
Highly Scalable Web Service Composition using

Binary Tree-based Parallelization

Patrick Hennig, Wolf-Tilo Balke

L3S Research Center

Hannover, Germany

{hennig, balke}@L3S.de

Abstract—Data intensive applications, e.g. in life sciences, pose

new efficiency challenges to the service composition problem.

Since today computing power is mainly increased by

multiplication of CPU cores, algorithms have to be redesigned

to benefit from this evolution. In this paper we present a

framework for parallelizing service composition algorithms

investigating how to partition the composition problem into

multiple parallel threads. But in contrast to intuition, the

straightforward parallelization techniques do not lead to

superior performance as our baseline evaluation reveals. To

harness the full power of multi-core architectures, we propose

two novel approaches to evenly distribute the workload in a

sophisticated fashion. In fact, our extensive experiments on

practical life science data resulted in an impressive speedup of

over 300% using only 4 cores. Moreover, we show that our

techniques can also benefit from all advanced pruning

heuristics used in sequential algorithms.

Keywords–web services; service compostion; parallelization

I. INTRODUCTION

The composition of individual services to build flexible
workflows with reusable components is at the heart of the
web service paradigm. Static approaches like orchestration
and choreography are already part of the current standards.
Orchestrations use a central coordinator to invoke available
sub-processes and orchestration languages like BPEL [1] are
already used in many systems. In choreographies there is no
central coordinator, but complex tasks are defined via a
conversation specification using choreography languages
such as WS-CDL [2].

For scenarios needing flexible interactions between a set
of independent providers, however, dynamic compositions
are needed: services have to be invoked on-the-fly to form a
(usually not predefined) workflow to reach some goal, or
facilitate some task. But here research is still challenged
with the enormous size of the planning space. Moreover,
many rather technical problems in the implementation have
to be solved, such as service discovery, selection,
interoperability, reliability, or QoS constraints.

The traditional field of application for service
compositions consists of (usually rather limited) business
and e-commerce scenarios such as secure payments, travel
planning, or e-shopping. But recently also fields with more
special requirements like e.g., real-time constraints for
digital item adaptation in multimedia services (see [3,4])

successfully applied the dynamic composition paradigm to
create complex workflows.

Currently, a new challenge is posed by data-intensive
services used in the life sciences either for exchanging and
processing experimental data or even as a tool for modeling
(and understanding) complex systems such as metabolic
networks in biology (see e.g. [5,6]). Here, due to the
enormous number of existing services and their applicability
in many different processes, scalability problems are raised
to new heights: the number of services to be efficiently
composed ranges in the area of several thousand in each
workflow. Of course, finding all potential compositions is a
NP-hard combinatorial problem with exponential time and
resource complexity. But recent work in [7] proposes a
novel binary-tree-based representation technique promising
reasonable efficiency for composition algorithms.

In this paper we focus on the question of how to harness
the power of multi-core architectures to build composition
frameworks providing the actual scalability needed for life
science applications. Building on binary trees for modeling
web service compositions, we show that the web service
community needs sophisticated algorithms beyond
straightforward parallelization to create efficient solutions. In
fact, our experiments show that simple parallelization even
leads to inferior performance over efficient serial
composition algorithms. Using the running example of
finding workflows in metabolic networks for the area of
systems biology (so-called pathways), we propose two novel
parallelization techniques. Our optimizations are specifically
tailored to the needs of the service composition problem, and
their basic paradigms of course can also be exploited in
general application scenarios. Our experiments show that
using state-of-the-art quad core machines composition times
can be more than halved using our base algorithms and can
even be further improved by sophisticated pruning heuristics.

The paper is organized as follows: in section 2, we give a
brief overview of related work. In section 3, the serial
baseline algorithm is presented. In section 4, we introduce
our sophisticated parallelization approaches, while section 5
covers advanced pruning heuristics. Finally, section 6 closes
this paper with a short conclusion and outlook.

