
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications -- Chemistry Department Published Research - Department of Chemistry

2014

Highly selective gas sensor arrays based on
thermally reduced graphene oxide
Alexey Lipatov
University of Nebraska-Lincoln, alipatov@unl.edu

Alexey Varezhnikov
Department of Physics, Saratov State Technical University, Saratov, 410054, Russian Federation

Peter Wilson
University of Nebraska-Lincoln

Victor Sysoev
Department of Physics, Saratov State Technical University, Saratov, 410054, Russian Federation

Andrei Kolmakov
Southern Illinois University Carbondale, akolmakov@physics.siu.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/chemfacpub

Part of the Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons,
and the Other Chemistry Commons

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications -- Chemistry Department by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; and Sinitskii, Alexander, "Highly selective gas
sensor arrays based on thermally reduced graphene oxide" (2014). Faculty Publications -- Chemistry Department. 89.
http://digitalcommons.unl.edu/chemfacpub/89

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemfacpub?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistryresearch?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemfacpub?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/136?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/141?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemfacpub/89?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Alexey Lipatov, Alexey Varezhnikov, Peter Wilson, Victor Sysoev, Andrei Kolmakov, and Alexander Sinitskii

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/chemfacpub/89

http://digitalcommons.unl.edu/chemfacpub/89?utm_source=digitalcommons.unl.edu%2Fchemfacpub%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages


Highly selective gas sensor arrays based on thermally
reduced graphene oxide

Alexey Lipatov,a Alexey Varezhnikov,b Peter Wilson,a Victor Sysoev,b

Andrei Kolmakov*c and Alexander Sinitskii*ad

The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive

to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors.

However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In

this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors

instead of focusing on the performance of a single sensing element. Each rGO-based device in such an

array has a unique sensor response due to the irregular structure of rGO films at different levels of

organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could

reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor

arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols,

such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing

mechanism that provides the basis for analyte differentiation.

Chemical sensing is one of the most attractive applications of
graphene, considering the exceptional sensitivity of graphene-
based electronic devices to the surface adsorbates.1 Another
interesting material for gas sensing applications is graphene
oxide (GO), a two-dimensional (2D) carbon-based material with
different oxygen-containing functionalities, which is produced
by an oxidative exfoliation of graphite.2,3 Heavily oxidized GO is
not electrically conductive.4,5 However, GO could be trans-
formed to a conductive material via reduction when most of the
oxygen-containing functionalities are removed using either a
reducing agent, such as hydrazine, or high-temperature
annealing.2,3 The resulting reduced graphene oxide (rGO) has
inferior electrical properties compared to pristine graphene,4–6

but it is sufficiently conductive to serve as a channel material for
electronic devices. Similar to the case of graphene, electrical
properties of GO are very sensitive to the surface adsorbates,7–9

which stimulated a number of studies that focused on rGO-
based gas sensors.10–19

Compared to pristine graphene, rGO has many advantages
as a material for gas sensing. rGO could be synthesized in large
quantities from inexpensive reagents using simple chemical

approaches.20 It readily exfoliates to thin sheets in water,
segregates at the water–air interface upon solvent evaporation,21

and could be easily processed into continuous paper-like
lms.22,23 Properties of rGO, such as conductivity, tensile
strength, etc., strongly depend on the degree of GO reduc-
tion,24,25 which means that they could be nely tuned by the
reduction conditions. Rich chemistry of rGO allows for further
chemical modication with different functional groups,2,3

which potentially makes rGO a very versatile platform for gas
sensing.

Some of the studies on rGO-based gas sensors are discussed
in the recent review articles.26–28 Several papers report on rGO
sensors capable of detection of chemically aggressive gases,
such as NO2, NH3,14,16,29 Cl2 (ref. 16) and NO,17 with typical
response and recovery times of about several tens of minutes.26

The demonstrated response of an rGO sensor to some chemical
warfare agents and explosives at parts-per-billion (ppb) levels10

showed the potential of these sensors for homeland security
purposes. Recent studies on gas sensing by rGO also include
various modications in both sensor material (for instance,
decoration of rGO with palladium nanoparticles17) and sensor
design (e.g. gas detection by rGO-based eld effect transistors18).

