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Abstract— This paper demonstrates experimentally, 

theoretically, and numerically, for the first time, a wide-

range tunability of an in-plane clamped-clamped 

microbeam, bridge, resonator actuated electrothermally 

and electrostatically. Using both actuation methods, we 

demonstrate that a single resonator can be operated at a 

wide range of frequencies. The microbeam is actuated 

electrothermally, by passing a DC current through it, 

and electrostatically by applying a DC polarization 

voltage between the microbeam and the stationary 

electrode. We show that when increasing the 

electrothermal voltage, the compressive stress inside the 

microbeam increases, which leads eventually to its 

buckling. Before buckling, the fundamental frequency 

decreases until it drops to very low values, almost to 

zero. After buckling, the fundamental frequency 

increases, which is shown to be as high as twice the 

original resonance frequency. Adding a DC bias 

changes the qualitative nature of the tunability both 

before and after buckling, which adds another 

independent way of tuning. This reduces the dip before 

buckling, and can eliminate it if desired, and further 

increases the fundamental frequency after buckling. 

Analytical results based on the Galerkin discretization 

of the Euler Bernoulli beam theory are generated and 

compared to the experimental data and to simulation 

results of a multi-physics finite-element model. A good 

agreement is found among all the results.  

Index Terms— Tunability, Resonator, Electrothermal 

Actuation, Electrostatic Actuation. 
 

I. INTRODUCTION 

istable microelectromechanical (MEMS) 

structures have been drawing significant 

attention recently for their interesting advantages in 

application, such as energy harvesting [1], sensors 

[2], actuators [3], and MEMS/NEMS based memory 
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elements [4]. Bistable microstructures are 

characterized by a double-well potential, and hence at 

least two stable states, and commonly a third one 

encircles the two local wells. The motion resulting 

from this third state is large compared with the other 

two in-well motion. A well- known example of this is 

the snap-through motion in buckled beams. This is 

highly desirable feature for many application 

including micro-mirrors [5], micro-switching [6], and 

micro-actuators [7]. Bistable microstructure can be 

realized in many configurations, such as beams 

sandwiched between two magnets, shallow arches, 

imperfect microbeams, and buckled beams. This 

paper is concerned with the third category. The 

buckled beam is mainly realized by an axial 

compressive load that can be induced by several 

methods, such as applying a direct axial load [8] or 

by using thermal actuation [9]. In this work, we study 

the generation of axial-compressive load using 

thermal expansion induced by Joule heating. 

Joule heating is a common mechanism of 

actuation in MEMS thanks to its easy 

implementation. Joule heating is the conversion of 

the electrical current energy flowing through a 

structure into heat. The electrothermal voltage VTh is 

applied between the anchors of the microbeam, 

inducing the current ITh that passes through the 

microbeam and controls its internally induced axial 

stress caused by thermal expansion. Nonetheless, the 

elongation is prevented by the presence of the fixed 

anchors of the microbeam, which induces a 

compressive force. This compressive load can lead to 

bucking of the microbeam. This phenomenon can be 

analyzed from two aspects: electrothermal problem; 

describing the conversion of the electrical power into 

heat; and thermo-elastic problem; describing the 

conversion of the heat power into compressive stress.  

     Electrothermal actuation has been mainly used as 

a mechanism to achieve static buckling in 

microbeams. Chioa and Lin [10] studied theoretically 

and experimentally the critical current for a fixed-

fixed microbeam to buckle. Wang et al [11] 

developed an electrothermally actuated lateral contact 

microrelay for RF applications. They studied the 

required voltage for the microrelay utilizing the 

parallel six-beam. Chen et al [12] reported a 

theoretical and experimental investigation of the 
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post-buckling behavior of electrothermally actuated 

beams. Mastropaolo and Cheung [13] investigated 

the behavior of SiC clamped-clamped bridge 

resonators electrothermally actuated with U-shaped 

aluminum electrodes on top as a function of electrode 

length, width, and spacing.  

 Among the few works that utilize electrothermal 

actuation for dynamic excitation, Sibgatullin et al 

[14] used the electrothermal excitation as a way to 

excite the parametric resonance of a clamped-clamed 

microbeam.  