II. RELATED WORK IN SERVICE COMPOSITION

The general problem of automatic service composition
has been around for some time and gained additional
attention with the research efforts invested in the Semantic

Web and service-oriented architectures. Formally current
methods can be roughly classified into three categories:
logic-, rule- and AI planning-based approaches. For a good
overview of existing methods see [8].

However, when talking about the respective
performance and benefits approaches from different
categories cannot be compared easily. [9] proposes a rough
categorization to enable service composition method
comparison using the categories service connectivity, non-
functional properties, composition correctness, automatic
composition and composition scalability. In particular,
scalability is identified as the most important challenge in
the area of web service compositions. Since we are
interested in parallelizing the composition problem, we will
focus on the respective measure in our experiments.

Many approaches to solve the actual service composition
problem have been proposed. Common formal approaches
use finite state machines [10], algebra (e.g. 𝜋-calculus [11])
and Petri nets [12] to implement service composition. Still,
a major problem of automatic composition is the ‘semantic
gap’ between concepts that people understand and data that
computers are able to interpret. Here approaches like the
service ontology OWL-S [13] can help to ease the problem
and thus recent work often decouples the semantic
interoperability problem from pure and efficient
composition techniques. Since our focus is on efficiency
improvement, for the rest of this paper we will also abstract
from semantic ambiguities and assume that all services are
well-described by their characteristics like pre- and
postconditions, etc.

Recently a number of graph- or tree-based methods have
been proposed to specifically speed up the composition
process in terms of finding possible solutions, see e.g.
[7,14,15]. The underlying rationale is that calculations
needed for compositions can be described as graphs in
which vertices represent computations and edges reflect data
dependencies. Thus, the approaches purely focus on most
efficient ways to find the possible compositions generally
for a restricted tree depth to avoid cycles. We will build our
parallelization framework on these approaches and in
particular use the approach in [7] as a serial baseline
algorithm for comparison.

Currently multi-core computers promise massive
performance gains for parallelized algorithms, which in turn
has sparked new interest in the complex domain of problem
partitioning. For a basic introduction see [16] for the design
and analysis of parallel algorithms, including trees and
graphs. A good overview on shared-memory multiprocessor
architecture principles, concurrency (e.g. concurrent stacks),
monitors and blocking synchronization is given in [17].

Also in the web service composition community first
approaches to parallelization have already been designed. In
[18] a choreographer is modeled that selects necessary
components of a complex composition goal state and
executes the planning for the individual components in
parallel. Similarly, compositions in [19] are built over
portions of a pre-computed table of composition
possibilities. However, both approaches safely restrict
parallelization to portions of the composition graph that can

be executed in parallel. As we will show in our experiments,
the actual synchronization needed for such simple
parallelization over the entire composition graph severely
decreases the performance (often even beyond that of highly
optimized serial algorithms).

In contrast our parallelization approaches reflect the
structure of the composition problem. Following the model
of tree-based computation graphs given in [7], it divides the
calculation among multiple processors by partitioning the
vertices. For the actual partitioning of graphs for parallel
processing an introduction is given in [20]. As we will see,
exploiting both the graph structure and the special
characteristics of the composition problem leads to our
approaches’ superior performance.

III. PARALLELIZABLE SERVICE COMPOSITION

Web services can be flexibly composed in service chains
to perform even complex tasks. A composition request R
abstractly defines the required input and output parameters
R.in and R.out. Analogously, WS.in and WS.out describe
the input and output parameters of a web service WS in the
service repository. In the following, WS can also be a set of
web services. In that case, WS.in and WS.out are the union
of the input and output parameters of the single web
services in WS. A web service WSx is able to satisfy the
preconditions of another web service WSy if the condition
𝑊𝑆𝑥 . 𝑜𝑢𝑡 ⊇ 𝑊𝑆𝑦 . 𝑖𝑛 is met. Then, it is equivalent to say

“the output parameters of WSx match the input parameters
of WSy“, or just “WSx matches WSy“.