Despite all advantages of rGO for sensing applications, rGO-
based gas sensors require many improvements to be made.
Different gas molecules could be adsorbed on the surface of an
rGO ake and change its conductivity, which would result in a
poor selectivity of rGO-based sensors. Although a recent study
suggests that some analytes could be recognized by their
distinguishably different effects on the low-frequency noise
spectra of graphene,30 it remains unclear if a similar recognition
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could be performed using rGO sensors. Furthermore, such
sensors are typically fabricated from rGO lms in which many
akes of different size, shape, thickness, and degree of reduc-
tion partially overlap forming random junctions. The conduc-
tivity of different akes themselves could vary by at least an
order of magnitude,31,32 and the random junctions between
such akes may cause even larger variability in electrical prop-
erties of rGO lms. As a result, sensor performance of different
devices prepared from such lms may exhibit a signicant
device-to-device variation even if the same fabrication protocol
was followed and rGO samples from the same batch were
used.18

In this paper we demonstrate that signicant device-to-
device variability of rGO-based sensors may actually be used as
an advantage to solve the problem of their poor selectivity. A
large array of integrated rGO devices that have sufficiently
different electronic properties could be considered as an elec-
tronic analog of an olfactory system (a so-called “electronic
nose” or “e-nose”).33 The electronic nose concept was rst
introduced in eighties34 to mimic the olfactory system of
mammals using sensor arrays as partially selective receptors,
and digital signal processing35,36 combined with pattern recog-
nition methods.37–39 In such an articial olfactory system, the
analyte adsorption events become converted into an array
(vector) of electrical signals. The signals from all non-specic
individual sensors with partially overlapping selectivities are
collected, and a pattern recognition algorithm places the vector
responses into areas in a multidimensional odor space that
correspond to the gases that the system is calibrated (“trained”)
to detect. Aer this training, a library of patterns of “known”
odor classes is created, and newly measured “unknown” gas
patterns are compared to these “known” classes. If an analyzed
odor is identical to one of the gases already known by the
system, its signal pattern should fall into the corresponding
area in the odor space manifesting a recognition event.

Recently, multielectrode e-nose systems comprising devices
based on other low dimensional oxide materials were shown to
reliably detect and recognize different gas analytes.40–46 Two
recent studies also report on multiple arrays of GO/uorophore
sensing elements that were used for the optical detection of
biological analytes in a solution.47,48 In all these examples, a

signicant device-to-device variation is the key requirement for
an electronic nose system (see reviews 49 and 50 and references
therein), which, as we discussed above, is an intrinsic property
of multiple rGO sensors. Thus, in this work we took advantage
of the structural and electronic non-uniformity of rGO lms to
construct a highly selective gas sensor system. We fabricated an
integrated array of weakly selective sensing elements that was
employed to recognize different alcohols, such as methanol,
ethanol and isopropanol. The experiments were performed in a
nearly practical gaseous environment, i.e. under atmospheric
pressure, in a dry air background and at room temperature. As
chemically similar analytes, the above alcohols would be a
challenge to discriminate by an e-nose sensor system. Such
sensors could be of practical importance due to the dramatically
different impact of selected alcohols on human health. To the
best of our knowledge, this is the rst demonstration of an rGO-
based gas sensing device that could reliably recognize analytes
of nearly the same chemical nature.

GO akes were produced using the method recently reported
by Marcano et al.32 and characterized by scanning electron
microscopy (SEM), X-ray photoemission spectroscopy (XPS),
Raman spectroscopy and X-ray diffraction (XRD) analysis
(Fig. 1). According to the SEM results, lateral dimensions of
synthesized GO akes were very different, ranging from a few
hundred nm up to �200 mm (Fig. 1a). The C1s XPS spectrum of
the as-prepared GO shows that thematerial was heavily oxidized
(Fig. 1b): the peak at 284.8 eV corresponds to the C–C bond,
whereas the very intense overlapping peaks at 286–289 eV
correspond to the carbon in different oxygen-containing func-
tionalities.9,51 Fig. 1c shows the Raman spectrum of the as-
prepared GO that exhibits a D band at 1363 cm�1 and a G band
at 1594 cm�1 with comparable intensities, which is typical for
such heavily oxidized materials.9,51 According to the results of
XRD analysis, the average distance between GOmonolayers was
�8 Å (Fig. 1d), which is in agreement with previously reported
XRD data for similar heavily oxidized GO materials.29,32,52–56

