified with the originally third component of the gauge

field ϕ≡ A3, we expect similar arguments to apply for the

scalar distribution at high momenta.

V. CONCLUSION

We have studied a far-from-equilibrium attractor in two-

dimensional highly occupied gauge theories using real-time

classical field simulations. We found that these systems

exhibit self-similar evolution of the distribution function

that corresponds to an energy cascade toward higher

momenta and that its scaling properties can be understood

using parametric estimates in kinetic theory.

In particular, we have studied the time dependence of

equal-time field correlators and that of the hard scale Λ and

of the screening scale mD. We have used different observ-

ables, including manifestly gauge-invariant measures, to

extract the scaling exponents.We found that both the 2D and

2Dþ sc theories exhibit self-similar cascades that bring

energy toward the UV and are insensitive to the initial

conditions. The cascades are characterized by the evolution

of the hard scaleΛ ∼ t−β, whose time evolution is described

by a scaling exponent β ¼ −1=5.Moreover, theDebye scale

is extracted from a longitudinally polarized correlator of

chromoelectric fields and is shown to decrease with time

as mD ∼ tβ toward low momenta. While in 2D, we do not

have access to a leading-order accurate kinetic theory

description, these scaling exponents can be understood in

terms of parametric consideration within a kinetic theory

setup. A crucial difference to three dimensions is that soft

scattering is enhanced compared to the hard scattering.

Therefore, unlike in 3D, in order to derive the correct scaling

exponents, screening effects have to be taken into account.

These findings are consistent with a description of hard

momentum modes in terms of quasiparticle d.o.f. even if a

hard-loop theory is insufficient to describe the dynamics of

soft modes ∼mD. To learn more about soft dynamics,

further numerical studies are required. These include also

unequal-time correlators that can be studied numerically

with methods that have been developed recently [42] and

successfully used for three-dimensional systems [37,43].

We will report on results from such studies in a subsequent

work. In addition, it would be interesting to better under-

stand the origin of the observed IR enhanced region of the

scalar field correlator.

With regard to heavy-ion collision phenomenology, this

attractor might emerge at times that are too late to be

reached in a collision, since other phenomena like plasma

instabilities can set in earlier [28,44–49]. However, our

observation that the evolution of the self-similar attractor

can be understood in terms of kinetic estimates is relevant

nonetheless for the understanding of the dynamics at early

times in heavy-ion collisions: a kinetic description, and

thus a description in terms of quasiparticles, can be used to

describe two-dimensional plasmas despite the break-down

of hard-loop resummations. Hence, we show that kinetic

descriptions can be valid already at the early times of the

evolution of the two-dimensional Glasma. The exact time

when such descriptions become valid can be estimated in

further studies.
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APPENDIX A: NOTE ON INITIAL CONDITIONS

IN COULOMB GAUGE

In Ref. [34], large values for the amplitude n0 ≳ 1 were

used and it was observed that the initial state changes

considerably after the gauge fixing procedure was used.

This problem is primarily caused by the nonlinear mapping

between suðNcÞ algebra elements Ak and SUðNcÞ group

elements Uk. In this work, we circumvent this problem in

several ways simultaneously. First of all, we employ

smaller initial amplitudes n0 < 1. Second, we construct

the initial link field UkðxÞ in such a way that its Fourier

transformed anti-Hermitian traceless part ½Uk�ahðpÞ8 (and

not the logarithm as in Ref. [34]) of the link is constructed

to reproduce the desired momentum distribution (4).

Thus, here

−gjk∂j½Uk�ahðxÞ ¼ 0 ðA1Þ

is correct tomachine precision initiallywithout the need of an

additional gauge fixingprocedure. This avoids the issueof the

8
This is defined by ½V�ah ≡ −i

2
ðV − V† −

1

Nc
TrðV − V†ÞÞ for an

SUðNcÞ matrix V.
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exponentiation of the algebra element spoiling the trans-

versality of the field that was problematic in the study [34].

Also note that since no fields depend on the x3

coordinate, the Coulomb gauge condition only applies to

k ¼ 1, 2, while the adjoint scalars of theory 2Dþ sc do not

enter the condition.

APPENDIX B: SCALING EXPONENTS FROM

LIKELIHOOD ANALYSIS

To extract the scaling exponents α and β, we employ the

self-similarity analysis of Ref. [9] and its modification [14]

for the self-similar evolution of the 2D theory displayed in

Fig. 2. We define a rescaled distribution

ftestðt; pÞ ¼ ðt=trÞ−αfðt; ðt=trÞ−βpÞ: ðB1Þ

By construction, this rescaled distribution is ftestðtr; pÞ≡
fðtr; pÞ for the reference time Qtr ¼ 500. In case of

self-similarity, ftestðt; pÞ is time independent. Hence, its

difference to the distribution at tr is a good measure of

deviation from a self-similar evolution. We can quantify the

deviation by computing

χ2mðα̃; βÞ ¼
1

Nt

X

i

R

d logpðpm
Δfðti; pÞÞ2

R

d logpðpmfðtr; pÞÞ2
; ðB2Þ

with Δfðti; pÞ ¼ ftestðti; pÞ − fðtr; pÞ and with the expo-

nent of the energy density α̃≡ α − 3β. Momentum

integrals are performed in the interval 0.2 ≤ p=Q ≤ 5.

The deviations χ2m are averaged over the test times

Qti ¼ 75, 200, 1500, 4000, 16000 used in Fig. 2 for

different moments with m ¼ 2;…; 5. For brevity, we will

omit the index m. We can now define a likelihood function

Wðα̃; βÞ ¼ 1

N
exp

�

1 −
χ2ðα̃; βÞ
χ2min

�

; ðB3Þ

where χ2ðα̃0; β0Þ≡ χ2min takes its minimal value. The

normalization N is chosen to satisfy
R

dα̃dβWðα̃; βÞ ¼ 1.

We integrate over one of the exponents to obtain an

estimate for the distribution of the other exponent, e.g.,

WðβÞ ¼
R

dα̃Wðα̃; βÞ. We extract an estimate for the

uncertainty σβ for every m by fitting the resulting distri-

butions to Gaussian functions ∝ exp½−ðβ − β0Þ2=ð2σ2βÞ�.
The statistical error σ

χ
β of the χ2 fit is estimated as the

maximal value of σβ among the different m, giving

σ
χ
β ¼ 0.012, σ

χ
α̃ ¼ 0.019. We can also extract a systematical

error by varying m and requiring that all β0 values for

different values of m lie in the interval ½β̄0 − σ
sys
β ; β̄0 þ σ

sys
β �

and similarly for α̃. This leads to the error estimates σ
sys
β ¼

0.004 and σ
sys
α̃ ¼ 0.0035. The statistical χ2 errors are

clearly the larger of these. The mean values and error

estimates quoted in Eqs. (14) and (15) are obtained by

combining and rounding the mean values and error

estimates.
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