Web service composition frameworks need a
representation model for compositions. Recently, binary
trees have shaped up as the most efficient method [7].
Building on these tree structures, we designed our
framework for parallelization. To be self-contained, we will
shortly revisit their characteristics. The main idea is to
create a binary tree for each composition request and store
all information of the current composition process in this
data structure. The composition tree has the following
properties:

 nodes are web services or web service sets,

 links can only exist if inputs and outputs of both

linked nodes fit/match,

 the root node reflects the output of a requested

web service

 a branch is a set of serially linked nodes

 a left branch reflects a disjunction of all nodes

(except the topmost) on this branch,

 a right branch reflects a conjunction of all nodes

(except the topmost) on this branch.

Fig. 1 depicts the principle of a binary composition tree.
WS1 and WS2 are sets of web services, WS11, WS12, and
WS21 are individual web services. This small example
shows that R.out can be satisfied by either WS11 together
with WS12 or only by WS21. In a logical representation this
can be expressed as 𝑅. 𝑜𝑢𝑡 = 𝑊𝑆11 ∧𝑊𝑆12 ∨𝑊𝑆21 .

Figure 1. Binary composition tree

Basically, our composition framework performs the

following workflow steps:

1. import service repository into database

2. build inverse index for all web service outputs

3. create binary composition tree

4. extract solution trees from composition tree

While steps 1 and 2 can be preprocessed, the remaining

steps are performed after a service request was posed to the
composition engine. Initially, a file repository is parsed and
written into a database. Every file represents a web service
described by OWL-S [13]. Further importing methods are
possible, e.g. online repositories or other data formats. An
artificial node R.in is added to the repository to allow all
possible compositions (up to a certain depth) to be created.
Next, an inverse index is built on the web services output
parameters. Basically, this is a mapping of all output
parameters existing in the repository to the services
providing them. Once the query is posed and a service
discovery does not lead to an appropriate service, a service
composition is necessary. Now as a third step, the binary
composition tree is built. The binary tree composition
algorithm will be described in more detail later on. Finally,
for some maximum tree depth, all solutions are extracted
from the binary composition tree and visualized using the
DOT markup language and Graphviz [21].

The essential algorithms of our composition framework
are presented in the following. The main algorithm compose
takes the imported service repository, the computed inverse
index, a web service request and a maximum composition
tree depth and calls algorithms to compute preconditions
and build the binary tree. Preconditions are a list of sets of
web services that fulfill another web service’s inputs. After
initializing some variables, a service discovery is done at
line 8. If no service WS is found that matches the user
request R so that 𝑅. 𝑖𝑛 ⊇ 𝑊𝑆. 𝑖𝑛 ∧ 𝑅. 𝑜𝑢𝑡 ⊆ 𝑊𝑆. 𝑜𝑢𝑡 is
true, the root node is pushed on a stack. This node was
created before and it contains a set of web services, in this
case, just one service with requested output parameters as
input. The following while-loop takes nodes from the stack
until it is empty. Within that loop, for every node it is
checked, if its interior web service can be satisfied by the

requested input parameters. In that case, the node is marked
to be satisfied and we are done with that node and get the
next one from the stack. If not, the preconditions are
computed by calling getPreconditions. Then,
processPreconditions processes the computed preconditions
to create the binary tree. Finally, the root node is returned
after working off the whole stack (which grows in
processPreconditions), which contains the complete binary
tree using links to child nodes.

