
 Open access Journal Article DOI:10.1137/0913067

Highly parallel sparse Cholesky factorization — Source link

John R. Gilbert, Robert Schreiber

Institutions: PARC, Research Institute for Advanced Computer Science

Published on: 01 Sep 1992 - Siam Journal on Scientific and Statistical Computing (Society for Industrial and Applied
Mathematics)

Topics: Incomplete Cholesky factorization, Minimum degree algorithm, Sparse matrix, Cholesky decomposition and
Matrix decomposition

Related papers:

 Parallel algorithms for sparse linear systems

 Generalized nested dissection

 Direct methods for sparse matrices

 The Multifrontal Solution of Indefinite Sparse Symmetric Linear

 Communication results for parallel sparse Cholesky factorization on a hypercube

Share this paper:

View more about this paper here: https://typeset.io/papers/highly-parallel-sparse-cholesky-factorization-
4z9qdi0qyw

https://typeset.io/
https://www.doi.org/10.1137/0913067
https://typeset.io/papers/highly-parallel-sparse-cholesky-factorization-4z9qdi0qyw
https://typeset.io/authors/john-r-gilbert-21yk85bij1
https://typeset.io/authors/robert-schreiber-4tnaeg7650
https://typeset.io/institutions/parc-1aellua8
https://typeset.io/institutions/research-institute-for-advanced-computer-science-3fx3meqj
https://typeset.io/journals/siam-journal-on-scientific-and-statistical-computing-1ap1p1sm
https://typeset.io/topics/incomplete-cholesky-factorization-nkp05ns7
https://typeset.io/topics/minimum-degree-algorithm-1purpa8e
https://typeset.io/topics/sparse-matrix-1i49otqb
https://typeset.io/topics/cholesky-decomposition-17jointe
https://typeset.io/topics/matrix-decomposition-2bl87ic3
https://typeset.io/papers/parallel-algorithms-for-sparse-linear-systems-2gzu5pm339
https://typeset.io/papers/generalized-nested-dissection-2vrjx154u3
https://typeset.io/papers/direct-methods-for-sparse-matrices-14q61ak7n3
https://typeset.io/papers/the-multifrontal-solution-of-indefinite-sparse-symmetric-37o0viln11
https://typeset.io/papers/communication-results-for-parallel-sparse-cholesky-20srb0r63q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/highly-parallel-sparse-cholesky-factorization-4z9qdi0qyw
https://twitter.com/intent/tweet?text=Highly%20parallel%20sparse%20Cholesky%20factorization&url=https://typeset.io/papers/highly-parallel-sparse-cholesky-factorization-4z9qdi0qyw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/highly-parallel-sparse-cholesky-factorization-4z9qdi0qyw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/highly-parallel-sparse-cholesky-factorization-4z9qdi0qyw
https://typeset.io/papers/highly-parallel-sparse-cholesky-factorization-4z9qdi0qyw

Research Institute for Advanced Computer Science

NASA Ames Research Center

Highly Parallel Sparse Cholesky

/¢3o
J

Factorization _' q_

John R. Gilbert Robert Schreiber

(NASA-CR-Ib_7)) HIGHLY PA#ALLEL SPARSE

CHOLESKY FACTn_IZAIION (Research Inst. for

Advanced Computor Scionce) 45 P CSCL 09B

Ngl-32647

Uncl _s

GJ/bZ 0043075

August, 1990

Submitted: SIAM Journal on Scientific and Statistical Computing

Highly Parallel Sparse Cholesky Factorization

John R. Gilbert Robert Schreiber

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported by the NAS Systems Division of NASA and DARPA via Cooperative

Agreement NCC 2-387 between NASA and the University Space Research Association (USILk). Work was

performed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center,

Moffett Field, CA 94035.

Highly Parallel Sparse Cholesky Factorization

John R. Gilbert* Robert Schreiber t

March 8, 1990

Abstract

We develop and compare several fine-grained parallel algorithms

to compute the Cholesky factorisation of a sparse matrix. Our experi-

mental implementations are on the Connection Machine, a distributed-

memory SIMD machine whose programming model conceptually sup-

plies one processor per data element. In contrast to special-purpose

algorithms in which the matrix structure conforms to the connection

structure of the machine, our focus is on matrices with arbitrary spar-

sity structure. Our most promising algorithm is one whose inner

loop performs several dense factorisations simultaneously on a two-

dimensional grid of processors. Virtually any massively parallel dense

factorisation algorithm can be used as the key subroutine. The sparse

code attains execution rates comparable to those of the dense subrou-

tine. Although at present architectural limitations prevent the dense

factorisation from realising its potential efficiency, we conclude that s

regular data parallel architecture can be used efficiently to solve arbi-

trarily structured sparse problems.

We also present a performance model and use it to analyse our

algorithms. We find that asymptotic analysis combined with experi-

mental measurement of parameters is accurate enough to be useful in

choosing among alternative algorithms for a complicated problem.

*Xerox Palo Alto Research Center, 3333 Coyote Hi]] Road, Palo Alto, California 94304.

Copyright _) 1990 Xerox Corporation. All rights reserved.

tResearch Institute for Advanced Computer Science, MS 230-5, NASA Ames Research

Center, Moffett Field, CA 94035. This author's work was supported by the NAS Systems

Division and DARPA via Cooperative Agreement NCC 2-387 between NASA and the

University Space Research Association (USRA).

Keywords: sparse matrix algorithms, Cholesky factorization, sys-

tems of linear equations, parallel computing, data parallel algorithms,

chordal graphs, Connection Machine, performance analysis.

AMS(MOS) subject classifications: 05C50, 15A23, 65F05, 65F50,

68M20.

1 Introduction

1.1 Data parallelism

Highly parallel computer architectures promise to achieve high performance

inexpensively by assembling a large amount of simple hardware in a way

that scales without bottlenecks. By associating a processor with every data

element in a computation (at least conceptually), they present a program-

ming model that is relatively simple compared to distributed architectures

with medium-grain parallelism.

Some major challenges come along with these promises. Communica-

tion is expensive relative to computation, so an algorithm must minimize

communication, and substitute simple communication patterns for complex

ones where possible. The sequential programmer tunes the inner loop of an

algorithm for high performance, but data parallel algorithms tend to have

"everything in the inner loop" because a sequential loop over the data is

typically replaced by a parallel operation. For example, the inner two levels

of looping in dense Cholesky factorisation are performed in parallel, so the

square root at each diagonal element is an "inner loop" computation that

could dominate the entire running time of the algorithuL Efficient processor

utilization is a challenge for the same reason: When an operation is applied

to only a few data elements, the processors associated with the rest of the

data sit idle.

Algorithms for data parallel architectures must make different trade-offs

than sequential algorithms: They must exploit regularity in the data, but

to be efficient they must also be highly regular in the time dimension. In

some cases entirely new approaches may be appropriate for highly parallel

algorithms; examples of experiments with such apprc_ches include particle-

in-box flow simulation, knowledge base maintenance [2], and the entire field

of neural computation [9]. On the other hand, the same kind of regular-

ity in a problem or an algorithm can often be exploited in a wide range of

architectures; therefore, many ideas from sequential computation turn out

to be surprisingly applicable in the higldy parallel domain. For example,

block-oriented matrix operations are useful in sequential machines with hi-

erarchical storage and conventional vector supercomputers [1]; we shah see

that they are also crucial to efficient data parallel matrix algorithms.

1.2 Goals of this study

Data parallel algorithms are attractive for computations on matrices that are

dense or have regular nonzero structures arising from, for example, regular

finite difference discretizations. The main goal of this research is to deter-

mine whether data parallelism is useful in dealing with irregular, arbitrarily

structured problems. Specifically, we consider computing the Cholesky fac-

torization of an arbitrary sparse symmetric positive definite matrix. We

will make no assumptions about the nonzero structure of the matrix besides

symmetry. We will present evidence that arbitrary sparse problems can be

solved nearly as efficiently as dense problems by carefully exploiting regu-

larities in the nonzero structure of the triangular factor that come from the

clique structure of its chordal graph.

A second goal is to perform a case study in analysis of parallel algorithms.

The analysis of sequential algorithms and data structures is a mature and

usefttl science that has contributed to sparse matrix computation for many

years. By contrast, the study of complexity of parallel algorithms is in its

infancy, and it remains to be seen how nseftd parallel complexity theory

will be in designing efficient algorithms for real parallel machines. We will

argue by example that, at least within a particular class of parallel archi-

tectures, asymptotic analysis combined with experimental measurement of

parameters is accurate enough to be useful in choosing among alternative

algorithms for a single fairly complicated problem.

1.3 Outline

The structure of the remainder of the paper is as follows. Section 2 reviews

the definitions we need from numerical linear algebra and graph theory,

sketches the architecture of the Connection Machine, and presents a timing

3

modelfor a generalizeddataparallelcomputerthat abstractsthat architec-

ture.

In Section 3 we present the first of two parallel algorithms for sparse

Cholesky factorization. The algorithm, which we call Router Cholesky, is

based on a theoretically eflldent algorithm in the PRAM model of parallel

computation. We analyze the algorithm and point out two reasons that it

fails to be practical, one having to do with communication and one with

processor utilization.

In Section 4 we present a second algorithm, which we call Grid Cholesky.

