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Abstract. In this article, an extremely simple and highly regular ar-
chitecture for finite field multiplier using redundant basis is presented,
where redundant basis is a new basis taking advantage of the elegant
multiplicative structure of the set of primitive nth roots of unity over
F2 that forms a basis of F2m over F2. The architecture has an impor-
tant feature of implementation complexity trade-off which enables the
multiplier to be implemented in a partial parallel fashion. The squaring
operation using the redundant basis is simply a permutation of the coef-
ficients. We also show that with redundant basis the inversion problem
is equivalent to solving a set of linear equations with a circulant matrix.
The basis appear to be suitable for hardware implementation of elliptic
curve cryptosystems.

1 Introduction

Efficient computations in finite field and their architectures are very important
to many cryptosystems, e.g., elliptic curve systems. There are mainly three types
of bases over finite fields, namely, polynomial basis (PB), normal basis (NB), and
dual basis (DB)[12], which are commonly used to represent the field elements.
The main advantage of using the normal basis is that the squaring operation in
NB is simply a cyclic shift of the coordinates of the element, and thus this basis
has found application in computing exponentiations and multiplicative inver-
ses [10,8,1]. However, the computations of exponentiations and inverses require
not only squaring but also multiplications. Massey and Omura devised an NB
multiplier known as Massey-Omura multiplier [13]. Alternative bit-serial mul-
tiplications using the normal basis can be found in [5,2]. The bit-parallel NB
multipliers were proposed in [17,9]. PB and DB have been also used for imple-
menting bit-parallel multiplier [14,8,16,6,11,19].

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 269–279, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



270 H. Wu, M.A. Hasan, and I.F. Blake

In this article a new basis – redundant basis (RB), is proposed. The redun-
dant basis takes advantage of the elegant multiplicative structure of the set of
primitive nth roots of unity over F2 that forms a basis of F2m over F2. It is shown
that finite field arithmetic operations using the redundant basis have extremely
simple and highly regular structures.

Some similar work to ours using polynomial ring basis was proposed re-
cetly [4]. We believe that the polynomial ring basis is a subset of the redundant
basis proposed here.

The organization of this paper is as follows: Redundant basis is introduced
in Section 2. In Section 3, multiplication operation using RB is discussed and
then architectures of bit-serial and bit-parallel multipliers are proposed. Relation
between RB and other types of bases is analyzed in Section 4. Squaring and
inverse operation using RB are discussed in Section 5 and Section 6, respectively.
Finally, a few examples are given in Section 7.

2 Redundant Basis

Definition 1. [12] Let K be a field of characteristic p and n be a positive integer.
The splitting field of xn− 1 over a field K is called the nth cyclotomic field over
K and denoted by K(n). The roots of xn − 1 in K(n) are called the nth roots of
unity over K and the set of all these roots is denoted by E(n). Then a generator
of the cyclic group E(n) is called a primitive nth root of unity over K if n is not
divisible by p.

Redundant basis uses the set of primitive nth roots of unity over F2 that
forms a basis of F2m over F2. Let β be a primitive nth root of unity in F2m or
some extension field of F2m , then we have

β · βi =
{

βi+1 i 6= n− 1,

1 =
∑n−1

j=1 βj i = n− 1.

By adding the element ‘1’ to the set of primitive nth roots of unity, we have1

〈1, β, β2, . . . , βn−1〉 4
= I1, which can be used as a basis in F2m over F2 and

it is referred to as a redundant basis. Note that the base elements are in the
cyclotomic field F

(n)
2 and they may not belong to the field F2m . Clearly, any field

F2m has a redundant basis if there is a cyclotomic field over F2 that contains
F2m as a subfield. Thus one redundant basis can be the set of (2m − 1)st roots
of unity. To efficiently represent the field elements, the redundant basis should
be chosen such that its size is as small as possible. Now the question is: Given
F2m , what is the smallest cyclotomic field F

(n)
2 that contains F2m as a subfield?

An algorithm for computing such an n is given below.

