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Abstract Two new highly oxygenated limonoids, flexuosoids A (1) and B (2), and three new arylnaphthalene lignan

glycosides, phyllanthusmins D–F (3–5), were isolated from the roots of Phyllanthus flexuosus, in addition to three known

lignans, phyllanthusmin C, arabelline, and (?)-diasyringaresinol. Their structures were elucidated on the basis of detailed

spectroscopic analysis and chemical methods. Compounds 1 and 2, two new decaoxygenated limonoids with a C-19/29

lactol bridge and heptaoxygenated substituents at C-1, C-2, C-3, C-7, C-11, C-17, and C-30, represent the second example

of limonoids in the Euphorbiaceae family. Most of the isolates were tested for their antifeedant, anti-herpes simplex virus

1, and cytotoxic activities. The new limonoids 1 and 2 showed promising antifeedant activity against the beet army worm

(Spodoptera exigua) with EC50 values of 25.1 and 17.3 lg/cm2, respectively. In addition, both of them displayed moderate

cytotoxicity against the ECA109 human esophagus cancer cell line, along with the known lignan glycoside, phyllanthusmin

C, with the IC50 values of 11.5 (1), 8.5 (2), and 7.8 (phyllanthusmin C) lM, respectively.

Keywords Phyllanthus flexuosus � Euphorbiaceae � Limonoids � Lignan

glycosides � Antifeedant � Antiviral � Cytotoxicity

1 Introduction

The genus Phyllanthus (Euphorbiaceae), comprising about

600 species, is widespread throughout the tropical and

subtropical countries of the world, with about 30 species

growing in the South of China. Several species have been

used as traditional medicines [1], and flavonoids, alkaloids,

sesquiterpenoids, triterpenoids, lignans, and tannins have

been reported from the genus [2–6]. Among these, some

sesquiterpenoids showed a wide range of biological prop-

erties including cytotoxic and antiviral effects [5–7].

Phyllanthus flexuosus (Sieb. et Zucc.) Muell. Arg (Eu-

phorbiaceac), a shrub up to 3 m height, mainly grows in the

southern parts of the Yangtze River, People’s Republic of

China. The whole plants have been utilized medicinally for

treating infectious diseases by the Dai people in Yunnan

Province, China [8]. Chemical studies on the leaves and stem

barks of P. flexuosus have revealed the occurrence of trit-

erpenoids, tannins and coumarins [9–12]. Previously we
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obtained three phenylacetylene-bearing tricyclic diterpenes

from this species, among which phyllanflexoids A was the

first example of phenylacetylene-bearing 18-nor-diterpenoid

glycoside [13]. As a part of our continuing research for new

bioactive secondary metabolites from the genus Phyllanthus

[6, 14–17], five new compounds, including two highly

oxygenated limonoids, flexuosoids A (1) and B (2), and three

arylnaphthalene lignan glycosides, phyllanthusmins D–F

(3–5), were isolated from the roots of P. flexuosus, together

with three known lignans. Their structures were elucidated

by extensive spectroscopic analysis and chemical method.

Most of the isolated compounds were evaluated for their

antifeedant, anti HSV-1, and cytotoxic activities, and the

results obtained are discussed herein.

2 Results and Discussion

The MeOH extract of the air-dried roots of P. flexuosus was

applied to repeated column chromatography over

macroporous resin D101, Sephadex LH-20 and silica gel,

followed by semi-preparative HPLC, to afford five new

compounds (1–5), in addition to three known lignans. The

known compounds were identified as phyllanthusmin C

[18], arabelline [19], and (?)-diasyringaresinol [20] by

comparison of their spectroscopic data with literature val-

ues (Fig. 1).

Compound 1 was obtained as a white amorphous pow-

der. The negative HRESIMS (m/z 505.2072 [M - H]-,

calcd for C26H33O10, 505.2073) and the 13C NMR (DEPT)

spectra of 1 indicated a molecular formula of C26H34O10,

requiring for 10 degrees of unsaturation. The IR spectrum

of 1 indicated the presence of hydroxy (3424 cm-1) and

carbonyl (1691 cm-1) groups. The 13C NMR (DEPT) data

for 1 (Table 1) revealed 26 carbon signals, including

characteristic signals due to a hemiacetal ring unit (dC

97.36 and 64.81) [21], a b-substituted furan ring (dC

128.55, 141.25, 110.63 and 144.33) [22], a trisubstituted

double bond (dC 153.48 and 121.76) and a ketone (dC

214.73). The hemiacetal ring [H2-19: dH 4.20 and 4.52
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(each 1H, J = 12.9 Hz); H-29: dH 4.83] [21] and the b-

substituted furan ring protons (dH 6.42, 7.52, 7.47) [22]