Algorithm “compose”
Input webservices, outputIndex, requestedWS,

 maxDepth

Output rootNode

1 preconditions = new ArrayList();

2 rootWS = new Webservice();

3 rootWS.setInputs(requestedWS.getOutputs());

4 rootSet = new HashSet();

5 rootSet.add(rootWS);

6 rootNode = new BinaryNode(rootSet);

7 stack = new Stack();

8 “check if requested WS exists in webservices”

9 stack.push(rootNode);

10 while (!stack.isEmpty()) {

11 node = stack.pop();

12 ws = “webservice in node“

13 if (ws can be satisfied by req. input) {

14 node.setSatisfied(true);

15 } else {

16 preconditions = getPreconditions(ws,

 outputIndex);

17 processPreconditions(preconditions, node,

 stack, maxDepth);

18 }

19 }

20 return rootNode;

Algorithm “processPreconditions”
Input preconditions, rightNode, stack, maxDepth

1 if (preconditions == null) {

2 return;

3 }

4 for (precondition : preconditions) {

5 leftNode = new BinaryNode(precondition);

6 rightNode.insertLeft(leftNode);

7 if (leftNode.getDepth() > maxDepth) {

8 leftNode.remove();

9 return;

10 } else {

11 spreadNode(leftNode, stack, maxDepth);

12 }

13 }

This algorithm processPreconditions takes a list of

preconditions, a binary node, a stack and a maximal depth
parameter and builds or deletes branches under the given
node. For every precondition a new node is created and
attached as a left child node of the given node. If there is
already a left child node, insertLeft attaches the new node as
the left child of that left child node recursively.
Additionally, it sets the new node’s depth as parent node
depth + 1. The algorithm terminates if the maximum tree
depth is reached. Next, we call spreadNode for the new
node to create a right branch using its interior web service
set.

Algorithm “spreadNode”
Input node, stack, maxDepth

1 wsSet = node.getElement();

2 if (node.getDepth()+wsSet.size()>maxDepth) {

3 return;

4 }

5 for (ws : wsSet) {

6 singleSet = new HashSet();

7 singleSet.add(ws);

8 singleNode = new BinaryNode(singleSet);

9 node.insertRight(singleNode);

10 stack.push(singleNode);

11 }

12 return;

The functionality of spreadNode is partly similar to

processPreconditions. A right branch is created from the
given web service set by splitting it up into single nodes and
attaching them as right child nodes to the given node. After
getting the web service set from the given node in the first
step, it is ensured that the right branch to be created will not
exceed the tree depth limit. Next, for all services in the set,
we create a new node, insert it as right child of the given
node and push the new node to the stack to be processed
later. Again, the node is inserted as a right child of the right
child node recursively, and its depth is set to parent node
depth + 1.

Algorithm “getPreconditions”
Input ws, outputIndex

Output preconditionList

1 reqOutputIndex = new ArrayList();

2 for (entry : ws.getInputs()) {

3 inputSet = outputIndex.get(entry);

4 if (inputSet != null) {

5 reqOutputIndex.add(inputSet);

6 } else {

7 return null;

8 }

9 }

10 preconditionList = new ArrayList();

11 if (reqOutputIndex.size() == 1) {

12 preconditionList = convertSetToSetList(

 reqOutputIndex.get(0));

13 }

14 for (i=0; i<reqOutputIndex.size()-1; i++) {

15 if (i == 0) {

16 preconditionList = combineSetListWithSet(

 convertSetToSetList(

 reqOutputIndex.get(0)),

 reqOutputIndex.get(i + 1));

17 } else {

18 preconditionList = combineSetListWithSet(

 combinationList,

 reqOutputIndex.get(i + 1));

19 }

20 }

21 return preconditionList;

The getPrecondition method takes a web service's input

parameters and the inverted output index and returns a list
of all preconditions by combining web services using
combineSetListWithSet. This method combines a set list
with a set by combining every set in the list with the given
set. Maximum efficiency is reached by preventing the

combination of useless sets at an early stage.
deleteAllSupersets deletes all supersets of a given set list
(including equal sets). isSubsetInList checks if a subset of a
given set exists in a given set list. Fig. 2 exemplifies a
generated binary composition tree for a single request. Here,
gray nodes are the preconditions of the white nodes, and red
nodes can be satisfied by the given input parameters.

