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Abstract—Data intensive applications, e.g. in life sciences, pose 

new efficiency challenges to the service composition problem. 

Since today computing power is mainly increased by 

multiplication of CPU cores, algorithms have to be redesigned 

to benefit from this evolution. In this paper we present a 

framework for parallelizing service composition algorithms 

investigating how to partition the composition problem into 

multiple parallel threads. But in contrast to intuition, the 

straightforward parallelization techniques do not lead to 

superior performance as our baseline evaluation reveals. To 

harness the full power of multi-core architectures, we propose 

two novel approaches to evenly distribute the workload in a 

sophisticated fashion. In fact, our extensive experiments on 

practical life science data resulted in an impressive speedup of 

over 300% using only 4 cores. Moreover, we show that our 

techniques can also benefit from all advanced pruning 

heuristics used in sequential algorithms. 
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I.  INTRODUCTION 

The composition of individual services to build flexible 
workflows with reusable components is at the heart of the 
web service paradigm. Static approaches like orchestration 
and choreography are already part of the current standards. 
Orchestrations use a central coordinator to invoke available 
sub-processes and orchestration languages like BPEL [1] are 
already used in many systems. In choreographies there is no 
central coordinator, but complex tasks are defined via a 
conversation specification using choreography languages 
such as WS-CDL [2]. 

For scenarios needing flexible interactions between a set 
of independent providers, however, dynamic compositions 
are needed: services have to be invoked on-the-fly to form a 
(usually not predefined) workflow to reach some goal, or 
facilitate some task. But here research is still challenged 
with the enormous size of the planning space. Moreover, 
many rather technical problems in the implementation have 
to be solved, such as service discovery, selection, 
interoperability, reliability, or QoS constraints. 

The traditional field of application for service 
compositions consists of (usually rather limited) business 
and e-commerce scenarios such as secure payments, travel 
planning, or e-shopping. But recently also fields with more 
special requirements like e.g., real-time constraints for 
digital item adaptation in multimedia services (see [3,4]) 

successfully applied the dynamic composition paradigm to 
create complex workflows. 

Currently, a new challenge is posed by data-intensive 
services used in the life sciences either for exchanging and 
processing experimental data or even as a tool for modeling 
(and understanding) complex systems such as metabolic 
networks in biology (see e.g. [5,6]). Here, due to the 
enormous number of existing services and their applicability 
in many different processes, scalability problems are raised 
to new heights: the number of services to be efficiently 
composed ranges in the area of several thousand in each 
workflow. Of course, finding all potential compositions is a 
NP-hard combinatorial problem with exponential time and 
resource complexity. But recent work in [7] proposes a 
novel binary-tree-based representation technique promising 
reasonable efficiency for composition algorithms. 

In this paper we focus on the question of how to harness 
the power of multi-core architectures to build composition 
frameworks providing the actual scalability needed for life 
science applications. Building on binary trees for modeling 
web service compositions, we show that the web service 
community needs sophisticated algorithms beyond 
straightforward parallelization to create efficient solutions. In 
fact, our experiments show that simple parallelization even 
leads to inferior performance over efficient serial 
composition algorithms. Using the running example of 
finding workflows in metabolic networks for the area of 
systems biology (so-called pathways), we propose two novel 
parallelization techniques. Our optimizations are specifically 
tailored to the needs of the service composition problem, and 
their basic paradigms of course can also be exploited in 
general application scenarios. Our experiments show that 
using state-of-the-art quad core machines composition times 
can be more than halved using our base algorithms and can 
even be further improved by sophisticated pruning heuristics. 

The paper is organized as follows: in section 2, we give a 
brief overview of related work. In section 3, the serial 
baseline algorithm is presented. In section 4, we introduce 
our sophisticated parallelization approaches, while section 5 
covers advanced pruning heuristics. Finally, section 6 closes 
this paper with a short conclusion and outlook. 

II. RELATED WORK IN SERVICE COMPOSITION 

The general problem of automatic service composition 
has been around for some time and gained additional 
attention with the research efforts invested in the Semantic 



Web and service-oriented architectures. Formally current 
methods can be roughly classified into three categories: 
logic-, rule- and AI planning-based approaches. For a good 
overview of existing methods see [8]. 