It improves on Router Cholesky by using a two-dimensional grid of pro-

cessors to operate on dense submatrices, thus replacing most of the slow

generally-routed communication of Router Cholesky with faster grid com-

munication. It also solves the processor utilization problem by assigning

different data elements to the working processors at different stages of the

computation. We present an analysis and experimental results for a pilot

implementation of Grid Cholesky on the Connection Machine.

The pilot implementation of Grid Cholesky is approximately as efficient

as a dense Cholesky factorization algorithm, but is still slow compared to

the theoretical peak performance of the machine. In Section 5 we outline

several steps necessary to improve the absoluteefllciency of the algorithm,

most of which concern efiident Cholesky factorization of dense matrices.

Finally we draw some conclusions and discuss avenues of further research.

2 Required definitions

For any real number z, we write _z I to denote the smallest power of two

not smaller than z. For any set S, we write IS] to denote its cardinality.

For any matrix X, we write _(X) to denote the number of nonzero elements

of X.

2.1 Linear algebra

Let A be an n x n real, symmetric, positive definite sparse matrix. There is

a unique n x n lower triangu]ar matrix L with positive diagonal such that

A = LL T .

This is the Cholesky factorization of A. We seek to compute L; with it we

may solve the linear system Az - b by solving Ly - b and Lrz = y. We

will discuss algorithms for computing L below. In general, L is less sparse

than A. The nonzeros of L that were zero in A are calhd fill or fill-in.

The rows and colunms of A may be symmetrically reordered so that the

system solved is

PAPT(Pz) = Pb

where P is a permutation matrix. We assume that such a reordering, chosen

to reduce _/(L) and the number of operations required to compute L, has

been done. We further assume that the structure of L has been determined

by a symbolic factoring process. We ignore these preliminary computations

in this study bemuse the cost of actually computing L typically dominates.

(In many cases, several identically structured matrices may be factored us-

ing the same ordering and symbolic factorization.) Nevertheless we plan to

study the implementation of appropriate reordering and symbolic factoriza-

tion procedures on data parallel architectures as well.

If the matrix A is such that its Cholesky factor L has no more nonzeros

than A, i.e. there is no fitl, then A is a perfect elimination matriz. If PAP T

is a perfect elimination matrix for some permutation matrix P we call the

ordering corresponding to P a perfect elimination ordering of A.

Let R and 5 be subsets of {1,...,n}. Then A(R,S) is the [R[x [$1

matrix whose elements are A_,a, r E R, s E S.

2.2 Graph theory

We associate two ordered, undirected graphs with the sparse, symmetric

matrix A. First, G(A), the graph of A, is the graph with vertices {1, 2,..., n}

and edges

E(A) = {(i,j) I A/./_ 0}.

(Note that E(A) is a set of unordered pairs.) Next, we define the filled

graph, G°(A), with vertices (1, 2,..., n) and edges

E*(A) - _(i, jl [Li j _ 0),

so that G*(A) is G(L + LT). The edges in G*(A) that axe not edges of

G(A) are called fill edges. The output of a symbolic factorization of A is a

representation of G*(A).

For every fill edge (i,j) in E*(A) there is a path in G(A) from ver-

tex i to vertex j whose vertices all have numbers]ower than both i and

j; moreover, for every such path in G(A) there is an edge in G*(A) [15].

Consider renumbering the vertices of G*(A). With another numbering, this

last property may or may not hold. If it does, then the new ordering is a

perfect elimination ordering of G* CA).

Every cycle of more than three vertices in G*(A) has an edge between

two nonconsecutive vertices (a chord) [14]. A graph with this property is

said to be chordal

Let G = G(V, E) be any undirected graph. A clique is a subset X of

V such that for all u, v E V, (u, v) E E. A clique is maz/ma/if it is not a

proper subset of any other clique. For any v E V, the neighborhood of v,

written adj(v), is the set (u E V [(u, v) E E). The monotone neighborhood

of v, written msdj(v), is the smaller set (u E V [u > v, (u, v) E E). We

also use the usual extensions of adj and madj to sets of vertices.

A vertex v is simplicial if adj(v) is a clique. Two vertices, u and v, are

indistinguishable if (u)Uadj(u) = (_)Uadj(_). Two vertices are independent

if there is no edge between them. A set of vertices is independent if every

pair of vertices in it is independent; two sets A and B are independent if no

vertex of A is adjancent to a vertex of B.

The proof of the following is immediate.

Proposition 1 Two simplicial vertices are either independent or indistin-

guishable.

A set of indistinguishable simp]icial vertices forms a clique, though not

in general a maxima] clique. The proposition implies that the equivalence

relation of indistinguishability partitions the simplicial vertices into pairwise

independent cliques. We call these the simplicial cliques of the graph.

6

2.2.1 Elimination trees

A fundamental tool in studying sparse Gaussian elimination is the elimina-

tion tree. Schreiber [17] defined this structure, and Liu [12] gives a survey

of its many uses. Let A have the Cholesky factor L. The elimination tree

T(A) is a rooted spanning forest of G*(A) defined as follows. If vertex u

has a higher-numbered neighbor v, then the parent p(u) of u in T(A) is

the smallest such neighbor; otherwise u is a root. In other words, the first

off`diagonal nonzero element in the U th coluInn of .L is in row _(lg). It is

easy to show that T(A) is a forest consisting of one tree for each connected

component of G(A). For simplicity we shall assume in what follows that A

is irreducible, so that vertex n is the only root, though our algorithms do

not assume this.

There is a monotone increasing path in T(A) from every vertex to the

root. If (u, v) is an edge of G*(A) with u < v (that is, if L_ _ 0) then v

is on this unique path from u to the root. This means that when T(A) is

considered as a spanning tree of G*(A), there are no "cross edges" joining

vertices in different subtrees. It implies that, if we think of the vertices of

T(A) as columns of A or L, any given column of L depends only on columns

that are its descendants in the tree.

2.3 The Connection Machine

The Connection Machine (model CM-2) is an SIM'D parallel computer. A

full-sized CM has 2 is = 65,536 processors, each of which could directly ac-

cess 65,536 bits of memory when this work was done. The processors are

connected by a communication network called the router, which is config-

ured by a combination of microcode and hardware to be a 16-dimensional

hypercube.

The essential feature of the CM programming model is the parallel vari-

able or pvar. A pvar is an array of data in which every processor stores and

manipulates one element. The size of a pvar may be a multiple of the number

of physical machine processors. If there are v times as many elements in the

pvar X as there are processors then, through microcode, each physical pro-

cessor simulates v virtual processors; thus the programmer's view remains

"one processor per datum." The ratio v is called the virtual processor (VP)

?

ratio. At the time of our work on the CM, v had to be a power of two.

The geometry of each set of virtual processors (and its associated pvars)

is also determined by the programmer, who may choose to view it as an

array of arbitrary rank with dimensions that are powers of two. The VP

sets and their pvars are embedded in the machine using Gray codes that

guarantee that neighboring virtual processors are stored and simulated by

the same or neighboring physical processors.

Parallel computation is expressed through elementwise binary operations

on pairs of pvars that have the same geometry and reside in the same VP

set. Such operations take time proportional to v, for the actual processors

must loop over their simulated virtual processors.

2.3.1 Connection Machine programming

The language of our pilot implementations is *lisp, which we have found

to be a convenient means of expressing data parallel algorithms; we win

therefore use some of the conventions and nomenclature of that language

in our descriptions. We assume that the reader knows the rudiments of

sequential lisp. A *lisp convention is that parallel variables and functions

are given names ending in ! ! (suggesting two parallel lines).

Interprocessor communication is expressed and accomplished in three

ways which we discuss in order of increasing generality but decreasing speed.

Communication with virtual processors st nearest neighbor grid cells

(called NEWS grid communication, although the VP set may be of arbitrary

rank) is done by the *lisp function nays! !. For example, if x! ! is a pvar

defined on a two-dimenslonal VP set, then

(non!! x!! -I 0)

is x! ! shifted a distance -1 in the first coordinate and not shifted in the

second. The shift may be circular or end-off at the programmer's discretion.

The second mechanism is scan ! !, or parallel prefix, which is familiar as

the scan pseudo-operator of APL. For example, if x ! ! is a one-dimensional

pvar with the value [1, 2, 3, 4, 5, 6, 7, 8] then

(scan!! x!! *+!!)

has the value [1, 3, 6, 10, 15, 21, 28, 36]; in general, result(0) = x! ! (0),

and, for i > 0, result(i) = result(J.-1) 0P x! ! (i) where 0P is the com-

bining operator specified by the programmer - addition in this case. Scans

are implemented using the hypercube connections. At a virtual processor

ratio of 1, the time for a scan of length n is in theory proportional to log n_

though as implemented on the CM it is most accurately mode]Jed as being

constant.

Scans can use other associative binary operators in place of +! !. We

wi]] only use scans with the]eft projection operator ' copy ! ! ; the effect of

a so-called copy-scan is to copy x! ! (I) to al] elements of the result. This

is the most efficient way to broadcast in the CM. In a two-dimensional VP

geometry it can be used to broadcast along either rows or columns of a

two-dimensional array.

