
a Fermi National Accelerator Laboratory 

FERMILAB-Pub-82/44-THY 
July, 1982 

Highly Relativistic Nucleus-Nucleus Collisions: 
The Central Rapidity Region 

J. D. BJORKEN 
Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

ABSTRACT 

The space-time evolution of the hadronic matter produced 

in the central rapidity region in extreme relativistic 

nucleus-nucleus collisions is described. We find, in agreement 

with previous studies, that quark-gluon plasma is produced at a 

temperature ;?200-300 MeV, and that it should survive over a 

time scale L(5 fermi)/c. Our description relies on existence 

of a flat central plateau and on the applicability of 

hydrodynamics. 
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I. INTRODUCTION 

Collisions of highly relativistic nuclei offer the 

possibility of producing quasimacroscopic systems of dense 

nucleonic and/or quark-gluon matter at relatively high 

temperature. In principle this seems to be an interesting way 

to explore the question of phase transitions between ordinary 

(confined) matter and (unconfined) quark-gluon plasma. It is 

also of interest to historians of the early universe. At some 

early epoch, of order 10 -6 seconds after the big bang, the 

conditions in the universe were probably rather similar. 

On the other hand, interpretation of these complex 

collisions poses a major problem. What are the clean 

experimental signatures and how can one deduce what is going 

on? Is there information which unambiguously teaches us about 

the state of the matter formed during and immediately after the 

collision? 

All these problems are under active investigation 

nowadays. 1 There seems to be a consensus that enough initial 

kinetic energy is converted into heat so that quark-gluon 

plasma is created. Less understood is the question of how the 

system evolves. Furthermore most (but not all) of the work has 

concentrated on the system of leading particles which carries 

the baryon-number of the incident nucleus. This system is 

especially interesting since it is essentially compressed 

nuclear matter and carries with it not only a heritage of 



nuclear physics but also of nuclear astrophysics; e.g . the 

question of neutron-star compos ition. However, the rema .ining 

phase-space, i.e. the so-called central rapidity region, is of 

interest in its own right.' And it will be the case that this 

region of phase space is perhaps easier to study 

experimentally. 
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It is our purpose in this note to sketch out a picture of 

the space-time 3 evolution of the collision process in this 

"central" region of phase-space. We shall treat the problem in 

the context of the Landau hydrodynamic model, 4 but with a 

different initial boundary condition. We shall assume that at 

sufficiently high energy there is a "central-plateau" structure 

for the particle production as function of the rapidity 

variable, be it in nucleon-nucleon, nucleon-nucleus, or 

nucleus-nucleus collisions. The essence of this assumption is 

the assertion that the space-time evolution of the system looks 

essentially the same in all center-of-mass-like frames, i.e. in 

all frames where the emergent excited nuclei are, shortly after 

the collision, highly Lorentz-contracted pancakes receding in 

opposite directions from the collision point at the speed of 

light. 

This assertion implies a symmetry property of the system. 

We will impose this symmetry as an initial condition. However, 

the hydrodynamic equations respect the symmetry as well. This 

leads to simple solutions of the hydrodynamic equations.5 In 

particular, for central collisions of large nuclei, the fluid 



expansion near the collision axis is longitudinal and 

homogeneous. The fluid midway between the receding pancakes 

remains at rest, while the fluid a longitudinal distance z from 

that midpoint moves with longitudinal velocity z/t, where t is 

the time elapsed since the pancakes collided. This picture is 

modified at large transverse distances, comparable to the 

nuclear radii. In that region there will a rarefaction front 

moving inward at the velocity of sound of the fluid. For 

transverse distances larger that that rarefaction front, fluid 

will expand radially outward, cooling more rapidly than the 

fluid in the interior. 

The initial energy density produced in the collision is 

very roughly estimated to be $3 GeV/f3, with an uncertainty of 

at least a factor 3 in either direction. The estimate is based 

simply on the energy-release per unit of rapidity in 

nucleon-nucleon collisions. This energy density (and 

consequent entropy or particle density) is sufficiently high to 

make it very likely that the system rapidly comes into local 

thermal equilibrium. It is also, as we already mentioned, 

sufficiently high to make it likely that the plasma is in the 

deconfined quark-gluon phase. However, the initial temperature 

is not expected to be high: we estimate S200-300 MeV.' 