Algorithm 1 Computing the smallest cyclotomic field F
(n)

2 that includes F2m

as a subfield
1 We denote a set by {· · · } and an orderly set by 〈· · · 〉.
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1. Find all the factors di of 2m− 1 that are greater than m and list them in an
increasing order: d1, d2, . . . , dk = 2m − 1;

2. DO WHILE(i 6 k)
IF m | φ(di) AND j = m is the smallest integer such that 2j = 1 mod di,

THEN t← di, and BREAK; ELSE i← i + 1.
3. Let n← t and let h be the largest positive integer such that t > hm.

IF h > 1 THEN
FOR i = 2 TO h DO

a) Find all the factors di of 2im − 1 that are greater than im and
list them in an increasing order: d1, d2, . . . , dki

= 2im − 1;
b) DO WHILE(i 6 ki)

IF im | φ(di) AND j = im is the smallest integer such that
2j = 1 mod di, THEN n← min{n, di}, and BREAK; ELSE
i← i + 1.

�

Since the (2m − 1)st cyclotomic field has a degree of φ(2m − 1) and contains the
field F2m as a subfield, we have that m divides φ(2m − 1), where φ is the Euler
Phi function.

3 Redundant Basis Multiplier

3.1 Multiplication Operation

Consider the redundant basis in F2m over F2: I1 = 〈1, β, β2, . . . , βn−1〉. Let field
element A ∈ F2m and be represented with I1:

A = a0 + a1β + a2β
2 · · ·+ an−1β

n−1, (1)

where ai ∈ F2, i = 0, 1, . . . , n−1. Note that n ≥ m+1 and the set of coefficients
{ai} is not unique.

Now let us look at multiplication operation under the redundant basis I1.
Let B ∈ F2m be given as B = b0 + b1β + b2β

2 + · · ·+ bn−1β
n−1. Then we have

β ·B = b0β + b1β
2 + b2β

3 + · · ·+ bn−2β
n−1 + bn−1β

n

= bn−1 + b0β + b1β
2 + b2β

3 + · · ·+ bn−2β
n−1.

Obviously, the coordinates of βB is a cyclic shift of those of B, with respect to
I1. From
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where (j − i) = (j − i) mod n denotes that j − i is to be reduced modulo n, we
have

A ·B =
n−1∑
i=0

ai(βi ·B) =
n−1∑
i=0

ai

n−1∑
j=0

b(j−i)β
j =

n−1∑
j=0

( n−1∑
i=0

aib(j−i)

)
βj .

If we define AB = C =
n−1∑
j=0

cjβ
j , then it follows

cj =
n−1∑
i=0

aib(j−i), j = 0, 1, . . . , n− 1. (2)

3.2 Bit-Serial Multiplier Architecture

Figure 1 shows the multiplier structure to realize multiplication using redundant
basis. The coordinates of B with respect to the redundant basis I1 are loaded into
a register of length n bits whose contents can be shifted cyclically. The binary tree
of n− 1 adders in F2 takes n terms of aibk as its inputs and generates a cj term
as output every clock cycle. All cj ’s, j = 0, 1, . . . , n − 1, which are represented
using I1, are computed and obtained in n clock cycles. It can be seen that n AND
gates, n − 1 XOR gates and n 1-bit registers are required for constructing the
multiplier. The clock period should not be less than TA + dlog2 neTX , where TA

and TX denote the time delays of an AND gate and an XOR gate, respectively.
Table 1 shows the complexity of the bit-serial multipliers using redundant

basis and normal basis when there is a type I optimal normal basis. While
Table 2 shows comparison of the complexities between RB multiplier and NB
multiplier when there is a type II optimal normal basis or no optimal basis.

Table 1. Comparison of bit-serial multipliers using type I ONB and RB (here n =
m + 1).