 Electrothermal actuation is also widely used to 

excite and to tune compliant resonators. Tunability of 

Micro/Nano-electromechanical resonators is highly 

desirable feature for various applications, including 

communications [15], filtering [16], gyroscopes [17], 

energy harvesting [18], signal processing [19], and 

ultrasensitive detection [20]. At the Micro-scale, 

electrothermal actuation has been utilized to tune the 

resonance frequency of resonators, however for a 

very limited range of frequency. Remtema and Lin 

[21] showed experimentally and theoretically that the 

resonance frequency of a resistively heated 

microbeam could be reduced by 6.5%. Goktas and 

Zaghloul [22] studied the tunability of CMOS-

MEMS fixed-fixed beam resonators using embedded 

heaters to create axial stress inside the resonator. 

They showed that the frequency could be decreased 

by 42.6%. Sviličić et al [23] presented design, 

fabrication, and electrical testing of MEMS 

resonators actuated electrothermally and including a 

piezo-electric sensor to detect the resonance 

frequency of these resonators. They demonstrated 

that with the increase of the electrothermal actuation 

voltage a tuning range of 17 kHz could be realized 

for a device resonating at 1.766 MHz. At the Nano-

scale, the resonance frequency of electrothermally 

actuated nanomechanical resonators have been tuned 

for lower values [24], as demonstrated at the Micro-

scale.  

     The use of electrostatic actuation to tune 

resonators is well known since the early work of 

Nathanson et al [25]. However, it does not offer wide 

range of frequency, and is mainly used to decrease 

the resonance frequency of resonators through the 

softening effect [26]; except for few studies that 

demonstrate that the resonance frequency could be 

increased marginally as tuning the electrostatic force 

for specific geometric conditions [27]. Nevertheless, 

at the Nano-scale recent experimental evidences 

demonstrated that the resonance frequency of Carbon 

Nano Tube CNT resonators increases considerably 

when increasing the DC gate voltage [28].  

 The combination of both electrothermal and 

electrostatic actuation has been rarely studied before, 

for example for MEMS cantilever switches [29]. No 

studies have been presented so far that exploit the full 

potential of these actuation mechanisms in achieving 

large range of tunability for resonators. This will be 

demonstrated in this work. The resonator under 

consideration is composed of an elastic clamped-

clamped straight microbeam hanging above a 

stationary electrode; actuated electrothermally by 

passing a DC current through it and electrostatically 

by applying a DC voltage between it and the 

stationary electrode. We aim to investigate 

theoretically, numerically, and experimentally the 

tunability, decreasing, and increasing the frequency 

of this bridge resonator as varying the electrothermal 

voltage and for several fixed DC polarization 

voltages. 

      The rest of the paper is organized as follows. The 

nonlinear Euler-Bernoulli beam equation combined 

with the heat conduction equation is solved for the 

pre-buckled and post-buckled behavior in Section II. 

Numerically, a multi-physics nonlinear finite element 

model, which takes into account the structural, 

electrothermal, and electrostatic domains, is 

described in Section III. The experimental setup is 

presented in Section IV. A discussion of the obtained 

measurements as compared to simulations is reported 

in Section V. Finally, the main conclusions are 

summarized in Section VI. 

II. PROBLEM FORMULATION 
 

The device under consideration, Fig. 1, consists 

of an in-plane clamped-clamped microbeam made of 

doped silicon and actuated electrothermally by a DC 

voltage VTh and electrostatically by a DC polarization 

voltage VDC. It is subjected to a viscous damping of 

coefficient ĉ. This linearly elastic microbeam, with 

Young’s modulus E and material density ρ, is of 

length l, width b, and thickness h. It is assumed to 

have a rectangular cross section area A = bh and a 

moment of inertia I = bh
3
/12. The microbeam is 

separated from a stationary electrode with a gap 

width d and with a dielectric constant of the medium 

ε. The electrothermal voltage VTh is applied between 

the anchors of the microbeam inducing a current ITh 

passing through the microbeam that heats up it and 

controls its internally induced axial stress.  

 
 

(a) 
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(b) 

 
Fig. 1. (a) Schematic of an electrothermally and electrostatically 

actuated clamped-clamped microbeam. (b) Top view SEM picture 

of the buckled configuration of the actual device with a schematic 

of the actuation mechanism. 

 

The assumed geometrical, mechanical, thermal and 

electrical parameters of the studied microbeam are 

shown in Table 1. 

 
TABLE I. 