During the expansion the energy density drops (in its 

local rest frame) as t-Y with l<y< 4/3, while the temperature -- 

drops as ty-l. The entropy density falls as t-l. This implies 

that the entropy per unit rapidity is conserved, a result which 
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depends only upon the boost symmetry of our boundary conditions 

and not upon details of the equation of state. This result 

implies that the particle production per unit rapidity (which 

is proportional to the entropy) in turn does not depend on the 

details of the hydrodynamic evolution, but only on the initial 

energy (hence, entropy) deposition in the early stage of the 

collision itself. 

As the system evolves, the amount of fluid undergoing 

homogeneous longitudinal expansion decreases. When the 

separation of the outgoing pancakes exceeds their diameter, the 

fluid enclosed between them will undergo 3-dimensional radial 

expansion and should rapidly cool. Already at the onset of 

this part of the evolution, we estimate that any phase 

transition will have been traversed, and that the system is one 

of dense hadronic matter, with temperature s150-200 MeV. 

In the next section we discuss our proposed space-time 

picture of the collision. In Section IV, we briefly consider 

the question of equation of state, and whether it has an effect 

on the picture. Section IV is devoted to miscellaneous 

comments and conclusions. 

II. SPACE-TIME EVOLUTION 

In order to motivate our starting point for ion-ion 

collisions, we begin by describinq the assumptions we shall 

make for the simpler cases of hadron-hadron and hadron-nucleus 



collisions. 

In the case of hadron-hadron collisions we shall assume 

(1) there exists a "central-plateau" structure in the inclusive 

particle productions as function of the rapidity variable. 

This is reasonably well borne out by SPS collider data. ' It is 

true that the plateau height is energy-dependent, but that will 

not affect our considerations very much. The existence of the 

plateau implies that the particle distribution at large angles, 

as seen in a typical center-of-mass frame, does not depend upon 

the particular frame which is chosen. For example, at SPS 

energies the 90' particle production in a 250 + 250 GeV pp 

collision appears to be not dissimilar to the 90" particle 

production in a 10 GeV + 6 TeV pp collision. This apparent 

symmetry will be a central theme in the discussion to follow. 

Our second assumption is similar: (2) For nucleon-nucleus 

collisions, there also exists a "central-plateau" structure in 

the inclusive particle production as function of the rapidity 

variable, with plateau height about the same as for a 

nucleon-nucleon collision. p - a collisions at the ISR' lend 

some support for this behavior, although it would be reassuring 

to have better data on nucleon collisions with heavier nuclei. 

The final assumption is: (3) there exists a 

"leading-baryon" effect. That is, the net baryon number of a 

projectile is found in fragments of comparable momentum (more 

precisely, of rapidity within ~2-3 units of the rapidity of the 

source). Likewise, the net baryon number from a target baryon 
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originally at rest is found i.n those produced hadrons of 

relatively low momentum. This assumption is again consistent 

with what is seen in pp, pa and eu collisions 7 at the CERN ISR. 

Given these hypotheses, we may now consider the real case 

of ion-ion collisions. First, let us consider the collision in 

the rest frame of one of the nuclei. As the highly Lorentz 

contracted pancake passes through this nucleus, it is 

reasonable that each nucleon in that nucleus is struck. It is 

also reasonable - and we shall assume its correctness - that 

the secondary nucleon from each collision possesses a momentum 

distribution similar to what it would possess were it in 

isolation and not bound in nuclear matter. This means it 

recoils semirelativistically, with a typical momentum of 

several hundred MeV. The result, as very thoroughly and 

well-described by Anishetty, Koehler, and McLerran, 8 is that 

the nuclear matter in the target nucleus is found (in its 

original rest frame) in a distinct ellipsoidal region (Figure 

1) moving with a y‘r2, and lagging behind the highly contracted 

projectile pancake. 

The fact that the y of this system of baryons is expected 

to be finite and not too large implies that in ion-ion 

collisions the baryon number should be found in (or near) the 

projectile fragmentation regions. We shall sharpen this 

statement somewhat later on. 
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Now let us look at the collision in the center-of-mass 

frame. From the arguments of the previous paragraph it is 

clear that at least the baryon content of the colliding 

pancakes interpenetrate, so that a short time (say s3f) after 

the collision we will have two pancakes which recede from the 

collision point at the speed of light (y>>l) and which contain 

the baryon number of the initial projectiles. Of course many 

of the other ultimate collision products will be contained in 

those pancakes and will only evolve into a distinguishable 

system at considerably later times. We shall concentrate on 

the system of quanta contained in the region between the two 

pancakes. Let us temporarily replace one of the projectiles by 

a single nucleon traveling at the same y, and look at the 

central particle production. According to assumption (2) the 

isotropic portion of the particle production is approximately 

the same as in a nucleon-nucleon collision. At SPS collider 

energies, this means 

dNch 
dy" 3 

(1) 

Guessing <E> 3400 MeV and Wneutral ~~~~ ~0.5, we wouid 

find, per colliding nucleon 
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d<E> - $3 x 0.4 x 1.5 1 1.8 GeV 
dy 

(2) 

If the projectile, instead of a single nucleon, is a dilute gas 

of nucleons separated in impact parameter by mean distances 

Zlf., the energy production should be additive. 

