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Highly selective synthesis of all-carbon
tetrasubstituted alkenes by deoxygenative
alkenylation of carboxylic acids
Yantao Li1, Qianzhen Shao2,3, Hengchi He1, Chengjian Zhu1,4✉, Xiao-Song Xue 2,3✉ & Jin Xie 1,5✉

The synthesis of all-carbon tetrasubstituted olefins under mild reaction conditions is chal-

lenging because of the inevitable issues including significant steric hindrance and the

uncontrolled Z/E stereoselectivity. In this paper, we report the synthesis of all-carbon tet-

rasubstituted alkenes from readily available carboxylic acids and alkenyl triflates with the

synergistic catalysis of cyclo-octa-1,5-diene(tetramethyl-1,4-benzoquinone)nickel and visible

light under an air atmosphere, thus avoiding the need for a glovebox or a Schlenk line. A wide

range of aromatic carboxylic acids and cyclic and acyclic alkenyl triflates undergo the C-C

coupling process smoothly, forming structurally diverse alkenes stereospecifically in mod-

erate to good yields. The practicality of the method is further illustrated by the late-stage

modification of complex molecules, the one pot synthesis and gram-scale applications. This is

an important step towards the valuable utilization of carboxylic acids, and it also simplifies

the experimental operation of metallophotoredox catalysis with moisture sensitive nickel(0)

catalysis.
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The construction of all-carbon tetrasubstituted alkenes has
long been a challenge in organic chemistry due to the
significant steric hindrance and the uncontrolled Z/E ste-

reoselectivity in the synthesis of such molecules1. The classical
synthetic methods2–5, including Wittig olefination, Peterson
olefination, Horner–Wadsworth–Emmons reaction, olefin-
substitution and elimination of water from alcohols, do not
proceed well and can result in poor selectivity and efficiency when
used in an attempt to construct linear tetrasubstituted alkenes.
Transition-metal-catalyzed C-C coupling reactions or carbome-
talation of internal alkynes have recently been identified as
powerful tools with which to realize such stereospecific trans-
formations (Fig. 1a)6–17. However, in these reactions, organo-
metallic reagents derived from Zn, Al, and Mg are required to
improve the reaction efficiency, and in turn decrease the com-
patibility of the reaction system, and require that moisture must
be scrupulously avoided. Thus, development of a robust and
practical synthetic methodology to address the existing limita-
tions to access all-carbon tetrasubstituted alkenes is highly
desirable.

Thanks to the pioneering works of MacMillan, Doyle, and
Molander18,19, photoredox-nickel dual catalysis has proved to be
successful as an efficient and mild strategy for these
reactions20–38. Very recently, we have achieved cross-electrophile
C-C coupling of aromatic acids and aromatic halides enabled by
photoredox catalysis and nickel catalysis39. To the best of our
knowledge, almost all the metallophotoredox catalyzed reactions
require an inert reaction atmosphere, such as nitrogen or argon,
and this requires use of a glovebox or the Schlenk technique. In
2020, Cornella and Engle independently reported two kinds of
air-stable nickel(0)–olefin catalysts for Ni-catalyzed coupling40,41.
Based on this point, we wondered if the synergistic photoredox
and Ni(0) catalysis could be achieved under an air atmosphere.
This technique has not been used to date but would greatly
simplify the operation of metallophotoredox catalysis with nickel
catalyst.

Carboxylic acids are commercially abundant, structurally
diverse and generally stable feedstock chemicals commonly used
in synthesis. With our continuing efforts in selective C-O bond
functionalization of carboxylic acid39,42–44, we attempted to

develop a practical strategy for the construction of all-carbon
tetrasubstituted alkenes with a wide array of readily available
cyclic and acyclic alkenyl triflates under air atmosphere (Fig. 1b).
This reaction would be enabled by metallophotoredox catalysis
using a photocatalyst and Ni(COD)(DQ) at room temperature
without the involvement of organometallic reagents, in which the
resultant acyl radical by photoredox catalysis would potentially
add to Ni(II)-species to initiate the unprecedented C-C coupling
for the synthesis of highly sterically congested ketones.

Here, we show a highly efficient metallophotoredox deox-
ygenative alkenylation of aromatic acids by means of Ni(COD)
(DQ) under air conditions, constructing all-carbon tetra-
substituted alkenes from readily available starting materials.

