
HIGHLY UNDECIDABLE QUESTIONS FOR

PROCESS ALGEBRAS*

Department of Computer Science, Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava - Poruba, Czech Republic

Petr.Jancar@vsb.cz

BRICS†, Department of Computer Science, University of Aalborg

Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

srba@brics.dk

Abstract We show of weak bisimilarity for PA (process algebra), and of

weak simulation preorder/equivalence for PDA (pushdown automata), PA and

PN (Petri nets). We also show of weak equivalence for the

(sub)classes BPA (basic process algebra) and BPP (basic parallel processes).

Keywords: Weak bisimilarity, simulation, trace preorder, high undecidability

1. Introduction

In the area of verification, the possibilities of checking behavioural equiva-

lences and/or preorders of systems are a natural object to study, which includes

various decidability and complexity questions. A part of research effort has

been aimed at bisimulation equivalence (bisimilarity) and simulation preorder,

since these had been recognized as fundamental notions. We are interested in

infinite-state systems, for which recent surveys of results have been given, e.g.,

in [Burkart et al., 2001, and 2002, Srba, 2002].

The systems we study can be uniformly defined by means of process rewrite

systems (PRS) — see Figure 1 for the PRS-hierarchy from [Mayr, 2000]; the

second and the third level from the bottom is the focus of our interest. We now

*Both authors are partly supported by the Grant Agency of the Czech Rep., grant No. 201/03/1161.
†
Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

508

provide a selection of some results relevant to our paper (all references can be

found in [Srba, 2002]).

(Strong) bisimilarity is already well known

to be decidable for the class BPA (basic pro-

cess algebra, or basic sequential processes),

i.e., the class of labelled transition systems

generated by left-most derivations of context-

free grammars in Greibach normal form; the

states correspond to finite sequences of non-

terminals which are composed sequentially

and only the first one, say X, can be rewrit-

ten according to a rule while emit-

ting an action (so for a state we have

Bisimilarity is also known to be decidable for BPP (basic par-

allel processes); the only difference with BPA is that nonterminals are viewed

as composed in parallel, i.e., each can be rewritten. (We can mention also the

recent result et al., 2003] showing the decidability for the union of BPA

and BPP.) An involved result by Sénizergues (later strengthened and simplified

by Stirling) showed the decidability even for PDA – labelled transition systems

generated by pushdown automata (where a state comprises a control

state and a sequence of stack symbols). For PN (labelled place/transition Petri

nets) bisimilarity is known to be undecidable; this even holds for the subclass

PPDA (pushdown automata with stack symbols composed in parallel), which

lies strictly between BPP and PN. For the class PA (where the right-hand sides

of grammar rules can contain a mixture of sequential and parallel composi-

tions), the decidability question is still open. (Strong) simulation preorder is

undecidable (already) for both BPA and BPP – as well as classical language

equivalence and its modification called trace equivalence.

We can naturally ask similar questions for models with silent (internal) ac-

tions, and explore weak bisimilarity and weak simulation. Decidability of

weak bisimilarity is still open for both BPA and BPP. From [Srba, 2003a] it

is known to be highly undecidable for PDA and PN, more precisely, complete

for the level of the analytical hierarchy (i.e., it can be described by a formula

where is a first-order arithmetical formula containing the

predicate X; we refer to [Rogers, 1967] for further details about arithmetical

and analytical hierarchies). For PA, weak bisimilarity was recently proved un-

decidable in [Srba, 2003b] but the absence of a control unit seemed to prevent

a reduction showing so this problem was left open. In fact, such

questions might not seem very relevant from the ‘practical’ point of view, nev-

ertheless we believe that categorizing undecidable problems according to their

degrees of undecidability is still useful for deeper understanding of the studied

problems. We can also recall the general experience that the ‘natural’ unde-

509

cidable problems (in computer science) are either on the lowest levels of the

arithmetical hierarchy or on the lowest levels of the analytical hierarchy (see,

e.g., [Harel, 1986]).

In this paper we succeeded in modelling a sufficient fragment of the (miss-

ing) finite-control unit, which enabled us to show of weak

bisimilarity also for PA. We then use some modifications of the developed re-

ductions to show of weak simulation preorder/equivalence

for all the classes PDA, PA and PN (in fact, again even for PPDA).