were also distinguished from the 1H NMR spectrum

(Table 2), in addition to two methyl singlets at dH 0.97 and

1.03. The aforementioned NMR data for 1 were closely

related to those of 3a-deacetylamoorastatin [23]. However,

a major difference between these two compounds was

observed as the oxidation of a methyl and a methylene in

3a-deacetyl-amoorastatin core to an oxymethylene (dC

71.92, dH 3.60, 3.89 (each 1H, d, J = 10.7 Hz) and an

oxymethine [dC 68.60, dH 4.54 (dd, J = 4.4, 3.4 Hz] in 1,

respectively. Moreover, the 14,15-epoxide and the C-17

methane in 3a-deacetyl-amoorastatin were replaced with a

D14(15) double bond (dC 153.48 and 121.76) and an oxygen-

bearing quaternary carbon (dC 84.21, C-17) in 1, respec-

tively. The above data were further assigned unambigu-

ously by HSQC, 1H-1H COSY and HMBC analysis (Fig. 2

and Electronic supplementary material). The 1H-1H COSY

spectrum verified the presence of -CH(O)(1)–CH(O)(2)–

CH(O)(3)–, –CH(5)–CH2(6)–CH(O)(7)–, and =CH(15)–

CH2(16) fragments in 1 (bold lines in Fig. 2). The HMBC

correlations (Fig. 2) from the oxymethylene at dH 3.60 and

3.89 (H2-30) to dC 69.54 (C-7)/dC 52.89 (C-8)/dC 46.06 (C-

9)/dC 153.48 (C-14), and from the oxymethine at dH 4.54

(H-2) to dC 75.84 (C-1)/dC 43.96 (C-4)/dC 43.41 (C-10)

indicated that C-30 and C-2 of 1 were oxygenated,

respectively. The D14(15) double bond was confirmed by the

HMBC correlations of H2-12, H2-16 and Me-18 to the

olefinic carbon at dC 153.48 (C-14). Moreover, HMBC

correlations from H-15, H2-16, Me-18, H-21 and H-22 to

the oxygen-bearing quaternary carbon (dC 84.21, C-17)

revealed the hydroxylated C-17 of D ring, on which the

furan ring was located in 1. Other HMBC correlations

confirmed the planar structure of 1 as shown.

The relative stereochemistry of 1 was fixed by the pro-

ton coupling constants observed in the NMR spectrum and

ROESY experiment (Fig. 3). The ROESY correlations of

H-5/H-9, H-1/H-9, H-5/Me-28, H-3/Me-28, H-3/H-5, and

H-2/H-19 supported the relative configuration of the fused

A/B rings as shown in Fig. 1, and the hemiacetal ring

between C-19 and C-29 was on the same side to those of

1-OH and 3-OH. The small values of J1,2 (4.4 Hz) and J2,3

(3.4 Hz) indicated the equatorial H-1, H-2 and H-3, cor-

responding to b-configurations for 1-OH, and 3-OH, and a-

configurations for 2-OH. In the 1H NMR spectrum of 1, the

broad singlet H-7 suggested an a-configuration of 7-OH,

which was further confirmed by ROESY correlations of

H-29/H-19, H-19/H-30 and H-30/H-7. The 17-OH was

assigned as b by a ROESY correlation of H-22 with Me-18.

In addition, it is noted that compound 1 was isolated as a

mixture of two tautomers in a ratio of 4:1 as estimated by
1H NMR spectrum. The 1H and 13C NMR spectral features

of the mixture (Tables 1, 2) showed two sets of H-atom and

C-atom resonances (partially overlapped) [24]. This could

be explained by the equilibrium due to the hemiacetal unit.

Acetylation of 1 yielded the 1,2,3,7,29,30-hexa-acetylated

(1a) and 2,3,7,29,30-penta-acetylated (1b) adducts of 1,

whose structures (Fig. 1) were characterized by detailed

spectroscopic analysis (see Electronic supplementary

material). The 29-exo configurations for both 1a and 1b

were supported by their chemical shifts of H-3 (dH 5.41),

since H-3 resonated at dH 4.9–5.1 for 29-endo and 5.3–5.6

for 29-exo [25]. Based on the above evidence, compound 1

was determined as shown in Fig. 1 and named as flexuo-

soid A.

Compound 2 was obtained as a white amorphous pow-

der and possessed a molecular formula C28H36O11, as

deduced from the HRESIMS (m/z 547.2182 [M - H]-).

The 1H and 13C NMR data of 2 were similar to those of 1,

except for the appearance of an additional acetyl group [dH

Table 1 13C NMR spectroscopic data of 1 and 2 (methanol-d4, d in

ppm)