The GO platelets were dispersed in distilled water to yield a
0.05 mg ml�1 solution, which was drop-cast on a modied
KAMINAmultisensor chip (Fig. 2a).57 The active area of this chip
consists of a 8 � 10 mm2 Si/SiO2 substrate with pre-deposited
multiple Pt electrodes (100 � 3000 mm2 each) separated by

Fig. 1 Characterization of GO and rGO. (a) SEM image of the as-prepared GO flakes deposited on a Si/SiO2 substrate. (b) XPS, (c) Raman and (d) XRD spectra of the
as-prepared GO and rGO, which was annealed in vacuum at 150 �C.
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�90 mm gaps, and two Pt thermoresistors; the back side of the
substrate is equipped with four independent Pt meander
heaters. The solvent evaporation resulted in the formation of a
multilayer GO lm covering the Pt electrodes and the gaps
between them. SEM images of this lm show that the arrange-
ment of the GO akes varies throughout the substrate (Fig. 2c
and d). According to the results of AFM, the average thickness of
the GO lm was 10 � 2 nm (Fig. 2e and f). Assuming that the
height of a GO monolayer is �1 nm,58 the lm consisted of
�10 layers of GO.

The as-prepared GO is heavily oxidized and thus not elec-
trically conductive.4,5 In order to partially reduce GO and
increase its conductivity we annealed the GO lm deposited on
a KAMINA chip at 150 �C in vacuum ( p ¼ 2 � 10�5 Torr) for 3
min. Aer such annealing, the resulting rGO is sufficiently
conductive for further sensor measurements, although it is only
partially reduced and still has numerous oxygen-containing
functionalities, as shown by XPS. Fig. 1b demonstrates the C1s
XPS spectrum of the rGO annealed at 150 �C in vacuum where
the intensity of the overlapping peaks at 286–289 eV only
slightly decreased compared to the spectrum of the as-prepared
GO. The Raman spectra of GO and rGO also look very similar
(Fig. 1c) suggesting that the annealing at 150 �C did not change
the structure of the material signicantly. The results of XPS
and Raman spectroscopy are also in good agreement with the
XRD data presented in Fig. 1d. An oxidized GOmaterial typically
has an average interplanar distance d ranging from 7 to 9 Å
(ref. 29, 32, 53–56) depending on the exact preparation tech-
nique and XRD experimental conditions, such as humidity.52 An
extensive chemical reduction of GO results in a dramatic
decrease in d to �3.5 Å,29,53,55,56 which is associated with the

removal of the majority of functional groups from GO sheets. In
contrast, Fig. 1d shows that during annealing at 150 �C the
average interplanar distance in a GO material only slightly
decreased from 8 to 7.6 Å, which again conrms that the
structure of the GO material did not change signicantly upon
thermal reduction at 150 �C.

The degree of rGO reduction is known to have a profound
effect on the rGO sensor performance. Conductometric rGO-
based gas sensors have relatively long recovery time aer
exposure to an analyte under ambient conditions.10,12 When the
sensor is not fully recovered, the conductivity baseline dris
from one sensing cycle to another. This makes the sensing
response irreproducible even at the same analyte concentration.
The use of higher temperatures for reduction of GO results in
the enhancement of the response but also leads to much longer
recovery times.14 Therefore, to address the problem of run-to-
run changes in the conductance baseline we chose the reduc-
tion conditions at which the GO was only slightly reduced
(Fig. 1b and c) but yet sufficiently conductive to perform elec-
trical measurements.

Fig. 2b shows that the conductive rGO lm bridges 39
sequential electrodes thus forming 38 devices with Pt electrodes
and active rGO channels. Fig. 2h shows the experimental setup
that was used to measure the rGO resistance between each pair
of electrodes in the array, see the Experimental section for more
details. We evaluated the ability of an rGO microarray to
discriminate between different alcohols: methanol, isopropanol
and ethanol. The I–V and I–t characteristics have been studied
in a 20 sccm ow of synthetic air (21% of O2, 79% of N2) mixed
with alcohol vapors at three different concentrations: 500, 1000
and 1500 ppm. The time of exposure of rGO sensors to the

Fig. 2 rGO-based multisensor array. (a) Optical photograph of a multielectrode KAMINA chip. The following images (b)–(e) show sequential magnifications of the
chip. (b) Optical photograph of the active part of the KAMINA chip. The white arrows show a dark vertical strip that corresponds to an rGO film. (c) SEM image of rGO
sensors. Bright horizontal lines correspond to Pt electrodes; darker vertical strip corresponds to rGO. (d) SEM image of a fragment of one of the devices shown in (c). (e)
AFM image of an rGO film on a Si/SiO2 substrate. (f) An average height profile for the area shown by the square in (e). (h) The experimental setup for sensor
measurements (see the Experimental section for details).
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analyte gases was chosen to be 10 min, which was found in
preliminary measurements to be long enough to ensure the
saturation of the sensor signal.