Scans of subarrays are possible. In a segmented scan, the programmer

specifies a boolean pvar, the segment pvar, congruent to x ! !. The segments

of x! ! between adjacent T values in the segment pvar are scanned indepen-

dently. Thus, for example, if we use the segment pvar seg! ! with the value

IT F F F T F F T] and x!! is as above, then

(scan!! x!! '+!! :segfent-pvax seg!!)

returns [1, 3, 6, 10, 5, 11, 18, 8].

The third and most general form of communication, which allows a pro-

cessor to access data in the memory of any other virtual processor, is done

with the function pref ! ! and the form *pset. The address of the processor

whose memory is to be read or written is taken from an integer pvar called

the address pvar. Function pref ! ! is a parallel read: suppose the pvar x ! !

is one-dimensional with the 16 elements [15, 14, 13, ..., 2, 1, 0]. Let p! ! be

the integer address pvar. Suppose it has the value [0, 1, 2, 0, 1, 2, .., 0, 1,

2, 0]. Then the result returned by

(pref!! x!! p!!)

is [15, 14, 13, 15, 14, 13, ..., 15, 14, 13, 15]; i.e. result(i) - x! ! (p! ! (i)).

Punction*pset is a parallel write. Suppose that p! ! and x! ! are both

[15, 14, 13, ..., 0]. Then

(*pset x!! y!! p!!)

has the side effect of storing [0, 1, 2, ..., 15] in y! l, i.e. y! !Cp!!Ci)) =

x! ! Ci).

When the address pvar has duplicate values, data from several processors

is sent to the same destination processor. The value actually stored is some

combination of the values received. The way that they are combined is

specified by giving a combining operator such as :add in the *pset form.

For example, if p!! is [0, 1, 2, 0, 1, 2, ..., 0, 1, 2, 0] and y! ! is initially [1,

I, ..., I] then

(*psot :add x!! y!! p!!)

has the side effect of changing y! ! to [45, 40, 35, I, 1, ..., 1]. The sum of

elements x ! ! (j) such that p ! ! (j) = k is stored in y ! ! (k) if there are any

such elements; otherwise y! ! (k) is unchanged. Other combining operators

(:max, :a_in, :product, etc.) are available.

2.3.2 Measured CM performance

We will develop a model of performance on data parallel architectures and

use it to analyze performance of several algorithms for sparse Cholesky fac-

torization. The essential machine characteristics in the model are described

by five parameters:

V

_r

P

The memory reference time for a 32 bit word

The 32 bit floating point time, in units of p

The 32 bit news ! ! time, in units of _b

The 32 bit scan! ! time, in units of _b

The 32 hit router time, in units of _b

Our model is that time scales linearly with VP ratio, which is essentially

correct for the Connection Machine. Therefore # is proportional to VP

10

ConnectionMachineParametricModel

Parameter

P

Description

P

Virtual processor ratio

32-bit memory reference

time

Floating-point operation

time - p

Measured CM2 value

4.77 .vpsec

Scan time + _b 16 - 20

v News time + _b 2

Route time + _b pset with no coUlsions: 64

pset with add (_ 4 collisions): 108

pset with add (_ 100 collisions): 203

pref (many collisions): 430

Table 1: Parameters of CM model

ratio, and the other parameters are independent of VP ratio. In Table 1,

we give measured values for these parameters obtained by experiment on

the CM-2. The range of scan times reflects the fact that the time actually

depends somewhat on the number of underlying hypercube dimensions in

the direction of the scan, which depends on the aspect ratio of the VP set.

We observe that router times range over a factor of four depending on the

number of collisions; it is possible to design pathological routing patterns

tluLt perform much worse than this. For any given pattern, pre_ t ! usually

takes just twice as long as *psez, presumably because it is implemented by

sending a request and then sending a reply. In our approximate analyses,

therefore, we generally choose a value of p for *pse_ corresponding to the

number of collisions observed, and model pzef ! ! as taking 2p floating-point

times.

3 Router Cholesky

Our first parallel Cholesky factorization algorithm is based closely on that

of Gilbert and Hafstelnsson [7], which is a theoretically efficient algorithm in

11

the PKAM modelof computation.Its communicationrequirementsaretoo
unstructuredfor it to beveryefficienton a message-passing multiprocessor

like the CM, but we implemented and analyzed it to use as a basis for

comparison and to help tune our performance model of the CM.

3.1 The Router Cholesky algorithm

Router Cholesky uses the elhnination tree T(A) to organize its computa-

tion. For the present, assume that both the tree and the symbolic factor-

ization G*(A) are available. (In our experiments we computed the symbolic

factorization sequentially; Gilbert and Hafsteinsson [7] describe a parallel

algorithm.) Each vertex of the tree corresponds to a column of the matrix.

A sequential column-oriented Cholesky factorization algorithm is as fol-

lows.

procedure Sequential-C'hoIesky (matrix A);

for j,--Iron do

for each edge (i,j) of G*(A) with i < j do

cmod (i,j) od;

cdi_ (j) od

end Sequential-Cholesky;

Here routine cdiv (j) divides the subdiagonal elements of column j by the

square root of the diagonal element in that column, and routine cmod (i, j)

modifies column j by subtracting a multiple of column i. This is a left-

looking algorithm, so-called because column j accumulates all necessary

updates cmod (i,j) f_om columns to its left just before the cdiv (j) that

completes its computation. By contrast, a right-looking algorithm would

perform aLl the updates cmod (i, j) using column i immediately after the

cdiv (i).

Now consider the elimination tree T(A). A given column (vertex) is

only modified by columns (vertices) that are its descendants in the tree.

Therefore a parallel left-looklng algorithm can compute all the leaf vertex

columns at once.

procedure Router-Cholesky (matrix A);

12

for h _ 0 to height(n) do

for each edge (i,j) with height(i) < height(j) = h pardo

cmod (i, j) od;

for each vertex j with height(j) = h pardo

cdiv (j) od

od

end Router-Cholesky;

Here height(j) is the length of the longest path in T(A) from vertex j to

a leaf. Thus the leaves have height 0, the vertices whose children are all

leaves have height 1, and so forth. The outer loop of this algorithm works

sequentially from the leaves of the elimination tree up to the root. At each

step, an entire level's worth of cmocPs and cdiv's is done.

A processor is assigned to every nonzero of the triangular factor (equiv-

alently, to every edge and vertex of the filled graph G*). Suppose processor

Pij is assigned to the nonzero that is initially alj and will eventually be-

come li$. (If lij is a fill, then a/$ is initially zero; recall that we assume

that the symbolic factorization is already done, so we know which lij will be

nonzero.) In the parallel ediv (j), processor Pjj computes ljj as the square

root of its dement, and sends ljj to processors Pij for i > j, which then

divide their own nonzeros by ljj. In the parallel cmod (i,j), processor P$i

sends the multiplier ljl to the processors Ph/with k > j. Each such Pk/then

computes the update lkil$i locally and sends it to Ptj to be subtracted from

I:,$.

We call this a left-initiated algorithm because the multiplications in cmod

(i,j) are performed by the processors in column i who then, on their own

initiative, send these updates to a processor in column j. Each column i

is involved in at most one cmod at a time because every column modifying

j is a descendant of j in T(A), and the subtrees rooted at vertices of any

given height are disjoint. Therefore each processor participates in at most

one cmod or cdiv at each parallel step. If we ignore the time taken by

communication (including the time to combine updates to a single Psi that

may come from different Pklt, P:a2, .-.) then each parallel step takes a

constant amount of time and the parallel algorithm runs in time proportional

to the height of the elimination tree T(A).

13

3.2 CM implementation of Router Cholesky

To implementRouterCho!eskyon the CM wemust specifyhow to assign
data to processors,and thendescribehowto do the communicationin cdiv
and cmod_

We use one (virtual) processor for each nonzero in the triangular factor L.

We lay out the nonzeros in a one-dlmensional array in column major order,

which makes operations within a single column emcient because they can use

the CM scan instructions. Each column is represented by a processor for its

diagonal element followed by a processor for each sub-diagonal nonzero. The

symmetric upper triangle is not stored. We can also think of this processor

assignment as a processor for each vertex] of the filled graph, followed by a

processor for each edge (i,]I with i >]. Incidentally, this one-dimensional

column-major arrangement is a common storage layout for sequential sparse

matrix algorithms.

We are profligateofparallelvariablestoragein Router Cholesky. Each

processorcontainsthe followingpvars:

1!!

i!!

j-h_! !

i-h$_

diagonal-p!!

e-pazon_!!

noxt-upda_o!!

Element of factor matrix L, initially A.

Row number of this element.

Column number of this element.

height(]) in Z(a).
height(i) in T(A).

Boolean: Is this a diagonal element?

In processor Pij, a pointer to P_(j).

Pointer to next element this one may update.

(Recallthat_]) >] isthe eliminationtreeparentof vertex] < n.)

At each stageof the sequentialouter loop,each processoruses £-h_ !!

and j-hs!! to decidewhether itparticipatesin a cdivor cmod. Macros

in-ac_ive-coluum-p !!,in-ac_ive-rov-p !!,in-done-coluum-p !!,and

in-done-roy-p! ! justcompare the localprocessor'si-hi! ! or j-h$! ! to

acl;ive-heighl;, the current value of the outer loop index.

The cdiv uses a scan operation to copy the diagonal element to the

rest of the active column. The foUowing is a slightly simplified version of

14

cdiv-active-columns, which does all the cdiv's at a particular height. The

boo]ean diagonal-p! ! separates the copy-scan into colunms.

