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Current state-of-the-art infection and antimicrobial resistance (AMR) diagnostics 
are based on culture-based methods with a detection time of 48–96 h. Therefore, 
it is essential to develop novel methods that can do real-time diagnoses. Here, 
we  demonstrate that the complimentary use of label-free optical assay with 
whole-genome sequencing (WGS) can enable rapid diagnosis of infection and 
AMR. Our assay is based on microscopy methods exploiting label-free, highly 
sensitive quantitative phase microscopy (QPM) followed by deep convolutional 
neural networks-based classification. The workflow was benchmarked on 21 
clinical isolates from four WHO priority pathogens that were antibiotic susceptibility 
tested, and their AMR profile was determined by WGS. The proposed optical assay 
was in good agreement with the WGS characterization. Accurate classification 
based on the gram staining (100% recall for gram-negative and 83.4% for gram-
positive), species (98.6%), and resistant/susceptible type (96.4%), as well as at the 
individual strain level (100% sensitivity in predicting 19 out of the 21 strains, with 
an overall accuracy of 95.45%). The results from this initial proof-of-concept 
study demonstrate the potential of the QPM assay as a rapid and first-stage tool 
for species, strain-level classification, and the presence or absence of AMR, which 
WGS can follow up for confirmation. Overall, a combined workflow with QPM 
and WGS complemented with deep learning data analyses could, in the future, 
be transformative for detecting and identifying pathogens and characterization of 
the AMR profile and antibiotic susceptibility.
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1. Introduction

Antimicrobial resistance (AMR) is the ability of microorganisms 
to resist antimicrobial treatments, especially antibiotics. Infections due 
to antibiotic-resistant bacteria are a threat to modern healthcare. A 
recent meta-analysis of resistant bacteria burden on human health and 
well-being has revealed that in 2019 alone, 1.27 million deaths were 
caused directly by antibiotic-resistant bacteria (ARBs), and 4.95 
million deaths were associated with ARBs (Murray et al., 2022). This 
number has surpassed HIV and malaria. Many (73%) of these deaths 
are due to infections caused by Escherichia coli, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas 
aeruginosa (Murray et al., 2022), which the WHO identifies as critical 
and high-priority pathogen groups.

Research has shown that adverse patient outcome directly 
correlates with the time taken to administer optimal antimicrobial 
(Kumar et  al., 2006). Mortality risk doubles with a 24-h delay in 
providing appropriate antibiotics in cases of bacteremia (Fraser et al., 
2006). Globally only half of the antibiotics are prescribed correctly 
(Milani et al., 2019). Thus, rapid point-of-care diagnostic tests are a 
central part of the solution to this problem. Current culture-based 
methods used to detect and identify agents of infection are inadequate. 
Incubation times of up to 24–48 h are often necessary to capture the 
majority of culturable bacteria associated with infection (Taxt et al., 
2020). Additional time is required for pathogen identifications (2–4 h) 
and in case of expected AMR for antibiotic susceptibility testing (AST; 
18–24 h). Thus, the time interval from collecting patient samples at the 
ward until the information is available on antibiotic susceptibility 
patterns is, in the best case, 2–4 days in the clinical routine (Köser 
et al., 2012).

There are emerging micro-and nanotechnologies for bacterial 
identification and AST, including both phenotypic (e.g., microfluidic-
based bacterial culture) and molecular (e.g., multiplex PCR, 
hybridization probes, nanoparticles, synthetic biology, and mass 
spectrometry) methods (Li et al., 2017). PCR and MS methods used 
on positive cultures to identify microbes have progressed considerably 
but still are far from ideal. With PCR, one must decide beforehand 
what to look for, and MALDI-TOF is expensive (Bacconi et al., 2014; 
Taxt et al., 2020).

Whole genome sequencing (WGS) can overcome some of these 
problems since there is no need for targeted primers/probes. Also, 
with the rise of real-time sequencing and its affordability, WGS has 
become a potent alternative to time-consuming culture-dependent 
traditional methods. We  have recently demonstrated that using 
Oxford Nanopore Technologies (ONT) MinION and Flongle 
sequencing platforms, infectious agents and their resistance profile 
can be identified within 10 min – 1 h after the start of the sequencing 
(Harstad et  al., 2018; Taxt et  al., 2020; Avershina et  al., 2022). 
Additionally, we have used data from direct sequencing of spiked 
blood cultures for genotype-to-phenotype prediction of resistance 
toward B-lactams in E. coli and K. pneumoniae, as fast as 1–8 h from 
the sequencing start (Avershina et al., 2021). However, around 3–4 h 
are still required to prepare the sample for sequencing.

Direct identification of the pathogen in biofluid samples will 
mitigate the above issues. Culture-independent diagnostic tests can 
also detect dead bacteria when antibiotic therapy has been 
administered before sampling, which could help detect the pathogen 
(Bourke et al., 2015). Real-time sequencing, for example, has been 

successfully implemented in lower respiratory tract infections, urine 
infections, cerebral spinal fluid, surgical site infections, and 
orthopedic devices with up to 100% sensitivity and specificity in the 
pathogen detection (Wang et al., 2020; Whittle et al., 2022). Label-
free optical techniques such as quantitative phase microscopy (Kim 
et al., 2022) and Raman spectroscopy (Ho et al., 2019; Lister et al., 
2022) have recently been shown to measure phenotypic and 
molecular signatures in pathogens at very low concentrations. Oh 
et al. (2020) utilized optical diffraction tomography to quantitatively 
analyze the response of Escherichia coli and Bacillus subtilis to 
varying concentrations of ampicillin (Oh et al., 2020). Recently, Kim 
et al. (2022) proposed a microscopy-based framework that employs 
three-dimensional quantitative phase imaging and artificial neural 
networks to detect pathogens from a limited number of cells, 
successfully identifying 19 bacterial species known to cause 
bloodstream infections (Kim et al., 2022). We have recently reported 
the multi-excitation Raman spectroscopy (ME-RS) method for the 
species, resistance, and strain-level classification of pathogens 
(Lister et  al., 2022). In combination with downstream machine 
learning-based analysis, such methods may open doors to 
developing new culture-free identification of bacteria strains and 
their clinically relevant properties, such as wild-type (WT) and 
non-wild type (NWT) bacteria and provide insight into the 
AMR profile.