Multiplier #AND #XOR #1-bit reg. # clk cycles Basis
Massey-Omura [13] 2m − 1 2m − 2 2m m normal

Feng [5] 2m − 1 3m − 2 3m − 2 m normal
Agnew et al [2] m 2m − 1 3m m normal
presented here m + 1 m m + 1 m + 1 redundant

It can be seen that the bit-serial redundant basis multiplier has lower comple-
xity only when there is a type I optimal basis. When there is a type II optimal
NB or no optimal basis, then the redundant basis multiplier will have a long
time delay. In this case, partially parallel architecture can be employed and it is
discussed in the next section.
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Table 2. Comparison of bit-serial multipliers using NB and RB (where n = km + 1).

Multipliers #AND #XOR #1-bit reg. # clk cycles basis
Massey-Omura [13] CN CN − 1 2m m normal

Feng [5] 2m − 2 CN + m − 1 3m − 2 m normal
Agnew et al [2] m CN 3m m normal
presented here km + 1 km km + 1 km + 1 redundant

In the example presented in [5], a technique of reusing partial sum
was used to reduce the complexity. Thus the number of XOR gates
should be not greater than CN + m − 1 if a non-optimal normal
basis is used.
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Fig. 1. Bit serial multiplier using the redundant basis.

3.3 Bit-Parallel Multiplier Architecture

A parallel version of the multiplier using a redundant basis is shown in Figure 2.
On the left side of the figure inputs {ai} and {bi} are fed into n blocks (Block
B). The detailed structure of Block B is shown on the right side of the figure. It
can be seen that n2 AND gates and n(n− 1) XOR gates are required. The time
delay is TA + dlog2 neTX .

Trade-off with complexities or partial-parallel architecture The proposed bit-
parallel architecture can be easily made for trade-offs between size and time
complexities: If t Block B’s are used to construct a multiplier and thus in one
clock cycle t cj ’s are computed and output, then one multiplication operation

can be completed in
⌈
n
t

⌉
clock cycles. This feature has great significance for

hardware implementation since it might be difficult to implement a full-scale
bit-parallel multiplier in hardware if the field is very large.
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Fig. 2. Parallelization of the bit-serial multiplier using the redundant basis.

Table 3 adn Table 4 show the comparisons between bit-parallel redundant
basis multipliers and bit-parallel normal basis multipliers.

Table 3. Comparison of bit-parallel multipliers using type I ONB and RB, here n =
m + 1.

Multipliers #AND #XOR Time delay Partial-parallel Arch.
Hasan et al [9] m2 m2 − 1 TA + (1 + dlog2 me)TX not avail.

Koc and Sunar [11] m2 m2 − 1 TA + (2 + dlog2 me)TX not avail.
New proposal (m + 1)2 m(m + 1) TA + dlog2(m + 1)eTX available

Table 4. Comparison of bit-parallel multipliers using type II ONB and RB (where
n = 2m + 1).

Multipliers #AND #XOR Time delay Partial-parallel Arch.
Massey-Omura 2m2 − m 2m2 − m TA + dlog2(2m − 1)eTX available
New proposal m2 2m2 − m TA + (1 + dlog2 me)TX available

3.4 Complexity

Clearly the complexity of the RB multipliers in F2m over F2 depends on the size
n of the cyclotomic field F

(n). There seems no easy way to give a general relation
between n and m. In Table 1, we have computed values of n for certain small
values of m using Algorithm 1.
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Table 5. Smallest cyclotomic field F
(n) that includes F2m as a subfield.

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19
n 3 7 5 11 9 29 17 19 11 23 13 53 29 31 19 37

For a subset of redundant basis, which can be derived from certain normal
basis (optimal normal basis), the complexity can be easily solved which is dis-
cussed in the next section. Also, for the field in which there exists an equally
spaced polynomial (ESP), a small value of n can be found.

4 Relation/Conversion between Redundant Basis and
Other Bases

4.1 Redundant Basis and Normal Basis

Some redundant bases can be easily introduced by the normal basis genera-
ted with Gauss period, which also reveals the relation/conversion between the
redundant basis and the normal basis.