Position 1a 2a

29-exo 29-endo 29-exo 29-endo

1 75.84, CH 75.76, CH 74.36, CH 74.36, CH

2 68.60, CH 68.81, CH 67.88, CH 67.99, CH

3 75.78, CH 79.27, CH 76.69, CH 79.83, CH

4 42.96, C 43.17, C 42.65, C 42.58, C

5 27.69, CH 25.06, CH 29.15, CH 27.76, CH

6 25.62, CH2 27.77, CH2 25.70, CH2 26.67, CH2

7 69.54, CH 69.79, CH 69.61, CH 69.88, CH

8 52.89, C 52.95, C 52.96, C 53.01, C

9 46.06, CH 46.36, CH 46.06, CH 46.39, CH

10 43.41, C 43.51, C 43.41, C 43.41, C

11 214.73, C 214.89, C 214.71, C 214.89, C

12 44.31, CH2 44.31, CH2 44.37, CH2, 44.52, CH2

13 53.03, C 52.96, C 53.15, C 52.90, C

14 153.48, C 153.55, C 153.55, C 153.60, C

15 121.76, CH 121.69, CH 121.89, CH 121.80, CH

16 44.45, CH2 44.39, CH2 44.59, CH2 44.45, CH2

17 84.21, C 84.21, C 84.33, C 84.33, C

18 26.12, CH3 26.05, CH3 26.21, CH3 26.15, CH3

19 64.81, CH2 59.49, CH2 65.17, CH2 59.32, CH2

20 128.55, C 128.55, C 128.79, C 128.79, C

21 141.25, CH 141.25, CH 141.34, CH 141.34, CH

22 110.63, CH 110.63, CH 110.73, CH 110.73, CH

23 144.33, CH 144.33, CH 144.42, CH 144.42, CH

28 20.45, CH3 19.73, CH3 19.75, CH3 19.32, CH3

29 97.36, CH 97.09, CH 96.88, CH 96.80, CH

30 71.92, CH2 72.01, CH2 72.04, CH2 72.08, CH2

COMe 173.31, C 173.25, C

COMe 21.23, CH3 21.18, CH3

a Data were measured at 125 MHz
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2.08/2.09 (3H, s) and dC 173.31/173.25 (CO), 21.23/21.18

(CH3)] and the down-field shift of C-3 and H-3 to dC 76.69

and dH 5.50, respectively, suggesting that the hydroxy

group at C-3 in 1 was acetylated in 2. This was confirmed

by HMBC correlation of dH 5.50 (H-3) with the acetyl

carbonyl carbon at dC 173.31 (Fig. 1S, Electronic

supplementary material). In the ROESY spectrum, corre-

lations of H-5/Me-28, H-5/H-9, H-19/H-29 and H-22/Me-

18 supported the relative configurations of rings system of

Table 2 1H NMR spectroscopic data of 1 and 2 (methanol-d4, d in ppm)

Position 1a 2a

29-exo 29-endo 29-exo 29-endo

1 4.35, d (4.4) 4.35, d (4.4) 4.37, d (4.6) 4.37, d (4.6)

2 4.54, dd (4.4, 3.4) 4.50b 4.59b 4.54b

3 3.93, d (3.4) 3.42, d (3.2) 5.50, d (4.8) 4.97, d (4.8)

5 2.63, dd (13.9, 3.0) 2.48b 2.64, dd (10.9, 2.9) 2.71b

6 1.78, dd (13.7, 3.5)

1.90, br. d (14.5)

1.81, br. d

2.48b

1.76, dd (10.9, 3.5)

1.88, br. d (14.1)

1.78b

2.45b

7 4.05, br. d 4.02, br. d 4.04, br. d 4.00, br. d

9 4.01, s 4.03, s 4.01, s 4.03, s

12 1.99, d (19.2)

3.25, d (17.9)

1.99, d (19.2)

3.25, d (17.9)

3.25, d (19.3)

1.89, d (19.1)

3.25, d (19.3)

1.89, d (19.1)

15 5.73, br. d 5.73, br. d 5.73, br. d 5.73, br. d

16 2.52, dd (16.3, 3.3)

3.25, d (17.9)

2.52, dd (16.3, 3.3)

3.25, d (17.9)

2.51, dd, (16.3, 3.5)

3.24, d (16.2)

2.51, dd, (16.3, 3.5)

3.24, d (16.2)

18 1.03, s 1.03, s 1.04, s 1.02, s

19 4.20, d (12.9)

4.52, d (12.9)

4.52b

4.56b

4.18, d (10.2)

4.56b

4.38b

4.38b

21 7.52, s 7.52, s 7.53, s 7.53, s

22 6.42, s 6.42, s 6.43, s 6.43, s

23 7.47, s 7.47, s 7.47, s 7.47, s

28 0.97, s 1.00, s 0.82, s 0.83, s

29 4.83, s 4.62, s 4.80, s 4.72, s

30 3.60, d (10.7)

3.89, d (10.7)

3.61, d (9.8)

3.93, d (9.8)

3.60, d (11.1)

3.87, d (11.1)

3.63b

3.92, d (11.1)

COMe 2.09, s 2.08, s

a Data were measured at 500 MHz
b Overlapping 1H NMR signals are reported without designated multiplicity
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2 as shown in Fig. 1. Moreover, the broad singlet H-7 in

the 1H NMR spectrum and the ROESY correlations of

H-30/H-7 of 2 revealed that 7-OH had the a-configuration.

The ROESY correlation of H-22 with Me-18 supported the

assignment of the b-configuration to 17-OH, and the cor-

relations of H-1/H-9 and H-3/H-28 relieved the b-

Table 3 1H and 13C NMR spectroscopic data of 3 and 4 (methanol-d4, d in ppm)

Position 3a 4b

dH (J in Hz) dC dH (J in Hz) dC

1 146.14/146.13c, C 146.5, C

2 119.85/119.76c, C 120.71/120.72c, C

3 132.19/132.10c, C 132.70/132.72c, C

4 137.47/137.40c, C 137.5, C

4a 131.69/131.66c, C 132.3, C

5 6.89c, s 106.75/106.70c, CH 7.13c,s 107.7, CH

6 151.51/151.47c, C 151.7, C

7 153.14/153.11c, C 150.6, C

8 8.03, s 102.63/102.59c, CH 8.25, s 106.5, C

8a 128.64/128.61c, C 128.5, C

10 129.74/129.80c, C 130.2, C

20 6.64, d (1.5) 111.65/111.71c, CH 6.81c, d (1.7) 111.86/111.89c, CH

30 148.86/148.90c, C 149.2, C

40 148.81/148.90c, C 149.2, C

50 6.87c, d (8.0) 108.84/108.88c, CH 6.96c, d (7.8) 109.18/109.20c, CH

60 6.59c, dd (8.0, 1.5) 124.71/124.74c, CH 6.77c, dd (7.8, 1.7) 124.9, CH

2a 5.48c, d (15.2)

