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Highly-scaled and fully-integrated 3-dimen-
sional ferroelectric transistor array for hard-
ware implementation of neural networks

Ik-Jyae Kim 1, Min-Kyu Kim1 & Jang-Sik Lee 1

Hardware-based neural networks (NNs) can provide a significant breakthrough
in artificial intelligence applications due to their ability to extract features from
unstructured data and learn from them. However, realizing complex NN
models remains challenging because different tasks, such as feature extraction
and classification, should be performed at different memory elements and
arrays. This further increases the required number of memory arrays and chip
size. Here, we propose a three-dimensional ferroelectric NAND (3D FeNAND)
array for the area-efficient hardware implementation of NNs. Vector-matrix
multiplication is successfully demonstrated using the integrated 3D FeNAND
arrays, and excellent pattern classification is achieved. By allocating each array
of vertical layers in 3D FeNAND as the hidden layer of NN, each layer can
be used to perform different tasks, and the classification of color-mixed
patterns is achieved. This work provides a practical strategy to realize high-
performance and highly efficient NN systems by stacking computation com-
ponents vertically.

Neural networks (NNs) have made unprecedented improvements in
intelligent tasks such as image and speech recognition1,2. However,
with the current von Neumann-based hardware, the energy efficiency
of NNs is limited by the data transfer process between thememory and
processor units2. In-memory computing, in which computation is
performed at the data storage, has been proposed to accelerate the
speed of NN computation and address the vonNeumann bottleneck3,4.
Vector-matrix multiplication (VMM), which requires themultiplication
of twonumbers, is oneof themain functions for the implementationof
NN5,6. Previously, for the hardware implementation of VMM, a complex
device structure with multiple adders was used, but after the emer-
gence of artificial synapses, a new concept for VMM operation was
proposed1,3,7,8. In artificial synapses, multiplication operations can be
done by using Ohm’s law, which results in faster operation speed and
lower energy consumption5,6. Also, the accumulation processes can be
done by using Kirchhoff’s law5.

To implement the VMM operation, emerging two-terminal mem-
ories such as phase-change memory and resistive-switching memory
have been investigated as artificial synapses9–14. Several NN models

have been demonstrated using two-terminal memories. These emer-
ging memory technologies successfully demonstrated neuromorphic
characteristics and the NNs were implemented in a crossbar array
structure, which has a potential for high-density arrays. However,
additional access devices are required to reduce the leakage current in
array structures to achieve accurate weight update and read
processes3,10,15,16. As a memory cell can contain a single weight value to
perform the designated tasks, additional memory elements or arrays
are required when NNs are implemented in an array structure because
different tasks such as feature extraction, error calculation, and clas-
sification should be done in different memory elements for parallel
operations. Thus, the required number ofmemory arrays and chip size
should be further increased for the implementation of complex NN
models which contain multiple layers. One of the solutions for this
issue can be the use of three-dimensional (3D) memory structures,
which can stack the memory elements without increasing the area of
the chip17,18. Alternatively, there are approaches using conventional
memory devices such as NOR flash, NAND flash, and AND flash to
implement NNs19–22. The flash memories based on the charge-trapping
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mechanism are one of the promising candidates for neuromorphic
applications due to their highmemorydensity andmature technology.
However, as the neuromorphic applications require frequent updates
of the synaptic weight (i.e., state) of the memory cells, NNs based on
flashmemories are only applicable for limited applications due to their
high operation voltage and long latency23,24. Thus, further investiga-
tions for high-performance and 3D-compatible memory elements are
required to develop hardware-based NNs.

The hafnia-based ferroelectric transistor is recently proposed
as a promising candidate for next-generation memory devices
including artificial synapses15,24–36. The hafnia-based ferroelectric
transistor operates similarly to conventional charge-trap flash
memory devices, where the threshold voltage (Vth) can be tuned
with applied gate voltages. In ferroelectric transistors, the Vth can
be modulated by switching the polarization state of the ferro-
electric layer, which can be done with faster speed and lower
operation voltage compared to the charge-trap flash memory
devices. The lower write voltage and faster operation speed of
hafnia-based ferroelectric transistors than conventional charge-
trap flash memory devices can be advantageous for neuro-
morphic applications24,37. By delicately controlling the polariza-
tion state of the ferroelectric layer, hafnia-based ferroelectric
transistors show multilevel characteristics with high stability,
which is favored in VMM operations31,38,39. Also, ferroelectric
transistors have the potential to be adopted in high-density 3D
NNs due to their high scalability and CMOS-compatibility. The
high scalability of hafnia-based ferroelectrics can be advanta-
geous for 3D memory applications40,41. Recent research demon-
strated that hafnia-based ferroelectrics could be operated with a
thickness under a few nanometers42–44.