Gauss period, normal basis and redundant basis The Gauss period (GP) was
discovered by Gauss and is defined as follows: Let m, k > 1 be integers such that
r = mk + 1 is a prime, and let q be a prime power with gcd(q, r) = 1. Let K be
the unique subgroup of order k of the multiplicative group of Zr = Z/rZ, then
for any primitive rth root β of unity in Fqmk , the elements

α =
∑
γ∈K

βγ (3)

is called a Gauss period of type (m, k) over Fq. It can be checked that α ∈ Fqm .
Gauss periods have been used to construct normal bases with low comple-

xity [15,3]. A Gauss period of type (m, k) over F2 naturally introduces a normal
basis I2 = 〈α, α2, . . . , α2m−1〉 in F2m over F2 if and only if gcd(e, m) = 1, where
e is the index of 2 modulo r. Furthermore, such a normal basis has complexity
at most mk′−1 with k′ = k if k even and k+1 otherwise [3,18,7]. Clearly, Gauss
periods of type (m, 1) and (m, 2) generate optimal normal bases with complexity
2m−1, which are usually called type-I and type-II optimal normal bases (ONB),
respectively [15].

On the other hand, a redundant basis in this case can be given as I1 =
〈1, β, β2, β3, . . . , βmk〉. Consider two sets of km elements in F2km : S1 = {β2iγj

, i =
0, 1, . . . , m− 1; j = 0, 1, . . . , k− 1} and S2 = {β, β2, . . . , βkm}. For any element
β2iγj ∈ S1, we have β2iγj

= β2iγj mod(mk+1) ∈ S2, and thus, S1 ⊆ S2. Let G =
F

∗
km+1 then G = 〈2, γ〉. For any integer l ∈ {1, 2, . . . , km}, there exist integers

i ∈ {0, 1, . . . , m−1} and j ∈ {0, 1, . . . , k−1}, such that l = 2iγj mod (km + 1).
Therefore, S2 ⊆ S1 ⇒ S2 = S1.
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Since I2 = 〈α, α2, . . . , α2m−1〉 = 〈
k−1∑
i=0

βγi

,
k−1∑
i=0

β2γi

, . . . ,
k−1∑
i=0

β2m−1γi〉 and each

element in I2 is a sum of k elements in S1, it can be seen that elements in S1(=

S2) can serve as a basis in F2m and which is a permutation of 〈β, β2, . . . , βmk〉 4
=

I3. Obviously, the redundant basis can be obtained by adding element ‘1’ to the
basis I3.

Conversion between normal basis and redundant basis Now let us look at the
conversion from the normal basis I2 = 〈α, α2, . . . , α2m−1〉 to the redundant basis
I1. As we have seen before, the conversion between redundant basis I1 and the
basis consisting of elements from S1 is simple. If A = (a′

0, a
′
1, . . . , a′

m−1) with
the normal basis, then with the basis from S1,

A = (a′′
0,0, a

′′
0,1, . . . , a′′

0,k−1, . . . , a′′
m−1,k−1),

where a′′
i,j = a′

i for j = 0, 1, . . . , k − 1 and i = 0, 1, . . . , m− 1.

4.2 Redundant Basis and Polynomial Basis

Given a basis I in F2m , the general case of basis conversion between I and the
redundant basis I1 may not be trivial. If I is a normal basis generated with the
Gauss period of type (m, k), then how to obtain I1 has been discussed in the
last section. If I = 〈1, α, . . . , αm−1〉 is the polynomial basis, and if we know that
the order of element α is ord(α), then the redundant basis I1 can be obtained
using the following algorithm:

Algorithm 2 Computing the redundant basis from a polynomial basis 〈1, α, . . . , αm−1〉
1. Compute n using Algorithm 1;
2. Compute the order of the irreducible polynomial ord(α);
3. Let t = ord(α)/n, then the redundant basis is given by 〈1, αt, α2t, . . . , α(n−1)t〉.

�
It can be shown that for the field that there exists an ESP, the value of n is

always between m + 1 and 2m.