However, when talking about the respective 
performance and benefits approaches from different 
categories cannot be compared easily. [9] proposes a rough 
categorization to enable service composition method 
comparison using the categories service connectivity, non-
functional properties, composition correctness, automatic 
composition and composition scalability. In particular, 
scalability is identified as the most important challenge in 
the area of web service compositions. Since we are 
interested in parallelizing the composition problem, we will 
focus on the respective measure in our experiments.  

Many approaches to solve the actual service composition 
problem have been proposed. Common formal approaches 
use finite state machines [10], algebra (e.g. 𝜋-calculus [11]) 
and Petri nets [12] to implement service composition. Still, 
a major problem of automatic composition is the ‘semantic 
gap’ between concepts that people understand and data that 
computers are able to interpret. Here approaches like the 
service ontology OWL-S [13] can help to ease the problem 
and thus recent work often decouples the semantic 
interoperability problem from pure and efficient 
composition techniques. Since our focus is on efficiency 
improvement, for the rest of this paper we will also abstract 
from semantic ambiguities and assume that all services are 
well-described by their characteristics like pre- and 
postconditions, etc. 

Recently a number of graph- or tree-based methods have 
been proposed to specifically speed up the composition 
process in terms of finding possible solutions, see e.g. 
[7,14,15]. The underlying rationale is that calculations 
needed for compositions can be described as graphs in 
which vertices represent computations and edges reflect data 
dependencies. Thus, the approaches purely focus on most 
efficient ways to find the possible compositions generally 
for a restricted tree depth to avoid cycles. We will build our 
parallelization framework on these approaches and in 
particular use the approach in [7] as a serial baseline 
algorithm for comparison. 

Currently multi-core computers promise massive 
performance gains for parallelized algorithms, which in turn 
has sparked new interest in the complex domain of problem 
partitioning. For a basic introduction see [16] for the design 
and analysis of parallel algorithms, including trees and 
graphs. A good overview on shared-memory multiprocessor 
architecture principles, concurrency (e.g. concurrent stacks), 
monitors and blocking synchronization is given in [17].  

Also in the web service composition community first 
approaches to parallelization have already been designed. In 
[18] a choreographer is modeled that selects necessary 
components of a complex composition goal state and 
executes the planning for the individual components in 
parallel. Similarly, compositions in [19] are built over 
portions of a pre-computed table of composition 
possibilities. However, both approaches safely restrict 
parallelization to portions of the composition graph that can 

be executed in parallel. As we will show in our experiments, 
the actual synchronization needed for such simple 
parallelization over the entire composition graph severely 
decreases the performance (often even beyond that of highly 
optimized serial algorithms).  

In contrast our parallelization approaches reflect the 
structure of the composition problem. Following the model 
of tree-based computation graphs given in [7], it divides the 
calculation among multiple processors by partitioning the 
vertices. For the actual partitioning of graphs for parallel 
processing an introduction is given in [20]. As we will see, 
exploiting both the graph structure and the special 
characteristics of the composition problem leads to our 
approaches’ superior performance. 

III. PARALLELIZABLE SERVICE COMPOSITION 

Web services can be flexibly composed in service chains 
to perform even complex tasks. A composition request R 
abstractly defines the required input and output parameters 
R.in and R.out. Analogously, WS.in and WS.out describe 
the input and output parameters of a web service WS in the 
service repository. In the following, WS can also be a set of 
web services. In that case, WS.in and WS.out are the union 
of the input and output parameters of the single web 
services in WS. A web service WSx is able to satisfy the 
preconditions of another web service WSy if the condition 
𝑊𝑆𝑥 . 𝑜𝑢𝑡 ⊇ 𝑊𝑆𝑦 . 𝑖𝑛  is met. Then, it is equivalent to say 

“the output parameters of WSx match the input parameters 
of WSy“, or just “WSx matches WSy“. 