GEOMETRICAL, MECHANICAL, THERMAL AND 

ELECTRICAL PROPERTIES OF THE MICROBEAM MADE 

OF DOPED SILICON. 

Symbol Quantity Value 

l Length 600 μm 

h Thickness 2 μm 

b Width 25 μm 

d Gap 7 μm 

E Young’s Modulus 120 GPa 

ρ Density 2332 kg/m3 

α Coefficient of Thermal 

Expansion 

2.6 10-6 K-1 

k Thermal Conductivity 165 W/(m K) 

σe Electrical Conductivity 0.78 104 S/m 

 

A. Electrothermal problem 

Passing an electrical current through a conductor 

induces the so-called Joule heating, which is mainly 

caused by the interaction between the moving 

particles that form the electrical current and the 

atomic ions that make up the body of the conductor. 

These particles forming the electrical current give up 

some of their kinetic energy each time they collide 

with an ion. This kinetic energy induces the rise of 

the temperature inside the conductor, which 

transforms the electrical energy into thermal energy.  

In the studied device of this work, applying a 

potential voltage across the anchors of the microbeam 

generates a heat flux of density E=J
2
/σe per volume, 

where J represents the current density defined by 

ITh/A and σe represents the electrical conductivity of 

the microbeam material. The current density is 

assumed to be uniformly distributed along the 

microbeam. In our study the convection and the 

thermal radiation of the microbeam are assumed 

negligible. Also, the deformation of the microbeam 

arising from the thermo-elastic coupling induced by 

the electric current is neglected. For simplification, 

thermal conductivity and electrical conductivity are 

assumed to be independent of temperature. Under all 

the above assumptions and referring to the heat 

equation; Fourier’s law; the equation governing the 

average temperature across the section of the 

microbeam induced by the current ITh is given as 

below: 

         
e

J

xd

Td
k



2

2

2

ˆ
                                      (1) 

where k is the thermal conductivity of the microbeam 

material. The current density can be written as a 

function of the DC electrothermal voltage
l

V
J The . 

Therefore, the heat equation can be written as  

2

2

2

2

ˆ l

V

xd

Td
k The                                (2) 

Solving (2), assuming that the temperature at the ends 

of the microbeam is equal to the ambient temperature 

Ta, gives a close form solution of the distribution of 

the temperature along the microbeam, which has a 

parabolic shape and given by the below equation: 

 a
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             (3) 

The variation of the temperature along the 

microbeam induces the thermal stress given by  

         xdTxTEAS
l

aTh
ˆ]ˆ[ˆ

0

                     (4) 

where α is the coefficient of thermal expansion, 

which is assumed here to be independent of 

temperature. 

B. Equation of Motion 

The governing equation of motion of the 

microbeam under consideration, Fig. 1, describing its 



4 

 

transverse deflection )ˆ,ˆ(ˆ txw is written as follows 

[30]: 

 

 2
2

0

2

2

2

4

4

2

2

ˆ

))ˆcos((

2

1
                       

 ˆ
ˆ

ˆ

2
ˆ

ˆ

ˆ
                   

ˆ

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ

wd

tVV
b

xd
x

w

l

EA
N

x

w

x

w
EI

t

w
c

t

w
bh

ACDC

l


























































            (5) 

The microbeam is subjected to the following 

boundary conditions: 

0
ˆ

ˆ

ˆ
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where x̂  is the position along the microbeam and t̂

is time. The term ThSNN ˆˆˆ
0   represents the axial 

load due to the residual axial load, where 0N̂  arising 

from the fabrication process and the compressive 

axial load and ThŜ  originated from the thermal stress 

induced by the electrical current ITh given by (4). 
 

For convenience, we introduce the nondimensional 

variables as below: 
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where 
EI

bhl
T

4
  is a time scale. Substituting (7) 

into (5) and (6), we obtain the nondimensional 

equation of motion of the beam 
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Subjected to the nondimensional boundary conditions 
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The nondimensional (except for 2 ) parameters 

appearing in (8) are defined as below: 
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     Since the microbeam is subjected to a 

compressive load that increases as much as we 

increase the electrothermal voltage, it is expected that 

the microbeam encounters a pitchfork bifurcation 

near a critical load; below which the microbeam 

remained straight and above which the microbeam 

buckles. Therefore, next we split the problem into 

two parts: the pre-buckling behavior and the post-

buckling behavior of the microbeam.   