Weak trace preorder/equivalence is easily shown to be in i.e., (very)

low in the arithmetical hierarchy. This seems to contradict the experience from

the strong case (without silent actions) where the complexity increases in the

direction: bisimulation – simulation – trace. We give some results indicating

that when taking infinite traces into account, the mentioned ‘contra-

diction’ disappears; in particular we show of weak pre-

order/equivalence for both BPA and BPP.

We also show that weak regularity checking (checking if a given system is

weakly bisimilar to some finite-state one) is ‘easier’, by which we mean at

most hyperarithmetical, for any reasonable process algebra. Finally we add

a few observations about of branching bisimilarity for PDA

and PPDA.

Note: a full version of this paper appears as and Srba, 2004].

2. Basic Definitions

A labelled transition system (LTS) is a triple where S is a set

of states (or processes), is a set of labels (or actions), and

is a transition relation; for each we view as a relation

on S where We assume that contains a

distinguished silent action The weak transition relation is defined by

for and for

Given a binary relation is a weak simulation iff

for each and such that there is such that

and A weak bisimulation is a weak simulation which

is a symmetric relation. We say that a process is simulated by a process

denoted if there is a weak simulation containing Processes

and are simulation equivalent, denoted if and

Processes and are weakly bisimilar, denoted if there is a weak

bisimulation containing

We shall use standard game-theoretic characterizations of the introduced

notions. A (weak) bisimulation game on a pair of processes and is a

two-player game between ‘Attacker’ and ‘Defender’. The game is played in

510

rounds. In each round the players change the current states and (initially

and according to the following rule:

Attacker chooses and such that

Defender responds by choosing such that

States and become the current states.

1

2

3

A play is a maximal sequence of pairs of states formed by the players according

to the rule described above, starting from the initial states and Defender

is the winner in every infinite play. A finite play is lost by the player who is

stuck. A (weak) simulation game is played similarly, the only change is that

Attacker is bound to choose (thus playing in the “left process” only).

PROPOSITION 1 It holds that (resp. iff Defender has a

winning strategy in the bisimulation (resp. simulation) game from and

PA-processes

Let be a set of process constants. The class of process expressions

over is given by where is the empty

process, X ranges over ‘.’ is the operator of sequential composition, and

stands for a parallel composition. We do not distinguish between process

expressions related by a structural congruence, which is the smallest congru-

ence respecting that ‘.’is associative, is associative and commutative, and

is a unit for ‘.’ and We shall adopt the convention that the sequential

operator binds tighter than the parallel one. Thus, for example, means

A PA process rewrite system ((1, G)-PRS in the terminology of [Mayr,

2000]) is a finite set of rules of the form where

and E is a process expression. Let us denote the set of actions and the

set of process constants that appear in as and respectively.

(Note that these sets are finite).

A PA system determines a labelled transition system where the process

expressions over are the states and is the set of labels. The

transition relation is the least relation satisfying the following SOS rules (recall

that is commutative):

A process constant is called a deadlock iff contains no rule

for any E. In the usual presentation of PA it is often assumed that

contains no deadlocks.

511

PDA, PPDA, BPA and BPP processes

Let and be finite sets

of control states, stack symbols and actions, respectively, such that

and is the distinguished silent action. A PDA system (or a pushdown

automaton) is a finite set of rewrite rules of the type or

where and Such a PDA system gener-

ates a labelled transition system where is the set of states, is the

set of actions, and the transition relation is defined by prefix-rewriting rules:

implies

for all A PPDA system (a parallel pushdown automaton) is defined in

the same way as a PDA system but the composition of stack symbols is now

viewed as commutative, i.e., ‘parallel’. (So each symbol stored in the stack is

directly accessible and the stack can be viewed as a multiset of stack symbols.)

A PDA (resp. PPDA) system is called BPA for basic process algebra (resp.

BPP for basic parallel processes) whenever the set of control states is single-

ton. The classes BPA, BPP, PDA and PA correspond directly to the classes

from the PRS hierarchy in Figure 1. The class PPDA is positioned strictly

between BPP and PN. Hence all the lower bounds we shall prove for PPDA

immediately apply also to PN.

Defender’s Choice Technique

In what follows we shall frequently use a technique called ‘Defender’s

Choice’ (abbreviated by DC). The idea is that Attacker in the (bi)simulation

game starting from and can be forced by Defender to play a cer-

tain transition in the following sense: if Attacker takes any other avail-

able transition, Defender can answer in such a way that the resulting

processes are guaranteed to be (bi)similar (and hence Attacker loses).