Web service composition frameworks need a 
representation model for compositions. Recently, binary 
trees have shaped up as the most efficient method [7]. 
Building on these tree structures, we designed our 
framework for parallelization. To be self-contained, we will 
shortly revisit their characteristics. The main idea is to 
create a binary tree for each composition request and store 
all information of the current composition process in this 
data structure. The composition tree has the following 
properties: 

 

 nodes are web services or web service sets, 

 links can only exist if inputs and outputs of both 

linked nodes fit/match, 

 the root node reflects the output of a requested 

web service 

 a branch is a set of serially linked nodes 

 a left branch reflects a disjunction of all nodes 

(except the topmost) on this branch, 

 a right branch reflects a conjunction of all nodes 

(except the topmost) on this branch. 
 
Fig. 1 depicts the principle of a binary composition tree. 
WS1 and WS2 are sets of web services, WS11, WS12, and 
WS21 are individual web services. This small example 
shows that R.out can be satisfied by either WS11 together 
with WS12 or only by WS21. In a logical representation this 
can be expressed as 𝑅. 𝑜𝑢𝑡 = 𝑊𝑆11  ∧𝑊𝑆12  ∨𝑊𝑆21 . 



 
 

Figure 1. Binary composition tree 

 
Basically, our composition framework performs the 

following workflow steps: 
 

1. import service repository into database 

2. build inverse index for all web service outputs 

3. create binary composition tree 

4. extract solution trees from composition tree 
 
While steps 1 and 2 can be preprocessed, the remaining 

steps are performed after a service request was posed to the 
composition engine. Initially, a file repository is parsed and 
written into a database. Every file represents a web service 
described by OWL-S [13]. Further importing methods are 
possible, e.g. online repositories or other data formats. An 
artificial node R.in is added to the repository to allow all 
possible compositions (up to a certain depth) to be created. 
Next, an inverse index is built on the web services output 
parameters. Basically, this is a mapping of all output 
parameters existing in the repository to the services 
providing them. Once the query is posed and a service 
discovery does not lead to an appropriate service, a service 
composition is necessary. Now as a third step, the binary 
composition tree is built. The binary tree composition 
algorithm will be described in more detail later on. Finally, 
for some maximum tree depth, all solutions are extracted 
from the binary composition tree and visualized using the 
DOT markup language and Graphviz [21].  

The essential algorithms of our composition framework 
are presented in the following. The main algorithm compose 
takes the imported service repository, the computed inverse 
index, a web service request and a maximum composition 
tree depth and calls algorithms to compute preconditions 
and build the binary tree. Preconditions are a list of sets of 
web services that fulfill another web service’s inputs. After 
initializing some variables, a service discovery is done at 
line 8. If no service WS is found that matches the user 
request R so that 𝑅. 𝑖𝑛 ⊇ 𝑊𝑆. 𝑖𝑛 ∧  𝑅. 𝑜𝑢𝑡 ⊆ 𝑊𝑆. 𝑜𝑢𝑡  is 
true, the root node is pushed on a stack. This node was 
created before and it contains a set of web services, in this 
case, just one service with requested output parameters as 
input. The following while-loop takes nodes from the stack 
until it is empty. Within that loop, for every node it is 
checked, if its interior web service can be satisfied by the 

requested input parameters. In that case, the node is marked 
to be satisfied and we are done with that node and get the 
next one from the stack. If not, the preconditions are 
computed by calling getPreconditions. Then, 
processPreconditions processes the computed preconditions 
to create the binary tree. Finally, the root node is returned 
after working off the whole stack (which grows in 
processPreconditions), which contains the complete binary 
tree using links to child nodes. 