Algorithm “combineSetListWithSet”
Input setList, webserviceSet

Output combinationList

1 reqOutputIndex = new ArrayList();

2 for (set : setList) {

3 for (ws : webserviceSet) {

4 combinedSet = new TreeSet();

5 combinedSet.addAll(set);

6 if (!combinedSet.contains(ws)) {

7 combinedSet.add(ws);

8 if (!isSubsetInList(

 combinationList, combinedSet)) {

9 combinationList.add(combinedSet);

10 }

11 } else {

12 combinationList = deleteAllSupersets(

 combinationList, combinedSet);

13 if (!isSubsetInList(

 combinationList, combinedSet)) {

14 combinationList.add(combinedSet);

15 }

16 break;

17 }

18 }

19 }

20 return combinationList;

Figure 2. Example binary composition tree

Naïve Parallelization. Our first parallelization approach
takes advantage of the usage of a stack in the serial
algorithm. It is obvious to let different threads pick and
process different nodes from the stack to get a very even
distribution of work. The main thread takes nodes from the

shared stack and starts a thread for each one to process it. If
the maximum number of free threads is reached, the main
thread falls asleep and waits to be notified by a finished
thread. Each time a thread has finished its work, it wakes up
the main thread and waits to get another item from the stack.
This way, the shared stack will be worked off until no more
items are put on by the sub threads and the stack is empty.
Fig. 3 depicts this principle.

Figure 3. Naïve parallelization

Evaluation Setup. For all our experiments we use an Intel
Core 2 Quad CPU Q9450 with 2.67 GHz per core.
Furthermore this machine has 4 GB main memory. The
operating system was Microsoft Windows 7 with 64 bit
architecture. All algorithms have been implemented in Java
version 1.6. We randomly generated composition requests
and report the average time of several runs. Our web service
repository includes 7816 different web services, created
from biochemical reactions. We imported these reactions
from the KEGG database [22].

Figure 4. Results of naïve approach

Results. Fig. 4 shows the performance of the naïve
parallelization against the state-of-the-art serial algorithm
from [7]. Interestingly the results show that the serial
algorithm is always faster. Thus, it is not at all trivial to
parallelize an efficient sequential composition approach.
The main reason is the parallelization and synchronization
overhead, which we will minimize in the next section.

IV. SOPHISTICATED PARALLELIZATION

Generally, to implement good parallelization, the
problem has to be partitioned minimizing the amount of
synchronization overhead. In particular, a lot of blocking
synchronization has to be implemented for concurrent
processing. We propose two sophisticated parallelization
approaches to distribute the workload to multiple threads.
Moreover, we always minimized parallelization overhead by
reusing finished threads using Java’s Executor service.

Thread-optimized parallelization. This approach is a
modification of the naïve approach. The main difference is
that before new threads are created, all nodes are checked by
the main thread: if its preconditions are already satisfied by
the given inputs, no new thread will be created.
Additionally, it is checked if preconditions of the current
node have been computed previously. In this case, we
process the node within the main thread. Otherwise, a thread
is created to process this node as in the naïve approach. This
way we save overhead using a simple hash map to
remember previously computed preconditions.

Sub-tree partitioning. The basic idea of this approach is to
minimize parallelization overhead, specifically targeting
concurrency problems. This is realized by dividing the
binary composition tree into sub-trees in the topmost layer
(see Fig. 5). Each sub-tree is then computed by a single
dedicated thread, using its own stack. On one hand, each
thread can work off its own stack and there is no need for
synchronization or interaction between threads anymore. On
the other hand, the distribution of work is less even, because
sub-trees may differ in depth and complexity. Thus, if the
binary composition tree is balanced, this approach can tap
its full potential.

Figure 5. Sub-tree partitioning

Results. Again, we compared the performance of both our
approaches to the serial approach, to see if we can now gain
some performance speedup through parallelization. Fig. 6
shows the computation time of the serial algorithm and both
sophisticated parallelization algorithms using 4 threads for
varying composition tree depths.