5.39c, d (15.2)

69.0, CH2 5.47c, d (15.1)

5.62c, d (15.1)

69.4, CH2

3a 172.09/172.05c, C 172.3, C

6-OMe 3.63c, s 56.0, CH3

7-OMe 3.94, s 56.7, CH3 3.76, s 56.3, CH3

O–CH2–O 6.02c, s

6.00c, s

102.6, CH2 6.06c, s

6.05c, s

102.8, CH2

100 4.74, d (7.7) 106.9, CH 4.76c, d (7.4) 107.3, CH

200 4.12, dd (8.6, 7.7) 72.2, CH 3.99, dd (9.3, 7.4) 72.9, CH

300 3.83d 81.8, CH 3.65, dd (9.3, 3.5) 74.4, CH

400 5.16, br. s 72.5, CH 3.86, br. s 70.0, CH

500 3.98d

3.52d

65.4, CH2 3.50, d (12.5)

3.93, dt (12.5, 1.9)

67.8, CH2

1¢¢¢ 4.49, d (7.0) 106.5, CH 5.31, d (7.5) 101.3, CH

2¢¢¢ 3.66, dd (8.8, 7.0) 72.6, CH 3.60, dd (9.2, 7.6) 74.9, CH

3¢¢¢ 3.54d 74.1, CH 3.55, t (9.2) 78.2, CH

4¢¢¢ 3.81, br. s 69.5, CH 3.41, t (9.2) 71.5, CH

5¢¢¢ 3.86d

3.52d

67.0, CH2 3.75d 78.0, CH

6¢¢¢ 3.70, dd (11.9, 6.2)

3.97, dd (11.9, 2.0)

62.8, CH2

COMe 172.5, C

COMe 2.15, s 21.2, CH3

a Data were measured at 500 and 125 MHz for 1H and 13C, respectively
b Data were measured at 600 and 150 MHz for 1H and 13C, respectively
c Existing as very close pairs at room temperature (21 �C)
d Overlapping 1H NMR signals are reported without designated multiplicity
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configuration to 1-OH and 3-OH. Due to the severe over-

lapping of H2-19 and H-2 signals in 2, the assignment of a-

orientation for hydroxy group at C-2 was achieved by

acetylation of 2 to give 1,2,3,7,29,30-hexa-acetyl flexuo-

soid A (1a) and 2,3,7,29,30-penta-acetyl flexuosoid A (1b).

In the 1H NMR spectrum of 1a, the small values of J1,2

(4.4 Hz) and J2,3 (4.4 Hz) revealed the equatorial H-1, H-2,

and H-3 in 2. Furthermore, the 29-exo configuration for 2

was supported by chemical shifts of H-3 of 1a and 1b, the

acetylated products of 2. Thus, 2 was assigned as shown in

Fig. 1 and named as flexuosoid B.

Compound 3, a white amorphous powder, possessed a

molecular formula C33H34O16, as deduced by the HRE-

SIMS at m/z 685.1763 [M - H]- (calcd for C33H33O16,

685.1768). The IR spectrum showed the presence of

hydroxy (3423 cm-1) and benzene rings (1622, 1507, and

1435 cm-1). The 13C NMR and DEPT spectra (Table 3)

displayed the presence of 33 carbon resonances, due to two

carboxyls (dC 172.09 and 172.5), 16 aromatic carbons (dC

102–153), one methylenedioxy (dC 102.6), one oxymeth-

ylene (dC 69.0), two methoxys (dC 56.7 and 56.0), two

pentosyl moieties and an acetyl methyl (dC 21.2). In the 1H

NMR spectrum, two singlet aromatic protons at dH 6.89

and 8.03 (each 1H, s) and a set of ABX coupled signals [dH

6.87 (1H, d, J = 8.0 Hz), 6.64 (1H, d, J = 1.5 Hz), 6.59

(1H, dd, J = 8.0, 1.5 Hz)] arising from an 1,3,4-trisubsti-

tuted benzene ring were observed, in addition to charac-

teristic proton signals due to a methylenedioxy (dH 6.02

and 6.00, each 1H, s), two methoxys [dH 3.94, 3.63 (each

3H, s)], and two anomeric protons [dH 4.74 (d, J = 7.7 Hz)

and 4.49 (d, J = 7.0 Hz)]. Acid hydrolysis of 3 afforded

L-arabinose as the soly monosaccharide, which was con-

firmed by GC analysis of its corresponding trimethylsily-

lated L-cysteine adducts. The aforementioned data of 3

were closely related to those of phyllanthusmin C, a known

arylnaphthalene lignan glycoside from Phyllanthus oligo-

spermus [18]. The major difference was the presence of

one more arabinosyl and an additional acetyl group in 3,

compared with phyllanthusmin C. All signals of 3 were

assigned completely on the basis of HSQC, HMBC and
1H-1H COSY experiments. In the HMBC spectrum of 3