 
Algorithm “compose” 
Input webservices, outputIndex, requestedWS, 

      maxDepth 

Output rootNode 

1  preconditions = new ArrayList(); 

2  rootWS = new Webservice(); 

3  rootWS.setInputs(requestedWS.getOutputs()); 

4  rootSet = new HashSet(); 

5  rootSet.add(rootWS); 

6  rootNode = new BinaryNode(rootSet); 

7  stack = new Stack(); 

8  “check if requested WS exists in webservices” 

9  stack.push(rootNode); 

10 while (!stack.isEmpty()) { 

11   node = stack.pop(); 

12   ws = “webservice in node“ 

13   if (ws can be satisfied by req. input) { 

14     node.setSatisfied(true); 

15   } else { 

16     preconditions = getPreconditions(ws, 

                              outputIndex); 

17     processPreconditions(preconditions, node, 

                              stack, maxDepth); 

18   } 

19 } 

20 return rootNode; 

 
Algorithm “processPreconditions” 
Input preconditions, rightNode, stack, maxDepth 

1  if (preconditions == null) { 

2    return; 

3  } 

4  for (precondition : preconditions) { 

5    leftNode = new BinaryNode(precondition); 

6    rightNode.insertLeft(leftNode); 

7    if (leftNode.getDepth() > maxDepth) { 

8      leftNode.remove(); 

9      return; 

10   } else { 

11     spreadNode(leftNode, stack, maxDepth); 

12   } 

13 } 

 
This algorithm processPreconditions takes a list of 

preconditions, a binary node, a stack and a maximal depth 
parameter and builds or deletes branches under the given 
node. For every precondition a new node is created and 
attached as a left child node of the given node. If there is 
already a left child node, insertLeft attaches the new node as 
the left child of that left child node recursively. 
Additionally, it sets the new node’s depth as parent node 
depth + 1. The algorithm terminates if the maximum tree 
depth is reached. Next, we call spreadNode for the new 
node to create a right branch using its interior web service 
set. 



Algorithm “spreadNode” 
Input node, stack, maxDepth 

1  wsSet = node.getElement(); 

2  if (node.getDepth()+wsSet.size()>maxDepth) { 

3    return; 

4  } 

5  for (ws : wsSet) { 

6    singleSet = new HashSet(); 

7    singleSet.add(ws); 

8    singleNode = new BinaryNode(singleSet); 

9    node.insertRight(singleNode); 

10   stack.push(singleNode); 

11 } 

12 return; 

 
The functionality of spreadNode is partly similar to 

processPreconditions. A right branch is created from the 
given web service set by splitting it up into single nodes and 
attaching them as right child nodes to the given node. After 
getting the web service set from the given node in the first 
step, it is ensured that the right branch to be created will not 
exceed the tree depth limit. Next, for all services in the set, 
we create a new node, insert it as right child of the given 
node and push the new node to the stack to be processed 
later. Again, the node is inserted as a right child of the right 
child node recursively, and its depth is set to parent node 
depth + 1. 

  
Algorithm “getPreconditions” 
Input ws, outputIndex 

Output preconditionList 

1  reqOutputIndex = new ArrayList(); 

2  for (entry : ws.getInputs()) { 

3    inputSet = outputIndex.get(entry); 

4    if (inputSet != null) { 

5      reqOutputIndex.add(inputSet); 

6    } else { 

7      return null; 

8    } 

9  } 

10 preconditionList = new ArrayList(); 

11 if (reqOutputIndex.size() == 1) { 

12   preconditionList = convertSetToSetList( 

                  reqOutputIndex.get(0)); 

13 } 

14 for (i=0; i<reqOutputIndex.size()-1; i++) { 

15   if (i == 0) { 

16     preconditionList = combineSetListWithSet( 

               convertSetToSetList( 

                 reqOutputIndex.get(0)), 

                 reqOutputIndex.get(i + 1)); 

17   } else { 

18     preconditionList = combineSetListWithSet( 

               combinationList, 

               reqOutputIndex.get(i + 1)); 

19   } 

20 } 

21 return preconditionList; 

 
The getPrecondition method takes a web service's input 

parameters and the inverted output index and returns a list 
of all preconditions by combining web services using 
combineSetListWithSet. This method combines a set list 
with a set by combining every set in the list with the given 
set. Maximum efficiency is reached by preventing the 

combination of useless sets at an early stage. 
deleteAllSupersets deletes all supersets of a given set list 
(including equal sets). isSubsetInList checks if a subset of a 
given set exists in a given set list. Fig. 2 exemplifies a 
generated binary composition tree for a single request. Here, 
gray nodes are the preconditions of the white nodes, and red 
nodes can be satisfied by the given input parameters. 