Figure 6. Results of sophisticated approaches

The results reveal a definite improvement through

parallelization. The thread-optimized approach is about 3
times faster than the serial algorithm, while the sub-tree
partitioning method still reaches more than a double
speedup, both using 4 threads on a 4 core machine. The
reason for the thread-optimized parallel algorithm being a
bit faster is because the workload is distributed more evenly.

In the next experiment we investigated the correlation
between computation time speedup and the number of used
threads. The computed binary composition tree has a fixed
depth of 30. Fig. 7 presents the behavior of both our
approaches’ computation times depending on the number of
used threads, varying from one to eight. First, we can
observe that the thread-optimized approach benefits most
from increasing the number of threads due to better
distribution of workload. If just one thread is used, the
computation times are pretty similar for both parallel
algorithms because no parallelization is done at all. With
two to four threads, we can observe a definite speedup of
312%, respectively 211% as expected. From five to eight
threads there is no significant additional speedup, because
we just used 4 CPU cores (still, a slight speedup can be
gained due to hyperthreading effects).

Figure 7. Correlation of speedup and number of threads

V. ADVANCED PRUNING HEURISTICS

Since today’s most efficient sequential web service
composition algorithms gain their efficiency by pruning
optimizations, we also tested two advanced pruning
heuristics in both our parallelization approaches.

Optimization 1: rememberPreconditions. To prevent
previously computed preconditions to be computed again, in
this heuristic we enhanced our framework by a lookup table
of previously calculated results. Like in the thread-
optimized parallelization, we globally reduce computation
repetitions by remembering every result (satisfied and failed
nodes) of precondition computations. If our table holds an
entry for some specific node, it is directly processed.
Otherwise, the algorithm proceeds as before. Since this
lookups have to be done very frequently, we decided to use
a hash map for the purpose of maximum performance: the
hash map formerPrecond has to be declared and initialized
in our baseline algorithm compose and line 16 has to be
replaced by the following code.

1 if (formerPrecond.containsKey(ws) {

2 preconditions = formerPrecond.get(ws);

3 } else {

4 preconditions = getPreconditions(ws,

 outputIndex);

5 formerPrecond.put(ws, preconditions);

6 }

Optimization 2: deleteBranches. If a given web service
node fails, this algorithm recursively deletes the entire right
branch the failed node is part of. To prevent inconsistencies
while concurrently processing the same binary composition
tree with multiple threads, we have to wrap the whole
algorithm with a synchronized block.

Initially it is checked, whether the given node has a
parent node. If so, we try to find the root of the right branch
and delete all parent-links on the way up. Deleting the links
is important for concurrent processing, because other
threads might still be working on a deleted branch. But such
threads are forced to immediately stop processing, if the
backtracking does not lead to parent nodes anymore.
Furthermore, for every step up on the branch, the current
node may have to be removed from some position deep
within the stack, because other threads could have modified
the stack in the meantime.

After the right branch’s parent node was found, we
check if it has a left child node (again, after ensuring that
there is still a parent node). If it has a left child, we re-link it
with the parent node and vice versa, so existing sub-trees
won't be lost. Otherwise, we check if its parent node is a left
or right child. If it is a left child or has no parents at all, the
left child is set null. If it’s a right child, then it fails and the
whole (conjunctive) right branch can also be deleted
recursively. This way, all failing nodes and branches are
pruned, and no obsolete nodes stay on the stack. This
method has to be integrated in processPrecondition before
line 2 with parameters rightNode and stack when no
preconditions have been found and before line 8 with

parameters leftNode and stack if the new node exceeds the
allowed tree depth limit. Due to the same reason,
deleteBranches is called in spreadNode before line 3 with
parameters node and stack.