A typical situation in

the case of bisimilar-

ity may look like in

Figure 2 part a) where

for all

(very often and

will be even syntacti-

cally equal). It is easy

to see that in the bisim-

ulation game starting

from and Attacker

is forced (DC) to take

the transition In all other possible moves he loses.

512

In the case of simulation game, Defender can also use another way to force

Attacker to perform a certain move. Defender can threaten to enter a univer-

sal state, i.e., a state where all available actions are constantly enabled. The

situation may look like in Figure 2 part b). Obviously Attacker who is playing

in the left process is forced (DC) to perform the action to which Defender

can answer only by the same action; the players then continue from the pair

and Should Attacker play or in the first round, Defender answers by

the same action and enters the universal state U. From now on Defender can

answer to all Attacker’s moves and clearly wins.

3. of weak (bi)similarity problems

From [Srba, 2003a] we know that weak bisimilarity is on PDA

and PPDA. For PA only undecidability was known [Srba, 2003b] and it was

not clear how to simulate “finite-control unit features” which would allow to

derive high undecidability as well. Here we answer this question by showing

also for PA. We then add the results for

weak simulation preorder (and equivalence) on all the classes PDA, PA and

PPDA. Finally we sketch an extension of the results to branching bisimilarity

on PDA and PPDA.

We first observe that the mentioned problems are in the expression

“there exists a set of pairs which contains and is a weak bisimulation

(a weak simulation)” can be routinely transformed into a For this,

it is sufficient that the relations and are arithmetical (which is obvi-

ously true for any reasonable process algebra like PRS); in fact, these relations

are even decidable for the classes PDA, PA and PPDA which we are primarily

interested in.

The results are achieved by (algorithmic) reductions from suit-

able problems which are known to be One of them is the follow-

ing:

Problem: Recurrent Post’s correspondence problem (rPCP)

Instance: Two sequences

of nonempty words over an alphabet such that for all

Question: Is there an infinite sequence of indices from the set

in which the index 1 appears infinitely often and for which the

infinite words and are equal ?

Such an infinite sequence is called a solution of the instance

(A, B). Any finite sequence is called a partial solution of (A, B)

iff is a prefix of

REMARK 2 The problem rPCP is usually defined without the condition

we have included this additional requirement since it is technically con-

venient and can be easily shown not to affect the following theorem.

513

THEOREM 3 ([Harel, 1986]) Problem rPCP is

Let us now fix an instance (A, B) of rPCP, over an alphabet where

and A solution of (A, B), if it exists, can

be naturally represented by an infinite sequence of process constants from

the sequence can be divided into finite segments, where a

segment is defined as a sequence from We note that

an infinite sequence composed from segments represents a solution of (A, B)

iff all its finite prefixes represent partial solutions, which is equivalent to saying

that infinitely many of its finite prefixes represent partial solutions.

A general idea behind our reductions can be described as the following game

(which is then concretely implemented in the particular cases we study). Start-

ing from the empty sequence (viewed as a partial solution), Attacker can re-

peatedly request Defender to prolong the so far constructed partial solution by

adding a further segment (for which the implementations will use sequences

of Besides the mentioned request, Attacker has also a possibility to

enter a checking phase to verify that the (so far) constructed sequence indeed

represents a partial solution – if it does not then Attacker wins, and if it does

then Defender wins. This means that Defender has a winning strategy if and

only if there is an (infinite) solution of the (A, B)-instance.

We now describe a concrete implementation for weak bisimilarity of PA. We

show an (algorithmic) construction of a PA system with a pair of processes

and such that

We present in a stepwise manner, always giving a piece of it together with

several useful observations (which should make the verification of the desired

property straightforward).

In the construction we use a distinguished process constant D which is a

deadlock, i.e., there are no rules with D on the left-hand side. Particularly

useful for us is to note that Later on we show that using

the deadlock is not essential (just technically convenient).

Our first intention is to arrange that the bisimulation game will start

from the pair and continue through some pairs

...where are re-

versed segments which are chosen by Defender (using DC, i.e. Defender’s

Choice technique). Let us look at the rules in the groups I and II.

514

According to these rules, when starting from the pair Attacker

is forced (DC) to perform otherwise Defender can reach a

syntactic equality. Defender can be then viewed as forced to respond by

for a (reversed) segment of his choice. If he does not finish

by using the rule Attacker can perform a move according to

this rule in the next round — thus installing a pair anyway.