 
Algorithm “combineSetListWithSet” 
Input setList, webserviceSet 

Output combinationList 

1  reqOutputIndex = new ArrayList(); 

2  for (set : setList) { 

3    for (ws : webserviceSet) { 

4      combinedSet = new TreeSet(); 

5      combinedSet.addAll(set); 

6      if (!combinedSet.contains(ws)) { 

7        combinedSet.add(ws); 

8        if (!isSubsetInList( 

                combinationList, combinedSet)) { 

9          combinationList.add(combinedSet); 

10       } 

11     } else { 

12       combinationList = deleteAllSupersets( 

                  combinationList, combinedSet); 

13       if (!isSubsetInList( 

                combinationList, combinedSet)) { 

14         combinationList.add(combinedSet); 

15       } 

16       break; 

17     } 

18   } 

19 } 

20 return combinationList; 

 

 
 

Figure 2. Example binary composition tree 

 
Naïve Parallelization. Our first parallelization approach 
takes advantage of the usage of a stack in the serial 
algorithm. It is obvious to let different threads pick and 
process different nodes from the stack to get a very even 
distribution of work. The main thread takes nodes from the 



shared stack and starts a thread for each one to process it. If 
the maximum number of free threads is reached, the main 
thread falls asleep and waits to be notified by a finished 
thread. Each time a thread has finished its work, it wakes up 
the main thread and waits to get another item from the stack. 
This way, the shared stack will be worked off until no more 
items are put on by the sub threads and the stack is empty. 
Fig. 3 depicts this principle. 
 

 
 

Figure 3. Naïve parallelization 

 
Evaluation Setup. For all our experiments we use an Intel 
Core 2 Quad CPU Q9450 with 2.67 GHz per core. 
Furthermore this machine has 4 GB main memory. The 
operating system was Microsoft Windows 7 with 64 bit 
architecture. All algorithms have been implemented in Java 
version 1.6. We randomly generated composition requests 
and report the average time of several runs. Our web service 
repository includes 7816 different web services, created 
from biochemical reactions. We imported these reactions 
from the KEGG database [22]. 

 

 
Figure 4. Results of naïve approach 

 
Results. Fig. 4 shows the performance of the naïve 
parallelization against the state-of-the-art serial algorithm 
from [7]. Interestingly the results show that the serial 
algorithm is always faster. Thus, it is not at all trivial to 
parallelize an efficient sequential composition approach. 
The main reason is the parallelization and synchronization 
overhead, which we will minimize in the next section. 

 

IV. SOPHISTICATED PARALLELIZATION 

Generally, to implement good parallelization, the 
problem has to be partitioned minimizing the amount of 
synchronization overhead. In particular, a lot of blocking 
synchronization has to be implemented for concurrent 
processing. We propose two sophisticated parallelization 
approaches to distribute the workload to multiple threads. 
Moreover, we always minimized parallelization overhead by 
reusing finished threads using Java’s Executor service. 

 
Thread-optimized parallelization. This approach is a 
modification of the naïve approach.  The main difference is 
that before new threads are created, all nodes are checked by 
the main thread: if its preconditions are already satisfied by 
the given inputs, no new thread will be created. 
Additionally, it is checked if preconditions of the current 
node have been computed previously. In this case, we 
process the node within the main thread. Otherwise, a thread 
is created to process this node as in the naïve approach. This 
way we save overhead using a simple hash map to 
remember previously computed preconditions. 

 
Sub-tree partitioning. The basic idea of this approach is to 
minimize parallelization overhead, specifically targeting 
concurrency problems. This is realized by dividing the 
binary composition tree into sub-trees in the topmost layer 
(see Fig. 5). Each sub-tree is then computed by a single 
dedicated thread, using its own stack. On one hand, each 
thread can work off its own stack and there is no need for 
synchronization or interaction between threads anymore. On 
the other hand, the distribution of work is less even, because 
sub-trees may differ in depth and complexity. Thus, if the 
binary composition tree is balanced, this approach can tap 
its full potential. 
 