Quantitative phase microscopy (QPM) is a powerful technique 
due to its non-contact, non-invasive, label-free, and quantitative 
nature. This makes QPM a suitable candidate in the domain of 
biomedical imaging applications. QPM can measure various 
morphological (surface area, volume, sphericity, etc.), bio-physical 
(dry mass, growth rate, etc.), and statistical measures of morphological 
(mean, standard deviation, skewness, kurtosis, etc.) parameters related 
to cells/tissues at nanometric sensitivity (Popescu, 2011; Bhaduri et al., 
2014; Dubey et  al., 2019; Ahmad et  al., 2020). QPM encodes 
information about the specimens’ optical thickness (refractive 
index × geometrical thickness) in terms of modulated intensity 
patterns called interferograms. Various optical configurations of QPM 
exist, such as diffraction phase microscopy (Bhaduri et al., 2014), 
spatial light interference microscopy (Wang et  al., 2011), Linnik 
interference microscopy (Dubois et  al., 2002; Ahmad et  al., 2021, 
2022), Mirau interference microscopy (Ahmad et  al., 2015, 2016, 
2019), and Mach-Zehnder interference microscopy (Loehrer 
et al., 2014).

The spatial phase sensitivity of the QPM system is the most crucial 
parameter which decides the minimal detectable change in the cell’s 
parameters either as a function of their growth or different categories 
such as normal and challenged. The phase sensitivity of QPM depends 
on the type of light source (white light, LEDs, and laser) used to 
illuminate the specimens for the generation of raw data, i.e., 
interferograms. These light sources either generate highly sensitive 
phase images at the cost of reduced temporal resolution (for white 
light and LEDs) or provide high temporal resolution at the expense of 
less phase sensitivity (for laser; Ahmad et al., 2021). The pros and cons 
of these light sources in QPM have been discussed in great detail in 
Ahmad et al. (2021) and Ahmad et al. (2022). Recently, a temporally 
high and spatially low coherent light source, also known as a pseudo-
thermal light source (PTLS), has been proposed to resolve the issues 
associated with using the aforementioned light sources in QPM (Choi 
et al., 2011, 2018; Ahmad et al., 2015, 2016, 2021; Ankit et al., 2020). 

https://doi.org/10.3389/fmicb.2023.1154620
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ahmad et al. 10.3389/fmicb.2023.1154620

Frontiers in Microbiology 03 frontiersin.org

The use of PTLS presents an opportunity to distinguish between 
gram-positive and gram-negative bacteria.

Gram-positive bacterial cell walls typically have a thickness 
ranging from 20 to 80 nm, while gram-negative bacterial cell walls are 
generally thinner, ranging from 1.5 to 10 nm (Mai-Prochnow et al., 
2016). To distinguish between the structural differences in gram-
positive and gram-negative bacteria, a highly sensitive quantitative 
phase microscopy (QPM) system is needed. PTLS provides an 
extremely high spatial phase sensitivity of approximately 3.4 mrad, 
which corresponds to a height measurement sensitivity of 2.05 nm 
(Ahmad et al., 2021). With this level of sensitivity, it would be possible 
to pick the differences in cell wall thickness between gram-positive 
and gram-negative bacteria. It is important to note that QPM only 
provides the integrated thickness of the cells, which includes the cell 
membrane, cytoplasm, ribosomes, and nucleoid region. However, our 
proposed QPM system’s high sensitivity has the potential to detect and 
record the structural changes in the cell wall of gram-negative and 
gram-positive bacteria as measured in integrated phase maps.

Despite the apparent advantages of QPM, it is still challenging to 
differentiate the large number of classes of biological samples based 
on the manually quantified cell parameters mentioned in the previous 
paragraph. Therefore, the extracted phase images of different 
categories of the bio-specimens and WGS can be utilized for their 
classification by employing a powerful computational approach, e.g., 
machine learning or deep learning. With the larger amount of data 
generated from QPM and WGS, robust data analysis and correlation 
methods must be needed to generate clinically relevant results.

Deep learning methods have revolutionized all scientific fields, 
including bio-imaging, genomics, and computer vision. Deep 
convolutional neural networks (DCNNs) outperformed all classical 
methods for vision tasks, such as image segmentation, semantic 
segmentation, and classification. DCNNs are also increasingly being 
adopted in microscopy, including in QPM (Jo et al., 2017). Jo et al. 
(2017) proposed a DCNN to classify quantitative phase images. Their 
results show that deep learning over conventional machine learning 
(ML) techniques can improve the classification performance between 
five species of Bacillus (B. anthracis, B. thuringiensis, B. cereus, 
B. atrophaeus, and B. subtilis). Although the network identified 
B. anthracis with high sensitivity (~80.8%), the sensitivity ranged 
between 13.6 and 70.3% for other species. Kim et  al. proposed a 
CNN-based framework that uses 3D refractive index tomograms to 
identify 19 types of bacteria and properties such as gram staining and 
aerobicity (Kim et al., 2022). The authors observed less confusion 
between bacteria species of the same genus. In a study by Wang et al., 
they designed a computational live bacteria detection system that 
periodically captures microscopy images of bacterial growth inside an 
agar plate (Wang et  al., 2020). Within 12 h of incubation, their 
classification network obtained species-specific sensitivity of ~97.2, 
~84.0, and ~98.5% for E. coli, K. aerogenes, and K. pneumoniae, 
respectively.