Rules in II make clear that Attacker is now forced (DC) to move

and Defender can respond by since D is a dead-

lock, we can view the installed pair as Similarly as above,

Defender cannot gain by not using the rule As we shall see later,

he neither can gain by installing for

To enable Attacker to enter the checking phase, we add the following rules.

Having a pair Attacker can thus also choose to play a

(instead of an in this case he is obviously forced (DC) to play

Defender can respond by for some

where and are new process con-

stants (we recall that is the alphabet of the instance (A, B)). In the whole PA

system there will be only one rule with the action namely (in

group V). By inspecting the rules it is easy to verify that if Defender chooses

not to finish his move by using the rule Attacker can play

in the next round and thus, in fact, force reaching a pair

We now want to arrange that the above mentioned Defender’s response

can be successful if and only if

represents a partial solution; and in this case the response must be such that

where

In order to achieve that, we define the set is a suffix of some

or of new process constants (where denotes the reversal

operation), and we add the following rules.

515

We can easily verify that a necessary condition for the processes

and to be weakly

bisimilar is that and (2) holds. But

due to the possible mixing of ‘letter-actions’ and ‘index-actions’, the condition

is not sufficient. That is why the above processes are preceded by Z in our

bisimulation game. If Z can be somehow used to implement a ‘switch’ for

Attacker by which he binds himself to checking either only the index-actions

or only the letter-actions then our goal is reached.

We first note that the outcomes of such switching can be modeled by com-

posing in parallel either a process constant (which masks all letter-actions)

or (which masks all index-actions). So we add the rules for and

also all the rules for Z (whose meaning will become clear later).

The following propositions are now easy to verify.

PROPOSITION 4 It holds that

if and only if and for all

PROPOSITION 5 It holds that

if and only if

In order to realize the above discussed ‘switch’, we add the final group of rules.

Now the pair of processes is the pair we were aiming

to construct according to equation (1). This is confirmed by the following two

lemmas (the proofs are in the full version of the paper).

LEMMA 6 If the rPCP instance (A, B) has no solution then

LEMMA 7 If the rPCP instance (A, B) has a solution then

Now we state the main theorem, which assumes the usual class PA, i.e.,

without deadlocks.

516

THEOREM 8 Weak bisimilarity on PA is

Proof. The membership in was already discussed; follows

from the construction we described and from Lemmas 6 and 7 – on condition

that we handle the question of deadlocks. However, there is a straightforward

(polynomial-time) reduction from weak bisimilarity of PA with deadlocks to

PA without deadlocks (described in [Srba, 2003b]).

Combining with the results of [Srba, 2003a] (for PDA and PPDA), we can

conclude that weak bisimilarity problems for all PRS-classes on the third level

of the hierarchy (and above) are Using a similar general strategy,

we can show the same results also for weak simulation preorder and equiva-

lence:

THEOREM 9 Weak simulation preorder/equivalence on PDA, PA and PPDA

is

The constructions are more straightforward in this case, where each player is

given a fixed system to play in. Here Defender can influence Attacker’s moves

by threatening to enter a ‘universal’ process, which enables all actions forever.

Problem rPCP is convenient for reductions in the cases of PDA and PA; in the

case of PPDA, the recurrent problem for nondeterministic Minsky machines is

more suitable. (It asks whether there is an infinite computation which uses a

distinguished instruction infinitely often.) A detailed proof is given in the full

version of the paper.

A natural conjecture is now that all relations subsuming weak bisimilar-

ity and being subsumed in weak simulation preorder are also Such

claims, for general relations are usually proven by reduction

(from a suitable problem constructing two processes and such that

if the answer (for the instance of being reduced) is YES and

if the answer is NO.

So far we do not see how to modify our constructions to satisfy this. How-

ever, in the case of PDA and PPDA, we could in this way derive

for all relations between weak bisimilarity and branching bisimilarity. A

branching bisimulation (as introduced by van Glabbeek and Weijland, see,

e.g., [van Glabbeek and Weijland, 1996]) is a symmetric relation R where,

for each each (Attacker’s) move can be matched by a

(Defender’s) move where we require

and also Defender’s move can be empty in the case

(then

CLAIM 10 All relations subsuming branching bisimilarity and being sub-

sumed in weak bisimilarity are on PDA and PPDA.