Results
Reaction optimization. To initiate the study of cross-coupling
used for the synthesis of all-carbon tetrasubstituted alkenes,
4-fluorobenzoic acid (1a) with ethyl 2-(((trifluoromethyl)sulfo-
nyl)oxy)cyclohex-1-ene-1-carboxylate (2a) were selected as a
model reaction. The optimized reaction conditions (Table 1) were
identified as 1 mol% [Ir{dF(CF3)ppy}3{dtbbpy}]PF6, 3 mol%
Ni(COD)(DQ), 5 mol% 4,4′-di-methyl-2,2′-bipyridine (L1), 1.5
equiv Ph3P, and 2.0 equiv Na2CO3 under blue LEDs in DMF. The
reaction afforded 3a in 90% isolated yield under an air atmo-
sphere (entry 1). When L2, or L3 was employed instead of L1, the
yield was not improved (entries 2–3). The photocatalyst PC-2
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Fig. 1 General strategies to access bulky alkenes. OA oxidative addition,
RE reductive elimination. a Traditional methods to construct all-carbon
tetrasubstituted olefins. b This work: Deoxygenative alkenylation of
carboxylic acids.

Table 1 Optimization of the reaction conditionsa.

Entry Variation of standard conditions Yield(%)b

1 none 90
2 L2 instead of L1 70
3 L3 instead of L1 60
4 PC-2 instead of PC-1 Trace
5 MeCN as solvent Trace
6 DCM as the solvent ND
7 THF as the solvent 10
8 Cs2CO3 as base 32
9 No PC-1 or [Ni] or Ph3P or light ND

DMF N,N-dimethylformamide, ND not detected, Ni(COD)(DQ) cyclo-octa-1,5-
diene(tetramethyl-1,4-benzoquinone)nickel.
aStandard conditions: PC-1 (1 mol%), Ni(COD)(DQ) (3 mol%), L1 (5 mol%), 1a (0.2 mmol), 2a
(0.3 mmol), Ph3P (0.3 mmol), Na2CO3 (0.4 mmol), DMF (3.5 mL), blue LEDs, under air
atmosphere at ambient temperature, 24 h.
bIsolated yields.
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proved to be ineffective for this transformation (entry 4). When
the solvent was changed from DMF to MeCN, DCM or THF, the
yield of target product (3a) significantly decreased (entries 5-7),
probably as the inorganic base can dissolve better in DMF to
promote the reaction process. The use of Cs2CO3 as the base also
compromised the reaction efficiency (entry 8). Control experi-
ments demonstrated that photocatalyst, nickel catalyst, Ph3P and
light were all necessary for the reaction to occur (entry 9).

Substrate scope. With the standard conditions in hand and using
ethyl 2-(((trifluoromethyl)sulfonyl)-oxy)cyclohex-1-ene-1-car-
boxylate (2a) as a coupling partner, a wide range of aromatic
carboxylic acids were investigated, and the results shown in Fig. 2
were obtained. Aromatic acids with one para-substituent on the
phenyl group were found to produce the desired product (3a–3k)

with satisfactory yields. A series of versatile functional group
substituents, such as -methylthio, -benzyloxy, and - hydro-
xymethyl are tolerated well under the optimized reaction condi-
tions, and aromatic acids bearing electron-withdrawing or
electron-donating groups at the meta- or ortho-position deliv-
ered the desired products (3l–3t) in moderate to good yields. A
series of useful functional groups, such as reactive carbonyl (3n,
3o, 3q) and cyano groups (3r) are also compatible. Significantly,
multi-substituted carboxylic acids do not detract from the reac-
tion efficiency, giving rise to the desired products (3u-3bb) in
synthetically useful yields. Heteroaromatic carboxylic acids
engage in this C-C coupling process successfully, producing
desired the tetrasubstituted alkenes (3cc-3hh) in 40–71% yields.