Let us now estimate for this case the initial energy 

density existing between the outward-moving pancakes. We 

concentrate on a thin slab, of thickness 2d, centered between 

the pancakes (Figure 2). Ignoring collision between the 

produced hadrons, the energy contained within that slab is 

It follows that the central energy density E is 

_ N d<E> 1 
E-z. 

dy - Tit 

(3) 

(4) 

In the case of real ion-ion collisions we must replace the 

number of incident nucleons per unit area N/A by some effective 

elementary area d 02 



Xf, for uranium, we assumed full additivity over the h nuoleons 

WC would get {with apaloqies for the execrably redkdant 

notation) 

We shall conrider reasonable I range of values of do from 0.3 

tQ If. 

This leads ta an estimate of 

For an initial time t,, of *lf,, this give0 an Initial energy, 

density 
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EO 
Z 1 - 10 GeV/f3 (9) 

It is not clear at this energy density what the produced 

quanta which carry this energy really are: constituent quarks? 

current quarks? gluons? hadrons? However, this uncertainty 

should not affect the estimated energy density provided the 

elementary collision processes which operate in nucleon-nucleon 

collisons are operative in nucleus-nucleus collisions. The 

quanta contained in our thin slab should collide: indeed we may 

anticipate that local thermal equilibrium will be established. 

With a mean energy density as given above, and with a mean 

energy per quantum of 400 MeV, this implies an initial density 

of quanta p o of s2-2Of -3 . This in turn implies a collision mean 

free path X0 

x0 z x (0.05-0.5f) 
(10) 

We shall be interested in a time scale of $5-10f. for the 

evolution of the produced system. Thus an assumption of local 

thermal equilibrium, i.e. applicability of hydrodynamics, seems 

reasonable. Once thermal equilibrium is established and 

hydrodynamic expansion of the fluid commences, the t-l time 

dependence of the energy density E will not be valid (although 

we shall calculate a similar behavior EZtSn with l<n<4/3). Thus -- 

the time t appearing in the expression (8) for energy density 
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should be interpreted as an initial time for imposition of 

boundary conditions for hydrodynamic flow. While that initial 

time (slf.) is somewhat uncertain, the major uncertainty in 

imposition of initial conditions comes from lack of knowledge 

of the basic transverse scale factor d 
0' 

Let us now make a modest Lorentz boost (say ~$3) and view 

the collision in another frame. Again we see a collision of 

two highly contracted incident nuclei followed by receding 

pancakes carrying the baryon-number. If, as before, we look at 

the nucleon-nucleus collision under these same circumstances, 

we will see the fame large-angle particle production as before. 

This follows from the assumption of a central-plateau structure 

for the rapidity-distribution in nucleon-nucleus collisions. 

It is therefore very reasonable that for nucleus-nucleus 

collision the initial conditions for the fluid of quanta -- - 

produced between the receding pancakes are the same as existed --__- 

the frame. other &I!--- This means in particular that the initial 

energy density is the same, and that the initial velocity is 

zero. 

This is the basic feature of this description of the 

evolution of the system: throughout the 'central-plateau" 

region the initial conditions - imposed a - proper time - 

Zlf. after the collision time - are invariant with respect to -_ - 

Lorentz transformations. This will imply that the subsequent 

time evolution of the system should also possess this symmetry. 
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We shall describe this evolution of the system by assuming 

that the Landau hydrodynamical model4 is applicable. This 

means that we may define a local energy density E(X), pressure 

P(X), and temperature T = f3-1 (x) and 4-velocity of the fluid 

uw (x), with u2=uuuu=l. Then the energy-momentum tensor 

T 
!JV 

= (E + p) UPU” - guvp 

is conserved: 

aT 
!Jv - 0 - - 

ax” 

(11) 

(12) 

(We shall - perhaps unjustifiably - neglect effects of 

viscosity and thermal conductivity). 