(*defun cdiv-active-columns (active-height)

(*vhen (in-active-column-p!!)

(*sot l!!

))))

I!!

(scan!! (sqrt!! 1!!) 'copy!!

:soEmont-pvar diagonal-p!!)

The cmod uses a shnUar scan to copy the multiplier ljl down to the rest

of column i. The actual update is done by a pset :add, which uses the

router to send the update to its destination. The :add option means that

multiple updates to the same element wm be added together as they collide

in the router.

To figure out where to send the update, each element maintains a pointer

next-update ! ! to a later element in its row. The nonzero positions in each

row are a connected subgraph of the e]hnmation tree, and are linked to-

gether in this tree structure by the e-parent ! ! pointers. Each nonzero up-

dates only elements in columns that are its ancestors in the e/imination tree.

To figure out where to send the update, each element maintains a pointer

noxt-updato ! ! to a later element in its row. At each stage, next-update ! !

is moved one step up the tree using the e-parent!! pointers. A simpli-

fied version of cmod-active-colmnns foUows. We omit the detaUs of the

segmented scan that copies the multiplier down its column.

(,dofun cmod-activo-columns (active-height updato-odgo!!)

(*lot ((updatos!! (!! 0.0))) ; accumulator for updatos.

;; proc <ki> sends an updato

;; (l<ki> * l<ji>) to element l<kj>

(*when (in-done-column-p!!)

;; scan the multiplior down from the

;; uniquo element in an active row

(*lot ((l-j-i!! (scan-down-l-j-i!!)))

;; if a nonzero multiplier arrived thon update

(*.hen (I=!! 1-j-i!! (!! 0.0))

15

(*psot :add (.!! i!! 1-j-i!!)

u_a_o,!! upda_o-odg,!!)))

;; bu_ in any ovont, upda_o-edgo mus_ bo updated

(*.hon ($n-active-column-p!! updato-odge!!)

(*set ul:_date-edge!!

(pref!! o-parent!! update-odgo!!))))

;; proc <kj> subtracts accumulated updates from l<kj>

(*when (in-active-column-p!!)

(*set 1!! (-!! 1!! updates!!))

)))

3.3 Router Cholesky performance: Theory

Each stage oi'Router Cholesky does a constant number of router calls, scans,

and arithmetic operations. The number of stages is h + 1, where h is the

height of the elimination tree. In terms of the parameters of the machine

model in Section 2.3.1, then, its running time is

(clp + c2_ + cs)_ph.

Recall that the memory reference time p is proportional to the virtual pro-

cessor ratio, which in this case is IsT(L)/pl. The c.i are constants.

The most time-consuming step of the entire algorithm is incrementing

the update-edgo!! pointer. The router is used once (by a pref! !) in

(in-active-column-p!! update-edge! !) to determine whether to do

the increment, and again by the pref ! ! that does it. Counting the *pset,

then, cl is about 5. Then c2 is about 2 and ca, which accounts for all the

local computation, is about 4 (there is one square root, one divide, one

multiplication and one subtraction). The dominant term is the router term

clp_ph. Notice that we do not explicitly count time for combining updates

to the same element from different sources, since this is handled within the

router and is thus included in p.

To get a feeling for this analysis, consider a model problem which is

a 5-point fudte difference mesh in two dimensions, ordered by nested dis-

section [4]. If the mesh has k points on a side, then the graph is a k by

k square grid, and we have n = k 2, h = O(k), and ,7(L) = O(k21ogk).

16

Thenumberof arithmetic operations in the Cholesky factorization is O(kS),

in either the sequential or parallel algorithms. Router Cho]esky's running

time is O(pkSlogk/p). If we define performance as the ratio of the num-

ber of operations in the sequential algorithm to parallel time, we find that

the performance is O(p/logk) (taking p to be a constant independent of

p or k; this is approximately correct for the Connection Machine although

theoretically p should grow at least with logp). This analysis points out

two weak points of Router Cholesky. First, the performance on the model

problem drops with increasing problem size. (This depends on the problem,

of course; for a three-dimensional model problem a similar analysis shows

that performance is O(p) regardless of problem size.) More seriously, the

constant in the leading term of the complexity is proportional to the router

time p, because every step uses general communication.

This analysis can be extended to any two-dimensional finite element

mesh with bounded node degree, ordered by nested dissection. The asymp-

totic analysis is the same but the values of the constants will be different.

3.4 Router Cholesky performance: Experiments

In order to validate the timing model and analysis, we experimented with

Router Cholesky on a variety of sparse matrices. We present one example

here in detail. The original matrix is 2500 x 2500 with 7400 nonzeros (count-

ing symmetric entries only once), representing a 50 x 50 five-point square

mesh. It is preordered by Sparspak's automatic nested dissection heuristic,

which gives orderings very similar to the ideal nested dissection ordering

used in the analysis of the model problem above. The Cholesky factor has

_(L) = 48608 nonzeros, an elimination tree of height h = 144, and takes

1734724 arithmetic operations to compute.

We ran this problem on CM-2's at the Xerox Palo Alto Research Center

and the NASA Ames Research Center. The results quoted here are from

8192 processors, with floating point coprocessors, of the machine at NASA.

The VP ratio was therefore v = ITI(L)/pI= 8. (Rounding up to a power of

two has considerable cost here, since we use only 48608 of the 65536 virtual

processors.) We observed a running time of 53 seconds, of which about 41

seconds was due to pre_ ! ! and *pset. Substituting into the analysis above

(using p - 200 since there were in general many collisions), we would predict

router time clp_ph = 39 seconds and other time (c2_r+ca)_ph = 1.5 seconds.

17

This is not a bad fit for router time; it is not clear why the remaining time

is such a poor fit, but the expensive square root and the data movement

involved in the pointer updates contributes to it, and it seems that I/O may

have affected the measured 53 seconds.

The observation, in any case, is that router time completely dominates

Router Cholesky.

3.5 Remarks on Router Cholesky

Router Cholesky is too slow as it stands to be a cost-effective way to factor

sparse matrices. Each stage does two pzef ! ! 's and a *pset with exactly the

same communication pattern. More careful use of the router could probably

speed it up by a factor of two to five. However, this would not be enough to

make it practical; something more llke a hundredfold improvement in router

speed would be needed.

The one advantage of Router Cholesky is the extreme simplicity of its

code. It is no more complicated than the numeric factorization routine of

a conventional sequential sparse Cholesky package [6], which compares very

favorably to the complexity of a column-oriented sparse Cholesky code on

a MIMD message-passing multiprocessor [5, 19]. This speaks well for the

data parallel programming model of the Connection Machine, and suggests

that with improvements in router technology future generations of data par-

allel machines may allow efficient parallel programs for complex tasks to be

written nearly as easily as sequential programs.

We described Router Cholesky as a left-initiated, left-looking algorithm.

In a right-initiated algorithm, processor P_j would perform the updates to

llj. In a right-looking algorithm, updates would be applied as soon as the

updating column of L was computed instead of immediately before the up-

dated column of L was to be computed. Router Cholesky is thus one of four

cousins. It is the only one of the four that maps operations to processors

evenly; the other three alternatives require an inner sequential loop of some

kind. AJ] four versions require at least h router operations.

18

4 Grid Cholesky

In this section we present a paraUel multifrontal Cholesky algorithm and its

implementation on the CM. The algorithm uses a two-dimensional VP set

(which we call the "playing field") to partially factor, in parallel, a number

of dense principal submatrices of the partially factored matrix. By working

on the playing field, we may use the fast news and copy scan mechanisms

for all the necessary communication during the factorization of the dense

submatrices. Only when we need to move these dense submatrices to the

playing field and remove Schur complements from it do we need to use the

router. In this way we drastically reduce the use of the router: for the model

problem on a k x h grid we reduce the number of uses from h = 3h - 1 to

2 log 2 h - 1. The playing field can also operate at a lower VP ratio in general

because it does not need to store the entire factored matrix at once.

4.1 The Grid Cholesky algorithm

4.1.1 A block Jess and Kees reordering

Consider the chordal graph G = G*(A). The ordering {1, 2,...,n} is a

perfect _ation ordering of G. We first present a method for reordering

the vertices of G in such a way that we introduce no additional flU, producing

a new perfect elhnination ordering of G. The new ordering has two desirable

properties: It eliminates vertices with identical monotone neighborhoods

consecutively, and it greedily _zes the height of a clique tree that we

define below.

The objective of this strategy is twofold. First, in performing the fac-

torization of A we may work with dense suhmatrices that correspond to

sets of vertices of G having the same monotone neighborhood; we factor

this submatrix on a two-dimensional grid of virtual processors using fast

communication mechanisms. Second, we show that several such sets may

be ellm_ated in parallel. Our reordering minimizes the number of parallel

major steps (consisting of parallel elimination of independent sets of vertices

of the same structure) in the same way that the Jess/Kees reordering proce-

dure [10] minimizes the number of parallel steps over all perfect elimination

orderings of G.