This study developed a label-free optical assay to identify bacteria 
and their clinically relevant culture-free properties. Our assay is based 
on partially spatially coherent high-sensitive QPM followed by 
DCNN-based classification. First, various challenges associated with 
the bacteria phase imaging are resolved, such as the effect of 
defocusing and background aberration removal for error-free phase 
map generation. This step is essential as any slight defocusing or 
aberration will add phase ambiguity, influencing the DCNN-based 

classification and accuracy. The defocusing correction was applied at 
a single bacterium level for all the images. The QPM experiments are 
performed on 21 bacteria strains that were previously genotyped and 
phenotyped. Our results suggest that the proposed assay can classify 
19 of the 21 strains with 100% class-wise sensitivity (recall) at 
extremely low bacteria concentrations (127 images). Furthermore, at 
this bacteria concentration level (127 images), the classifier achieved 
an overall accuracy of 95.45%. For the authenticity of the classification 
process, we further correlated the interclass similarity between learned 
QPM features to that of genomic features from WGS data with 
excellent agreement. The results from this proof-of-concept study 
show that the developed assay could be tested as a first-pass method 
in the clinical routine prior to more extensive confirmatory testing 
with current routine diagnostic methods.

2. Materials and methods

2.1. Bacterial strains and phenotypic 
assessment

The wild-type/susceptive and phenotypically resistant/non-wild-
type strains of Gram-negative Acinetobacter baumannii (n = 6), 
Escherichia coli (n = 7), Klebsiella pneumoniae (n = 5), and Gram-
positive Staphylococcus aureus (n = 2), Bacillus subtilis (n = 1) were 
used for this study. Phenotypic minimum inhibitory concentration 
(MIC) information on the E. coli and K. pneumoniae strains was taken 
from the reference strain collection or has been previously published 
(Avershina et al., 2021). MIC values of Acinetobacter strains were 
described in Karah et al. (2011), and MIC values for S. aureus strains 
were obtained from (https://www.ccug.se/strain?id=35600 and https://
bacdive.dsmz.de/strain/14451). Isolates were classified as susceptible 
and resistant according to the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) Breakpoints v 12.0 (December 2021).

2.2. Sequencing and bacterial genome 
assembly

The Acinetobacter isolates libraries were prepared with the Nextera 
XT DNA Library preparation kit from Illumina (Cat. No.: FC-131-
1096) and were sequenced with the NextSeq 550 instrument (Illumina, 
United States), using PE mode and a mid-output flow cell (150 cycles). 
The sequencing reads were first quality-checked using FastQC (v 
0.11.8 for Linux; Andrews, 2010). Adapters were removed, and 
low-quality reads were filtered out using Trimmomatic v2.0.29 (Bolger 
et  al., 2014) integrated with OmicsBox (v 2.2.4 for Linux; 
Bioinformatics, 2019) with default parameters (window size of 4, 
required quality threshold of 15, average quality threshold of 25, and 
minimum length threshold of 36 bp). The WGS data for E. coli CCUG 
17620, E. coli NCTC 13441, E. coli K-12, and S. aureus NCTC 8325 
strains were downloaded from NCBI (BioSample: SAMN0993043, 
SAMEA2432036, SAMN02604091, and SAMN02604235). Sequencing 
data for the remaining samples were taken from the European 
nucleotide archive accession number(s) PRJEB60525 and PRJEB60478 
(Taxt et al., 2020; Avershina et al., 2021).

According to our previous data, Unicycler and Flye assemblers 
were identified as the best short and long-read assemblers (Khezri 
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et  al., 2021a). Therefore, in this study, genome assembly was 
performed using Unicycler (v0.4.9) and Flye (v2.8.2) for short and 
long reads, respectively (Wick et al., 2017; Kolmogorov et al., 2019). 
The assemblies were quality checked using QUAST (v4.6.0 for 
Linux; Gurevich et al., 2013), in addition to BUSCO (v 5.4.4 on 
galaxy bioinformatic platform; Simão et  al., 2015; Galaxy 
Community, 2022). On BUSCO, enterobacterales lineage was 
selected for both E. coli and K. pneumoniae isolates. While for 
S. aureus and A. baumannii, bacillales and pseudomonadales were 
selected as lineage, respectively. Later, assembled genomes were 
annotated using Prokka (v1.14.5 for Linux; Seemann, 2014). The 
whole-genome alignment was performed, and the phylogeny tree 
was constructed using the CLC Genomics Workbench version 
21.0.3 (QIAGEN; QIAGEN, 2022). Using the whole-genome 
alignment toolbox in CLC, the average nucleotide identity (ANI) 
and alignment percentage (AP) were obtained for paired 
comparison between samples. Later the identity score matrix from 
ANI was used for phylogenic tree construction using the neighbor-
joining approach.

2.3. Identification of plasmids and 
antibacterial resistance genes

FASTA files of De novo assembled genomes were used to identify 
plasmids and antimicrobial resistance genes (AMR). To identify 
plasmids, the PlasmidFinder online tool (software version: 2.0.1, 
database version: 2020-07-13; Carattoli et al., 2014), with a minimum 
identity of 95% and coverage of 60%, was utilized for all isolates, except 
A. baumannii, as PlasmidFinder does not contain information regarding 
its plasmid replicons. For A. baumannii, the plasmids were identified 
using BLAST search against the PLSDB database (Galata et al., 2019).

For E. coli, K. pneumoniae, and S. aureus isolates, antibacterial 
resistance genes associated with mobile elements were identified using 
Resfinder online tool (v 4.1, software version: 2020-10-21, database 
version: 2020-12-01; Bortolaia et al., 2020). The PointFinder online 
tool (software version: 2020-10-21, database version: 2019-07-02; 
Zankari et al., 2017) was used to predict antibacterial resistance genes 
associated with chromosomal point mutation. The AMR genes in 
A. baumannii isolates were identified using the Resistance Gene 
Identifier tool in CARD v3.1.4, update version 2021-10-05 (Alcock 
et  al., 2020). Only hits flagged as perfect were considered true 
resistance genes.