The rGO has an irregular atomic structure that comprises
nearly perfect graphene domains, oxidized regions and nano-
scopic holes.59 Once it is exposed to air, gas molecules adsorb at
different sites in this complex material changing its conduc-
tivity, as shown in Fig. 3a. Aer annealing in vacuum at 150 �C
the rGO devices had resistances ranging from 0.2 to 0.7 MOhm.
Fig. 3a shows that when these devices were tested within 1 h
aer the exposure to air, their resistances increased by about an
order of magnitude. The following measurements demonstrate
the resistances of rGO devices almost saturated aer �1 day of
exposure to air in the 5–15 MOhm range (Fig. 3a). Therefore, to
eliminate the effect of adsorbates that are present in air on the

sensor properties of rGO we kept the devices in air at room
temperature for several days before the sensor measurements.
Fig. 3b demonstrates that the rGO devices exhibited linear I–V
curves, which implies an Ohmic contact between rGO sheets
and Pt electrodes; a line corresponding to the as-prepared non-
conducting GO is shown for comparison.

Fig. 3c shows a typical sensor response of an individual rGO
gas sensor to isopropanol, methanol, ethanol and water that
were mixed with dry synthetic air at a 1500 ppm concentration.
When an rGO device is exposed to any of these four analytes its
resistance increases, but it could be recovered if the device is
then purged with dry air. Fig. 3c demonstrates ve exposure–
purge cycles for each of these analytes, showing that the cor-
responding resistance changes are quite reproducible. The
response curves clearly consist of regions with sharp and

Fig. 3 Sensor characteristics of an rGO-basedmultisenor array. (a) Resistances of 13 rGO-based devices measured in vacuum and in air. (b) Current–voltage (I–V) curves
for 13 rGO-based devices; an almost horizontal line shows a representative I–V curve for an as-made GO device for comparison. (c) Representative dynamic behavior of
one of the rGO-based devices in a multisensor array, which was exposed to 1500 ppm of an analyte in synthetic air. Gray and white vertical lines correspond to periods
of time when the flow of an analyte was turned on and off, respectively. (d) Dependence of relative resistance changes (DR/R0) of rGO devices on concentrations of
different analytes. Each data point is an average of 80 independent measurements (4 times � 20 rGO devices). The error bars show maximum and minimum values for
each dataset. (e) Simultaneously measured dynamic behaviors of 20 rGO devices that experienced 5 cycles of exposure to 1000 ppm of isopropanol followed by purging
with dry air. (f) Dependence of relative resistance changes (DR/R0) on initial resistances of rGO devices upon exposure to 1500 ppm of isopropanol or ethanol in
synthetic air. (g) Distributions of gas responses of rGO segments to different analytes.
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moderate slopes that correspond to fast and slow responses of
an rGO sensor to the analytes, respectively; such behavior is
apparent in cases of methanol and ethanol exposure, and also
develops in the isopropanol and to a lesser extent water
response curves aer the initial cycle, see Fig. 3c. According to
Robinson et al., the fast response could be attributed to the
adsorption of molecules at the low-energy binding sites, such as
sp2 carbon domains, while the slow response wasmainly caused
by interactions between gas molecules with high-energy
binding sites, such as vacancies, defects, and oxygen-containing
functionalities.10,18 Once an rGO sensor is exposed to a new
analyte, the analyte molecules may be retained at some of these
high-energy binding sites aer the rst cycle, eliminating the
contribution of these sites to the sensor response in the
following cycles. This could explain the fact that in many series
of measurements the rst cycle was oen substantially different
from the following ones (an example of this effect could be seen
in the water sensing data shown in Fig. 3c).