The initial boundary conditions we have discussed may be 

displayed in a space-time diagram as shown in Fig. 3. We see 

that on the "proper-time" hyperbola T = dn = constant 

Zlf., we have e = so = constant *l-10 GeV/f3; henc,e To = 

constant as well. 

Natural variables for describing the flow are therefore 

the rapidity y, defined as 

y = l/2 In t 1 i 
(13) 

and proper time r 
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T= lK-7 (14) 

provided the flow may be considered one-dimensional, i.e. we 

have translational symmetry in transverse coordinates. This 

should be a good approximation for times small compared to the 

radius of the nucleus. 

t << 1.2 AlI3 E 7 f. for Pb or U. (15) 

Thereafter we must expect 3-dimensional expansion and a 

relatively short time evolution into the final system of 

produced hadrons. (We shall return to the description of the 

transverse flow later). 

In the following we shall assume one-dimensional flow. In 

general, this would imply that 

P = P(T,Y) 

T = T(rry) 

U)$T,Y) = (UO(T'Y), 0, 0, uz (T,Y)) 

However, the initial condition 

E (To, Y) = EO etc. 

up (To, Y) = $ tt, 0, 0, 
xP 2) z- 
t0 

(16) 

(17) 
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possess a symmetry with respect to Lorents transformations 

which is preserved by the dynamics. Inasmuch as there is no 

dependence of initial properties on Lorentz boost angle 

(essentially the rapidity-variable y) there will be no such 

dependence at later times either. That is we may write 

E = E(T) 

P = P(T) 

8 = T-l = B(r) 

and, most importantly 

ji u 
uu = -r 

With use of the expressions 

ar m - -z---u 
ad T !J 

au 
!J - 1 - W” 

- - 7 QJ 
axv 

- - = + (g,” - 
T3 

where fj 
00 = Gzz 

hydrodynamic equat 

other = 1 and all 

ion (12) simplif 'ies to 

UFU”), 

(18) 

(19) 

(7-O) 

elements zero, the 
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de -=- (E + P) 
dr T (21) 

Even without an equation of state relating E and p, we may 

40 a little further. According to the assumptions of the 

Landau model, entropy is conserved during the expansion stage. 

Indeed, recall from thermodynamics that 

TS = u + pv (22) 

(in the rest frame of the fluid) and therefore the entropy 

density is 

s+ B (E+p) 

The entropy current four-vector is evidently 

sN 
= 8 (E+p) up z SUN 

(23) 

(24) 

The local conservation law 

as 
1-1,0 

ax” (25) 

is a general consequence of the hydrodynamic equations 

(obtained by contraction of Eq. (12) with u"). In our case, 

this evidently implies (using Eq. (19)) 
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(26) 

ds fi=-: 

or 

(27) 

The meaning of this result is that the entropy content per 

unit of rapidity is a constant of the motion. To see this, 

note that, in a frame in which the fluid is at rest, 

d3x = d2xL (rdy) 

Thus the entropy contained in interval dy around y = 0 is 

dS = 
s 

sod% = TS dy (28) 

and 

d d 
FE = z (TS) d2xL = 0 

(29) 

This result allows a quite direct estimate of central 

multiplicity. If entropy is conserved throughout the 

hydrodynamic expansion, then the final pion multiplicity (per 

unit rapidity) should be in proportion to the entropy density. 

This in turn has been related via initial conditions to the 

pion multiplicity in nucleon-nucleon collisions. We phrased 

these initial conditions in terms of energy density, but could 
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have phrased them in terms of entropy density provided that in 

nucleon-nucleon collisions the hydrodynamic concepts still have 

some meaning. If that is the case, the previous argument 

becomes 

1 
Nucleus-nucleus = T;" * 

a(1.2A l/3 f.)2 . 

0 (30) 

where l/d; = number of effective independent nucleon-nucleon 

collisions (i.e. entropy producers) per unit area. Given 

entropy conservation, and assuming pion multiplicity to be in 

proportion to the entropy, we get 

(dNIT/dy)A - A - 
(dNn/dy)pp - 

A2/3 
(31) 

With our previous estimate 0.3<d0 *If., the mindless 

extrapolation of this formula to A=1 fails by a factor $4 to 

40. However, if we apply it (equally mindlessly) to the ISR 

data7 on a-a collisions, we would find d 0 I 0.7f. In the long 

run the most profitable use of the above relation might be to 

use future multiplicity measurements to determine do and 

thereby experimentally infer the initial conditions of the 

fluid. 
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Note that for U-U collisions, the multiplicity formula 

implies, for a central collision (at SPS-collider energies) 

dNTl 
-=5540x4x 
dy 

2 

(32) 

a large multiplicity indeed. 