2.4. Culture and fixation of bacterial cells 
for microscopy

The bacterial strains were cultured from frozen aliquots (−80°C) 
on blood agar plates, and the cultures were used after 20 h of 
incubation at 37°C. After overnight culture, the OD600 nm was measured 
for each strain, and the cells were collected and re-suspended in 1 mL 
PBS to reduce the presence of agar components within the samples. 
The cells were fixed with a ratio of 1:2 2% paraformaldehyde in 
phosphate sodium buffer (PFA in PBS, pH 7.15) and incubated at 
room temperature for 1 h. The cells were washed twice and 
re-suspended in 500 μL PBS and transferred to sterile tubes for 
shipping for QPM analysis.

2.5. Bacteria immobilization for 
quantitative phase imaging

Bacteria immobilization is a crucial step for their high-
resolution quantitative phase imaging. High-resolution phase 
recovery requires multiple phase-shifted interferograms; therefore, 
the bacteria cells should not move during the data acquisition. 
Due to their small size, bacteria have Brownian motion and 
quickly change their position and orientation. Therefore, bacteria 
immobilization is needed so that reliable data can be recorded.

As the Linnik interference microscopy configuration works in the 
reflection mode, therefore, the bacteria samples are prepared on a 
reflecting substrate (Si-wafer). The Si-wafer substrate is first incubated 
with 0.01% poly-L-lysine (PLL) solution for 15–20 min. The excessive 
PLL solution is removed, and the substrate is washed thoroughly with 
phosphate-buffered saline (PBS). It formed a thin layer of PLL on the 
substrate and made it positively charged. The polydimethylsiloxane 
(PDMS) chamber of 10 mm × 10 mm size with 150 μm thickness is 
placed on the Si substrate. The bacteria samples were seeded into the 
PDMS chamber and left for approximately 30 min for their incubation. 
The electrostatic attraction between the negatively charged bacteria 
and positively charged PLL solution helped them to adhere to the Si 
substrate (Allison et al., 2011).

The adherence of some species/strains of the bacteria to the Si 
substrate was observed to be a little challenging. Different strains of 
E. coli and K. pneumoniae were attached straightforwardly on the Si 
substrate after following the aforementioned protocol. In the case of 
S. aureus, A. baumannii, and Bacillus subtilis, the attachment was 
challenging. Several factors, such as the chemical constituents of 
liquid, morphological features of bacteria, and the incubation time, 
could affect the immobilization process (Allison et al., 2011). For these 
classes, the Si substrate is seeded with concentrated sample volume 
and incubated for an extended period, around 1 h. The sample is 
gently washed off with PBS to remove mobile bacteria cells. The 
substrate is then left only with the bacteria cells attached to the 
substrate. PBS is added to the sample and sealed with # 1.5 cover glass 
from the top, which enabled the use of a water immersion objective 
lens for imaging and avoided any air current in the specimen.

2.6. Experimental scheme of quantitative 
phase microscopy

The experimental scheme of the QPM system is illustrated in 
Figure 1, which is utilized to acquire phase-shifted interferometric data 
of the bacterial samples. The working principle of the QPM system is 
based on a high-resolution Linnik interference microscopy configuration. 
In the QPM system, a temporally high and spatially low coherent light 
source, also called a pseudo-thermal light source (PTLS), is utilized due 
to various advantages over conventional light sources like laser, halogen 
lamps, and LEDs light sources. PTLS enables high-resolution phase 
recovery of biological specimens with high spatial phase sensitivity. PTLS 
is generated when a high temporal coherent laser beam is passed through 
a rotating diffuser. The output of the rotating diffuser acts as a temporally 
high and spatially low coherent light source and enables speckle noise-
free and a coherent noise-free phase recovery (Ahmad et al., 2021).

In our experimental scheme, a laser light beam at 660 nm 
wavelength (Cobolt Flamenco) was passed through a rotating diffuser, 
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and the output of the diffuser was coupled into a multi-mode fiber 
(MMF) of a core diameter of 1 mm using an objective lens 
10×/0.25NA. The output of MMF was first nearly collimated using lens 
L1 and then focused using lens L2 at the back focal plane of the object 
arm objective lens (MO1: 60×/1.2NA) to achieve uniform illumination 
at the specimen. The focused light beam was split into the object and 
the reference beam using beam splitter BS. The reference beam was 
passed through a reference arm objective lens (MO2: 10×/0.25NA) and 
reflected from the mirror. The light beam is again collected by the 
same objective lens and called a reference beam. The objective lens in 
another arm captured the bacteria sample information, which was 
recombined with the reference beam at BS and projected at the camera 
sensor using a tube lens (TL) to form the interferograms. The 
interferograms were further captured by employing a scientific 
Hamamatsu CMOS camera. The reference mirror was attached to a 
nanometric precision piezo stage to introduce a phase shift between 
the interfering beams to acquire multiple phases shifted interferograms 
of the specimen for phase recovery. A homemade LabVIEW software 
program was written and utilized for the required phase stepping in 
the interferograms and their acquisition using a camera. The reference 
mirror was also attached to a kinematic mirror mount to control the 
angle between the object and the reference beam. The total acquisition 
time of 5–6 phase-shifted interferograms was approximately 600 ms, 
which can be improved using a high-end computer.

2.7. Quantitative phase microscopy of 
bacteria and defocus correction

For phase recovery of the sample, multiple phases shifted frames 
are recorded to achieve diffraction-limited phase recovery. One of the 
phase-shifted interferograms is depicted in Figure 2A. It can be seen 

that interferograms suffer from higher-order phase aberration and 
would influence the recovered phase maps. Multiple phase-shifted 
interferograms are utilized to recover the complex field information of 
the bacteria sample using the principal component analysis (PCA) 
algorithm (Vargas et al., 2011). The full field of view (FOV) amplitude 
and phase part of the recovered complex field are illustrated in 
Figures 2B,D. The zoomed views of the regions marked with yellow 
color boxes in the amplitude and phase parts are depicted in 
Figures 2C,E, respectively. It can be clearly visualized that the recovered 
phase map looks defocused, which affected the shape of the bacteria 
significantly. Therefore, it becomes necessary to perform numerical 
defocus correction steps to achieve faithfully reconstructed phase maps. 
The defocus correction algorithm steps are given in the 
Supplementary material. Figure 2F presents the numerically focused 
phase image. After following the numerical defocus correction steps, 
the bacteria phase image looks sharply focused. The amount of defocus 
is found to be  equal to 1 μm by observing the sharpness curve. In 
addition, defocusing of the bacteria significantly affected the 
morphological parameters such as area, maximum phase value, volume, 
etc. Thus, this is a crucial step for the accurate classification of different 
classes of bacteria using deep learning. Otherwise, there would be a 
possibility of misclassification of different classes of bacteria samples.