Fig. 3d shows average responses of 20 rGO segments to
ethanol, methanol, isopropanol and water vapor at different
concentrations. Each segment was measured 5 times, and the
rst data points in each series were not considered for this plot
for the reason discussed above. The data are shown in terms of
DR/R0, where R0 corresponds to the original resistance of an rGO
device in a multisensor array before the exposure to an analyte
and DR is the maximum change in the device resistance during
the sensing experiment. The response of rGO devices to the
water vapors is about four times higher than that of alcohols at
the same concentration. This can be explained by the unusually
facile permeation of water molecules between GO akes.52,60

Therefore, the humidity level in the air could dramatically affect
the results of alcohol detection and recognition experiments. To
address this problem all alcohol sensing experiments were
performed aer the rGO devices were purged with dry air for
>1 h. If an array of rGO devices is employed as a primary sensing
element in a practical electronic nose for the alcohol recogni-
tion, the water molecules should be removed by the sample
collecting system,61 possibly through the use of concentrators
and dryers.

To provide a sufficient recognition power, the gas analytical
array requires diversity in the sensing performance of the
individual sensing segments. Fig. 3e shows simultaneous
response of 20 different segments of the sensing array when
exposed to 1000 ppm concentration of methanol. The observed
differences in the signal amplitude and response time can be
used for discrimination between alcohol analytes when all these
20 segments are employed for the vector signal collection.
Fig. 3f shows that relative resistance changes (DR/R0) of rGO
devices observed during their exposure to different analytes did
not correlate with initial resistances (R0) of the devices, further
demonstrating their stochastic nature; the data are shown for
isopropanol or ethanol exposure, similar results were obtained
for other analytes as well.

Although the exact nature of the selectivity of the individual
rGO sensing segments is a subject of an ongoing study, we
presume that the required diversity is mainly provided by the
irregular structure of rGO lms at different levels of

organization, ranging from nanoscale (disordered structure of
individual rGO akes59) to macroscale (randomly percolating
junctions of rGO akes, wrinkles, variable thickness of an rGO
lm). Side-by-side comparison of the responses of 20 individual
rGO devices to selected analytes mixed at a 1000 ppm concen-
tration with dry air shows the expected device-to-device varia-
tion. Fig. 3g shows that for any given analyte all 20 segments
exhibit different relative changes in their electrical resistances;
all these sensor responses combined give a characteristic
pattern for that analyte. Characteristic patterns for ethanol,
methanol, isopropanol and water look different (Fig. 3g), which
could be used for the recognition of these gases. The diversity of
the rGO devices could be further increased if some of them are
covalently functionalized using diazonium chemistry,62,63 which
might be a promising direction for future studies.

Comparison of the patterns for different analytes shown in
Fig. 3g yields an important observation regarding the nature of
selectivity of rGO device arrays in the discussed gas recognition
experiments. The AFM results show that the rGO lm that was
used in this work was �10 layer thick. According to Nair et al.,
water molecules could easily penetrate between the layers of GO
that have a very large average interplanar distance.60 The XRD
results show that the rGO lm prepared by the thermal
annealing of GO at 150 �C had a d value of 7.6 Å that is very close
to d ¼ 8 Å found for the as-prepared GO material (Fig. 1d),
suggesting that the permeation of the water molecules between
the rGO layers should be substantial. As the water molecules
penetrate between the rGO layers, they affect conductivities of
the majority of akes and their junctions more or less evenly,
see Fig. 4. As a result, all 20 rGO devices in the array exhibit

Fig. 4 Scheme of a proposed mechanism of analyte discrimination by gas
sensors based on rGO films. Water molecules easily penetrate between rGO
flakes, changing the bulk conductivity of a film. In contrast, molecules of alcohols
result in smaller conductivity changes, since they interact only with the top few
layers of an rGO film. The depth of penetration of alcohol molecules should
depend on the local microstructure of a film and the chemical nature of an
analyte.
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nearly the same relative resistance change when exposed to the
water vapor, and the characteristic pattern for water is at and
nearly uniform (Fig. 3g). The latter corroborates with the large
overall sensor signal toward water molecules since most of the
rGO akes in the sensing segments contribute to the conduc-
tance change. In contrast, the values of the sensing responses
become smaller and the characteristic patterns appear to be
more scattered for all three alcohols used in this study. It was
previously experimentally demonstrated that thick GO
membranes are impermeable for many gas molecules other
than water, including alcohols,60 which means that in our
sensor experiments only the top few layers of the rGO lm
should be affected by the alcohol molecules (Fig. 4). In this case,
the actual depth of penetration of analyte molecules should
depend on the local near-surface microstructure of an rGO lm,
i.e. the size and geometry of rGO akes, wrinkles, various
defects, etc., and thus could vary substantially for different
devices in the array, resulting in their different responses to the
alcohol analytes (Fig. 3g). Furthermore, for each device with its
unique rGO lm microstructure the effective penetration depth
should also depend on the nature of an analyte, which would
result in different characteristic patterns observed for ethanol,
methanol, isopropanol, and obviously water (Fig. 3g). While this
explanation for the selectivity mechanism seems plausible and
consistent with our data as well as other studies of GO/rGO,
detailed sensor experiments using rGO lms with variable
thickness, average ake size, degree of reduction and