Algorithm “deleteBranch”
Input node, stack

1 synchronized {

2 firstTime = true;

3 if (node.getParent() == null) {

4 return;

5 }

6 while (node.getParent() != null &&

 node.getParent().getLeft() != node) {

7 node = node.getParent();

8 node.getRight().deleteParent();

9 if (firstTime) {

10 firstTime = false;

11 } else if (stack != null) {

12 firstTime = false;

13 stack.remove(node.getRight());

14 }

15 }

16 if (node.getLeft() != null) {

17 node.getLeft().setParent(node.getParent());

18 node.getParent().setLeft(node.getLeft());

19 } else {

20 node = node.getParent();

21 if(node.isLeftChild()||node.hasNoParent()){

22 node.setLeft(null);

23 } else if (node.isRightChild()) {

24 deleteBranch(node, stack);

25 }

26 }

27 }

Results. We investigated our algorithms’ computation time
improvement, when both advanced pruning heuristics are
applied. For both parallel methods we again used four
threads, varied binary composition tree depth and measured
computation time. Fig. 8 shows the results: both
parallelization methods still outperform the serial algorithm,
when applying the two advanced pruning heuristics to all
algorithms. It’s interesting to observe that the sub-tree
partitioning approach benefits most from the new heuristics,
now outperforming the serial and the thread-optimized
parallel approach. The reason is that the overhead for
workload balancing spent by the thread-optimized approach
cannot be amortized after the pruning is applied.

Figure 8. Advanced pruning heuristics

Moreover, we also investigated scalability when
increasing the input set size, i.e. the number of web services
for the composition. We present the respective results in
Fig. 9, which shows a quite similar scalability behavior of
all composition methods.

Figure 9. Varying the number of services

Since advanced pruning heuristics have a great impact

on overall computation times, we had a closer look at their
uncorrelated influence. We examined the computation times
for all parallel approaches with and without optimizations
with four threads and a fixed tree depth of 30. Fig. 10 shows
the impact of both optimizations.

Figure 10. Impact of optimizations

As seen before, the sub-tree partitioning approach

benefits most. In this case, we can save up to 98.31%
computation time. Using the naïve and thread-optimized
approach, we can save up to 93.34% and 96.5% when
applying both advanced pruning heuristics to the algorithms.
Obviously, the naïve approach profits least, if
rememberPreconditions is applied, because the significantly
higher synchronization overhead doesn’t pay off anymore.

VI. CONCLUSION AND OUTLOOK

In this paper we presented a web service composition
framework featuring two parallel service composition
approaches based on binary trees. After showcasing that
parallelization of state-of-the-art service composition
algorithms is by far not trivial, we showed our algorithms to

outperform the most efficient sequential algorithm. While
being up to three times faster on a four core platform, our
experimental results revealed that a considerable
performance and scalability improvement is possible
through parallelization and is additionally enhanced by
pruning heuristics. Thus, we can utilize the great potential of
multi-core systems, being able to handle the general
composition problem in extensive service repositories. Due
to high scalability and a fast preprocessing in cases of
repository changes, we conclude that it is thoroughly
possible to easily apply our framework algorithms to
dynamic real time composition systems with vast web
service repositories.

Our future work focuses on realizing semantic
matchmaking within our service composition framework by
implementing different metrics (e.g. cosine, extended
Jacquard [23]) and ontologies. With these modifications, it
will be possible to compute top-k results or stop execution
after finding one valid solution. Finally, we will try to detect
and prevent composition loops by more advanced
techniques like computing hash values of composition paths
instead of just restricting the binary tree depth.

REFERENCES

[1] "Web Services Business Process Execution Language (WSBPEL),"
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[2] "Web Services Choreography Description Language (WS-CDL),"
http://www.w3.org/TR/ws-cdl-10/.

[3] X.G. Klara, X. Gu, K. Nahrstedt, R.N. Chang, and C. Ward, "QoS-
Assured Service Composition in Managed Service Overlay
Networks," Proc. of the 23rd Int. Conf. on Distributed Computing
Systems (ICDCS'03), Providence, Rhode Island, 2003.