(Fig. 4), correlation of an anomeric proton at dH 4.74 with

C-1 (dC 146.1) confirmed the linkage of an arabinosyl

moiety at C-1 of lignan aglycone. Subsequently, HMBC

correlations of the additional arabinosyl anomeric proton at

dH 4.49 with the inner arabinosyl C-30 (dC 81.8) and the

inner arbinosyl H-400 (dH 5.16) with the acetyl carbonyl

carbon (dC 172.5), indicated that the additional arabinosyl

and acetyl units were linked to the inner arabinosyl C-30

and C-40 in 3, respectively. This resulted in deshielded

resonances of the inner arabinosyl C-30 and C-40 of 3 by 7.4

and 2.8 ppm, respectively, and shielded resonances of C-50

by 2.2 ppm, compared with those of phyllanthusmin C. On

the basis of these observations and other HMBC correla-

tions (Fig. 4 and Electronic supplementary material), the

structure of phyllanthusmin D (3) was established.

Compound 4 possessed a molecular formula of

C31H32O16, on the basis of HRESIMS (m/z 661.1766

[M ? H]?). Acid hydrolysis of 4 afforded L-arabinose and

D-glucose as sugar residue, which was confirmed by GC

analysis of its corresponding trimethylsilated L-cysteine

adducts. The 1H and 13C NMR spectroscopic data

(Table 3) of 4 showed close resemblance with those of

phyllanthusmin C, except for the presence of only one

methoxy group and an additional set of signals assignable

to a b-glucosyl moiety [dH 5.31 (d, J = 7.5 Hz, dC 101.3,

74.9, 78.2, 71.5, 78.0 and 62.8] in 4. In the HMBC

experiment (Fig. 2S, Electronic supplementary material),

correlations of H2-2a [dH 5.47, (d, J = 15.1); 5.62, (d,

J = 15.1)] and dH 8.25 (H-8) with the quaternary carbon at

dC 146.5 (C-1) allowed assignment of C-1 and H-8. The

HMBC correlation from the arabinosyl anomeric proton

(dH 4.76, Ara-100) to C-1 (dC 146.5) indicated that the

arabinosyl moiety was attached to C-1 of the lignan core.

Moreover, HMBC correlation of the anomeric proton (dH

5.31, Glc-1¢¢¢) with C-7 (dC 150.6) supported linkage of the

additional glucosyl moiety to C-7, which was further

confirmed by the ROESY correlation between the ano-

meric proton (dH 5.31, Glc-1¢¢¢) with H-8 (dH 8.25). On the

basis of these observations, the structure of 4 was estab-

lished as phyllanthusmin E.

Compound 5 was isolated as a white amorphous powder.

Its molecular formula was deduced to be C38H44O21 by

HRESIMS (m/z 871.2077 [M - H]-). Acid hydrolysis of 5

afforded L-arabinose, D-glucose and D-galactose as sugar

residue, which was confirmed by GC analysis of their

corresponding trimethylsilylated L-cysteine adducts. The
1H and 13C NMR data (Table 4) of 5 were very similar to

those of phyllanthusmin C, except for the appearance of

two additional hexosyl units attributable to one glucosyl

[dH 5.55 (d, J = 7.9 Hz), dC 105.5, 75.3, 79.0, 72.3, 78.9

O

O

O
O

O

MeO

MeO

O

OHOO

HOHO

O
HO

O

Me

Fig. 4 Key HMBC ( ) correlations of 3
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and 68.6] and one galactosyl [dH 5.02 (d, J = 7.4 Hz), dC

106.2, 73.0, 75.5, 70.2, 76.9 and 63.1] units [26]. Linkage

of the additional glucosyl unit to the arabinosyl C-300

position was confirmed by the long range correlations

between the glucosyl anomeric proton at dH 5.55 (H-1¢¢¢)
and the arabinosyl C-300 (dC 81.0). Moreover, HMBC

correlation of the galactosyl H-1¢¢¢ (dH 5.02) with the glu-

cosyl C-6¢¢¢ (dC 68.6) was also observed (Fig. 2S, Elec-

tronic supplementary material). Therefore, the structure of

phyllanthusmin F (5) was elucidated as shown in Fig. 1.

It was noted that the 1H and 13C NMR spectra of the

new arylnaphthalene lignans (3–5) recorded at room tem-

perature exhibited doubling of the signals, of which most

aromatic signals existed as very close pairs, whose chem-

ical shifts are different only at the second decimal places,

due to the equilibrium between the two conformational

isomers resulting from the slow rotation of sugar unit at

room temperature around the glycosidic linkage [19]. The

energy barrier about the glycosidic bond was sufficiently

high to prevent fast exchange between the two rotamers at

room temperature [27].