preparationmethod are necessary for its verication. Also, since
a KAMINA chip has built-in resistive heaters,57 it is an excellent
platform for the sensing experiments at different temperatures,
which may provide further insights into the sensing mecha-
nism, since the kinetics of adsorption/desorption of analyte
molecules should be temperature-dependent.

A perception-type articial neural network (ANN)64 has been
employed to analyze the signal responses of the developed
multisensor chip. Linear regions corresponding to the “slow
response” phases from 20 rGO devices (Pi, i¼ 1 to 20) were used
as the input data and then transformed to only two output
signals X and Y (Fig. 5a) by means of activation functions ( fi)
and weight factors (Wi). Aer every training cycle, the Leven-
berg–Marquardt algorithm65 modied weight factors to mini-
mize the mean squared error (a so-called “training goal”) of the
distances between the resulting output XY-vectors and the
manually assigned gravity center for a certain analyte. The
gravity centers assigned in this analysis are (0.5, 1) – water, (1,
0.5) – ethanol, (0.5, 0) – isopropanol, and (0, 0.5) – methanol.
The training data consisted of 25 recognition experiments for
each analyte. The training goals equal to 10�3 and 10�9 were
reached in 12 and 42 training cycles respectively, showing that
more accurate recognition requires longer data processing.

ANN performance was tested using 25 sets of multisensor
array resistance records corresponding to each of the gas ana-
lytes which were not employed in the training process. As shown
in Fig. 5b, the ANN trained at the goal equal to 10�3 could

Fig. 5 Analyte recognition by an rGO-based multisensor array. (a) The scheme of the ANN employed in the study that transforms the input sensor data (Pi, i¼ 1 to 20)
from 20 rGO segments in the multisensory array to two output signals, X and Y; see text for details. (b–d) The results of recognition of water (1), methanol (2), ethanol
(3) and isopropanol (4) by the ANN at training goals equal to (b) 10�3, (c) 10�6, and (d) 10�9; see text for details.
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completely recognize all four analytes, unambiguously attrib-
uting every tested gas to one of four gravity centers. Longer
trainings of the ANN at the goals equal to 10�6 and 10�9 (Fig. 5c
and d) clearly improve the gas discrimination.

In summary, we have demonstrated that rGO-sensor arrays
could be used to effectively distinguish between chemically akin
analytes, such as methanol, ethanol and isopropanol. Advan-
tages of such sensors for potential practical applications
include facile and inexpensive synthesis of GO, its convenient
deposition on commercially available multielectrode chips fol-
lowed by a simple low-temperature thermal conversion to rGO,
and the good recognition performance. Future work will focus
on the better understanding of the sensing mechanism, opti-
mization of the sensor performance, and recognition of other
practically important analytes.

Experimental
Synthesis of GO

All reagents were purchased from Aldrich and used as received.
Graphite akes (1.7 g), KMnO4 (8 g), H2SO4 (180 ml) and H3PO4

melted at 45 �C (30 g) were mixed in that order in an ice bath.
The dispersion was stirred at room temperature for 3 days,
quenched with H2O2 in an ice bath, and then centrifuged at
7000 rpm for 30 min. The resulting solvent phase was clear and
the solid phase had a yellow-brown color. The solid was
dispersed in water and centrifuged again. The procedure was
repeated several times until pH ¼ 4. The resulting GO solution
had a concentration of 2.5 mg ml�1.

Materials characterization

SEM was performed using a Hitachi S4700 eld-emission
scanning electron microscope at an accelerating voltage of 5 kV.
The Raman spectra were collected using a Thermo Scientic
DXR Ramanmicroscope with a 532 nm excitation laser. XPS was
performed using a PHI Quantera SXM scanning X-ray micro-
probe. AFM images were recorded using a Digital Instruments
Nanoscope IIIa Dimension 3100 system and Bruker RTESPA
AFM probes (part # MPP-11120-10). XRD patterns were collected
using a Rigaku automated Powder X-ray diffractometer with a
Theta–Theta goniometer (monochromatic CuKa1 radiation with
l ¼ 1.54056 Å; 5� # 2q # 30�).