C. Pre-Buckling Study 

In this part, the microbeam is modeled as a 

straight microbeam under a compressive axial load 

and electrostatic force. A reduced-order model is 

derived to compute the static deflection as well as the 

variation of the fundamental natural frequency while 

varying the electrothermal voltage VTh and for fixed 

values of the electrostatic voltage VDC [30, 31]. 

To determine the static deflection ws(x) we set 

the time derivatives and the AC force equal to zero in 

(8): 
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with the associated boundary conditions 
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To solve (11), we refer to the Galerkin procedure in 

which we use the undamped linear mode shapes of a 

straight unactuated microbeam as basis functions 

[30]. Therefore the deflection is expressed as 
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where ai (i=0, 1, 2...n) denotes the nondimensional 

modal static coefficients and ϕi(x)(i=0, 1, 2...n) 

denotes the undamped mode shapes of the straight 

unactuated beam governed by:                                                     
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To determine the variation of the natural frequency of 

the microbeam under the electrostatic DC 

polarization voltage and various electrothermal 

voltages, we solve the eigenvalue problem obtained 

by perturbing the deflection around the static 

configuration. Toward this, we write 

),()(),( txvxwtxw s                          (16) 

We resort to the Galerkin discretization to represent 

the dynamic amplitude v(x,t) as 
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where ui(t)(i=0,1,2..n) denotes the nondimensional 

modal coordinates and ϕi(x) as defined in (14).   

 

Then, we substitute (16) and (17) into (8), then 

subtract the equilibrium equitation, (11), from the 

outcome, multiplying the result by the mode shape ϕj, 

applying the orthogonality condition of the mode 

shapes, and integrating over the beam domain (from 

0 to 1), which yields the below equation [30]      
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Using three symmetric mode shapes, three linearized 

ordinary differential equations are obtained.  For a 

given VTh and VDC, we compute the Jacobin of the 

system and find the corresponding eigenvalues. Then, 

by taking the square root of these eigenvalues, we 

find the natural frequencies of the resonators under 

VTh and VDC.  

D.  Post-Buckling Study: 

The term “Post-buckling” here refers to the fact 

that the applied axial force exceeds the critical load 

of the case without electrostatic force. Essentially, the 

electrostatic force biases the beam, and hence the 

pitchfork bifurcation of the buckling instability 

becomes a perturbed pitchfork bifurcation.  Here we 

use the buckled mode shapes and frequencies in the 

Galerkin discretization as well as the first buckled 

configuration, as developed by Nayfeh et al [32, 33] 

and presented in the appendix. We study the 

transverse vibration induced by the electrostatic force 

around the static buckled configuration. To do so, we 

split the static deflection induced by both thermal 

stress and electrostatic force, )(, xw bs , into two 

components as follows 

)()()(, xxxw bs                          (19)      

where )(x is deflection induced by the electrostatic 

force and )(x is the buckled configuration given by 

(A3) in the appendix. Substituting (19) into (11) and 

subtracting the static equation for , (A1) from the 

appendix, we obtain the governing equation of )(x
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 To solve (20), we use the Galerkin procedure with 

the undamped linear mode shapes of an unactuated 

(zero DC voltage) buckled beam, presented in the 

appendix (A8), as basis functions.  

Next, we determine the variation of the natural 

frequency of the buckled microbeam under the DC 

polarization voltage and as varying the electrothermal 

voltage. Next we determine the variation of the 

natural frequency of the buckled microbeam at 

various electrostatic DC polarization voltage and 

electrothermal voltage. Thus,   

     ),()(),( , txyxwtxw bs                   (22)                                                                                                                                                          

Then, the Galerkin discretization is used to represent 

the dynamic amplitude ),( txy as 
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where )(tzi (i=0,1,2..n) denotes the nondimensional 

modal coordinates and )(xi is as defined in (A5) in 

the appendix. 
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Then, we substitute (22) and (23) into (8), 

multiplying the outcome by the mode shape j , 

applying the orthogonality condition of the mode 

shapes, and integrating over the beam domain (from 

0 to 1), which yields the below equation [28]:    

 

 


















































































































































1

0
0

3

2
2

1

0 0

1

0

2

1

1

0
0

1

0

2

2

1

1

2
       

"       

2          

2

dxu
w

V

dxudx
x

w

dx
x

w
udx

x

w

zz

n

i
ii

s

DC
j

n

i

iij
s

n

i

s
ii

s
j

jjj












             (24) 

A three symmetric mode shapes are used to compute 

the Jacobin of the system and find the corresponding 

eigenvalues by taking the square root of these 

eigenvalues. Then, we find the natural frequencies of 

the resonators under VTh and VDC. 