 
 

Figure 5. Sub-tree partitioning 

 
Results. Again, we compared the performance of both our 
approaches to the serial approach, to see if we can now gain 
some performance speedup through parallelization. Fig. 6 
shows the computation time of the serial algorithm and both 
sophisticated parallelization algorithms using 4 threads for 
varying composition tree depths. 

 



 
Figure 6. Results of sophisticated approaches 

 
The results reveal a definite improvement through 

parallelization. The thread-optimized approach is about 3 
times faster than the serial algorithm, while the sub-tree 
partitioning method still reaches more than a double 
speedup, both using 4 threads on a 4 core machine. The 
reason for the thread-optimized parallel algorithm being a 
bit faster is because the workload is distributed more evenly. 

In the next experiment we investigated the correlation 
between computation time speedup and the number of used 
threads. The computed binary composition tree has a fixed 
depth of 30. Fig. 7 presents the behavior of both our 
approaches’ computation times depending on the number of 
used threads, varying from one to eight. First, we can 
observe that the thread-optimized approach benefits most 
from increasing the number of threads due to better 
distribution of workload. If just one thread is used, the 
computation times are pretty similar for both parallel 
algorithms because no parallelization is done at all. With 
two to four threads, we can observe a definite speedup of 
312%, respectively 211% as expected. From five to eight 
threads there is no significant additional speedup, because 
we just used 4 CPU cores (still, a slight speedup can be 
gained due to hyperthreading effects). 

 

 
Figure 7. Correlation of speedup and number of threads 

 
 
 

V. ADVANCED PRUNING HEURISTICS 

Since today’s most efficient sequential web service 
composition algorithms gain their efficiency by pruning 
optimizations, we also tested two advanced pruning 
heuristics in both our parallelization approaches. 

 
Optimization 1: rememberPreconditions. To prevent 
previously computed preconditions to be computed again, in 
this heuristic we enhanced our framework by a lookup table 
of previously calculated results. Like in the thread-
optimized parallelization, we globally reduce computation 
repetitions by remembering every result (satisfied and failed 
nodes) of precondition computations. If our table holds an 
entry for some specific node, it is directly processed. 
Otherwise, the algorithm proceeds as before. Since this 
lookups have to be done very frequently, we decided to use 
a hash map for the purpose of maximum performance: the 
hash map formerPrecond has to be declared and initialized 
in our baseline algorithm compose and line 16 has to be 
replaced by the following code. 

 
1  if (formerPrecond.containsKey(ws) { 

2    preconditions = formerPrecond.get(ws); 

3  } else { 

4    preconditions = getPreconditions(ws, 

                      outputIndex); 

5    formerPrecond.put(ws, preconditions); 

6  } 

 
Optimization 2: deleteBranches. If a given web service 
node fails, this algorithm recursively deletes the entire right 
branch the failed node is part of. To prevent inconsistencies 
while concurrently processing the same binary composition 
tree with multiple threads, we have to wrap the whole 
algorithm with a synchronized block. 

Initially it is checked, whether the given node has a 
parent node. If so, we try to find the root of the right branch 
and delete all parent-links on the way up. Deleting the links 
is important for concurrent processing, because other 
threads might still be working on a deleted branch. But such 
threads are forced to immediately stop processing, if the 
backtracking does not lead to parent nodes anymore. 
Furthermore, for every step up on the branch, the current 
node may have to be removed from some position deep 
within the stack, because other threads could have modified 
the stack in the meantime. 

After the right branch’s parent node was found, we 
check if it has a left child node (again, after ensuring that 
there is still a parent node). If it has a left child, we re-link it 
with the parent node and vice versa, so existing sub-trees 
won't be lost. Otherwise, we check if its parent node is a left 
or right child. If it is a left child or has no parents at all, the 
left child is set null. If it’s a right child, then it fails and the 
whole (conjunctive) right branch can also be deleted 
recursively. This way, all failing nodes and branches are 
pruned, and no obsolete nodes stay on the stack. This 
method has to be integrated in processPrecondition before 
line 2 with parameters rightNode and stack when no 
preconditions have been found and before line 8 with 



parameters leftNode and stack if the new node exceeds the 
allowed tree depth limit. Due to the same reason, 
deleteBranches is called in spreadNode before line 3 with 
parameters node and stack. 