19

Our reorderingeliminatesall the simpliclal vertices of G simultaneously

as one major step. In the process, it partitions the all the vertices of G into

sets. Each of these sets is a clique in G, and is a simp]icial clique when its

component vertices are about to be eliminated. Each vertex is labelled with

the stage, or major step number, at which it is eliminated. In more detail,

the reordering algorithm is as follows.

procedure Reorder(graph G*(A))

G*--G*(A);

active.stage ,-- -1;

while G is not empty do

active.stage *-- active.stage + 1;

Number all the simpllcial vertices in G, with those in a given

simpHcial clique numbered consecutively;

stage(v) 4- aetive._tage for all such vertices v;

Remove all the simplicial vertices from G od;

h ,- active.stage

end Reorder

We contrast this with the Jess and Kees method for reordering to min-

imize elimination tree height. At one step we eliminate all the simplicial

vertices (that is, all the vertices in every simplicial clique); at one step they

eliminate a maximum-size independent set of simplicial vertices (that is, one

vertex from each simplicial clique). Thus this might be called a "block Jess

and Kees" ordering.

These cliques can also be arranged into a tree whose height is h, one less

than the number of major elimination steps. The parent of a given clique

is the lowest-stage clique adjacent to the given clique. We call this tree the

clique tree of A. A related but not identical clique tree was used by Lewis,

Peyton, and Pothen in their efficient implementation of the point Jess and

Kees algorithm [11].

We shah refer to all the nodes of the clique tree as the "simplicial cliques"

of A, although strictly speaking a clique is not simplicial until its children

have been eliminated. Every vertex is included in e_ctly one simp]Jcial

clique. Suppose the simplicial cliques {Sx,...,Sin} are numbered in such a

way that if i < j then the vertices in 5'_have lower numbers than the vertices

in Sj. The stage at which a simp]Jcial clique S is eliminated is the iteration

20

of the while loop at which its vertices are numbered and eliminated; thus,

for all v E S, stage(_) = stage(S).

4.1.2 Multifrontal elimination

Let C be a simplicial clique. It is straightforward to show that K = adj(C)u

C is also a clique, and that it is maximal. Our factorization algorithm works

by forming the principal submatrices of A corresponding to vertices in the

maximal cliques generated by simplicial cliques in this way.

Let 7c = IC[and ¢zc = l adj(C)[. Write A(K,K) for the principal

submatrix of order]K I = 7c + _c consisting of elements Ai,j with i,j G K.

It is natural to partition A(K, K) as

A(K,K)= (Xc Ec)E T YC '

where Xc = A(C,C) is 7c ×7c, Ec : A(C, adj(C)) is 7c x _rc,and

Yc = A(adj(C),adj(C)) is o'c x o'c.

The Grid Cholesky algorithm is as follows:

procedure Grid-Cholesky (matrix .4)

for active_stage _ 0 to h do

forall simplicial cliques C such that stage(C) = active_stage pardo

Move A(K, K) to the playing field,

where K = C U adj(C);

Set Yc to zero on the playing field;

Perform 7c steps of parallel Gaussian elimination without pivoting

to compute the Cholesky factor Lc of Xc,

the updated submatrix E_ = L_IEc,

and the Schur complement Y_ = -E_X_IEc;

A(c, c) Lc;
A(adj(C),C)- E_';

A(adj(C),adj(C))*--A(adj(C),adj(C))+ Y_ od

od

end Grid-CholesI_l;,

-21

4.2 Multiple dense partial factorization

In order to make this approach useful, we need to be able to perform dense

matrix factorizations fast on two-dimensional VP sets. To that end, we dis-

cuss an implementation of LU decomposition without pivoting. (We can see

no efficient way to exploit symmetry with a two-dimensional machine; more-

over, compared with LL T factorizstion, the LU factorization substitutes a

reciprocal for a reciprocal square root and so is a bit faster). We analyzed

and implemented two methods: a systolic algorithm that uses only nearest

neighbor communication on the grid, and a rank-1 update algorithm that

uses row and column broadcast by copy scan. With either of these methods,

all the submatrices A(K, K) corresponding to simplicial cliques at a given

stage are distributed about the two-dimensional playing field simultaneously

(each as a separate "baseball diamond"), and the partial factorization is ap-

plied to all the submatrices at once. We describe the algorithms in terms of

their effect on a single submatrix A(K, K), with a simplicial clique of size

_c and a Schur complement of size ac.

4.2.1 Systolic factorlzation

Our systolic algorithm is based on the wavefront algorithm of 0'Leafy and

Stewart [13]. It differs in that we compute an LU factorization instead of an

LL T fsctorization in order to avoid the diagonal square root, and of course

we compute a partial factorization and a Schur complement instead of a

complete factorization.

The communication is entirely nearest-neighbor. The wavefront moves

across the matrix in steps. The number of steps is 37c + 2ac: the first

wavefront must travel an 11 distance of 27a + 2ac to reach the lower right

corner of the matrix, and in all 7c wavefronts must reach that corner at

a rate of one per step. A step consists of two NEWS operations (one in

each dimension), a multiplication (as some processors compute elements of

L), and a multiply-subtract (as some processors perform the unit steps of

Gaussian elimination). Also, "lc of the steps include a division to compute

the inverse of a diagonal element.

If *f0 and a0 are the sizes of the largest simplicial clique and Schur eom-

22

plementin agivenstage,thentherunningtimeofthestageisapproximately

whereci is about 2(370 + 2_r0) and c_ accounts for the arithmetic mentioned

above as well as some bookkeeping.

Here are the experimentally observed relative times taken by the various

operations when factoring a single n × n dense matrix (so that _/0 = n and

= 0).

News (to move matrix elements systolicaUy):

Determining context and other bookeeping:

Multiply (computing multipliers):

Divide (reciprocal of pivot element):

Multiply-subtract (Gaussian elimination):

30.4%

43.5%

7.1%

9.1%

10.1%

4.2.2 Factorization by rank-I update

The second dense partial factorization algorithm works by applying rank-I

updates. A single rank-I update consists of a division to compute the recip-

rocal of the diagonal element, a scan down the columns to copy the pivot

row to the remaining rows, a parallel multiplication to compute the multi-

plier for each row, another scan to copy the multiplier across each row, and

finally a parallel multiply and subtract to apply the update. The number of

rank-1 updates is "_c, the size of the simplicia] clique. Again we compute an

LU factorization instead of a Cholesky factorization to substitute a recipro-

ca] for a square root in the inner loop of the algorithm. (At the end of each

stage we convert the LU factorization to a Cholesky factorization by tak-

ing square roots ofaU the diagonal elements simultaneously, scanning them

down their columns, and dividing by them, which takes negligible time.)

In terms of the parameters above, a stage of rank-I partial factorization

23

takestime

Herecs is about 270, and constant c4 is at most about c2/3 (or smaller if

_o > 0).

The relative cost of the various parts of the rank-1 update code are sum-

marized below, for a complete factorization (that is, one in which there is no

Schur complement). The bookkeeping includes nearest-neighbor nows oper-

ations to move three one-bit tokens that control which processors perform

reciprocals, multiplications, and so on at each step.

Copy scans (row and column broadcast):

News (moving the tokens):

Multiply (computing multipliers):

Divide (reciprocal of pivot element):

Multiply-subtract (Gaussian elimination):

79.7%

5.5%

2.7%

7.1%

4.8%

4.2.3 Remarks on dense partial factorization

The choice between systolic and rank-1 factorization depends on the archi-

tecture. Theoretically, systolic factorization should be asymptotically more

efficient as machine size and problem size grow without bound, because scans

must become more expensive as the machine grows. Realistically, however,

the CM happens to have _ ._ 3v, so for a full factorization a threefold de-

crease in communication time per step just balances the threefold increase

in number of steps. For a partial factorization the rank-1 algorithm is the

clear winner because its time does not grow with the size of the Schur com-

plement. For example, for the two-dimensional model problem the average

Schur complement size ¢rc is about 47c, so the rank-1 code has an 11 to 1

advantage in number of stepS. This more than makes up for the fact that

scan! ! is three to four times slower than herS! !.

24

It is interesting to note that the only arithmetic that matters in a se-

quential algorithms the multiply-subtract s accounts for only 1/20 of the total

time in the rank-1 parallel algorithm. Moreover, only 1/3 of the multiply-

subtract operations actually do useful works since the active part of the

matrix occupies a smaller and smal]er subset of the playing field as the com-

putation progresses. This gives the code an overall efficiency of one part in

sixty for LU, or half that for Cho]esky. We have found this to be typical

in *lisp codes for matrix operations, especially with high VP ratios. The

reasons are these: scaa!! is slow relative to arithmetic; the divide and

multiply operations occur on very sparse VP sets; and the VP ratio remains

constant as the active part of the matrix gets smaller.

More efficient use of virtual processors could improve performance by a

small factors perhaps four. The VP set could shrink as the matrix shrinks,

and the multiplies could be performed in a sparser VP set.

However significant improvements in performance must come from other

sources. At least two such sources exist.

First, the scans could be sped up considerably within the hypercube

connection structure of the CM. Ho and Johnsson [8] have developed an

ingenious algorithm that takes O(b/d + d) time to broadcast b bits in a d-

dimensional hypercube, in contrast to the *lisp scan which takes O(b + d).

It is rumored to be available in a forthcoming release of the CM Fortran

library.