III. FINITE ELEMENT MODEL 

 

To further verify the analytical findings, and to 

assure that the various assumptions made in the 

analytical model are valid, we conduct a 3D multi-

physics finite-element simulation of the clamped-

clamped microbeam. The analysis is done using the 

commercial finite element software COMSOL [34]. 

We have taken the same material parameters and 

geometric dimensions of Table I. To account for the 

various physical domains of the problem, the Solid 

Mechanics, Electric Currents, and Heat Transfer 

interfaces are considered. The anchors are assigned a 

fixed constraint boundary condition with ambient 

temperature at their bottom. The rest of the faces of 

the structure are set to a convective heat boundary 

condition, where the heat flux option is used for an 

external natural convection with air as an external 

fluid and a vertical wall height of 1 m. For the 

Electric Currents module, an electrical potential and a 

ground were defined on the top of the anchors to 

allow passing an electrical current trough a conductor 

and simulate the Joule heating. Fig. 2 shows the 

thermal distribution and the displacement 

corresponding to VTh= 3.5 V and with no electrostatic 

polarization voltage. 

 
(a) 

 
(b) 

 

Fig. 2. (a) Total displacement. (b)Temperature distribution at 
VTh= 3.5 V. 

 

To simulate a clamped-clamped microbeam under 

compressive load induced by the electrothermal 

voltage and under the electrostatic force the Electro 

Mechanics Module was added to the previous 

modules. The Maxwell equation for electrostatic 

charges with differential potential applied between 

electrodes and insulation on the walls as boundary 

condition has been solved. Fig. 3 shows the thermal 

distribution and the displacement corresponding to 

VTh= 3.5 V and VDC = 55 V.   

 
(a) 

 
(b) 

Fig. 3. (a) Total displacement. (b)Temperature distribution at 

VTh= 3.5 V and VDC= 55 V. 
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IV. EXPERIMENTAL SETUP 

 

The experimental investigation was conducted 

on an in-plane 600 µm long clamped-clamped 

microbeam fabricated from SOI wafers with highly 

conductive 25 µm Si device layer by MEMSCAP 

[35]. Micro System Analyzer with in-plane 

microstructure vibration and motion analysis using 

stroboscopic video microscopy from Polytec [36], 

Fig. 4, is used to determine the deflection as well as 

the resonance frequency of the microbeam. 

   

 
Fig. 4. Experimental setup. 

 

While varying the DC electrothermal voltage, we 

measured the resonance frequencies of the 

microbeam using the ring down measurement and the 

fast Fourier transform (FFT). The ring down 

measurement is similar to a hammer test, in which we 

subject the microbeam to a sudden DC electrostatic 

load that is then removed to allow the microbeam to 

vibrate freely (ring down) until the motion dies out.  

The FFT for a zero electrothermal voltage of the 

microbeam under consideration is depicted in Fig. 5. 

The first resonance frequency of the unactuated 

microbeam is found at 57 kHz. 

 
Fig. 5. FFT of the unactuated in-plane clamped-clamped 

microbeam. 

 

 Then, the microbeam under consideration is 

actuated in addition to the electrothermal actuation 

electrostatically by adding an external circuit. We 

applied a constant DC polarization voltage to actuate 

the microbeam electrostatically and as varying the 

DC electrothermal voltage we measured the 

resonance frequency using the ring down 

measurement. 

V. RESULTS AND DISCUSSION  

 

The microbeam is first actuated electrothermally 

without including the electrostatic force. The 

electrothermal voltage VTh is increased from small 

values, and therefore the compressive stress inside 

the microbeam increases. The exact solution of the 

static deflection due to the electrothermal actuation is 

given by the first buckling configuration (A3). 

Experimentally, a topographical characterization, 

through light interferometry, is used to determine the 

static deflection of the mid-point of the microbeam as 

the electrothermal voltage varies. Fig. 6 shows the 

measured and the simulated mid-point deflection of 

the microbeam due to electrothermal actuation 

without the electrostatic force demonstrating the 

critical buckling limit. After this limit, the microbeam 

is no longer straight and it is buckled. Fig. 6 

demonstrates that the microbeam encounters a 

pitchfork bifurcation at the critical buckling limit that 

describes the required voltage to buckle the 

microbeam. A good agreement is shown among the 

analytical, finite element, and experimental results.  

