Supporting information

Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts

Yubin Ding, Tong Li, Weihong Zhu,* and Yongshu Xie*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, P. R. China.; E-mail: yshxie@ecust.edu.cn; Fax: (+86) 21-6425-2758. Tel: (+86) 21-6425-0772.

Contents:

Fig. S1. The ¹H NMR spectrum of **1** in CDCl₃.

Fig. S2. The ¹³C NMR spectrum of **1** in CDCl₃.

Fig. S3. HRMS of 1 in MeOH.

Fig. S4. A photograph showing the colour change of **2** (20 μ M) upon addition of 800 μ M of various anions: a) in CH₂Cl₂; b) in DMSO/H₂O, 4/1, v/v.

Fig. S5. A photograph showing the colour change of **3** (20 μ M) upon addition of 800 μ M of various anions: a) in CH₂Cl₂; b) in DMSO/H₂O, 4/1, v/v.

Fig. S6 HRMS of cyanide adduct of 3 in MeOH.

Fig.S7. A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([CN⁻]), the calculated detection limit of sensor **2** is 4.2×10^{-6} M according to the literature method¹. A is the absorbance at 521 nm. The linear regression affords an R value of 0.999.

Fig.S8. A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([CN⁻]), the calculated detection limit of sensor **3** is 7.1×10^{-6} M according to the literature method ¹. A is the absorbance at 502 nm. The linear regression affords an R value of 0.994.

Fig. S9. UV-Vis spectral changes of 2 (10 µM) observed upon the addition of 0-400 µM F⁻ (TBA salt) in CH₂Cl₂.

Fig. S10. UV-Vis spectral changes of 3 (12 μ M) observed upon the addition of 0-340 μ M F⁻ (TBA salt) in CH₂Cl₂.

Fig. S11. UV-Vis spectral changes of **2** (10 μ M) observed upon the addition of various anions (TBA salts, 38 μ M for CN⁻, 100 μ M for F⁻, 2000 μ M for Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in CH₂Cl₂.

Fig. S12. UV-Vis spectral changes of **3** (12 μ M) observed upon the addition of various anions (TBA salts, 46 μ M for CN⁻, 120 μ M for F⁻, 2400 μ M for Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in CH₂Cl₂.

Fig. S13. Plots of ¹H NMR spectra of 2 (20 mM) on addition of CN⁻ in CDCl₃

Fig. S14. Plots of ¹H NMR spectra of **3** (20 mM) on addition of CN⁻ in CDCl₃

Fig. S15. Changes in the UV-Vis absorption spectrum of **2** (20 μ M) in the presence of the TBA salts of various anions (400 μ M for CN⁻, 4000 μ M for F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in DMSO/H₂O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 μ M of indicated anions, followed by 400 μ M of CN⁻ anions.

Fig.S16. Changes in the UV-Vis absorption spectrum of **3** (20 μ M) in the presence of the TBA salts of various anions (400 μ M for CN⁻, 4000 μ M for F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in DMSO/H₂O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 μ M of indicated anions, followed by 400 μ M of CN⁻ anions.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Fig. S2. The ¹³C NMR spectrum of **1** in CDCl₃.

Fig. S3. HRMS of 1 in MeOH.

Fig. S4. A photograph showing the colour change of **2** (20 μ M) upon addition of 800 μ M of various anions: a) in CH₂Cl₂; b) in DMSO/H₂O, 4/1, v/v.

Fig. S5. A photograph showing the colour change of **3** (20 μ M) upon addition of 800 μ M of various anions: a) in CH₂Cl₂; b) in DMSO/H₂O, 4/1, v/v.

Fig. S6. HRMS of cyanide adduct of **3** in MeOH.

Fig. S7. A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([CN⁻]), the calculated detection limit of sensor **2** is 4.2×10^{-6} M according to the literature method¹. A is the absorbance at 521 nm. The linear regression affords an R value of 0.999.

Fig. S8. A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([CN⁻]), the calculated detection limit of sensor **3** is 7.1×10^{-6} M according to the literature method¹. A is the absorbance at 502 nm. The linear regression affords an R value of 0.994.

Fig. S9. UV-Vis spectral changes of 2 (10 µM) observed upon the addition of 0-400 µM F⁻ (TBA salt) in CH₂Cl₂.

Fig. S10. UV-Vis spectral changes of 3 (12 µM) observed upon the addition of 0-340 µM F (TBA salt) in CH₂Cl₂.

Fig. S11. UV-Vis spectral changes of **2** (10 μ M) observed upon the addition of various anions (TBA salts, 38 μ M for CN⁻, 100 μ M for F⁻, 2000 μ M for Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in CH₂Cl₂.

Fig. S12. UV-Vis spectral changes of **3** (12 μ M) observed upon the addition of various anions (TBA salts, 46 μ M for CN⁻, 120 μ M for F⁻, 2400 μ M for Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in CH₂Cl₂.

Fig. S13. Plots of ¹H NMR spectra of 2 (20 mM) on addition of CN⁻ in CDCl₃

Fig. S14. Plots of ^1H NMR spectra of $\boldsymbol{3}$ (20 mM) on addition of CN $\bar{}$ in CDCl_3

Fig. S15. Changes in the UV-Vis absorption spectrum of **2** (20 μ M) in the presence of the TBA salts of various anions (400 μ M for CN⁻, 4000 μ M for F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in DMSO/H₂O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 μ M of indicated anions, followed by 400 μ M of CN⁻ anions.

Fig. S16. Changes in the UV-Vis absorption spectrum of **3** (20 μ M) in the presence of the TBA salts of various anions (400 μ M for CN⁻, 4000 μ M for F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in DMSO/H₂O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 μ M of indicated anions, followed by 400 μ M of CN⁻ anions.

References:

[1] M. Shortreed, R. Kopelman, M. Kuhn and B. Hoyland, Anal. Chem., 1996, 68, 1414-1418.