Second, more efficient use of the low-level floating-point architecture of

the CM-2 is possible. The performance model of Section 2.3 does not take

into account the fact that every 32 physical processors share one vector

floating-point arithmetic chip. Performing 32 floating point operations im-

plies moving 32 numbers in bit-serial i_ashion into a transposer chips then

moving them in parallel into the vector chips then reversing the process to

store the result. While this mode of operation conforms to the one-processor-

per-data-element programming model, it wastes a lot of time when only a

few processors are actually active, such as when computing multipliers or

diagonal reciprocals. This mode also requires intermediate results to be

stored back to main memory, precluding the use of block algorithms that

could store intermediate results in the registers in the transposer chip. This

causes the computation rate to be limited by the bandwidth between the

transposer chip and the processor memories instead of by the operation rate

25

of the vectorchip.

A moreefficientdensematrix factorizationcanbeachievedby thinkingof

each32-processor-plus-transposer-and-vector-chipunit asa single processor,

and representing 32-bit floating-point numbers "sideways z, with one bit per

physics] processor, so that they do not need to be moved bit-serially into the

arithmetic unit. At the time this work was done the tools for programming

on this level were not easily usable. Recently, Thinking Machines has made

avs]]able a library of dense matrix routines that use this approach; we are

currently considering how best to incorporate it into our code. (It is also

rumored that CM Fortran wiI] eventually adopt this model.)

4.3 CM implementation of Grid Cholesky

We use two VP sets for Grid Cholesky: matrix-storage stores the nonzero

elements of A and L (doing almost no computation), and factoring-grid

implements the playing field where the dense partla] factorizations are done.

The top-level factorizationprocedure is just a loop that moves the active

submatrices to the playing field, factors them, and moves updates back to

the main matrix. Here is a slightly simplified version of the code.

(*defun grid-:_actor () "Factor matrix a to produce 1"

(*sot 1-value!! a-valuo!!)

(dot:i_umos(stage _-sta4_o)

Cmove-to-lactor-_id st_o)

(factor-on-_id stago)

(updato-:t rom-f act or-grid staga)

))

We present simplified versions of the three main subroutines in the Ap-

pendix.

4.3.1 Matrlxstorage

The VP set matrlx-storago is a one-dimensions] array of virtual proces-

sors that stores a_of A _a_n___L_in_.a._f?..:r_n-_s_ toL the st_d col_-

oriented sparse storage scheme used for example in Sparspak [6], and in

26

Router Cholesky. Each of the following pvars has one element for each

nonzero in L.

1-value !!

Erid-i !!

Elements of L, initially those of A.

The playing field row in which this element sits.

The playing field column in which this element sits.

active-stage ! ! The stage at which j occurs in a simplicial clique.

updates ! ! Working storage for sum of incoming updates.

Routine move-to-factor-grid uses *pset to move the active columns

from matrix-storage to the playing field. The simplicial cliques C are dis-

joint, but their neighboring sets adj(C) may overlap; that is, more than one

Yc may be computing updates to the same element of L at the same stage.

Therefore, routine update-from-factor-grid uses *pset :add to move the

partially factored matrix from the playing field back to matrix-storage.

4.3.2 The playing field

The second VP set, called factoring-grid, is the two-dimensional playing

field on which the simplicial cliques are factored. In our implementation it

is large enough to hold all the principal submatrices for all maximal cliques

st any stage, although it could actually use different VP ratios at different

stages for more efficiency. Its size is determined as part of the symbolic

factorization and reordering. The pvars used in this VP set are

dense-a! ! The playing field for matrix elements.

update-dear! ! The matrix storage location (processor) that holds

this matrix element; an integer pvar array indexed by stage.

as we]] as some boolean flags used to coordinate the simultaneous partial

factorization of all the rn_TimA! cliques.

The subroutine factor-on-grid carries out the factorizations on the

playing field. It performs partial LU factorlzation by simultaneously doing

27

rank-I updatesof All the dense submatrices on the playing field, as de-

scribed in Section 4.2.2. The number of rank-1 update steps is the size of

the largest simpllcial clique at the current stage. The submatrices may be

different sizes; each matrix only does as many rank-1 updates as the size of

its simplicial clique. We omit the complete code for this subroutine because

the bookkeeping operations to do all the factorizations at once render it

opaque. Instead, the Appendix contains a simplified code that computes a

Schur complement in a single dense matrix by rank-1 updates.

In order to use this procedure we need to find a placement of all the

submatrices A(K, K) for all the m,LTirnA| cliques K at every stage. This is

a two-dimensional bin packing problem. In order to minimize CM compta-

tion time, we want to pack these square arrays onto the smallest possible

rectangular playing field (whose borders must be powers of two). Optimal

two-dimensional bin-packing is in general an NP-hard problem, though var-

ious efficient heuristics exist [3]. Our experiments use a Simple "first-fit by

levels" heuristic. This layout is done during the sequential symbolic factor-

ization, before the numeric factorization is begun.

4.4 Grid Cholesky performance: Theory

We separate the running time for Grid Cholesky into time in the matrix

storage VP set and time on the playing field. The former includes all the

router traffic, and essentially nothing else. (There is one addition per stage

to add the accumulated updates to the matrix.) There are a fixed number

of router calls per stage, so the matrix storage time is

T_s = csp_bPMS?t

for some constant c_. In the current implementation c5 = 4, since two

*psets are used to move the two symmetric parts of the dense matrices to

the playing field at the beginning of a stage, and then two separate *peers

are used to move back the completely computed columns and the Schur

complements. The subscript MS indicates that the value of p is taken in the

matrix storage VP set. The VP ratio in this VP set is VM$ = IvT(L)/p].

We express the playing field time as a sum over levels. At each level the

number of rank-1 updates is the size of the largest simplicial clique at that

28

stages R(s) maxTc

h

h-1

h-2

h-3

h-4

h-5

h-6

h-7

- 2r

h-2r-1

1

2

4

8

16

32

64

128

2 2r

22r+1

k

k/2
k/2

k/4

k/4

k/8
k/8
k/ 6
k12"

k/2,+ I

m (Tc + #c) E(Tc + "c)=

k

3k/2

3k/2

3k/2
5k/4

 k/8
sk/8
7k/16

sk/2"
7k/2"+I

k 2

4.5k 2

9k=

18k 2

25k 2

24.5k 2

25k 2

24.5k 2

25k 2

24.5k 2

Table 2: Subproblem countsand playingfieldsizeforthe model problem.

level.According to the analysisin Section4.2.2,then,

Top, = (cso" + c7) _, max 7c4P#.,
,=0 ,t4g,(C)=,

where cs and c7 are constants (in fact c8 = 2), and the subscript s indicates

that the value of g is taken in the playing field VP set at stage s. The V'P

ratio in this VP set could be approximately the ratio of the total size of

the dense subn_trices at stage 8 to the number of processors, changing at

each stage as the number and size of the maxima] cliques vary. However in

our implementation it is simply fixed at the maximum of this value over al]

stages.

Again, to get a fee]Jngfor this analysis let us consider the model problem,

a 5-point finite difference mesh on a k x k grid ordered by nested dissection.

For this problem n = k', ti= O(logk), and _/(L)= O(k'logk). The

factorisationrequiresO(k s)arithmeticoperations.Table 2 summarizes the

number and sizesof the cliquesthat occur at each stage.The columns in

the tableare as follows.

R(s) Number of simplicialcliquesat stages.

max 3'c Sizeoflargestsimplicialcliqueatstage s.

max(Tc + #c) SizeoflargestmaTimal cliqueC U adj(C) at stages.

_(7c + _rc)2 Total area ofalldense submatricesA(K,K) at stages.

29

The VP ratio in matrix storage for the model problem is O(_(L))/p --

O(k21ogk/p), so the matrix storage time is O(k_log _ k/p). Our pilot im-

plementation uses the same size playing field at every stage. According to

Table 2, a playing field of size about 25k 2 sui_ces if the problems can be

packed in without too much loss. Rounding this up to a power of 2, we

actually need to use a 4h × 8h playing field. The VP ratio is O(k2/p). The

sum over all stages of maxTc is O(h) (in fact it is 3h +O(1)), so the playing

field time is O(kS/p). In summing, the total running time of Grid Cholesky

for the model problem is

.p + o" .
P

Two things are notable about this: First, the performance, or ratio of

sequential arithmetic operations to time, is O(p); the log k inefficiency of

Router Cholesky has vanished. This is because the playing field, where

the bulk of the computation is done, has a lower V'P ratio than the ma-

trix storage structure. Second, and much more important in practice, the

router speed p appears only in the second-order term. This is because the

playing-field computations are done on dense matrices with more efficient

grid communication.

One way of looking at this difference is to think of increasing both prob-

lem size and machine size so that the VP ratio remains constant. Then the

model problem requires O(h) total parallel operations, but only O(]ogh)

touters. This means that the router time becomes less important as the

problem size grows. The analysis of the model problem carries through

(with different constant factors) for any two-dimensional finite element prob-

lem ordered by nested dissection; a similar analysis carries through for any

three-dlmensional finite element problenL

4.5 Grid Cholesky performance: Experiments

Here we present experimental results from a relatively small model problem,

the matrix arising from the 5-point discretization of the Laplacian on a

square 63 × 63 mesh, ordered by nested dissection. This matrix has n = 3969

columns and 11781 nonzeros (counting symmetric entries only once). The

Cholesky factor has 17(L) - 85416 nonzeros, a clique tree with h = 11 stages

of simplicial cliques, and takes 3658949 arithmetic operations to compute.