Subsequently we explored the scope of the enol triflates (Fig. 3).
Generally, the ester substituents on the six membered rings may
have negligible influence of the transformation and deliver the
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products (3ii–3kk). When there is a methyl substituent on the
side chain, as in 3ll, the yield declines to 30%. It was envisioned
that the ester group could play a role in the stabilization of the
transition-state with coordination to the nickel center. The
reaction is also suitable for the synthesis of trisubstituted alkenes
in good yield (3mm). We envisioned that the trisubstituted alkene
is likely to be less congested than tetrasubstituted alkene, where
the chelation stabilization of ester group is not vital. The
replacement of the carboethoxy group in the ester unit with a
carbomethoxy group delivered the product (3nn) in 70% yield. In
addition to six membered rings, other kinds of rings bearing
alkenyl triflates react well. For example, the five-membered

alkenyl triflate can undergo this C-C cross-coupling in moderate
yield (3oo). Alkenyl triflates derived from 7-, 8-, 12-, or 15-
membered cyclic ketones, can uniformly undergo this transfor-
mation to afford the desired products (3pp–3ss) in 57-76% yields.
When acyclic alkenyl triflates were subjected to this protocol, the
desired linear all-carbon tetrasubstituted alkenes (3tt–3xx) were
obtained in moderate yields and with excellent Z/E stereoselec-
tivity. The stereochemistry of the alkenyl triflate starting materials
is reliably translated into the products. Interestingly, it was found
that the tetramethylsilyl group and terminal alkenes remain intact
during the coupling (3vv, 3ww). To demonstrate the inherent
value of the methodology, the strategy was applied to the
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construction of a series of complex all-carbon tetrasubstituted
alkenes (3yy–3FF). Many complex alkenyl triflates bearing
different functional groups tolerate the conditions well, affording
a series of structurally diverse all-carbon substituted alkenes in
satisfying yields of 41–82% under air atmosphere conditions.

Mechanistic studies. Two possible dual catalytic mechanisms are
depicted in Fig. 4a20–38. Firstly, under blue light irradiation,
photo-excited *[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 [1/2Ered (*IrIII/

IrII)=+1.21 V vs SCE= 2.3 τ= 2.3 μs]45 can be generated, and
is able to undergo a single electron oxidation with PPh3 to gen-
erate a phosphoryl radical (4)42. In the presence of base, the
resultant carboxylate anion would recombine with the phos-
phoryl radical (4) to produce the key intermediate (5), which can
generate an acyl radical (6) via C-O homolysis46. Meanwhile, the
alkenyl triflate (2) would undergo oxidative addition with LnNi(0)
to produce the (alkenyl)Ni(II) complex (9), which can be inter-
cepted by the resulting acyl radical (6), to produce a Ni(III)
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species (path a). In an alternative mechanistic pathway (path b),
the acyl radical (6) is captured by Ni(0), forming an acylnickel(I)
intermediate (8) prior to oxidative addition to 2, forming the
Ni(III)-intermediate (10). The reductive elimination of this
Ni(III)-intermediate (10) would deliver the desired product (3).
Concurrently, single-electron transfer from Ir(II) to the Ni(I)
regenerated both PC-1 and Ni(0), completing both catalytic
cycles.

The main difference between path a and path b is that either
Ni(0) or Ni(I) is acting as the active species and DFT calculations
were conducted to shed light on this question (Fig. 4b). Based on
the energy profile calculated at the level of PBE0-D3/def2-TZVP/
SMD(DMF)//PBE0-D3/def2-SVP/SMD (DMF) in Fig. 4b, once the
acyl radical (6) is formed, it could be captured rapidly in a
barrierless manner to give Ni(I) (Path b). But the generation of the
acyl radical (6) should be slower than the oxidative addition (OA)
(path a) according to the computed barriers (ΔG≠= 4.2 kcal/mol vs
2.0 kcal/mol). Accordingly, the Ni(0) will be converted to Ni(II) (9)
before any radical is formed. As a result, the reaction goes through
path a as the radical generation loses the competition with the Ni(0)
oxidative addition.

The shape of the potential energy surface (PES) in Fig. 4b is
commonly observed in this type of catalysis that consists of Ni(0)
and a radical47–50. The oxidative addition barrier of Ni(I) is
consistently significantly lower than the oxidative addition barrier
of Ni(0), and is always limited by the concentration of the radical.
This renders the determination of the preferred pathway
difficult47–50. Our DFT results provide a strategy for this type
of reaction by comparing the Ni(0) oxidative addition barrier
with the overall barrier of radical generation. In our case, the
Ni(0) oxidative addition barrier is low enough that the higher
barrier is associated with the radical generation. This small barrier
for a crowded transition state is a result of the neighboring ester
group stabilization (dO…Ni,TS-A= 2.57 Å), which is sterically
infeasible in the reactant.