Most of the isolated compounds were tested for their an-

tifeedant, anti HSV-1 and cytotoxic activities. The two new

limonoids 1 and 2 displayed promising antifeedant activity

against Spodoptera exigua with EC50 values of 25.1 and

17.3 lg/cm2, respectively, which were less active than that of

the positive control (EC50 = 3.7 lg/cm2), a commericial

neem oil containing 1 % azadirachtin, while slightly more

active than aphanamixoid A (EC50 = 25.8 lg/cm2), a

potential natural product with antifeedant activity [28]. Fur-

thermore, both compounds 1 and 2, together with the known

lignan, phyllanthusmin C, showed moderate cytotoxicity

against the ECA109 cell line, with the IC50 values of 11.5, 8.5,

and 7.8 lM, respectively, compared to the positive control,

17-AAG (IC50 = 1.1 lM). However, all the tested com-

pounds showed no inhibitory effects against HSV-1.

Limonoids, mainly found in the Meliaceae and Rutaceae

families, are of rare occurrence in the Euphorbiaceae family

[29]. The new deca-oxygenated flexuosoids A (1) and B (2)

represent the second example of limonoids in the Euphor-

biaceae family [30]. It is noteworthy that the new limonoids 1

and 2 bear a C-19/29 lactol bridge and oxygen substituents at

C-1, C-2, C-3, C-7, C-11, C-17, and C-30 positions, of which

the oxygen substituents at C-17 and C-30 are of rare occur-

rence among the reported limonoids [29]. Furthermore,

compounds 1 and 2 showed not only promising antifeedant

Table 4 1H and 13C NMR spectroscopic data of 5 (methanol-d4, d in ppm)a

Position dH (J in Hz) dC Position dH (J in Hz) dC

1 146.60/146.63b, C O–CH2–O 5.93, s 102.3, CH2

2 120.46, C 6.03, s

3 132.30/132.36b, C Ara-100 5.35, d (7.7) 107.4, CH

4 136.7, C 200 4.26c 75.6, CH

4a 131.5, C 300 4.59c 81.0, CH

5 7.36, s 107.4, CH 400 4.01, br. d (9.5) 75.7, CH

6 151.6, C 500 4.63c

4.75, t (9.5)

68.9, CH2

7 153.2, C Glc-1¢¢¢ 5.55, d (7.9) 105.5, CH

8 8.85, s 103.3, CH 2¢¢¢ 4.08c 75.5, CH

8a 128.9, C 3¢¢¢ 4.39, t (8.3) 79.0, CH

10 129.99/130.02b, C 4¢¢¢ 4.22c 72.3, CH

20 7.17/7.25, d (1.4) 112.09/112.20b, CH 5¢¢¢ 4.22c 78.9, CH

30 148.6, C 6¢¢¢ 4.24c 68.6, CH2

40 148.5, C 3.68, d (11.3)

50 7.16/7.14, d (7.8) 125.0, CH Gal-100 00 5.02, d (7.4) 106.2, CH

60 7.13/7.08, dd (7.8, 1.4) 109.0, CH 200 00 4.49, t (8.2) 73.0, CH

2a 5.70, dd (15.2, 3.7) 68.6, CH2 300 00 4.06c 75.1, CH

6.11, dd (15.7, 10.9) 400 00 4.22c 70.2, CH

3a 170.7, C 500 00 4.28c 76.9, CH

6-OMe 3.66, s 55.9, CH3 600 00 4.56, d (16.3) 63.1, CH2

7-OMe 4.17, s 56.9, CH3 4.30c

a Data were measured at 600 and 150 MHz for 1H and 13C, respectively
b Existing in pairs at room temperature (21 �C)
c Overlapping 1H NMR signals are reported without designated multiplicity
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activity but also moderate cytotoxicity against the ECA109

human esophagus cancer cell line.

2.1 Experimental Section

2.1.1 General Experimental Procedures

Optical rotations were performed on a P-1020 polarimeter

(JASCO, Tokyo, Japan). IR spectra were measured on a

Bruker Tensor 27 spectrometer with KBr pellets. 1D and 2D

NMR spectra were run on Bruker DRX-500 and AV-600

instruments operating at 500 and 600 MHz for 1H, and 125

and 150 MHz for 13C, respectively. Coupling constants are

expressed in Hertz and chemical shifts are given on a ppm

scale with tetramethylsilane as internal standard. The MS data

were recorded on a VG Auto Spec-3000 spectrometer (VG,

Manchester, U.K.) with glycerol as the matrix. HRESIMS

were recorded on an API Qstar Pulsa LC/TOF spectrometer.

GC analysis was run on a Shimadzu GC-14C gas chromato-

graph. Column chromatography (CC) was performed with

macroporous resin D101 (Mitsubishi Chemical Industry, Ltd.,

Tokyo, Japan), silica gel (200–300 mesh, Qingdao Haiyang

Chemical Co., Ltd., Qingdao, People’s Republic of China),

Sephadex LH-20 (25–100 lm, Pharmacia Fine Chemical Co.

Ltd. Japan). Thin-layer chromatography (TLC) was carried

out on silica gel H-precoated plates (Qingdao Haiyang

Chemical Co., Ltd., Qingdao, People’s Republic of China)

with CHCl3/MeOH/H2O (8.5:1.5:0.1, 8:2:0.2 or 7:3:0.5, v/v).