2.8. Data preprocessing and deep learning 
model architecture

Before employing a deep learning-based classifier, we ensure that 
there are no images with multiple bacteria co-located together, 
appearing as a single object, after the segmentation procedure 
described in Section 3.3. To exclude such images, we  employ a 
heuristic-based approach that considers the area of the object and its 

FIGURE 1

Optical schematic diagram of Linnik interferometer-based QPM setup. MO1-2, microscope objectives; BS1-2, beam splitters; L1-2, achromatic doublet 
lenses; MMF, multi-mode fiber; M, mirror; and PZT, piezo electric transducer. The inset represents the interferogram, reconstructed defocused phase 
map, numerically focused phase map, and amplitude variance plot of the numerically propagated optical field as a function of the propagation 
distance. The line profiles of the bacteria phase map before and after focus correction along the yellow dotted lines.
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convex hull. As illustrated in Figures  3A,B, we  obtain the object 
contour and the convex hull. By considering the area of these two 
polygons, we derive a normalized score as,

A A
A A

Boundary Convex Hull

Convex Hull Boundary

/

−( )
∗100

Based on this score and a selected threshold for the dataset, 
we remove images that have co-located bacteria (e.g., Figure 3B). After 
this filtering process, 472,795 images were selected, resized to 
224 × 224, and then split according to the ratios 80, 10, and 10% for 
training, validation, and testing, respectively. Stratified sampling 
ensures that identical class distributions are preserved in these three 
data splits.

We employ the deep residual learning framework introduced 
by He et  al. (2016), which can be  used to overcome the 
performance degradation problem that arises when training 
deeper networks. The 18-layer residual network (Figure  3C), 
which was pre-trained on the ImageNet dataset, is used as the 
initialization for the weights and is fine-tuned on our dataset of 
bacteria images. The model weights are optimized using the 
stochastic gradient descent optimizer with a learning rate of 0.01 
and a momentum factor of 0.9. The overall model architecture is 
shown in Figure  3C. Based on our classification requirement 
(binary vs. multiclass classification), the number of output 
neurons (nc) is defined. For both antibiotic resistance prediction 
and gram stain classification, nc = 2, while for species-level 
classification and strain classification, the number of output 

FIGURE 2

Reconstruction of numerically focused phase images using interferometric measurements from the QPM microscope. (A) One of the phase-shifted 
interferograms. (B,D) Corresponding amplitude and phase map of the bacteria sample. (C,E) Zoomed views of the amplitude and the phase images of 
the regions marked with yellow color boxes. (F) Numerically focused phase map.

FIGURE 3

Deep neural network pipeline. (A,B) A heuristic for detecting co-located bacteria. (C) Neural network architecture.
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neurons is 5 and 21 based on the number of output classes, 
respectively.

3. Results

3.1. Bacterial genome assembly and 
bioinformatic analyses

Data from whole-genome alignment indicate an average 
intraspecies nucleotide similarity of 97.4, 93, 99.2, and 96.7% between 
isolates belonging to E. coli, A. baumannii, K. pneumoniae, and 
S. aureus species (Figure 4). As expected, the only interspecies similarity 
was between E. coli and K. pneumoniae isolates (ca. 84%). Furthermore, 
phylogeny analyses showed that all isolates from those four species 
were clustered together (Supplementary Figure 1). So, although the 
number of isolates is not large (21 isolates), the selected isolates have a 
broad molecular level diversity. Genome assembly quality analysis 
showed comparable results between isolates (Supplementary Table S1).

A wide variety of ARGs conferring resistance toward penicillin, 
third generation cephalosporins, carbapenems, tetracyclines, and 
aminoglycosides was identified in the 16 resistant strains (Table 1). All 
isolates possessed single or multiple plasmids except A. baumannii 
K48-42 and E. coli CCUG 17620. Putative plasmids in E. coli and 
K. pneumoniae isolates were previously validated using a plasmid-
specific assembly approach (Khezri et al., 2021b). In A. baumannii 
K48-48, E. coli K-12, S. aureus CCUG 35600, and S. aureus NCTC 
8325 (Table 1).

3.2. Quantitative phase imaging of bacteria 
samples

To perform quantitative phase microscopy of bacterial samples, the 
sample is placed under the QPM setup shown in Figure  1 for 
interferometric recording. The details of the bacteria sample preparation 
scheme, quantitative phase recovery, and defocus correction steps are 
provided in the Material and Methods section. The sample is placed on 
an XY motorized translation stage to acquire phase images of multiple 

FOVs using a high-resolution water immersion objective lens 
60×/1.2NA. More than 50 different FOVs are acquired for each bacterial 
class to generate large data sets. The number of bacteria present in one 
FOV was approximately equal to or greater than 300. This way, more 
than 15,000 bacteria phase images of each class are generated for deep 
learning training. The recovered phase maps of different types of 21 
strains of bacterial samples are exhibited in Figure 5.

3.3. Defocus correction and segmentation 
at a single bacteria level

It is observed that sample defocus significantly affects the recovered 
phase profiles of the bacteria samples (Figure 1 in the section Materials 
and methods); therefore, it needs to be corrected before using bacteria 
phase images to train deep learning networks. The defocus correction 
is implemented on a wide FOV. However, there might be different 
amounts of defocus in different regions of the recovered complex field 
over the entire FOV of the QPM system due to the presence of higher-
order aberrations. The other source of error could be the slight defocus 
in the raw interferometric data itself due to the inability of the user to 
judge the best focus during acquisition correctly. Therefore, it is 
necessary to perform defocus correction at a single bacteria level to 
avoid any chances of error in the recovered phase maps.