 

Fig. 6. The mid-point deflection of the microbeam under 

electrothermal actuation. 
 

The variation of the first resonance frequency of the 

studied resonator as varying the electrothermal 

actuation voltage without including the electrostatic 

force is shown in Fig. 7. The pre-buckling eigenvalue 

is determining by solving the eigenvalue problem of 

the straight microbeam under axial load presented in 
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(13). For the buckling problem, the eigenvalue 

problem of buckled beam presented in the appendix 

is solved. As shown in Fig. 7, the frequency 

decreases from the initial resonance frequency to 

almost zero before buckling. After buckling, the 

fundamental frequency increases from zero to higher 

values, which can be as high as double the original 

resonance frequency. In that case, the behavior of the 

beam is transformed from straight to buckle beam. A 

good agreement is shown among the analytical, finite 

element, and experimental results. 

 

 

Fig. 7. The first resonance frequency of the microbeam under 
electrothermal actuation with no DC electrostatic polarization 

voltage. 

 

Figure 8 demonstrates operating the microbeam 

as a resonator, while electrothermally actuated and 

electrostatically excited into vibration, by showing 

two frequency response curves before and after 

buckling. The response of both cases is linear around 

the first resonance frequency with amplitude of 

vibration in the order of one micrometer. As noted, 

the response looks stable and above noise level.  

 (a) 

 (b) 
Fig. 8. Frequency response curves of the studied microbeam, (a) 

before buckling for VTh=1V, VDC=40V and VAC=6V, (b) after 

buckling for VTh = 4V, VDC=20V, and VAC=20V. 

Next, we combined the electrothermal actuation with 

the electrostatic force. We applied a constant DC 

polarization voltage, far from the pull-in voltage, 

between the microbeam and the stationary electrode, 

and then we varied the electrothermal voltage. The 

analytical results of the static deflection of the mid-

point of the microbeam as varying the electrothermal 

voltage for a fixed DC polarization voltage is shown 

in Fig. 9. The static deflection is obtained by solving 

(11), before the critical load, and (33), after 

exceeding the critical load. Fig. 9 shows that the 

microbeam encounters a perturbed pitchfork 

bifurcation, where the discontinuity in the deflection 

curve observed in Fig. 6 disappears. 

 
Fig. 9. The static deflection versus electrothermal actuation voltage 
for a constant DC electrostatic polarization voltage. 

  

Then, solving the system of algebraic equations (18), 

for the pre-buckling behavior and the system of 

algebraic equations (24) for the post-buckling 

behavior, we compute the first natural frequency of 

the microbeam under constant VDC and as varying 

VTh. Figures10.a, 10.b and 10.c display the first 
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resonance frequency of the microbeam versus the 

electrothermal actuation for a DC electrostatic 

polarization voltage equal to 45V, 55V and 65V, 

respectively. A good agreement is shown among the 

analytical, finite element, and experimental results. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. The first resonance frequency of the microbeam versus 

electrothermal actuation voltage for a constant DC electrostatic 
polarization voltage. (a) VDC= 45V. (b) VDC = 55V. (c) VDC = 65V. 

 

One can note that adding a DC electrostatic 

polarization changes the qualitative nature of the 

tunability both before and after buckling, which adds 

another independent way of tuning. Fig. 11 further 

clarifies this aspect. The figure shows the resonance 

frequency, computed analytically, while varying the 

electrothermal voltage for different values of DC 

polarization voltages. Adding a DC electrostatic 

polarization reduces the dip in the resonance 

frequency before buckling, and can eliminate it if 

desired with increasing the DC polarization voltage, 

and further enhances the increase in the resonance 

frequency after buckling. Additionally, Fig. 11 

displays that the initial natural frequency, at zero 

electrothermal voltage, increases as the DC voltage 

exceeds 65V. This fact is due to the dominating 

effect of mid-plane stretching over electrostatic force 

for large gaps, as shown in previous works [27, 37]. 

 
Fig. 11. The first resonance frequency of the microbeam versus 

electrothermal actuation voltage for different constant DC 

electrostatic polarization voltages.  