Spots were detected by spraying with 10 % H2SO4 in EtOH

followed by heating. Semi-preparative HPLC separation was

performed on an Agilent 1260 liquid chromatography with a

5 lm Waters Sunfire-C18 column (10 9 250 mm, Waters,

Sunfire TM, USA). GC analysis was run on Agilent Tech-

nologies HP5890 gas chromatography equipped with an H2

flame ionization detector. The column was 30QC2/AC-5

quartz capillary column (30 m 9 0.32 mm) with the fol-

lowing conditions: column temperature: 180–280 �C; pro-

grammed increase, 3 �C/min; carrier gas: N2 (1 mL/min);

injection and detector temperature: 250 �C; injection volume:

4 lL, split ratio: 1/50.

2.1.2 Cell Lines and Biochemicals

African green monkey kidney cells (Vero, ATCC CCL81),

provided by Wuhan Institute of Virology, Chinese Academy

of Sciences, were propagated in DMEM supplemented with

10 % heat-inactivated FBS. The constituents of the main-

tenance medium were the same as those of the growth

medium except that only 2 % FBS was added. The cells

were cultured at 37 �C in a humid atmosphere with 5 %

CO2. HSV-1 strain F (ATCC VR-733), obtained from Hong

Kong University, was propagated in Vero cells and stored at

-80 �C until use. The human esophagus cancer cell

ECA109 was cultured in RPMI 1640 containing 10 % heat

inactivated FBS and 100 U/mL penicillin/streptomycin in a

humidified incubator in a 5 % CO2 atmosphere at 37 �C.

2.2 Plant Material

The roots of P. flexuosus were collected from Yunnan

Province, People’s Republic of China, in June 2010.

Voucher specimens (HITBC_015077) were deposited at

the State Key Laboratory of Phytochemistry and Plant

Resources in West China, Kunming Institute of Botany,

Chinese Academy of Sciences, and were identified by Mr.

Shi-Shun Zhou from Xishuangbanna Tropical Botanical

Garden, Chinese Academy of Sciences.

2.3 Extraction and Isolation

The air-dried and powdered roots of P. flexuosus (2.0 kg) were

extracted with MeOH (3 times, 3 h each time) under reflux at

60 �C. The methanol extracts (320 g) were subjected to

macroporous resin D101 column chromatography (CC) and

eluted with the following gradient: MeOH/H2O (3:7, 6:4, 9:1)

and finally MeOH, to give 4 fractions (Fr. 1–4). Fr. 2 (45.0 g)

and Fr. 3 (16.6 g) were subjected separately to repeated CC on

silica gel (CHCl3/MeOH/H2O, 9:1:0.1–7:3:0.5) and Sephadex

LH-20 (MeOH/H2O, 1:9–8:2) to yield 3 (13 mg), phyllan-

thusmins C (20 mg), arabelline (12 mg), (?)-diasyringaresi-

nol (8 mg) and subfraction F2A (32 mg). Subfraction 2A was

purified by semi-preparative HPLC (MeCN/H2O, 25:75) to

afford 4 (4 mg). Fr. 3 was repeatedly chromatographed over

MCI-gel CHP-20P (MeOH/H2O, 5–45 % with a 5 % incre-

ment) and silica gel (CHCl3/MeOH/H2O, 9:1:0.1–6:4:1) to get

subfractions F3A (170 mg) and F3B (180 mg). Subfraction

F3A was purified by semi-preparative HPLC (MeCN/H2O,

25:75) to give 5 (4 mg). Subfraction F3B was purified by

semi-preparative HPLC (MeCN/H2O, 14:86) to furnish 1

(14 mg) and 2 (25 mg).

2.3.1 Flexuosoid A (1)

White amorphous powder; ½a�17
D -41.2 (c 0.30, MeOH); UV

(MeOH) kmax (log e): 203.8 (3.06) nm; IR (KBr) mmax 3424,

2965, 2931, 1691, 1629, 1455, 1382, 1263, 1159, 1137,

1058 cm-1; 1H and 13C NMR data, see Tables 1 and 2;

ESIMS (pos. ion mode) m/z 529 [M ? Na]?; negative HR

ESIMS m/z 505.2072 [M - H]- (calcd for C26H33O10,

505.2073).

2.3.2 Flexuosoid B (2)

White amorphous powder; ½a�18
D -41.7 (c 0.68, MeOH);

UV (MeOH) kmax (log e) 204.0 (3.95) nm; IR (KBr) mmax
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3424, 2967, 2933, 1695, 1455, 1380, 1257, 1037 cm-1; 1H

and 13C NMR data, see Tables 1 and 2; ESIMS (neg. ion

mode) m/z 583 [M ? Cl]-; negative HRESIMS m/z

547.2182 [M - H]- (calcd for C28H35O11, 547.2179).

2.3.3 Phyllanthusmin D (3)

White amorphous powder; ½a�16
D ?10.5 (c 0.07, MeOH);

UV (MeOH) kmax (log e): 201.0 (4.86), 260.4 (4.94) nm; IR

(KBr) mmax 3423, 2908, 1742, 1622, 1507, 1480, 1455,

1435, 1386, 1377, 1342, 1264, 1216, 1169, 1080, 1025,

1012 cm-1; 1H and 13C NMR data, see Table 3; ESIMS

(neg. ion mode) m/z 721 [M ? Cl]-; negative HRESIMS

m/z 685.1763 [M - H]- (calcd for C33H33O16, 685.1768).