In those TSs (TS-1A and TS-1B) of oxidative addition (OA),
an SN2′-like process is observed. The O-atom in ester moiety
attacks the Ni center and pushes the electron to the middle
carbon which then kicks off the -OTf as a leaving group, resulting
in the formation of a chelated product 9 or 10. With 9 formed by
the favorable path a, a competition exists between isomerization
into a more stable 9p and recombination with free acyl radical 6.
The energy barrier of the former is 15.4 kcal mol−1, which is
higher than the estimated barrier of the radical generation
(4.2 kcal mol−1). Therefore, before the isomerization of 9, there
will be sufficient concentration of acyl radicals to complete the
radical addition and irreversibly produces the pentacoordinate 10
(See Supplementary Information for detailed discussion of the
active species for radical addition among Ni(II) isomers,
including a more comprehensive PES with the potential OTf
coordination). The final reductive elimination TS-2 has a low
barrier of 2.3 kcal mol−1 that gives the final product swiftly. The
mechanistic control experiments (Supplementary Fig. 13) also
suggest that the radical addition to Ni(0) is less likely (Path b).

Synthetic application. With this possible mechanistic under-
standing of this coupling reactions, we explored its synthetic
applications (Fig. 5). As shown in Fig. 5a, we developed a one-pot,
two-step strategy for the concise synthesis of all-carbon tetra-
substituted alkenes directly from ketones. In addition, this protocol
was found to be easily used at the gram scale (Fig. 5b). Interestingly,
when indole-based aromatic acid (12) was subjected to this pro-
tocol, it can undergo a tandem C-C coupling and subsequent
Nazarov cyclization to afford product (13) in 70% yield. The
structure of 13 was confirmed by X-ray single crystal analysis

(Fig. 5c). Interestingly, reduction of product 3c with diisobutylalu-
minium hydride (DIBAL-H) can directly lead to all-carbon tetra-
substituted alkenes, hexahydroisobenzofuran product 14 (Fig. 5d).

Discussion
We have developed a strategy for the synthesis of all-carbon
tetrasubstituted alkenes via synergistic photoredox/nickel cata-
lysis under an air atmosphere. A large number of readily available
aromatic acids and alkenyl triflates are efficient coupling partners
in this C-C coupling, affording a rich library of structurally
diverse acyclic and cyclic all-carbon tetrasubstituted alkenes in
moderate to good yields and with excellent Z/E stereoselectivity.
DFT calculations indicate that this transformation may proceed
via a Ni(0)/Ni(II)/Ni(III) pathway. This protocol can avoid the
utilization of moisture-sensitive organometallic reagents and the
need for an inert gas atmosphere, greatly simplifying the opera-
tion of metallophotoredox reactions with Ni(0) catalysis. This is
also an important advance in the synthesis of all-carbon tetra-
substituted alkenes from readily available feedstock chemicals.

Methods
General procedure for the synthesis of all-carbon tetrasubstituted alkenes.
Under air atmosphere, a stirring bar, Ni(COD)(DQ) (3.0 mol%), 4,4′-di-methyl-
butyl-2,2′-bipyridine (5.0mol%), and DMF (2.0mL) were successively added to a
vial (2.0 mL). The vial was stirred until the resulting mixture become homogeneous
(about 20min). Subsequently, photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 (1 mol%),
aromatic carboxylic acid (0.2 mmol, 1.0 equiv), triflates (0.3 mmol, 1.5 equiv), Ph3P
(0.3 mmol, 1.5 equiv), and Na2CO3 (0.4 mmol, 2.0 equiv) were added to an 3.5mL
screw-cap vial equipped with a magnetic stirring bar. The resulting homogenous
solution was syringed into the vial. Then DMF (1.5mL) was added into the vial. The
vial was sealed and placed ~5 cm blue LEDs. The reaction mixture was stirred for
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Fig. 5 Synthetic application. a one-pot two-steps synthesis of 3. b Gram-
scale experiment. c Tandem C-C coupling/Nazarov cyclization. d Reduction
of 3c.
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24 h at room temperature (air conditions were used to keep the temperature is 25 °C
or so). After reaction completion, the reaction mixture was removed from the light.
The solvent was removed and the residue was purified by flash chromatography on
silica gel to afford the corresponding products.

Data availability
The authors declare that all other data supporting the findings of this study are available
within the article and Supplementary Information files, and also are available from the
corresponding author. The X-ray crystallographic data of product 13 in this study has
been deposited in the Cambridge Crystallographic Data Centre under accession code
CCDC 2089722.
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