 
Algorithm “deleteBranch” 
Input node, stack 

1  synchronized { 

2  firstTime = true; 

3  if (node.getParent() == null) { 

4    return; 

5  } 

6  while (node.getParent() != null && 

           node.getParent().getLeft() != node) { 

7    node = node.getParent(); 

8    node.getRight().deleteParent(); 

9    if (firstTime) { 

10     firstTime = false; 

11   } else if (stack != null) { 

12     firstTime = false; 

13     stack.remove(node.getRight()); 

14   } 

15 } 

16 if (node.getLeft() != null) { 

17   node.getLeft().setParent(node.getParent()); 

18   node.getParent().setLeft(node.getLeft()); 

19 } else { 

20   node = node.getParent(); 

21   if(node.isLeftChild()||node.hasNoParent()){ 

22     node.setLeft(null); 

23   } else if (node.isRightChild()) { 

24     deleteBranch(node, stack); 

25   } 

26 } 

27 } 

 
Results. We investigated our algorithms’ computation time 
improvement, when both advanced pruning heuristics are 
applied. For both parallel methods we again used four 
threads, varied binary composition tree depth and measured 
computation time. Fig. 8 shows the results: both 
parallelization methods still outperform the serial algorithm, 
when applying the two advanced pruning heuristics to all 
algorithms. It’s interesting to observe that the sub-tree 
partitioning approach benefits most from the new heuristics, 
now outperforming the serial and the thread-optimized 
parallel approach. The reason is that the overhead for 
workload balancing spent by the thread-optimized approach 
cannot be amortized after the pruning is applied.  
 

 
Figure 8. Advanced pruning heuristics 

Moreover, we also investigated scalability when 
increasing the input set size, i.e. the number of web services 
for the composition. We present the respective results in 
Fig. 9, which shows a quite similar scalability behavior of 
all composition methods. 

 

 
Figure 9. Varying the number of services 

 
Since advanced pruning heuristics have a great impact 

on overall computation times, we had a closer look at their 
uncorrelated influence. We examined the computation times 
for all parallel approaches with and without optimizations 
with four threads and a fixed tree depth of 30. Fig. 10 shows 
the impact of both optimizations. 

 

 
Figure 10. Impact of optimizations 

 
As seen before, the sub-tree partitioning approach 

benefits most. In this case, we can save up to 98.31% 
computation time. Using the naïve and thread-optimized 
approach, we can save up to 93.34% and 96.5% when 
applying both advanced pruning heuristics to the algorithms. 
Obviously, the naïve approach profits least, if 
rememberPreconditions is applied, because the significantly 
higher synchronization overhead doesn’t pay off anymore. 

VI. CONCLUSION AND OUTLOOK 

In this paper we presented a web service composition 
framework featuring two parallel service composition 
approaches based on binary trees. After showcasing that 
parallelization of state-of-the-art service composition 
algorithms is by far not trivial, we showed our algorithms to 



outperform the most efficient sequential algorithm. While 
being up to three times faster on a four core platform, our 
experimental results revealed that a considerable 
performance and scalability improvement is possible 
through parallelization and is additionally enhanced by 
pruning heuristics. Thus, we can utilize the great potential of 
multi-core systems, being able to handle the general 
composition problem in extensive service repositories. Due 
to high scalability and a fast preprocessing in cases of 
repository changes, we conclude that it is thoroughly 
possible to easily apply our framework algorithms to 
dynamic real time composition systems with vast web 
service repositories. 

Our future work focuses on realizing semantic 
matchmaking within our service composition framework by 
implementing different metrics (e.g. cosine, extended 
Jacquard [23]) and ontologies. With these modifications, it 
will be possible to compute top-k results or stop execution 
after finding one valid solution. Finally, we will try to detect 
and prevent composition loops by more advanced 
techniques like computing hash values of composition paths 
instead of just restricting the binary tree depth. 
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