In this work, we experimentally demonstrate an in-memory
computable 3D ferroelectric NAND (FeNAND) array that utilizes a
nanoscale vertical ferroelectric thin-film transistor (FeTFT) as a

memory cell. We first propose a trench-based 3D array structure
for FeTFTs, which has the potential to realize high-density hard-
ware-based NNs. VMM operation is successfully demonstrated
using the fabricated 3D FeNAND. We also show that the fabricated
3D FeNAND network can perform the accurate classification of
patterns with a size of 4 × 2 pixels. Based on the experimental
results, we also demonstrate that the proposed 3D FeNAND net-
work can classify hand-written digit images with a high accuracy
of 93.8%. Finally, by assigning each layer of 3D FeNAND to classify
red, green, and blue colors, we show that the 3D FeNAND can
perform a perfect classification of color-mixed patterns. This
work presents a practical strategy to realize high-performance
neuromorphic hardware systems based on 3D FeNAND.

Results
Fabrication and characterization of 3D FeNAND
The 3D FeNAND arrays with metal-ferroelectric-semiconductor-
structured memory cells were fabricated using photolithography
and the lift-off method (Supplementary Fig. 1)24,41. First, TiN word
lines (WLs) and SiO2 layers were alternately deposited. Then, WL
stacks were partially dry-etched to form trench-based structures.
The HfZrOx and Mo were used as ferroelectric gate insulating
layer and source-/bit-line (SL/BL) electrodes, respectively. Oxide
semiconductor InZnOx layers were used as a channel (Fig. 1a). The
fabricated 3D FeNAND had three layers, and eight memory cells
were positioned at each layer (Fig. 1b, c). The device structure and
thickness of each layer were confirmed using transmission elec-
tron microscopy (TEM). The thickness of the TiN gate electrode
and the width of the InZnOx channel were 10 nm and 500 nm,
respectively, leading to an effective cell area of 0.005 μm2

(Fig. 1d, e). The thickness of the HfZrOx and InZnOx layers were
24 nm and 20 nm, respectively (Supplementary Fig. 2). Moreover,
the crystal structure of the HfZrOx, which was deposited on the
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Fig. 1 | Demonstration of 3D ferroelectric NAND (FeNAND) using nanoscale
vertical ferroelectric thin-film transistors (FeTFTs). a Optical image of the 3D
FeNAND using nanoscale vertical FeTFTs. b Schematic illustration of 3D FeNAND
(left) and cross-sectional view of 3D FeNAND with an effective channel area of

0.005 µm2. The thickness of TiN word-line (WL) and width of InZnOx channel were
10 nm and 500 nm, respectively. c Equivalent circuit of the fabricated 3D FeNAND
array. d Transmission electron microscope (TEM) image of the trench-based
structure of 3D FeNAND array. e TEM image of SiO2/TiN/SiO2 WL stack.
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sidewall, was confirmed using TEM (Supplementary Fig. 3). The
interatomic distance of HfZrOx was about 0.294 nm, which cor-
responds to the interatomic distance of (111) orthorhombic phase
of HfZrOx

45. The trench-based vertical structure of the proposed
3D FeNAND can lead to higher memory density compared to gate-
all-around (GAA) structures. When similar device dimensions are
considered, the trench-based vertical structure can achieve dou-
ble memory density compared to the GAA structure46. For
example, in three WL stacks, three memory cells can be formed
by a single etch hole in the GAA structure. For trench-based
vertical structures, total six memory cells can be formed by a
single etching. The electrical characteristics of 3D FeNAND
memory cells were investigated under ambient conditions. The
transfer characteristic of the 3D FeNAND memory cell located at
the middle layer (WL1) was analyzed. By sweeping the WL voltage
(VWL) between −6 and 6 V to the selected cell while applying a
pass voltage (VPASS) of 2 V to the WLs of unselected cells, an
n-type transfer characteristic with anticlockwise hysteresis was
observed (Supplementary Fig. 4). This anticlockwise hysteresis is
originated from the polarization switching of the ferroelectric
HfZrOx layer, and this property can be utilized for the program
and erase operations in memory devices. Also, we considered the
series resistance of the channel to project the maximum number
of stacks. Based on the on- and off-state resistance of 3D FeNAND
memory cells, more than ten times difference in string current is
expected when 200 memory cells are vertically stacked in the
proposed structure in the worst case. We believe much higher
stacking will be possible by improving the channel mobility as
well as the on-current characteristics of oxide semiconductors by
optimizing the process parameters and/or adopting new channel
materials. To avoid charge-trapping due to large sweep range of