 

One can note from Fig. 11 that the electrothermal 

tuning has resulted in a considerable increase or 

decrease in the natural frequency compared to its 

initial value. The results show a decrease of up to 

64.9% before buckling and then an increase up to 

66.6% of the natural frequency after buckling 

(compared to the initial value at VTh=0). This is 

remarkable compared to the reported works on 

electrothermal actuation, which showed only 

decrease in frequency, in [21] (6.5%) and in [22] 

(42.6%).  

 
VI. CONCLUSION  

 

In this paper, we investigated the tunability of 

the in-plane clamped-clamped microbeam actuated 

electrothermally and electrostatically using the 

analytical and numerical methods (FEM) as well as 

the experimental results. We compared these results 

to both the experimental and the simulated data. A 
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good agreement is shown among analytical, 

experimental, and numerical results. At first we 

studied the static deflection and the variation of the 

first natural frequency of the microbeam under only 

electrothermal actuation. We showed that as 

increasing the DC electrothermal voltage the 

microbeam buckles after a certain critical 

electrothermal voltage and it is no longer straight 

beam. Before buckling, the fundamental frequency 

decreases until the resonance frequency drops to very 

low values (almost zero). After buckling, the 

resonance frequency increases to high values, which 

can reach the double of the original resonance 

frequency. This has been achieved using very small 

electrothermal voltage (ranges from 0-5 V).  

Then, we added a DC electrostatic polarization 

voltage in addition to the electrothermal actuation. 

The microbeam encounters a perturbed pitchfork 

bifurcation due to DC polarization voltage. We 

showed that the dip in the resonance frequency 

before bucking is reduced and the resonance 

frequency after buckling is increased as increasing 

the DC polarization voltage. In conclusion, we 

demonstrate that a single resonator electrothermally 

and electrostatically actuated can be operated at a 

wide range of resonance frequency, as low as almost 

zero frequency to as high as twice of its unactuated 

resonance frequency by only controlling the 

electrothermal and the electrostatic voltages. 

APPENDIX: POST-BUCKLING STUDY  

Here, we consider the buckling problem of the 

beam under the compressive load without 

electrostatic forces. We follow in the derivation here 

the work of Nayfeh et al [32, 33]. The equation 

governing the static configuration in the buckled 

position )(x can be written as  

0'""

1

0

2
1   dxPiv                   (A1)                                                                                                                   

where 0NSP Th  represents the total axial load. 

(A1) is subjected to the following boundary 

conditions  

0 

0)1()0(

10





 xx dx

d

dx

d 



                          (A2)                                                                                                                  

The analytical solution of the first buckling 

configuration is given by  

)]2cos(1[
2

1
)( 1 xbx                       (A3)                                                                                                                                                 

where b1 is the rise at midpoint of the microbeam of 

the first buckling mode of the clamped-clamped 

microbeam and is given by the following expression: 

2
1

2

1

]4[2






P
b                              (A4) 

To compute the natural frequencies and the mode 

shape of the buckled beam, we solve the eigenvalue 

problem governing the mode shape of the buckled 

unactuated beam governed by [29,30]:  

"                                                    

)2sin(')2cos(4"4

2

1

0

32
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2







  dxxxbiv

      (A5)                                                                                                    

where  is associated nondimensional frequency. 

(A5) is subjected to the below boundary condition: 

0 

 0)1()0(

10





 xx dx

d

dx

d 



                           

(A6)

                                                                                                                        

 

To solve (A5), we set equal to the superposition of 

a homogeneous solution h and a particular solution

p , hence we let  

)()()( xxx ph                              (A7)                                                                                                                                  

The general solution of (A5) that represents the mode 

shapes of the buckled beam is given by 

)2cos()sinh(

)cosh()sin()cos()(

524

231211

xcxsc

xscxscxscx








      (A8)                                                                             

where 1s and 2s are defined as below  

222
2,1 42  s                                   (A9)                                                                                                                                      

The ci are constants determined by substituting (A8) 

into the boundary conditions (A6) and (A7) into (A5) 

using the fact that )2cos()( 5 xcxp   .  This yields 

five algebraic equations for the coefficients ci and the 

natural frequency ω. For a fixed level of b1, the 

symmetric natural frequencies as well as their 

corresponding mode shapes are found by setting the 

determinant of the coefficient matrix equal to zero. 
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