Other general features of the hydrodynamic expansion 

follow from the positivity condition on the trace of the 

energy-momentum tensor 

TV >O 
IJ- (33) 

which is true under quite general circumstances. 9 This implies 

E 2 3P 

and thus, from Eq. (21) 

E(T) 
’ E(To) ’ 

(34) 

(35) 

For an "ideal" relativistic fluid, e=3p and the proper-time 

dependence of the energy-density and pressure is S'c -4/3. In 

this case EaT 4 and hence the temperature drops rather slowly, 
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as T-1’3. It is interesting to determine the differential 

equation for the time-dependence of the temperature of the 

fluid. From Eq. (21) we have, considering e=~(p), and p=p(T) 

dc -= de dp dT 
dr apaF;r; 

But 

= _ (E+P) = _ Ts 
T -2 

PC-& 
V 

where A is the free energy. Furthermore the entropy S is 

S=-aA 
aT v 

Hence in Eq. (36) 

(36) 

(37) 

(38) 

(39) 

In addition the sound velocity is 
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1 ds -=- 
2 

V 
dp 

S 
(40) 

Putting all this together yields the interesting formula 

1 dT --=-- 
T dr T 

For equations of state to be discussed in the next section, 

so that the decrease in temperature during the one-dimensional 

expansion phase is slow. 

Transverse Flow 

Before consideration of the equation of state, let us 

review the picture of the collision process. 

1. In the central rapidity region, the evolution looks 

the same no matter what the reference frame. 

2. The longitudinal velocity of the fluid near the 

collision axis is proportional to the distance from 

the collision point; i.e., fluid a longitudinal 
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distance z from the collision point is moving at 

velocity s/t, where t is the time elapsed since the 

collision of the incident nuclear pancakes took place, 

3. The baryon-number of the incident nuclei is found, in 

a reference frame appropriate to the central rapidity 

region, in thin pancakes receding at very near the 

speed of light from the collision point. 

4. The entropy within a comoving volume between these 

pancakes is constant. 

5. The temperature decreases as T -l/3 or slower as long 

as there is one-dimensional flow; here T is the 

"proper time" T = n 

6. The energy within a comoving volume also decreases as 

T-1’3 or less as long as there is one-dimensional 

flow. 

Now consider the region of the fluid near the edge of the 

disks. Near the periphery we may expect a few pions to be 

directly produced, which escape outward at the speed of light. 

At distances slightly less peripheral there should be a 

rarefaction front propagating inward at the velocity of sound 

vS- At distances from the collision axis of less than vst (or 

more accurately 
,t S 

(t') dt') the news that the nuclei are of 

finite size and that a boundary exists will not yet have been 

received. The geometry of this rarefaction front is shown in 

Figure 4. At z = 0, the fluid is at rest and so at time t we 

have the estimate dt for the distance inward that the 
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rarefaction front has penetrated. For zfo the fluid is in 

motion and one must take into account time dilatation. It is 

the "proper time" r = n which is relevant and the 

distance the front penetrates inward from the edge is 

I,’ vs(r')dr'. 

To the extent that v is time s independent, the equation 

for the rarefaction front is 

ix-F- 
P(t) = R - /g"s(t')dt' 

..R-vs c (44) 

where R is the radius of the incident nuclei. Note that no 

more than 50% of the fluid moves one dimensionally after a 

proper time r given by 

vs~ s0.3R 

or T *O.SR 145) 

Even for U-U collisions, this does not amount to more than 

ff3-4f. of time. 
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The motion of the fluid at radii beyond the rarefaction 

front is more complex. No real attempt at an analysis will be 

made here." One must expect that the fluid will cool quite 

rapidly and drop out of equilibrium on a relatively short 

time-scale. As emphasized by T. D. Lee," we may also expect a 

variety of unstable flows to develop ("volcanoes?"). To us it 

seems that the transverse flow is especially vulnerable to 

unstable behavior. But study of such questions is also beyond 

the scope of our considerations here. 

III. EQUATION OF STATE 

The details of the evolution of the produced fluid will 

depend upon its equation of state E = E(P), or equivalently p = 

P(B), with B = T-l. Inasmuch as we are interested in the fluid 

produced in the central rapidity region, the net baryon number 

is zero and we need not introduce a chemical potential. 