VWL, further measurements were done using voltage pulses,
except the small read voltage for estimation of Vth.

In the proposed 3D FeNAND structure, unwanted program-
ming may occur in memory cells that share the same WL with the
selected memory cell during program operation. To prevent
unwanted programming in unselected cells, a program-inhibit
operation method was used (Fig. 2a). As an example, memory
cells that shared the same WL were selected as programmed and
program-inhibited cells, respectively. Before program operation,
all memory cells in 3D FeNAND were erased by applying an erase
pulse with an amplitude of −5 V and a width of 10ms to the
selected WL while 0 V was applied to the BLs and SL. Then, the
selected memory cell was programmed by applying a program
pulse with an amplitude of 4 V and a width of 10ms to the
selected WL. During the programming of the selected cell,
the unwanted programming of the memory cell which shared the
same WL was inhibited by applying program-inhibit pulses with
an amplitude of 2.5 V and a width of 30ms to BL. VPASS of 2 V and
a width of 30ms was applied to unselected WLs. After erase and
program operations, the states of memory cells were confirmed
by sweeping VWL from 0 V to −3 V. During these operations, pro-
gramming of only the selected memory cell was achieved and the
unwanted programming of the memory cell that shared the same
WL was inhibited by program-inhibit operation (Fig. 2b). The
proposed program-inhibit method was further analyzed using
memory cells in each layer of the 3D FeNAND (Supplementary
Fig. 5). First, all memory cells were erased by applying an erase
pulse with an amplitude of −5 V and a width of 10ms to the WLs,
while 0 V was applied to the BLs and SL. Subsequently, the
selected cells in WL0, WL1, and WL2 were sequentially pro-
grammed while the programming of other cells which shared the
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Fig. 2 | Operation characteristics of 3D FeNAND. a Equivalent circuits of 3D
FeNAND and program operation. VPGM, VPASS, and Vinhibit stand for program, pass,
and inhibit voltages, respectively.b IBL–VWL curves of the selectedmemory cell and
WL-sharing memory cell after erase and program operations. The program of the
WL-sharing memory cell is prevented by the program-inhibit operation. The

program-inhibit pulse with an amplitude of Vinhibit = 2.5 V is used for program-
inhibit operation. c IBL–VWL characteristics of memory cells in programmed and
erased states. d Vth distribution of 24 memory cells in programmed and erased
states.
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same WL was inhibited. After the erase and program operations,
the states of memory cells were confirmed by sweeping VWL from
0 V to −3 V. Using the program-inhibit method, the programming
of the unselected cell was prevented. When a program-inhibit
voltage with an amplitude of 2.5 V was applied to the BL, the
channel potential of the nearest transistor (i.e., WL2) could be
increased to 2.5 V. If the selected cell is in the WL2 layer, the
program of the unselected cell that shares WL2 can be effectively
prevented because the effective VWL will be 1.5 V, which will not
change the state of the 3D FeNAND memory cells. The program-
inhibit efficiency can be decreased when lower cells should be
inhibited because of the series resistance from the channel layers
in highly stacked FeNANDs. The problem can be solved using
diverse methods. First, the development of an optimized
program-inhibit scheme can increase program-inhibit efficiency
in highly stacked FeNANDs. For instance, increasing the program-
inhibit voltage for cells positioned at lower WLs can be a viable
solution. For ultra-high-density FeNANDs, select transistors (i.e.,
ground select line and string-select line) can be used for program-
inhibit operations currently used in commercialized NAND flash
memory devices, such as global and local self-boosted program-
inhibit operations47,48. When the string-select line and ground
select line are used, the program-inhibit can be achieved by
applying program-inhibit voltage to BL, and turning off both
select transistors. Once both select transistors are turned off, the
channel is a floating node. At this point, when VWL is increased,
the potential of the channel will also be increased because of the
capacitance coupling47. Owing to the small difference between
the increased channel potential and VWL, the program-inhibit of
the 3D FeNAND with select transistors can be achieved. Thus, for
highly stacked 3D FeNANDs, select transistors can be used for
program-inhibit operations.