30

TheVP setmatrix-storago requires 128K VPs. The fixed-size playing

field requires 256 × 512 VPs (which is quite inefficient for the last few stages,

where we see from Table 2 that the total size of the dense subproblems is

much smaller). We performed our experiments on CM-2's at the Xerox Palo

Alto Research Center and the NASA Ames Research Center. The results

quoted here are from 8192 processors, with floating point coprocessors, of

the machine at NASA. Both VP sets therefore had a VP ratio of 16. (A

larger problem would need a higher VP ratio in the matrix storage than in

the playing field.)

We observed a running time of 6.13 seconds. Of this, 4.09 seconds was

playing field time (3.12 for the copy scans, 0.15 for nearest-neighbor moves of

one-bit tokens, and 0.82 for local computation). The other 2.04 seconds was

matrix storage time, consisting mostly of the four *pso_s at each stage. Our

analytic model predicts playing field time to be just about 3k. (2¢r+4)_bppF.

This comes to 4.0 seconds, which is in good agreement with experiment.

The model predicts matrix storage time of about h. 4p_PMS. This comes

to between 1.5 and 4.7 seconds, depending on which value we choose for p.

In fact 3/4 of the routers are *psot with no collisions, and the other 1/4

are *psot :add typically with two to four collisions. The fit to the mode]

is therefore quite dose.

4.6 Remarks on Grid Cholesky

The first question is whether Grid Chohsky is a router-bound code like

Router Cholesky. For the small sample problem the relative times for router

and non-router computations are as follows.

Move-to-factor-grid: 12_

Factor-on-grid: 67%

Update-from-factor-grid: 21_

Evidently, the Grid Cholesky code is not router-bound for this problem. For

larger (or structurally denser) problems this situation gets better still: For

31

amad_ineof fixedsize,the time spent using the router grows llke O(log _ k)

while the time on the playing field grows like O(k s) for a k x k grid, as we

showed above. If we solved the same problem on a full-slzed 64K processor

machine, the relative times would presumably be the same as above; but if

we solved a problem 8 times as large the operation count would increase by

a factor of about 22 while the number of stages, and router calls, would only

increase by a factor of about 1.3.

Next, we ask whether our use of the playing field is efficient or not. The

number of parallel elimination steps on the playing field is given by

which for the model problem is 3k. On a playing field of 32k 2 processors

(with dimensions rounded up to a power of 2), this allows us to do 96k s

flops. The number of "useful flops" (that is, flops in the sequential Cholesky

fsctorization) is (829/84)k s plus lower order terms. This is an efficiency of

about 829/(84 x 96) = 10.3%. There are several reasons for this loss of effi-

ciency: The algorithm does both halves of the symmetric dense subproblems

(factor of 2); the implementation uses the same playing field size at every

level (factor of about 4/3); the architecture forces the dimensions of the

playing field to be powers of two (factor of about 5/4); each rank-1 update

consists of a divide, multiply, and multiply-add, the first two of which occur

in only a smal] number of processors (factor of about 5/2); and as the dense

factorization progresses processors in the simpllcial cliques fall idle (factor

of about 3/2).

It is also interesting to note that computing many Schur complements in

parallel is actually more efficient on a mesh of processors than computing a

single dense factorization. The reason is that computing Schur complements

keeps more of the processors busy all the time, while the processors involved

in a factorization fail idle as their elements are computed. A careful analysis

of the model problem indicates that if the VP ratio of the playing field

could be varied at each stage so that the dense submatrices corresponding

to maxima] cliques just fit on it, then useful flop rate for the playing field part

of the model problem would be about 192% of that for a dense factorization.

This U]ustrates the importance of regularity in the time dimension for data

parallel algorithms.

32

Onthis smallexample,Grid Choleskyisabout20timesasfastasRouter

Cholesky. It is, however, only running at .597 megaflops on 8K processors,

which would scale to 4.77 megaflops on a full 64K machine. A larger prob-

lem would run somewhat faster, but it is clear that making Grid Cholesky

attractive will require improvements in the dense partial factorizatious along

the lines described in Section 4.2.3.

5 Conclusions

We have compared two highly parallel general purpose sparse Cholesky fac-

torization algorithms, implemented for a data parallel computer. The first,

Router Cholesky, is concise and elegant and takes advantage of the paral-

lelism present in the elimination tree, but because it pays little attention to

the cost of communication it is not practical for the Connection Machine.

We therefore developed a parallel supernodal algorithm, Grid Cholesky,

that does most of its work with efficient communication on dense subma-

trices. Analysis shows that the requirement for expensive general-purpose

communication grows only logarithmically with problem size, and experi-

ment shows that Grid Cholesky is about 20 times as fast as Router Cholesky

for a moderately small sample problem. Although Grid Cholesky is more

complicated than Router Cholesky, we are still able to use the data parallel

programming paradigm to express it in a straightforward way.

As it stands, our pilot implementation of Grid Cholesky is not fast

enough to make the Connection Machine a cost-effective alternative to mini-

supercomputers for solving generally structured sparse matrix problems. We

believe, however, that these experiments and analysis lead to the conclusion

that a parallel supernodal/multifrontal algorithm can be made to perform

efficiently on a data parallel ma_e. This is because, first, the perfor-

mance of our pilot implementation is limited basically by the performance

of its dense matrix kernel; and, second, the path to improving that kernel is

fairly clear.

Let us expand on the latter point. Potential sources of increased ef-

ficiency in the dense factorization include: representing playing field data

sideways (factor of perhaps 2); taking advantage of transposer chip registers

(factor of perhaps 5); improved algorithms for row and column broadcasts

. 33

(factor of perhaps3); changingthe VP mappingat eachstageto usethe
playing field morefully (factor of perhaps3). The_directions makethe
factor of 5000between the performance of our pilot implementation and

the 27-gigaflop theoretical peak performance of a 64K processor CM yawn

somewhat less impressively.

We note that most of these improvements are below the level of the vir-

tual processor abstraction, which is to say below the level of the assembly-

language level architecture of the machine. Though TMC has recently made

available a low-level language called CMIS in which a user can program be-

low the virtual-processor level, we believe that ultimately most of these dense

matrix optimizations should be applied by high-level language compilers. In

other words, we believe that future high-level/anguage compUers for data

parallel machines, while they may support the virtual processor abstraction

at the user's level, will generate code at a]eve] below that abstraction. The

CM Fortran compiler is moving in that direction, which interestingly enough

makes Fortran in some ways the highest-level of the languages available for

the Connection Machine.

In summary, even though our pilot implementation is not extremely

fast, we are nonetheless very encouraged both about the Grid Cholesky

algorithm, and about the potential of data parallel architectures for solving

unstructured problems.

We mention four good avenues for further research.

The first is scheduling the dense partial factorizations efficiently. The

tree of simplicial cliques identifies a precedence relationship among the rati-

ons partial factorizations. Our simple approach of scheduling these one]eve]

at a time onto a fixed-size playing field is not the only possible one. There is

in genera] no need to perform all the partial factorizations at a single level

simultaneously. It shonld be posslbie to nse more sop_sticated heuristics

to schedule these factorizations onto a playing field of varying VP ratio, or

even (for the Connection Machine) onto a playing field considered as a mesh

of individual vector floatlng-point chips.

The second avenue is improving the matrix storage VP set time. Of

course, as problems get larger this time takes a sm_er fraction of the to-

tal. At present matrix storage time is not very significant even for a small

problem, but it will become more so as the playing field time is improved.

34

Third, wementionthe possibilityof an out-of-main-memoryversionof
Grid Choleskyfor very largeproblems.Herethe cliquetreewouldbeused
to scheduletransfersof data between the high-speed parallel disk array

connected to the CM and the processors themselves.

Fourth and finally, we mention the possibility of performing the combi-

natorial preliminaries to the numerical factorization in parallel. Our pilot

implementation uses a sequentially generated ordering, symbolic factoriza-

tion, and clique tree. We are currently designing data parallel algorithms to

do these three steps.

We conclude by extractingone lastmoral from Grid Cholesky.We find

itinterestingand encouraging that the key ideaof the algorithm,namely

partitioningthe matrix intodense submatricesina systematicway, has also

been used to make sparseCholesky factorizationmore ei_cienton vector

supercomputers [18]and even on workstations[16].In the former case,the

dense submatricesvectorizeei_ciently;in the latter,the dense submatrices

are carefullyblocked to minimize trafBcbetween cache memory and main

memory. We expect that more experiencewillshow that many techniques

used to implement sequentialalgorithmsei_cientlyon sequentialmachines

with hierarchicalstoragewillturn out to be usefulfor data parallelma-

chines.

Appendix: Details of Grid Cholesky

Here we givea somewhat more detailedview of the *lisp implementation

of Grid Cholesky,as describedin Section4.

The Cholesky factorL is held in a one-dimensionalVP set,which is

called matrix-storage. The pvars used are

a-value!!

l-value!!

grid-i!!

grid-j!!

ac$ive-sSage!!

Elements of .4.

Elements of L, initially those of A.

The playing field row in which this element sits.

The playing field column in which this dement sits.

The stage at which j occurs in a simpllcial clique.

35

updates ! : Working storage for sum of incoming updates.