5 Squaring Operation Using Redundant Basis

Let 〈1, β, β2, . . . , βn−1〉 be a redundant basis for F2m over F2. For a field element
represented in the redundant basis:

A = a0 + a1β + · · ·+ an−1β
n−1

its square is given by

A2 = a0 + a1β
2 + · · ·+ an−1β

2(n−1).

Since βn = 1, we have that ajβ
2j = ajβ

2j−n if 2j > n− 1. It can be seen that a
squaring operation using the redundant basis is equivalent to a permutation of
the element coefficients.
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6 Inversion with Redundant Basis

The problem of inversion in redundant basis is as follows: Given a field element

A = a0 + a1β + · · ·+ an−1β
n−1 ∈ F2m ,

find

B = b0 + b1β + · · ·+ bn−1β
n−1 ∈ F2m

which is the inverse of A. Clearly, the methods proposed by Itoh and Tsujii [10]
and by Agnew et al [1] can be used. With their methods, about 3

2 log (m− 1)
multiplications on average and (m − 1) squaring operations are required. Since
squaring operation in the redundant basis is a permutation of lines and free, while
the multiplication can be efficiently implemented in hardware, it is expected that
with this method inversion using the redundant basis can be as good as using
normal basis.

Another method for inversion is to solve a set of linear equations. From
AB = 1, we have

1 =
n−1∑
i=0

aiβ
i

n−1∑
j=0

bjβ
j

=
n−1∑
j=0

bj

n−1∑
i=0

aiβ
i+j

=
n−1∑
j=0

bj

n−1∑
i=0

aiβ
(i+j)

=
n−1∑
j=0

( n−1∑
i=0

a(j−i)bi

)
βj ,

where (x)
4
= x mod (n), or,




a0 an−1 an−2 · · · a1
a1 a0 an−1 · · · a2
a2 a1 a0 · · · a3
...

...
...

...
...

an−1 an−2 an−3 · · · a0







b0
b1
b2
...

bn−1




=




1
0
0
...
0




(4)

The circulant matrix is always singular and the equations allow many solutions,
all of which is a representation of the inverse B in the redundant basis. Note
that the circulant matrix is a special case of Toplitz matrix and any algorithm
for solving Toplitz system can also be used to solve (4).
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7 Examples

Example 1. For the field F210 , we can compute the smallest cyclotomic field that
includes it as a subfield is F

(11). Highly regular architectures for bit-serial and bit-
parallel multipliers using redundant basis can be built as discussed in Section 3.
Clearly, a bit-serial multiplier requires 11 AND gates, 10 XOR gates, and 11
1-bit registers. It takes 11 clock cycles to accomplish a multiplication operation.
The complexities for a fully bit-parallel multiplier are: 121 AND gates, 110 XOR
gates and a propagation delay of TA + dlog2(m + 1)eTX .

Example 2. From Algorithm 1, we find the smallest cyclotomic field that includes
F26 as a subfield is F

(9). Let the redundant basis in F26 over F2 be given by
〈1, β, β2, . . . , β8〉, where β is a primitve 9th root of unity in F26 . In fact, β is
a root of irreducible polynomial x6 + x3 + 1. The complexities of the bit-serial
redundant basis multiplier are 9 AND gate, 8 XOR gate, 9 1-bit registers and 9
clock cycles for performing a multiplication operation.

Example 3. It can be computed that the redundant basis in F28 has 17 elements
(m = 8 and n = 17). Then the redundant basis multipliers can be built and their
complexities can be decided.

8 Summary

In this paper, we have presented redundant bases and their applications to the
construction of multipliers. It has shown the new constructions are advantage-
ous over other normal basis constructions when bit-parallel or partial-parallel
structures are required. The comparisons have been made between redundant
basis and normal basis, since the squaring operation using redundant basis is
also a simple cyclic shift of lines. The inversion using the new basis has also
been discussed. It can be shown that the polynomial ring basis proposed in [4]
is a subset of the redundant basis.
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