The switching characteristics of 3D FeNAND memory cells were
verified by applying voltage pulses with different amplitudes to the
selected WL while applying a VPASS = 2 V to unselected WLs. The Vth of
the memory cell was changed with increasing pulse amplitudes (Sup-
plementary Fig. 6).With an amplitude of 6 V, the device showed a clear
Vth shift with a pulse width of 50ns, and the device could be switched
to a programmed state with a pulse width of 100 ns. To confirm the
reliability of the 3D FeNAND, we investigated the data retention and
endurance characteristics (Supplementary Fig. 7). For data retention
characteristics, triangular program/erase pulses with an amplitude of
±4V and pulse width of 10μs were used for the program and erase
operation, respectively. The states of the devicewere retained for 106s
at room temperature without failure. The endurance characteristics of
the device were investigated by applying triangular program (4V,
10 µs) and erase (-4 V, 10 µs) pulses. TheVth of thedevicewas confirmed
by sweeping VWL from 0 to −3 V. The device showed stable switching
characteristics for 106 cycles. The device-to-device uniformity of 3D
FeNAND memory cells was also characterized (Fig. 2c). The BL
current (IBL) of the devices were measured after erase and program
operations by sweeping VWL from 0V to −3 V. The erase and program
operations were done by applying erase (−5 V, 10ms) and program
(5 V, 10ms) pulses to the selected WLs, respectively. All devices
showed a clear Vth shift to negative direction after program operation
and the Vth at programmed and erased states were similar with a small
distribution (Fig. 2d). The Vth shift to negative direction after applying
positive VWL indicated that ferroelectric polarization switching of the
HfZrOx layer affected the device properties27,30,31. In addition, device-
to-device variations of 3D FeNAND memory cells were further investi-
gated. To evaluate the device-to-device variation, IBL–VWL curves at
programmed anderased statesweremeasured for 100memory cells in
3D FeNAND. Thememory cells showed similar IBL–VWL characteristics,
which confirmed the uniformity of the proposed 3D FeNAND (Sup-
plementary Fig. 8). Furthermore, multilevel characteristics are

required to realize neuromorphic properties in ferroelectric transis-
tors. Using program pulses with different amplitudes, Vth tuning
characteristics of the memory cell in 3D FeNAND were demonstrated
(Supplementary Fig. 9). First, the memory cell was erased by applying
an erase pulse (−5 V, 10ms). After that, program pulses with different
amplitudes of 3.5 V, 4 V, and 5 V were applied. As the amplitude of
program pulses increased, IBL–VWL curves shifted in a negative direc-
tion. The memory cell in 3D FeNAND showed four different Vth levels
for ten cycles using program pulses with different amplitudes. As the
effective cell area of the 3D FeNAND memory cell is 0.005μm2, it is
estimated that at least 50 grains are incorporated in the effective cell
area of the device49,50. Thus, stable multilevel characteristics can be
achieved due to the partial polarization characteristics of the HfZrOx

layer51,52. These results indicated that our devices have potential as
memory devices with multilevel data storage capability. Because the
trench-based 3D FeNAND structure can achieve higher memory den-
sity than GAA structures and the effective cell area of 3D FeNAND can
be scaled down to 0.005μm2

, the proposed 3D FeNAND can also be
used as high-density memory devices. The experimental demonstra-
tions of 3D FeNAND array operation containing program-inhibit
operation, selective program, and multilevel data storage capability
confirm the feasibility of 3D FeNAND for advanced memory
applications.