Figure 6 illustrates the steps of the input phase data generation of 
the bacteria samples for deep learning network training. Firstly, the 
number of bacteria present in the entire FOV recovered phase maps are 
counted. Next, the positions of all the bacteria present in the entire FOV 
are stored and utilized to crop them. The sizes of the cropped images are 
not kept constant. It is decided by measuring the number of pixels 
covered by the bacteria cells along both rows and columns using the 
MATLAB regionprops command. The crop area is then decided by 
increasing 20 pixels along all four sides from the extreme coordinates of 
the bacteria. This helps to avoid any unwanted cropping of the bacteria 
region. Before cropping the bacteria phase images, the selection of the 
coordinates corresponding to each bacterium is made in a way such that 
the cropped images are of square shape by keeping the number of rows 
and columns equal. All the bacteria are kept at the center of the cropped 
phase image for further processing steps, as depicted in Figure 6A.

FIGURE 4

Whole-genome alignment for the 20 sequenced isolates. The upper and lower comparison gradient shows the percentage of nucleotide similarity and 
alignment percentage between genomes, respectively.
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Next, the amount of defocus in each cropped bacterium complex 
field is measured for the correction of defocus from the recovered 
phase images, if any. The numerically defocus corrected phase images 
of some of the bacteria samples are presented in Figure 6B. The defocus 
amount is slightly different in all cropped bacteria phase images. It can 

be  clearly visualized that defocus in the raw interferometric data 
significantly affected the recovered phase maps of the bacteria cells. 
Further, numerically focused phase images are utilized to generate 
corresponding binary images, as illustrated in Figure 6C. To generate 
the binary images, the thresholding of the phase images is done by 

TABLE 1 Overview of bacterial strains’ phenotype and genomic background.

Isolate Gram 
staining

Phenotype based on AST 
(antibiotic) wild type (WT)/Non-
wild type (NWT)

Plasmid 
presence

Antibiotic resistance genes

Acinetobacter baumannii 

K12-21*
Negative

Resistant (ciprofloxacin, Imipenam, gentamicin, 

and meropenem)—NWT
Yes

OXA (20, 58, 66), sul1, ade (S, L, G, I, K, A, C), Aba 

(F, Q), abeS, ADC-185, APH(3′)-Ia, and qacEdelta1

Acinetobacter baumannii 

K48-42*
Negative

Resistant (amikacin, ciprofloxacin, Imipenam, 

gentamicin, and meropenem)—NWT
No

OXA 69, sul 1, ade (F, G, S, I, K, R), AbaQ, AmvA, 

catI, mphE, msrE, and cat I

Acinetobacter baumannii 

K55-13*
Negative

Resistant (ciprofloxacin, gentamicin, and 

meropenem)—NWT
Yes

OXA (66, 72), sul2, ADC-30, aph(3″)-Ib, aph(6)-Id, 

tet(B), ant(3″)-IIa, aac(3)-Ia, and aac(6′)-Ip

Acinetobacter baumannii 

K57-06*
Negative

Resistant (amikacin, ciprofloxacin, Imipenam, 

gentamicin, and meropenem)—NWT
Yes

OXA (23, 69), sul2, ade (F, G, I, K, R), abeS, 

APH(3′)-Ia, AbaQ, AmvA, mphE, msrE

Acinetobacter baumannii 

K71-71*
Negative

Resistant (amikacin, ciprofloxacin, Imipenam, 

gentamicin, and meropenem)
Yes

OXA (23, 51), sul (1, 2), TEM-1, ade (I, K, L), abeS, 

APH(3′)-Vla, armA, arr-2, cmlA5, mphE, msrE, 

PER-7

Acinetobacter (INN)* Negative WT Yes blaZ, fusB, blaADC-8, blaI, and fosD

Escherichia coli 101 Negative Resistant (ciprofloxacin)—NWT Yes mdf(A), sitABCD

Escherichia coli 102 Negative Resistant (ampicillin)—NWT Yes
blaTEM-1B, sul1, mdf(A), mph(A), aac(3)-IId, 

aadA2, tet(A), dfrA12, qacE, and sitABCD

Escherichia coli 104 Negative
Resistant (ampicillin, ciprofloxacin, gentamicin) 

– NWT
Yes mdf(A), sitABCD

Escherichia coli A2-39 Negative Resistant (cefotaxime, ceftazidime)—NWT Yes
blaTEM-1B, blaCTX-M-2, sul1, aadA1, dfrA1, 

tet(A), aac(3)-VIa, mdf(A), and qacE

Escherichia coli NCTC 

13441
Negative

Resistant (cefotaxime, ceftazidime, and 

Fluoroquinolone)—NWT
Yes

blaTEM-1B, blaCTX-M-(15, 182), sul1, aadA5, 

catB3, dfrA17, tet(A), mph(A), qacE, sitABCD, and 

aac(6′)-Ib-cr

Escherichia coli CCUG 

17620
Negative Susceptible—WT Yes No antibiotic resistance genes were found.

Escherichia coli K-12 Negative Susceptible—WT No No antibiotic resistance genes were found.