[4] S. Tönnies, B. Köhncke, P. Hennig, and W. Balke, "A Service
Oriented Architecture for Personalized Rich Media Delivery," Proc.
of the Int. Conf. on Services Computing (SCC'09), Bangalore, India,
2009.

[5] G. Zheng and A. Bouguettaya, "Discovering Pathways of Service
Oriented Biological Processes," Proc. of the 9th Int. Conf. on Web
Information Systems Engineering (WISE'08), Auckland, New
Zealand, 2008.

[6] G. Zheng and A. Bouguettaya, "A Web Service Mining Framework,"
Proc. of the Int. Conf. on Web Services (ICWS'07), Salt Lake City,
Utah, USA, 2007.

[7] A. Zhou, S. Huang, and X. Wang, "BITS: A Binary Tree Based Web
Service Composition System," Int. Journal of Web Services Research,
vol. 4, 2007.

[8] A. Marconi and M. Pistore, "Synthesis and Composition of Web
Services," Formal Methods for Web Services, Springer, 2009.

[9] N. Milanovic and M. Miroslaw, "Current Solutions for Web Service
Composition," IEEE Internet Computing, vol. 8, 2004.

[10] Ç.E. Gerede, R. Hull, O.H. Ibarra, and J. Su, "Automated
composition of e-services: lookaheads," Proc. of the 2nd Int. Conf. on
Service Oriented Computing (ICSOC'04), New York, NY, USA:
ACM, 2004.

[11] S. Narayanan and S.A. McIlraith, "Simulation, Verification and
Automated Composition of Web Services," Proc. of the 11th
International World Wide Web Conference (WWW'02), Honululu,
Hawaii: 2002.

[12] R. Hamadi and B. Benatallah, "A Petri Net-based Model for Web
Service Composition," Proceedings of the 14th Australasian Database
Conference (ADC'03), Adelaide, Australia, 2003.

[13] "OWL-S: Semantic Markup for Web Services,"
http://www.w3.org/Submission/OWL-S/.

[14] H. Tang, F. Zhong, and C. Yang, "A Tree-Based Method of Web
Service Composition," Proc. of the Int. Conf. on Web Services
(ICWS'08), Beijing, China, 2008.

[15] M.M. Shiaa, J.O. Fladmark, and B. Thiell, "An Incremental Graph-
based Approach to Automatic Service Composition," Proc. of the Int.
Conf. on Services Computing (SCC'08), Honolulu, HI, USA, 2008.

[16] J. JáJá, An Introduction to Parallel Algorithms, Redwood City, CA,
USA: Addison Wesley, 1992.

[17] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming,
Morgan Kaufmann, 2008.

[18] J. Pathak, S. Basu, R. Lutz, and V. Honavar, "Parallel Web Service
Composition in MoSCoE: A Choreography-Based Approach," Proc.
of the 4th European Conf. on Web Services (ECOWS'06), Zurich,
Switzerland, 2006.

[19] P. Bartalos and M. Bielikova, "Semantic Web Service Composition
Framework Based on Parallel Processing," Proc. of the 11th Conf. on
Commerce and Enterprise Computing (CEC'09), Vienna, Austria,
2009.

[20] B. Hendrickson and T.G. Kolda, "Graph partitioning models for
parallel computing," Parallel Computing, vol. 26, 2000.

[21] "Graphviz," http://www.graphviz.org/.

[22] "KEGG: Kyoto Encyclopedia of Genes and Genomes,"
http://www.genome.jp/kegg/.

[23] M. Klusch, B. Fries, and K. Sycara, "Automated semantic web
service discovery with OWLS-MX," Proc. of the 5th Int. Joint Conf.
on Autonomous Agents and Multiagent Systems (AAMAS'06),
Hakodate, Japan: 2006.