The playing field is a two-dimensions] VP set called factoring-grid

that is large enough to hold all the principal submatrices for all m_ms]

cliques at any stage. Its size is determined as part of the symboUc factor-

ization and reordering. (As described in the main paper, an optimization

would be to reconfigure this VP set at each stage of the factorization to fit

the submatrices at that stage.) The pvars used in this VP set are

dense-a! ! The playing field for matrix elements.

updase-dest! : The matrix storage location (processor) that holds

this matrix element; an integer pvar array indexed by stage.

in-clique-p: : A boolean pvar array that is true when this location

holds an element whose column is a member of a simpllcis] clique at

this stage; indexed by stage.

:Lu-zchur-p: ! A boolean pvar array that is true when this location is

in a Schur complement; indexed by stage.

Here is the *lisp code. As in Section 3, the code has been simplified

somewhat in the interest of clarity.

(,dofun grid-fac$or () "Pactor xaatrix a to produce 1"

(*sot 1-value! ! a-value! .0)

(dotJ_nos (sta_e nx-stago)

(movo-$o-:t ac$or-grid sSago)

(:facl;or-on-_zid stago)

(upda$o-:f rom-f ac$or-_.zid stage)

))

The two functions move-to-factor-grid and update-from-factor-grid

do pretty much what their names say they do. Here is move-to-factor-grid:

(*defun move-so-factor-grid (stago) "Move columns active at

this altago _o _ho play:i_g field"

(*with-vp-set factoring-grid

(*sot dense-a!! (!! 0.0)))

(*with-vp-set matrix-storage

(*ghon (=!! active-stage!! (!! stage))

;; Move the lover triangle of each active

;; simplicial clique to the playing field.

(*peer :no-collisions

l-value!!

dense-a!!

grid-i!! grid-j!!

:vp-set factoring-grid)

;; Move same stuff to the upper triangle

;; in the playing field.

(*peer :no-collisions

1-value!!

dense-a!!

grid'j!! grid-i!!

:vp-set factoring-erid))))

and here is update-from-factor-grid:

(*defunupdato-from-factor-grid (stage) "Move tho updates

back from the playing field."

(*eith-vp-eet matrix-storage

(*sot updates!! (!! 0.0)))

(*with-vp-sot factoring-grid

;; First store back the completely computed

;; columns of the simplicial cliques.

(*when (arof in-clique-p!! (!!stage))

(*pset :no-collisions

dense-a!!

1-value!!

(aref!! updato-dost!! (!! stage))

:3q_-sot matrix-storage))

37

;; Next accumulate the updates from the nevly

;; computed Schur complements.

(*ehen in-schur-p!!

(*psot :add

dense-a!!

updates!!

(aref!! updato-dost!! (!! stake))

:vp-sotmatrix-storako)))

;; Finally, add the updates to the original matrix values

(*with-vp-set matrix storage

(eset 1-value!! (+!! 1-value!! updates!!))))

The procedure factor-on-grid carries out the factorizations on the

playing field. Instead of showing all the details of factor-on-grid (which

is rather opaque), we present the following code, which is a version that

omits the bookkeeping necessary to solve many problems at once in paral]el.

The following code uses the algorithm of factor-on-grid to compute a

single Schur complement in a matrix a! ! on a two-dimensional VP set:

(*defun rank-l-dense-factor (a!! n gamma)

"Scur complement of a dense matrix"

;; a!! is the matrix.

;; On output, it holds the partial LU decomposition.

;; n is the order of a!!. The VP sot is n by n

;; gamma is the order of the (1,1)

;; block of a!! to be eliminated

(*set roe!! (self-address-grid!! 0))

(*set col!! (self-address-grid!! 1))

;; done-token is true in the pivot roe

;; muir-token is true in the pivot column

;; div-tokon is true at the pivot element

;; update-token is true in a(k+l:no k+l:n)

38

(*set done-token!! (=!! row!! (!! 0)))
(*set muir-token!! (=!! co1!! (!! 0)))

(*set div-token!! (and!! done-token!! muir-token!!))

(*vhen die-token!!

(*sot done-token!! nil!!)

(eset muir-token!! nil!!))

(*sot update-token!!

(and!! (>!! row!! C!! 0))

(<:!! row!! C!! C- n 1)))

C>!! co1!! C!! 0))

(<=!! col!! C!! C- n 1)))))

(*when (or!! div-token!! muir-token!! done-token!!)

(*set update-token!! nil!!))

;; Oaussian elimination

(dotimes (k gannna)

(*when div-token!!

(*set a!! C/!! (!! 1.0) a!!)))

;; Broadcast the pivot roe

(*set col-belt!!

(scan!! a!! 'copy!! :dimension 0

:segment-pear (or!! die-token!! done-token!!)))

;; Compute the multipliers

(*when muir-token!!

(*set a!! (*!! col-belt!! a!!)))

;; Broadcast the multipliers

(*set row-belt!!

(scan!! a!! 'copy!! :dimension 1

:se_nent-pvarmult-token!!))

;; Rank-one update to the submatrix

(*vhen update-token!!

(edecf a!!

(*!! roe-belt!! col-belt!!)))

;; move the tokens using news!!

(eset done-token!! (news!! done-token!! -I 0))

(*set muir-token!! (news!! muir-token!! 0 -i))

(*when (or!! done-token!! muir-token!!)

(*set update-token!! nil!!))

39

(*so_ div-$okon!!

(and!! dono-$okon!! mul_-$oken!!))

(*when div-$okon!!

(*so_ dono-_okon!! nil!!)

(*so_ mul_-_okon!! nil!!))

))

The code uses four boolean pvars (the "tokens") to determine context.

div-Zoken is true in VP(k, k) at step k and triggers taking the recipro-

cal of the pivot element aLk,_I). dona-$oken is true in VP(k, .) at step k

and triggers the broadcast of the pivot row to a]] other rows. mult-zoken

is true in VP(*, k) at step k and triggers the computation of multipliers

a(k) (I,-_), (s,-1)i,k = ai,k /ak,k . Finally, updaSe-$oken is true in all virtual processors

YP(i, j) with k < i,] _ n and triggers the elimination operation (the *decf

form in the code).

References

[1] Christian H. Bischof and Jack J. Dongarra. A project for developing

a linear algebra library for high-performance computers. Technical Re-

port MCS-P105-0989, Argonne National Laboratory, 1989.

[2] M. Dixon and J. de Kleer. Massively parallel assttmption-based truth

maintenance. In Proceedings of the National Conference on Artifwial

Intelligence, pages 199-204, 1988.

[3] Michael R. Garey and David S. Johnson. Computers and Intractabil-

ity: A Guide to the Thex_ of NP.Completeness. W. H. Freeman and

Company, 1979.

[4] Alan George. Nested dissection of a regular finite element mesh. SIAM

Journal on Numerical Analysis, 10:345-363, 1973.

[5] Alan George, Michael T. Heath, Joseph Liu, and Esmond Ng. Sparse

Cholesky faetorization on a loca]-memory multiprocessor. SIAM Jour-

nal on Scientific and Statistical Computing, 9:327-340, 1988.

[6] Alan George and Joseph W. H. Lin. Computer Solution of Large Sparse

Positive Definite Systems. Prentice-Hall, 1981.

4O

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

John 11. Gilbert and HjAlmt_r Hafsteinsson. Parallel solution of sparse

linear systems. In SWAT 88: Proceedings of the First Scandinavian

Workshop on Algorithm Theory, pages 145-153. Springer-Verlag Lec-

ture Notes in Computer Science 318, 1988.

Ching-Tien Ho and S. Lennart Johnsson. Spanning balanced trees in

Boolean cubes. SIAM Journal on Scientific and Statistical Computing,

10:607-630, 1989.

J. J. Hopfield. Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the National Academy

of Science, 79:2554-2558, 1982.

Jochen A. G. Jess and H. G. M. Kees. A data structure for parallel

L/U decomposition. IEEE Transactions on Computers, C-31:231-239,

1982.

John G. Lewis, Barry W. Peyton, and Alex Pothen. A fast algorithm

for reordering sparse matrices for parallel factorization. SIAM Journal

on Scientific and Statistical Computing, 10:1146-1173, 1989.

Joseph W. H. Liu. The role of elimination trees in sparse factorization.

SIAM Journal on Matriz Analysis and Applications, 11:134-172, 1990.

Dianne P. O'Leary and G. W. Stewart. Data-flow algorithms for parallel

matrix computations. Communications of the A CM, 28:840-853, 1985.

Donald J. Rose. A graph-theoretic study of the numerical solution of

sparse positive definite systems of linear equations. In Ronald C. Read,

editor, Graph Theory and Computing, pages 183-217, 1972.

Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algo-

rithmic aspects of vertex elimination on graphs. SIAM Journal on

Computing, 5:266-283, 1976.

Edward Rothberg and Anoop Gupta. Fast sparse matrix factorization

on modern workstations. Technical Report STAN-CS-89-1286, Stan-

ford University, 1989.

Robert Schreiber. A new implementation of sparse Gaussian elimina-

tion. A CM Transactions on Mathematical Software, 8:256-276, 1982.

41

[18] HorstSimon,PhuongVu,and ChaoYaug.Performanceof s supernodal

general sparse solver on the Cray Y-MP. Technical Report SCA-TR-

117, Boeing Computer Services, 1989.

[19] Earl Zmijewski. Sparse Choleslcy Factorization on a Multiprocessor.

Phi) thesis, Cornell University, 1987.

42