NN based on 3D FeNAND
For the implementation of NNs, the electrical characteristics of
the artificial synapse (i.e., potentiation/depression) as well as the
structural/operational characteristics of the array should be
considered. The performance of the artificial synapse affects the
accuracy of the NN, and the array should be able to perform VMM
operation for the implementation of NNs. The device con-
ductance of ferroelectric memory cells can be precisely tuned by
controlling the partial polarization characteristics, which can be
obtained by adjusting the amplitude of VWL. To identify the gra-
dual conductance tunability of 3D FeNAND memory cells,
potentiation and depression characteristics were investigated
(Fig. 3a). For potentiation and depression, voltage pulses with
incremental amplitudes and a width of 10ms were applied to the
selected WL, and the selected BLs were set to 0 V. The amplitudes
of the potentiation and depression pulses increased from 2.5 to
3.74 V in a 40mV step and from −3.5 to −4.74 V in a −40mV step,
respectively. Program-inhibit pulses with a width of 30ms were
applied to unselected BLs and SL. The amplitudes of the program-
inhibit pulses for potentiation and depression operations were
set to 2.0 V and −2.0 V, respectively. The conductance of the
devices was confirmed by measuring the IBL while a read voltage
of 0.1 V was applied to the selected SL (Fig. 3b). The linearity of
the potentiation and depression characteristics was evaluated
using the following equations27,31,53,54,

Gpot = B 1� e
�P

Apot

� �
+Gmin ð1Þ

Gdep = � B 1� e
P�Pmax
Adep

� �
+Gmax ð2Þ

B = ðGmax � GminÞ= 1� e
�Pmax

Apot,dep

� �
ð3Þ

where Gpot and Gdep are the conductance after potentiation and
depression, respectively. P and Pmax are the number of pulses and the
maximum number of pulses, respectively. Gmax and Gmin are the
maximum and minimum conductance, respectively53,54. In this equa-
tion, Apot and Adep represent the linearity of the potentiation and
depression characteristics, respectively. By utilizing the equation, the
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3D FeNAND memory cell showed high linearity of Apot = 0.9842 and
Adep = 1.0125. Linear and symmetric potentiation and depression
characteristics of the selected memory cell were achieved, which
showed that the conductance of memory cells could be precisely
tuned inhighly scaleddimensions. In thiswork, theweights ofmemory
cells were controlled using a pulse scheme with incremental pulse
amplitudes. The use of an incremental pulse scheme can increase
training time and power consumption due to the additional read
process before weight updates. However, highly linear weight update
characteristics can be achieved using incremental pulse schemes,
which are required to achieve high recognition accuracy in neuro-
morphic applications27.

In in-memory computing technology, VMM is one of the most
important functions required to implement a NN5,6. The VMM opera-
tion can be achieved in 3D FeNAND by simple methods. When input
voltages are applied to each BL, the output current summed at the SL
(ISL) is equal to the voltage multiplied by the conductance of each
memory cell. Thus, in a 3D FeNAND array, each VMM operation uses
the weights of the selected memory cells (Fig. 3c)33,55. The output ISL is
given by the product of the input VBL matrix and conductance matrix,

ISLj =
Xn

i = 1

VBLiWij ð4Þ

whereWij is the weight of the ferroelectric memory cells connected to
VBLi and ISLj. We considered a VMM operation with four ferroelectric
memory cells. An experimental demonstration of VMM operation was
doneusing programming twomemory cells and erasing othermemory
cells. VBL from 0.2 V to 1 V with a step of 0.2 V was applied to the BLs
while setting the cells of all other layers to the highly conductive state
by applying VPASS of 2 V to those WLs. The cell currents were collected
at the SL. The measured output ISL showed summed outputs
dependingon the valueof inputVBL,whichshowed theVMMoperation
capability of the suggested 3D FeNAND (Fig. 3d). The uniformity of
VMM operation was also investigated (Supplementary Fig. 10). Four

different 3D FeNANDs were used, and the output ISL was measured
under different IBL values using the samemethoddescribed above. The
VMMoutputs from different 3D FeNANDs were similar, which showed
the reliability of VMM operation in nanoscale 3D FeNANDs. The relia-
bility issues in ferroelectric transistors are originated from the degra-
dation of the interfacial layer formed between HfZrOx and the channel
layer24,28,56,57. Utilization of oxide semiconductor channels can lead to
an interfacial layer-free channel/HfZrOx stack, which can improve the
uniformity of the FeTFTs.