We do not provide a detailed proof since it would require to repeat the con-

structions used in [Srba, 2003a], with some slight modifications. The point is

517

that the long (of Defender) can be made reversible (e.g., for setting a

counter value there are for both increasing and decreasing). This can

be achieved easily in the presence of a finite-control unit (like in case of PDA

and PPDA). Such a reversibility is not present in our construction for PA, and

it is unclear whether PA can model these features in an alternative way.

4. Other semantic equivalences

A natural question to ask is about the complexity of other well-known

semantic equivalences (like those in [van Glabbeek, 2001] or, more rele-

vantly for us, in [van Glabbeek, 1993]). Of particular interest is the question

whether some other equivalences are also highly undecidable (i.e., beyond (hy-

per)arithmetical hierarchy). We provide a few results and notes about this.

For a finite or infinite we write iff there are

such that for all The coarsest equivalence among

the studied action-based semantic equivalences is the trace equivalence: two

processes and are weakly trace equivalent iff

(i.e., and enable the same finite observable traces).

We can immediately see that the problem is at a very low level in the

arithmetical hierarchy even for very general classes of labelled transition sys-

tems. We call a labelled transition system (LTS) recursively enumerable

if the set of states S and the set of actions are both (represented as)

recursively enumerable sets of strings in some finite alphabets and the set

is also recursively enumerable.

The respective algorithms (Turing machines) can serve as finite descriptions of

such an LTS.

We can easily observe that given a recursively enumerable LTS (where

includes the set is also recursively

enumerable. More generally, the set of all triples where L is (a

description of) a recursively enumerable LTS, one of its states and a finite

sequence of its (observable) actions such that (in L), can be defined by

some where is recursive (with the parameters

coded by natural numbers).

PROPOSITION 11 The set of all triples where L is (a description

of) a recursively enumerable LTS and two weakly trace equivalent states,

is in

REMARK 12 In fact, for the classes like PDA, PA and PN the set

is even recursive. For PDA and PA this follows, e.g., from [Büchi,

1964] and [Lugiez and Schnoebelen, 2002] and for PN it can be decided by

standard constructions from Petri net theory (reducing to the coverability prob-

lem). This means that weak trace equivalence for such classes is in

518

For other equivalences based on trace-like finite behaviours (sometimes

called ‘decorated traces’), i.e., failure equivalence, ready equivalence, ready-

trace equivalence etc., we can make similar observations. This means that in

fact all these (weak) equivalences are very low in the arithmetical hierarchy.

In some sense, this might seem as a surprising fact. In the strong case (with-

out complexity of the equivalence problems is decreasing in the

direction: trace – simulation – bisimulation. On the other hand in the weak

case the situation now seems to look different. However, the right way for

such a comparison is to take also infinite traces (i.e., into account.

Then the above complexity-decreasing chain is restored as illustrated below.

REMARK 13 For image-finite labelled transition systems (like those gener-

ated by PRS systems in the strong case), the finite-trace equivalence implies

also the equivalence. This is, however, not true for non-image-finite

systems, which are easily generated by PRS systems in the weak case.

We shall focus on the classes BPP and BPA. For BPP weak bisimilarity is

known to be semidecidable [Esparza, 1997], so it belongs to the class In

fact, it seems even well possible that the problem is decidable (see

2003] where PSPACE-completeness of strong bisimilarity is established).

Simulation preorder/equivalence (as well as trace preorder/equivalence) is

undecidable even in the strong case [Hüttel, 1994]. Weak simulation pre-

order/equivalence is surely in (the best estimate we can derive at the mo-

ment) while we can prove that weak preorder/equivalence is

THEOREM 14 Weak preorder/equivalence on BPP is

Given a nondeterministic Minsky machine, the nonexistence of an infinite

computation using instruction 1 infinitely often can be reduced to the weak

preorder (equivalence) problem. In order to prove this we modify a

known construction showing undecidability of trace preorder in the strong case

(which can be found in [Hirshfeld, 1994]). A more detailed sketch of the proof

is in the full version of the paper.

For BPA, the situation is roughly similar though a bit more unclear. Both

weak bisimilarity and weak similarity are surely in but otherwise we only

know that weak bisimilarity is EXPTIME-hard [Mayr, 2003] and weak simi-

larity undecidable; the latter follows from undecidability of (even) strong sim-

ilarity [Groote and Hüttel, 1994]. There are some reasons to conjecture that

weak bisimilarity of BPA might be decidable. The (obvious) membership in

thus seems to be a very rough upper bound, and one might start to try to

strenghten this by showing that the problem is in the hyperarithmetical hierar-

chy, i.e., in the intersection of and Nevertheless, it seems that a deeper

insight would be needed even for this less ambitious goal.