There are two limits in which the situation is simple, 

namely, extremely low and extremely high temperature. At very 

low temperature we expect to have a dilute pion gas. If, for 

simplicity, we neglect the pion mass, this leads to an equation 

of state 
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3r2 T4 
p = 90 

T2E 
2 

(46) 

where the 3 in the numerator reminds us that there are three 

degrees of freedom in the gas (n', r'). 

At extremely high temperature the situation is again 

simple; there should exist an ideal fluid of quarks and 

gluons.12 In this case 

2 
p = & n(B)Bm4 

(47) 

where 

n(8) = 8 x 2 (gluon color x spin) 

+ i (2 x 3 x 2 x nf) (quark and antiquark 
color, spin and flavor) 

= 16 +% 
2 f 

(48) 

with nf ($2 to 3) the effective number of quark flavors in the 

fluid. (The factor 7/8 takes into account the difference 

between Bose and Fermi statistics in the Boltzmann factor.) 

Thus we may take, for our purposes, 
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3 B -so3 
n(B) = 

42 f 6 B-+0 

and write, at all temperatures, 

p = $ n(B) BS4 

(49) 

(50) 

We expect under quite general conditions that n(B) is a 

monotone increasing function of temperature. What is needed to 

ensure this is the nonnegativity of the trace of the 

energy-momentum tensor TE. If 

TyV ) 0 

it follows that 

(51) 

E > 3p (52) - 

However, the pressure is related to the free-energy A by the 

relation 

while the energy is 

(53) 
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a 

E=EV=+wBA 

= $ V (3n(B) 13-4 - Be3 g) 

It follows that 

s= l-B% 
3n ai 

(54) 

(55) 

and the condition (52) implies 

We shall hereafter assume this condition is satisfied. 

There is general agreement13 that the transition 

temperature between quark-gluon phase and pion phase is 

somewhere around 200 MeV. We shall, for the sake of (in) 

definiteness, take it to be 200 f 50 MeV. 

The question of the existence of a phase transition (or 

transitions?) and whether it (they?) is (are) first-order is 

more uncertain. We may note in this regard two recent results: 
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1) Montvay and Pietarinen, 14 
among others, have presented 

lattice Monte-Carlo calculations of the equation of state of a 

pure gluon gas. It shows an abrupt transition from glueball 

gas to gluon plasma. Immediately above the transition, the 

behavior is remarkably ideal, in contrast to what happens in 

perturbation theory, where the equation of state 

n(B) = 16 [l _ l5 (y j + /y ('":'"') 3'2 + . .(;I, 

indicates, for any reasonable value of as, O(1) deviations from 

ideal behavior (i.e. nonconvergence of the perturbation 

series). The nature of the gluon-glueball transition is not 

clear, but it might well be first order. 

2) Kogut, et al. argue that there may be two phase 

transitions. The transition at highest temperature would be 

associated with spontaneous breaking of chiral symmetry and 

generation of a quark mass (plus "massless" Nambu-Goldstone 

pions). However, at this intermediate temperature there would 

be no color confinement. The lower-temperature transition 

would then be associated with the transitions to the 

color-confined hadron phase. 

The nature of these phase transitions, however, is still 

somewhat obscure. We shall assume the behavior of n(B) in the 

transition region to be quite abrupt, i.e. there is a quite 

narrow temperature interval in which the transition from quarks 
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and gluons to pions take place. We show some guesses in 

Fig. 5. In estimating energy and entropy densities, as well as 

sound velocity, we need also to evaluate 

A 
1 

=d(ln n) =Tdn -_ 
d(ln T) n dT 

and 

A =d2(lnn) =zd2n+T& 
2 d(ln T)2 n dT2 n dT 

In terms of these quantities we have 

E = p (3 + Al) 

s = Bp (4 + Al) 

":= (3+* 1 1) + A2/(4 + Al) 

(58) 

(59) 

(60) 

Sketches of A1 and A2 are given in Fig. 6. The peak 

values and shapes are sensitive to the width (in temperature) 

of the transition region. The maximum value of A 
1 could well 

be 210, leading to a small value of the sound velocity 

(" z $0.1) and consequent very slow cooling of the fluid as it 

expands (cf. Eq. (41)). The maximum value of 
A2 is large 

enough that it cannot be neglected in estimating vz. Below the 

transition, A 2 is positive, leading to a depressed value of the 

sound velocity, while above transition, v 2 should be closest to s 
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its asymptotic value of l/3. 

A sketch of vi is shown in Fig. 7. 

If there is a first order phase transition, Al will have a 

discontinuity, with evidently a larger value above the critical 

temperature Tc than below. 