Klebsiella pneumoniae 210 Negative Resistant (ciprofloxacin) – NWT Yes OqxB, fosA. fosA6

Klebsiella pneumoniae 211 Negative Resistant (ciprofloxacin, cefotaxime)—NWT Yes
blaTEM-1B, blaSHV-(61, 155), Oqx (A, B), qnrS1, 

fosA, floR, aac(3)-IIa, ompK37, and acrR

Klebsiella pneumoniae 212 Negative
Resistant (ciprofloxacin, gentamicin, and 

cefotaxime)—NWT
Yes

blaTEM-1B, blaSHV-12, aac(3)-IIa, fosA, floR, Oqx 

(A, B), and acrR

Klebsiella pneumoniae 240 Negative Resistant (cefotaxime, ceftazidime)—NWT Yes

blaTEM-1B, blaSHV-(28, 106), aadA1, qacE, Oqx 

(A, B), sul1, dfrA1, fosA, aac(3)-IIa, ramR, ompK37, 

and acrR

Klebsiella pneumoniae 

A2-23
Negative Resistant (cefotaxime, ceftazidime)—NWT Yes

blaTEM-1B, blaCTX-M-15, blaSHV-(9, 12, 13, 31, 

129, 155, 172), aac(3)-IId, aac(6′)-(Ib3, Ib-cr), aadA1, 

aph(3′)-Ia, aph(3″)-Ib, aph(6)-Id, catA1, dfrA30, fosA, 

qacE, Oqx (A, B), sul2, ompK37, and acrR

Staphylococcus aureus 

CCUG 35600
Positive

Resistant (methicillin, tetracycline, clindamycin, 

and erythromycin)—NWT
No blaZ, mecA, erm(A), ant(9)-Ia, tet(K), and fusA

Staphylococcus aureus 

NCTC 8325
Positive Susceptible – WT No fosB

Phenotype and genotype information from antibiotic susceptibility testing (AST) and whole genome sequencing, respectively. *Acinetobacter has intrinsic resistance to several antibiotics 
(Abbott et al., 2013).
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measuring the system’s peak-to-valley phase sensitivity. The threshold 
phase value is approximately 1.2–1.4 times the peak-to-valley phase 
error of the system for the bacteria segmentation. This threshold value 
is found to be an optimum value for the segmentation as the maximum 
phase values of most of the bacteria are approximately greater than 3–4 
times the peak-to-valley phase error. The segmented areas of an image 
are further dilated by two pixels along all sides to remove any chances 
of unwanted bacteria phase map cropping. Some of the binary images 
have more than one isolated bacterium. The binary images are then 
improved by removing the regions of other bacteria using MATLAB, 
as shown in Figure 6D. The generated binary image is then multiplied 
by the recovered phase image to remove the background regions from 
the phase images, as illustrated in Figure 6E.

3.4. Deep learning for the classification of 
bacteria samples at the colony and bacteria 
level

3.4.1. Experiments and evaluation criteria
The model architecture described in Section 2.8 is adopted and 

trained to measure the performance on classification tasks: (1) 
Antibiotic resistant/sensitive prediction, (2) Gram stain classification, 
(3) Species-level classification, and (4) Strain classification. A separate 
classifier was trained for eight epochs for each task. The trained 
model measures the performance of bacteria samples from a blind 
test set. We varied the number of isolated bacteria images (in the 

form of Figure 3A2) in the sample as N = 1, 3, 7, 15, 31, and 63 (also 
127 for the strain level classifier) to gauge the minimum number of 
bacteria that should be imaged for each classification task (please 
refer to Supplementary Table S2 for more details about the blind test 
set class distribution). Each image of bacteria was classified 
independently using the classifier, and individual predictions on 
these images were aggregated to obtain the prediction per sample (at 
each N).

We first analyze the antibiotic resistant/sensitive and gram-stain 
prediction, which are binary classification tasks. Figure 7A shows the 
results of antibiotic resistance prediction. The positive (resistant class) 
prediction achieved a recall score of 100% (i.e., the ratio between true 
positive predictions for a class out of total instances from that class) at 
N = 15, while the non-resistant prediction recall was 96.45% at N = 31. 
In the gram stain prediction task (Figure 7B), the Gram-negative class 
achieved 100% recall at N = 7, while the Gram-positive prediction was 
83.43% at N = 31.

Second, we  present the results for species-level classification 
(Figure  7C). The model predicted B. subtilis, K. pneumoniae, and 
S. aureus classes with 100% sensitivity at N = 31. For A. baumannii, the 
sensitivity was 0.957 at N = 63. For E. coli, the sensitivity was 0.975 at 
N = 63. The confusion matrix for species-level classification at N = 63 is 
shown in Figure  7D. Detailed classification metrics at N = 63 are 
included in Supplementary Tables S2–S5 in the Supplementary material.

Next, Figures 8A,B show the strain level classification results. The 
model achieved 100% sensitivity in predicting 19 out of the 21 strains 
at N = 127 (Figure  8A). Considering challenging strains, the 

FIGURE 5

Quantitative phase maps of 21 different bacteria strains. The color bars for the bacteria samples are from 0 to 1 rad. Note that the color bars for 
Staphylococcus aureus strains are from 0 to 0.5 rad.
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classification sensitivity increased with increasing the N for E. coli 102 
and E. coli A2-39. At N = 127, the sensitivity of E. coli 102 and E. coli 
A2-39 reached 100 and 73%, respectively. However, the classification 
sensitivity of A. baumannii K55-13 remained consistently below 35% 
with increasing N. Figure 8B shows the confusion matrix for strain 
level classification at N = 63. As seen at N = 63, a little under 30% of 
E. coli 102 samples were misclassified as E. coli CCUG17620. Also, ca. 
35% of E. coli A2-39 samples were misclassified as E. coli NCTC13441. 
Finally, almost 70% of A. baumannii K55-13 samples were 
misclassified as E. coli A2-39.

Finally, we investigated the probability of a QPM image from each 
strain being classified as one of the 21 strains as a similarity measure 
of QPM features. For each test image from a particular class, the 
probability of prediction was extracted and averaged over all images 
from that class. Figure 9B shows the QPM similarity matrix. Figure 9A 
illustrates the equivalent similarity measure from the genomic 
analysis; here, the average nucleotide identity (ANI) was used. Shown 
in red boxes are the similarities between the strains from each species. 
As expected, ANI was more than 90% similar within the species. Some 
strains from Acinetobacter (K48-42, K55-13, K57-06, and K71-71), 
E. coli (101, 102, 104, and CCUG17620), K. pneumoniae (A2-23, 211, 

and 212), and S. aureus (NCTC 8325 and CCUG35600) showed some 
QPM similarity. Nevertheless, no distinct patterns were observed 
between the ANI and QPM similarities.