The multilayer perceptron (MLP) 3D FeNAND network was trained
for the classification of a custom 2-class benchmark, which was com-
prised of a total of 20 training patterns with a size of 4 × 2-pixel. Black
and white pixels were used, and black pixels in the same row repre-
sented a line (Fig. 4a, b)58. For the neuron output, operational amplifiers
(op-amps) were connected to the SLs. The op-amps were used to con-
vert the output current into the neuron output voltage (Supplementary
Fig. 11)59,60. Two inverting op-amp circuits were used, and the first and
second inverting circuits were utilized as the summation and activation
layers, respectively. Before the training, the synaptic weights for pattern
classification were calculated using the software-implemented network
based on Python. Then, the calculated synaptic weights were imported
to the weights of the 3D FeNAND memory cells53,58,60–62. The calculated
synaptic weights were imported into the hardware by tuning the con-
ductance of 3D FeNAND memory cells to the desired values using a
write-and-verify method and the output current was measured at each
string and summed. After training, the pattern classification was
demonstrated. When input pattern 1, where black pixels were posi-
tioned at the top,was applied to thedevice theneuronoutput voltageof
8 × 10−3 V was observed (Fig. 4c). Moreover, when a single black pixel
was flipped to a white pixel, a similar neuron output voltage was
observed. However, with pattern 2, where black pixels were positioned
at the bottom, the neuron output voltage was 1 × 10−4 V. The large dif-
ference in neuron output voltage under different patterns showed that
the 3D FeNAND could classify the black and white pixels. Thus, it was
shown that by using 3D FeNAND, the black and white pixels with

Fig. 3 | Demonstration of vector-matrix multiplication (VMM) using 3D
FeNAND. a Weight update and read operation method for 3D FeNAND cell. For
potentiation and depression operations, voltage pulses with incremental ampli-
tudes were applied to the selectedWL, and the selected BLwas set to 0 V. Program-
inhibit pulses with incremental amplitudes were applied to unselected BLs. The
conductanceof thedeviceswas confirmedbymeasuring the current of the selected
BL. b Potentiation and depression characteristics of 3D FeNAND cell. c Equivalent

circuits (left) and schematic illustration (right) of VMM operation. Input voltages
were applied to BLs and the product of VMM operation was measured at SLs. The
output currents summed at the SLs were equal to the product of the input voltage
applied to BLs and the conductance of memory cells. d Measured ISL after VMM
operation. BL voltages (VBL0 and VBL1) were used as the input vector and con-
ductance values of ferroelectric memory cells were used as the weight matrix. The
measured ISL showed the summed output depending on the value of the input VBL.
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different positions could be classified. Furthermore, the neuron output
under repetitive inputs was investigated (Fig. 4d). For the same pattern,
the neuron output was the same and clear differences were observed
when different patterns were used as the input. Thus, the structural and
operational feasibility of 3D FeNAND to perform classifications was
confirmed using patterns with a pixel size of 4× 2. Further optimization
of the channel layer or use of oxide semiconductors with high mobility
can result in stable VMM operations in highly stacked 3D FeNAND by
decreasing the series resistance from channel layers.

Simulations based on the operation characteristics of 3D FeNAND
were performed to confirm its performance when high-density 3D
FeNAND is developed. The classification ability of the 3D FeNAND was
further investigated using a Python-based simulation tool. An MLP
network for the Modified National Institute of Standards and Technol-
ogy (MNIST) dataset was simulated62. The MLP network was composed
of 400 input elements, 100 hidden neurons, and 10 output neurons
(Fig. 4e). The number of input elements corresponded to the size of the
input MNIST images, which was 20× 20 pixels. The synaptic char-
acteristics of 3D FeNAND cells including the number of states, linearity,
on/off ratio, and minimum/maximum conductance of potentiation/
depression characteristics were implemented.Moreover, the device-to-
device variation of potentiation/depression characteristics, which was
measured for 20 memory cells in the 3D FeNAND array, was also

considered in the simulations (Supplementary Fig. 12). In simulations,
theMLPnetworkbasedon a 3DFeNANDachieved an image recognition
accuracy of 93.8%, which was comparable to the accuracy of 94% that
the MLP network based on ideal synaptic devices achieved (Fig. 4f).