By examining Fig. 6, it is evident that the value of A1 at 

the critical temperature, approached from above, which we call 

A1 
(qg) should be 25; we take 7 * 2. The value of Al as 

approached from below, which we call A (n) 
1 

must be less; let us 

say 3 * 2 just to get an estimate. Then, the ratio of entropy 

,(n) 

r = S(qg) 

Vc) ; 4 + (3 + 2) = 
(T ) 4 

i- 
+ (7 f 2) 

0.7 0.2 

C 

density of pion plasma to that of quark-gluon plasma is 

(‘51) 

This ratio controls the length of time the plasma rema ,ins in a 

mixed phase. Let f(qg) (r) be the fraction of the fluid which 

is in the quark-gluon phase, i.e. at any time T we have 

s = f(r) 
94 

s(T 1 c qg + (l-f(T) qg) S(Tc)ll (62) 

Inasmuch as s = (const) r-l, it follows from a simple 

calculation that 
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T -rT 
f(T) 

0 
qg = r(l-r) (63) 

where To is the proper time at which the mixed phase first 

appears. The final time T = r -1 
f 

-co occurs at a time anywhere 

from roughly l.lro to 2To. Uncertainties in estimates of 

initial energy density as well as in the value of n(Tc) make an 

estimate of 
'0' and consequently of the duration of the mixed 

phase, quite uncertain. The mixed phase could last anywhere 

from a proper time interval of If to 5f. 

We cannot expect one-dimensional expansion to persist much 

longer than a time cr*5-10f. At the end of this period we have 

an energy density SlOO-300 MeV/f3, with a temperature very near 

the critical temperature T 
C (this endpoint can be located in 

Fig. 8). With a mean energy per quantum of *2T c, say 400 f 100 

MeV, this gives a density of quanta of, say, SO.4 f 0.2 fe3. 

This is two or three times nuclear matter density. It may not 

be too bad an approximation to consider it to already be 

distinguishable pion matter. If this is the case, it is also 

reasonable to presume that the physics of the subsequent 

3-dimensional expansion to be relatively unremarkable. There 

is, in any case, not much more time available before the 

density is decreased enough for this to be manifestly the 

cased. 
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IV. COMMENTS & CONCLUSIONS 

Evidently many important questions have not been addressed 

in this note. We have not calculated the transverse motion of 

the fluid. And we have not addressed the final stage of 

three-dimensional radial expansion of the fluid. 

Another area of concern is the question of the stability 

of the solutions we have found. In the case of longitudinal 

flow, a preliminary look suggests that the solution we have 

found is stable and that small perturbations or irregularities 

in the initial conditions will not grow. An indication of this 

stability can be seen in the situation regarding the fluid in 

the leading-particle regions which carry the baryon-number. It 

follows from causality alone that the baryon-number cannot 

diffuse very far from the fragmentation regions toward the 

central rapidity region. A simple calculation based on the 

geometry in Fig. 3 shows that in going from initial proper time 

T. to 1 final proper time Tfr the baryon-number diffusion is 

limited to a rapidity interval (AyI Slog rf/ri. 

The case of transverse flow may be more complex: hot fluid 

in the interior region is encased in a cooler exterior region, 

and supersonic unstable flows might be contemplated. 

Furthermore, there are certain to be local "hot spots" at the 

initial time for onset of hydrodynamic flow. These are 

associated with high -PI jets produced by hard scttering of 

quarks and/or gluons in the incident projectiles. These "hot 
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spots" carry both high energy and (transverse) momentum 

density. They should be an interesting initial perturbation to 

add to the smooth initial configuration we have assumed. 

We have also neglected the effects of viscosity and heat 

conductivity. The importance of such effects is measured by 

the ratio of mean free path to the natural scale of variation 

of the parameters (E, T, etc.) of the system. For the 

longitudinal motion, we estimated, at the initial time when the 

natural scale of variation is *I-2f, that the mean free path is 

(cf. Eq. 10) probably small in comparison. The uncertainty in 

this conclusion is very large. However, we may remark that 

during longitudinal expansion both the mean-free path 

(inversely proportional to entropy density) and natural scale 

increase in proportion to the elapsed time. Hence, if it is 

justifiable to neglect viscosity and heat conductivity in the 

initial stages, it should continue to be the case throughout 

the longitudinal expansion stage. No such simple statement 

holds, however, for the transverse expansion. 

The estimate of initial energy density is quite uncertain. 