Gas sensing measurements

The setup for gas sensing measurements is shown in Fig. 2h.
Two-terminal resistance measurements of individual sensing
elements in the array were performed at a constant voltage
mode using a low noise current preamplier (Stanford Research
Systems, model SR570). The latter was connected to a Keithley
7001 Switch System that was sequentially reading the current
from every individual sensing element in the array. The entire
setup was connected to a computer through a National Instru-
ments data acquisition board (DAQ) via a BNC-2110 connector
block and controlled using a National Instruments LabView
soware. The chip was placed into a gas exposure chamber (V�
2 cm3) kept at the ambient temperature. An analyte was put in a

vial with a custom-made horizontal capillary diffusion tube
(Fig. 2h). If this diffusion vial is kept at a constant temperature,
the concentration gradient of the analyte inside and outside the
vial remains constant, which provides the constant driving force
for a controlled release of the analyte to the ow of synthetic air.
The bore diameter and diffusion path length determine the
release rate for a specic analyte. Eqn (1) was used to calculate
the diffusion path length:

L ¼ 1:9� 104TDMA
log P

P� r
K

1

FC
; (1)

where L is the length of the diffusion path (cm), T is the
temperature of the vapor (K), D is the diffusion coefficient (cm2

s�1) at 25 �C and 1 atm,M is the molecular weight (g mol�1), A is
the cross-section area of the capillary (cm2), P is the atmospheric
pressure (mm Hg), r is the vapor pressure at the temperature T
(mm Hg), K is the molar volume constant at 25 �C and at 1 atm
(K ¼ 24.47/M), F is the total dilution ow (sccm), and C is the
concentration (parts per million (ppm) by volume).

We used Line A to expose the rGO devices to an analyte and
Line B to purge them with a dry air (Fig. 2h). Two independent
mass ow controllers (MFC, Matheson Transducer, Model 8141)
were used to maintain the same gas ow rates through both
lines, and two ow switches were used to open or close these
lines. When the rGO devices where purged with dry air through
Line B, the chamber with the diffusion vial was also continu-
ously purged with dry air to prevent the accumulation of an
analyte in the chamber.

Recognition data processing

To be able to distinguish vector signals related to different
classes the ANN was preliminary trained. During every training
session, input data of the sensor resistances (vector P) were
multiplied by the weight factorsW1 of neurons of the rst layer.
The obtained products were summarized and processed by
means of the activation function f1. The output vector of the rst
layer was used in the next layer and processed in a similar
manner with weight factors W2 and activation function f2. The
activation functions, f1 and f2, were assigned to be logarithmic-
sigmoid, which can be differentiated and allow one to use the
training algorithms based on the gradient descent. The activa-
tion function f3 of the output layer, in contrast, was linear.

Aer processing in the intermediate layers, the data were
sent to the output layer that was composed of two neurons. To
visualize the output recognition of gases we assigned a 2-
dimensional plane where X- and Y-axes corresponded to output
neurons 1 and 2 respectively. Thus, the ANN projects the
primary 20-dimensional signal from the individual segments of
the multisensor array to the 2D XY-plane. The gravity centers for
the output data corresponding to different analytes were
assigned as follows: (0.5, 1) – water, (1, 0.5) – ethanol, (0.5, 0) –
isopropanol, and (0, 0.5) – methanol.

The Levenberg–Marquardt algorithm65 was used to train the
ANN which modies the neuron weights to achieve the
minimum value of the training goal. One cycle of the modi-
cation of the weight factors in the ANN stands for one training
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cycle. The training data consisted of 25 resistance records for
each analyte (ethanol, methanol, isopropanol and water vapor).
Each record is a 20-dimensional vector obtained from indi-
vidual segments of the rGO sensor array. The ANN training
results in the projections of the sensor responses of 20 rGO
segments to the 2D XY-plane. The ANN was found to recognize
the analytes aer only a few training cycles. The goal equal to
10�3 was achieved aer 12 training cycles, and the goal equal to
10�9 was achieved aer 42 training cycles.

ANN performance was tested using 25 sets of multisensor
resistance records under exposure to each of the gas analytes
which were not employed in the training process.
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