Color-mixed pattern classification using 3D FeNAND
A single layer of 3D FeNAND can classify binary patterns. Compared to
two-dimensional (2D) arrays, 3D FeNAND can also process images with
additional features such as color. With 2D arrays, an additional array is
required to process additional features because each array is dedi-
cated to specific tasks such as feature extraction and classification at
the same time. Thus, it is hard to process images with extra features
using a 2D array. Furthermore, recently developed software-based NN
models require more than tens of billions of parameters, which will
further increase the device area when 2D array is used to implement
thosemodels inneuromorphichardware. However, 3DFeNANDcanbe
stacked in a vertical direction with ultra-high density. The 3D FeNAND
canbe realizedwith aWL lengthof 10 nmanda trench-based structure,
which can further increase the memory density. By utilizing all three
layers of 3D FeNAND, color-mixed patterns can be successfully clas-
sified (Fig. 5a, b)63. We designated each FeNAND layer for the classifi-
cation of red, green, andblue patterns. The test imageswith apixel size
of 4 × 2 were fabricated by randomly adding the box and line patterns
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Fig. 4 | Image classification using 3D FeNAND array. a Example of training and
test pattern set. Two-class image set which was comprised of a total of 20 training
images of black and white patterns representing line patterns with a size of 4 × 2
pixels was used as a training and test image set. b Schematic illustration of binary
image classification using 3D FeNAND. The value of each pixel in the input image
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3D FeNAND array. The output ISL was measured and used as the input for neurons
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white line.dNeuron output voltages according to repetitive input patterns. Pattern
1 (black line positioned over the white line) and pattern 2 (white line positioned
above the black line) were used as input patterns. e Schematic illustration of MLP
network for classification of MNIST hand-written digit images. 400 elements that
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input and 100 hidden- and 10 output neurons were used for classification.
f Comparison of simulated accuracies of MLP network based on 3D FeNAND and
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with red, green, or blue colors (Supplementary Fig. 13). When 2 × 2
pixels and 1 × 4 pixels were designated to a specific color, the pattern
was considered as a box and a line pattern, respectively. All cells were
erased before training. For training, synaptic weights for pattern
classification were calculated using the software-implemented net-
work based on Python; subsequently, the calculated synaptic weights
were imported to theweights of the 3DFeNANDmemory. Thepatterns
were passed through color filters (i.e., red, green, and blue filters), and
the filtered values were used as the input voltage to the corresponding
FeNAND layer. For example, when a color-mixed image consisting of
the red line, green line, and blue box was applied to the 3D FeNAND,
only output neurons corresponding to red line, green line, and blue
box showed a high neuron output voltage (Fig. 5c). For 20 test images,
the summed neuron output only exhibited a high output value
(~0.03 V) at the correct label, which showed that the 3D FeNAND could
be used for the classification of color-mixed images.

Discussion
In thiswork, we have experimentally demonstrated a practical strategy
to realize high-density, high-performance, and in-memory computable
3D FeNAND. First, we proposed a trench-based array structure for 3D
FeNAND. The trench-based array structure is beneficial for higher
memory density, as it can utilize both sidewalls as separate strings.We
experimentally demonstrated that theWL length of 3D FeNAND could
be scaled down to 10 nm which confirmed the high scalability of 3D
FeNAND. In addition, the program-inhibit scheme of 3D FeNAND,
which could also be utilized for memory applications, was experi-
mentally demonstrated. Using the 3D FeNAND, diverse neuromorphic
characteristics and in-memory computing features such as potentia-
tion, depression, and VMM operations were demonstrated. The devi-
ces showed highly linear and symmetric potentiation/depression
characteristics, and stable VMMoperationcharacteristics. These stable
operation characteristics of the 3D FeNAND are thought to be due to

the utilization of oxide semiconductor channel materials, as it can
prevent the growth of unwanted interfacial layers which can degrade
the stability of the memory cells. Finally, we showed an experimental
demonstration of color-mixed pattern recognition using 3D FeNAND.
As the 3D FeNAND has a 3D structure, additional memory arrays or
circuits are not required for different tasks. The computation can be
done layer-by-layer, which can further decrease the chip size and
increase area efficiency. By assigning each vertical layer in 3D FeNAND
to classify different features (i.e., red, green, and blue colors), we
showed that the classification of color-mixed patterns could be done.
This work provides a practical strategy for hardware implementation
of complex NNs using vertically stacked memory devices.

Methods
Materials
Hf[N(C2H5)CH3]4 [tetrakis(ethylmethylamido)hafnium (TEMAH)] and
Zr[N(C2H5)CH3]4 [tetrakis(ethylmethylamido)zirconium (TEMAZ)]
were purchased from UP Chemical, Korea. C10H28NSi2In4 (bis
(trimethylsilyl)amidodiethyl indium, INCA-1) and Zn(C2H5)2 (diethyl-
zinc,DEZ)were purchased from iChems, Korea. Si wafers with 300nm-
thick thermally grown SiO2 were used as substrates.