In addition to the uncertainty in choice of transverse scale 

d;r there is uncertainty in the methodology itself. For 

example, the Landau boundary conditions of total arrest and 

equilibrium of the fluid in the initial collision leads, in the 

case of nucleon-nucleon collisions, to a final rapidity 

distribution of produced hadrons not dissimilar to what is 

experimentally seen. The presence of leading baryons in 
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nucleon-nucleus collisions in our opinion argues against 

assuming Landau-like boundary conditions. However, it is 

possible that a large fraction of the incident gluon fields 

and/or quanta in the projectiles does become initially 

equilibrated. If this should be the case the initial energy 

density would be considerably higher. However, it would 

require a very large increase to increase the temperature by a 

large factor owing to the T4 dependence of energy density 

implied by the Stefan-Boltzmann behavior of the quark-gluon 

plasma. 

Finally, we have not addressed questions of experimental 

observables and signatures, other than commenting that in this 

model the final pion multiplicity should not d~epend upon 

details of the equation of state or how the system evolves in 

time but only upon the entropy density imposed in the initial 

boundary conditions. We here make a few brief remarks on some 

of the proposed signatures. 

1) Direct Photons: 

We have not addressed the calculation of the direct 

photon flux. The mean photon energy will not be large 

(3400-500 MeV) and thus the observed distribution may be 

rather unremarkable. There may also be considerable 

uncertainty in estimating the production rate near and 

during the phase transition. 
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2) Direct Dileptons: 

Many of the above comments again apply. In 

particular the mean mass of the dileptons is low, and 

again there may be a lot of uncertainty in calculating 

their rate of production. The calculation must go well 

beyond Drell-Yan style perturbation theory, 16 
which only 

seems to be applicable for dilepton masses in excess of 

3-4 GeV. 

3) Enhanced K/n Ratio: 

In this model, the temperature is rather low. The 

strange-quark mass exceeds the non-strange quark mass by 

about 150 MeV. The Boltzmann-factor will suppress the 

strange quarks by a factor e Am/T n2 . This is the level of 

suppression already seen in hadron-hadron collisions,l' 

once the effects of resonance production (which enhances 

pion, but not kaon production) is taken into account. The 

effects of enhanced strangeness production need not be 

dramatic. 

4) Unusual Event Structure (e.g. "volcanoes"): 

T. D. Lee has suggested" that hydrodynamic 

instability may lead to existence of patchy regions in the 

phase space of produced particles, within which one would 

find increased mean energy, multiplicity, and K/n ratio. 

These may exist in this model, and would be interesting to 
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investigate further. 

5) Production of Exotic Metastable Structures: 

The "Centauro" events reported in cosmic-ray emulsion 

experiments led L. McLerran and this author to speculate 

on the existence of metastable globs of dense quark 

matter.'* Since then, the same experimental group has 

reported" other curious "Chiron" events which might be 

interpreted in terms of similar structures. Ideas along 

these lines are clearly extremely speculative. The 

suggested structures also are characterized by 

nonvanishing baryon-number density. Could such structures 

be produced in nucleus-nucleus collisions? The initial 

density in the central region is high, and if there is a 

first-order phase transition, there should be enough 

inhomogeneity present to encourage the production of such 

objects. 

On the other hand, production of Centauros and "Chirons" 

are associated with leading-particle effects, and this lies 

outside the scope of our considerations. Also, the fluid in 

the central region has no net baryon number, so that there 

would need to be a spontaneous generation of net baryon density 

to make these objects. Thus, while the extension of our 

picture to the fragmentation regions might allow such 

speculation, it does not seem a very promising idea to 

entertain with respect to central production. 
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Nevertheless, such speculation reminds us that the 

possibility of totally unexpected phenomena may be the most 

compelling reason to consider relativistic nucleus-nucleus 

collisions. It is regrettable that it is so hard to estimate 

the odds for this to happen. 
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FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Schematic of the evolution of compressed "baryon 

fireball" in nucleus-nucleus collisions, according to 

the mechanism of Anishetty, Koehler, and McLerran.8 

Geometry for initial state of centrally produced 

plasma in nucleus-nucleus collisions. 

Space-time diagram of longitudinal evolution of the 

quark-gluon plasma. 

Geometry of fluid expansion near the edge of the 

nuclei. 

Effective number of plasma degrees of freedom versus 

temperature. Solid curve: first order phase transition 

at T=200 MeV. Dashed curve: no prominent phase 

transition. 

Sketches of the parameters A 1 and A 2' 

Crude estimate of sound velocity versus temperature. 

Energy density versus temperature. 
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