2.3.4 Phyllanthusmin E (4)

White amorphous powder; ½a�27
D -48.7 (c 0.28, MeOH);

UV (MeOH) kmax (log e): 203.2 (4.24), 259.0 (4.55) nm; IR

(KBr) mmax 3442, 2923, 1630, 1535, 1468, 1416, 1385,

1203, 1169, 1128, 1073, 1039 cm-1; 1H and 13C NMR data

see Table 3; ESIMS (neg. ion mode) m/z 695 [M ? Cl]-;

positive HRESIMS m/z 661.1766 [M ? H]? (calcd for

C31H33O16, 661.1763).

2.3.5 Phyllanthusmin F (5)

White amorphous powder; ½a�22
D -40.6 (c 0.30, MeOH);

UV (MeOH) kmax (log e): 202.8 (4.41), 262.2 (4.56) nm; IR

(KBr) mmax 3426, 2925, 1730, 1627, 1507, 1480, 1458,

1435, 1386, 1341, 1265, 1230, 1168, 1075, 1049,

1009 cm-1; 1H and 13C NMR data see Table 4; ESIMS

(neg. ion mode) m/z 871 [M ? Cl]-; negative HRESIMS

m/z 871.2077 [M ? Cl]- (calcd for C38H44O21Cl,

871.2063).

2.3.6 Acetylation of Compounds 1 and 2

See Electronic supplementary material.

2.3.7 Acid Hydrolysis of Compounds 3–5

See Electronic supplementary material.

2.4 Antifeedant Activity Assay

The insects, beet armyworm (Spodoptera exigua) pur-

chased from the Pilot-Scale Base of Bio-Pesticides, Insti-

tute of Zoology, Chinese Academy of Sciences. A dual-

choice bioassay modified from previous methods was

performed for antifeedant tests [31]. The larvae were reared

on an artificial diet in the laboratory under controlled

photoperiod (light:dark, 12:8 h) and temperature

(25 ± 2 �C). Larvae were star ved 4–5 h prior to each

bioassay. Fresh leaf discs were cut from Brassica chinen-

sis, using a cork borer (1.1 cm in diameter). Treated leaf

discs were painted with 20 lL of acetone solution con-

taining the test compounds, and control leaf discs with the

same amount of acetone. After air drying, two tested leaf

discs and two control ones were set in alternating position

in the same Petri dish (90 mm in diameter), with moistened

filter paper at the bottom. Two-thirds of instars were placed

at the center of the Petri dish. Five replicates were run for

each treatment. After feeding for 24 h, areas of leaf discs

consumed were measured. The antifeedant index (AFI) was

calculated according to the formula AFI = [(C - T)/

(C ? T)] 9 100, where C and T represent the control and

treated leaf areas consumed by the insect. The insect an-

tifeedant potency of the test compound was evaluated in

terms of the ED50 value (the effective dosage for 50 %

feeding reduction) which was determined by Probit ana-

lysis for the insect species. The positive control was served

as commercial neem oil containing 1 % azadirachtin pro-

duced by Kunming Rixin Dachuan Technology Co., Ltd.

2.5 Cytotoxicity Assay

The cytotoxicity of the test compounds on Vero cells was

determined by an MTT assay. Vero cells were seeded in

96-well plates at a density of 1 9 104 cells/well, and

incubated at 37 �C in a 5 % CO2 atmosphere for 24 h, until

90 % or greater confluence of the monolayers was reached.

Increasing concentrations of the test compounds were

added to cells, with a replicate number of three wells per

concentration and 17-AAG served as positive control.

After a 2-day incubation period in such conditions, a MTT

solution was added (final concentration 0.5 mg/mL) and

the plates were incubated for another 4 h to allow formazan

production. The solid precipitate was dissolved with

DMSO and the absorbance at 570 nm was measured using

a 96-well Spectrophotometer (Bio-Rad 550) with a refer-

ence wavelength of 630 nm. The cytotoxicity of the test

compounds on the ECA109 human esophagus cancer cell

and Vero cell lines was determined by an MTT assay. The

ECA109 human esophagus cancer cell line was cultured in

RPMI 1640 containing 10 % heat inactivated FBS and

100 U/mL penicillin/streptomycin in a humidified incuba-

tor in a 5 % CO2 atmosphere at 37 �C. Cells (5 9 103/

well) were plated in 96-well plates in 100 lL medium,

cultured overnight and exposed to a range of concentra-

tions of compounds for 48 h. After the addition of 20 lL

MTT solution (5 mg/mL) per well, the plates were incu-

bated for 4 h, the medium were removed, the formazan

crystals were solubilized in 100 lL DMSO per well and the

absorbance values were read at 570 nm.
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2.6 Anti-HSV-1 Assay

Vero cells were seeded in 96-well plates at a density of

1 9 104 cell/well. Confluent cell monolayers were treated

with increasing non-cytotoxic concentrations of the plant

extract. Four wells were used for each concentration.

Afterwards, the cells were infected with HSV-1 (100

TCID50), incubated at 37 �C in a 5 % CO2 humidified

atmosphere and observed daily for cytopathic effect (CPE)

using a light microscope. Acyclovir at concentration 20 lg/

mL served as positive control. The EC50 value was cal-

culated by MTT method.
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