Device fabrication
The devices were fabricated on a SiO2/Si substrate by photo-
lithography, lift-off, and dry etching (Supplementary Fig. 1). Photo-
lithography was performed using a mask aligner (400-LJ, Midas
Systems) and i-line stepper (NSR 2205 i11D, Nikon). First, the SiO2/Si
substrate was cleaned in acetone, ethanol, and deionized water for
15min each. For SiO2/TiN/SiO2/TiN/SiO2/TiN/SiO2 stack, 10-nm-thick
TiN WLs and 100-nm-thick SiO2 layers were sequentially deposited
using DC sputtering and plasma-enhanced chemical vapor deposition
(HiDep-SC, BMR Technology), respectively. Then SiO2/TiN/SiO2/TiN/
SiO2/TiN/SiO2 layer was etched by dry etcher (Unity DRM, Tokyo

Fig. 5 | Color-mixed pattern classification using a 3D FeNAND-based neural
network. a Schematic illustration of color classification using 3D FeNAND and
CMOS neurons. The images fabricated by randomly adding the box and line pat-
terns with red, green, or blue colors were used as test and training images. The
patterns were passed through color filters (i.e., red, green, and blue), and the fil-
tered value was converted as the input voltage to the BLs. The output ISL was
measured and used as the input for the neurons (op-amp). b Example of color-

mixedpattern classification using 3DFeNAND-based neural network. TheRL, RB, GL,
GB, BL, and BB stands for the red line, red box, green line, green box, blue line, and
blue box, respectively. For the mixed pattern containing the red line, green box,
and blue box, only the corresponding output neurons showed high neuron out-
puts. c Classification result for 20 input patterns. The summed neuron output
showed high output only for the correct label.
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Electron Ltd.) using sulfur hexafluoride (SF6) and Ar plasma. 24-nm-
thick HfZrOx layers were deposited by atomic layer deposition (ALD)
using TEMAH, TEMAZ, and ozone at 280 °C. The 50-nm-thick Mo SL/
BLs and 20-nm-thick InZnOx channels were patterned using i-line
stepper. The SL/BLs and channels were deposited by e-beam eva-
poration andALDusing INCA-1, DEZ, and ozone at 150 °C, respectively.
Finally, the devices were annealed for 1min at 500 °C under N2 gas to
induce ferroelectricity in the HfZrOx layer.

Characterization
All the characteristics were measured under ambient conditions and at
room temperature. The thicknesses of the HfZrOx and InZnOx were
measured using atomic force microscopy (NX10, Park Systems). Optical
images of the devices were captured using an optical microscope
(LV100ND, Nikon). The cross-sectional images of the devices were
obtained using a high-resolution transmission electron microscope
(JEM-2200FS with image Cs corrector, JEOL). Before TEM observations,
the samples were prepared using a focused ion beam (SII SMI3050SE,
SII). The electrical characteristics weremeasured using a semiconductor
parameter analyzer (4200A-SCS, Keithley Instruments) and a switching
matrix (707B, Keithley Instruments). The polarization-voltage curves
were measured using a pulse measurement unit (4225-PMU, Keithley
Instruments). Sentaurus TCAD (Synopsys, Inc.) software was used for
simulation. An MLP NN was measured using switching matrix and
custom-built LabVIEW program. MNIST simulations were performed in
Linux system with GCC, GNU make, CNU C libraries by using C++ code.
The simulated MLP NN consisted of 400 input-, 100 hidden-, and 10
output neurons. The 400 input neurons corresponded to the 20×20
MNIST image, and the 10 output neurons corresponded to 10 classes of
digits. The conductance ratio, linearity, and device-to-device variations
of the 3D FeNAND memory cells were considered for simulations. For
the simulation of NN based on ideal synapses, ideal synaptic properties
including perfectly linear conductance modulation with a conductance
ratio of 100, and 128 conductance states were used.

Data availability
All data that support the conclusions of this study are included in the
article and the Supplementary Information file. These data are avail-
able from the corresponding author upon request.

Code availability
The code used for simulation and array operation is available from the
corresponding author with detailed explanations upon reasonable
request.
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