Supplementary Figure 2 shows the training and validation loss 
curves of the four models trained for each classification task. These 
models are trained to minimize the cross-entropy loss.

4. Discussion

A significant challenge for clinicians managing infection is to 
precisely identify those patients who should receive antibiotics (and 
which ones) and those who should not. This is due to physicians not 
being able to diagnose patients accurately in real-time, leading to 
either prescription of antibiotics for viral infections or a prescription 
of broad-spectrum drugs that should ideally be  kept in reserve. 
We recently established an effective method for direct sequencing for 
pathogen identification and antibiotic resistance detection (Ahmadi 
et al., 2023). The current state-of-the-art diagnostic of infection is 
mainly based on biochemical analysis of the culture of the clinical 
material. This leads to a detection time of 48–96 h or even longer.

FIGURE 6

Segmentation and postprocessing pipeline for individual bacteria images. (A) Reconstructed phase maps of the individual bacteria cells. (B,C) 
Numerically focused phase images and corresponding binary maps. Some phase images have multiple bacteria at the edges, which need to 
be removed. (D) Represents a single bacteria binary mask. (E) Multiplication of the numerically focused phase maps and single bacteria binary masks.
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In this study, we imaged isolates from 21 unique bacterial strains 
from five different species, including four WHO priority pathogens 
(E. coli, A. baumannii, K. pneumoniae, and S. aureus) using a PTLS 
based high-sensitive quantitative phase microscope (QPM). PTLS 
brings many advantages, such as high-sensitivity, high spatial and 
temporal resolution, and the use of a high-resolution objective lens in 
QPM. However, owing to the small size of bacteria and, more 
importantly, only a minimal change in the phase value between 
bacterium of different species and strains, it is imperative to pick the 
minute differences in the phase value. Consequently, post-imaging, 
several phase errors were removed at the individual bacterium level, 
such as higher-order phase aberration and defocusing effect on the 
phase maps of the bacteria samples. These are crucial steps and need to 
be adopted before using the QPM images of bacteria samples in deep 
learning, which may mislead its classification outcome. Using a deep 
neural network, we then classified the QPM images of the individual 
bacterium at strain and species levels and according to their antibacterial 
resistance and gram-staining. WGS data (from Illumina and MinION 
sequencing platforms) and AST data were used to generate the ground 
truth (strain, species, and resistance profile) to train the DNN.

Our results showed high classification accuracy for antibiotic-
resistant/sensitive gram staining and species identification. The 
network could also classify 19 out of the 21 strains when at least 127 

bacterial images were analyzed. One of the misclassifications was of 
E. coli A2-39 samples which were misclassified as E. coli NCTC13441, 
and the other was A. baumannii K55-13 samples which were 
misclassified as E. coli A2-39. Among these, the misclassification of 
A. baumannii as E. coli is clinically misleading as these are two 
different species, which would lead to the prescription of the 
incorrect antibiotic.

Although cell culture still is a gold standard for bacterial 
identification, results presented here show the potential of the current 
approach as a new attempt at bacterial identification with minimum 
dependencies on cell culturing (as a time-consuming approach). It is 
observed that out of two strains that are either weekly classified or not 
classified, for one strain, the results may be improved by analyzing 
more bacteria; nevertheless, for the other strains, the network was 
incapable of correct classification. The two misclassified classes on our 
training set were due to their similarity in QPM images, demonstrating 
the limitations of deep-learning-based methods with limited image 
information. In the future, to improve the accuracy, it would be useful 
to apply multi-spectral QPM images to investigate if misclassified 
bacteria could yield spectral fingerprints in the QPM images. 
Alternatively, the QPM method could further be complemented with 
the Raman spectroscopy methods for combining morphological and 
molecule fingerprinting.
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bacterial QPM images in the batch. The WGS data provide the ground truth class information.
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(A) Average nucleotide identity (ANI) based similarity between bacteria classes. Classes representing isolates that were not sequenced are shown in 
“X”s. (B) The equivalent QPM-based similarity between bacteria classes. Here the probability of strain level class predictions (averaged over all test 
instances for each class) was used as the similarity measure.
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Our results suggest that differential morphological features from 
different bacteria strains can be measured using our approach, and they 
can be used in downstream machine learning pipelines for detection. 
These findings demonstrate the utility of using QPM and DNN to 
identify a range of WHO priority pathogens and provide relevant 
information about microbiological samples, which WGS or 
conventional microbiological methods can later verify. Our results 
establish the potential of QPM as a rapid first-stage analytical tool that 
can complement WGS for phenotype prediction and resistome analysis. 
Such a workflow can be hugely impactful in handling and preventing 
the spread of AMR and could lead to future use in clinical microbiology.

In this proof-of-concept study, we have used a combination of 
enabling technologies using genomics, QPM, and deep learning to 
rapidly detect pathogens and their resistance profile. Moreover, in 
addition to the species-level classification, which is frequently studied 
in the literature, we  have analyzed the classification performance 
under multiple levels of classification tasks, including the presence or 
absence of resistance, gram staining, and strain-level classification, 
which has been followed up by WGS data and AST for ground truth 
information to validate the results. Taken together, all this information 
is potentially of high clinical importance and can be utilized as a 
heuristic approach compared to the current state-of-the-art routine 
solutions. However, to increase the reliability of the method and for 
any potential future use in clinical microbiology, we need to increase 
the number of bacterial strains analyzed, and future work should 
include additional clinically relevant pathogens and AMR profiles. 
Moreover, bacterial morphological characteristics are affected by the 
growth environments. It is important that analysis in mixed bacterial 
samples and in infected tissues or biological fluids rather than isolates 
grown in rich culture media would provide the reliability of the 
described approach for potential use for real-time diagnosis.
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