519

The undecidability of strong trace equivalence for BPA follows easily from

classical results for context-free langauges. Moreover, similarly as in the case

of BPP, we can show:

THEOREM 15 Weak preorder/equivalence on BPA is

The theorem holds even when one BPA-process is a fixed finite-state pro-

cess. The proof uses the recurrent problem for nondeterministic Turing ma-

chines and builds on the classical context-free grammar generating all words

which do not correspond to correct computations of a Turing machine (where

all even configurations are written in the reverse order). More details are in the

full version of the paper. We also add an analogy to Proposition 11:

PROPOSITION 16 The set of all triples where L is (a description of)

a recursively enumerable LTS and two weakly equivalent states,

is in

5. Regularity is in the hyperarithmetical hierarchy

Here we look at some more specialized problems, namely the question of

equivalence (of a general process) with a given finite-state process, and the

question of regularity, which asks whether a given (general) process is equiva-

lent (weakly bisimilar in our case) to an (unspecified) finite-state process.

Denoting the collection of all sets which are recursively enumerable in TA

(truth in mathematics) by we can show:

PROPOSITION 17 The problem of weak regularity of recursively enumerable

labelled transition systems is in

Though the stated result is not too practical, it still separates weak bisimilar-

ity checking from weak regularity checking for the classes like PDA, PA and

PPDA (because is a proper subclass of Recalling the general

experience that natural problems (in computer science) are either at low levels

of the arithmetical hierarchy or at low levels of the analytical hierarchy, we

have at least some indication in what direction the results for regularity can be

possibly strengthened.

References

[Büchi, 1964] Büchi, J.R. (1964). Regular canonical systems. Arch. Math. Logik u. Grundla-

genforschung, 6:91–111.

[Burkart et al., 2001] Burkart, O., Caucal, D., Moller, F., and Steffen, B. (2001). Verification on

infinite structures. In Bergstra, J., Ponse, A., and Smolka, S., editors, Handbook of Process

Algebra, chapter 9, pages 545–623. Elsevier Science.

[Esparza, 1997] Esparza, J. (1997). Petri nets, commutative context-free grammars, and basic

parallel processes. Fundamenta Informaticae, 31:13–26.

520

[Groote and Hüttel, 1994] Groote, J.F. and Hüttel, H. (1994). Undecidable equivalences for

basic process algebra. Information and Computation, 115(2):353–371.

[Harel, 1986] Harel, D. (1986). Effective transformations on infinite trees, with applications to

high undecidability, dominoes, and fairness. Journal of the ACM (JACM), 33(1):224–248.

[Hirshfeld, 1994] Hirshfeld, Y. (1994). Deciding equivalences in simple process algebras.

Tech. report ECS-LFCS-94-294, Dept. of Computer Science, University of Edinburgh.

[Hüttel, 1994] Hüttel, H. (1994). Undecidable equivalences for basic parallel processes. In

Proc. of TACS’94, volume 789 of LNCS, pages 454–464. Springer-Verlag.

2003] (2003). Strong bisimilarity on basic parallel processes is PSPACE-

complete. In Proc. of LICS’03, pages 218–227. IEEE Computer Society Press.

et al., 2003] and Moller, F. (2003). Deciding bisimilarity be-

tween bpa and bpp processes. In Proc. of CONCUR’03, volume 2761 of LNCS, pages

159–173. Springer-Verlag.

and Srba, 2004] and Srba, J. (2004). Highly Undecidable questions for pro-

cess algebras. Tech. Report RS-04-8, BRICS Research Series.

and 2002] and (2002). Equivalence-checking with

infinite-state systems: Techniques and results. In Proc. of SOFSEM’02, volume 2540 of

LNCS, pages 41–73. Springer-Verlag.

[Lugiez and Schnoebelen, 2002] Lugiez, D. and Schnoebelen, Ph. (2002). The regular view-

point on pa-processes. Theoretical Computer Science, 274(1–2): 89–115.

[Mayr, 2000] Mayr, R. (2000). Process rewrite systems. Information and Computation,

156(1):264–286.

[Mayr, 2003] Mayr, R. (2003). Weak bisimilarity and regularity of BPA is EXPTIME-hard. In

Proc. of EXPRESS’03, pages 160–143.

[Rogers, 1967] Rogers, H. (1967). Theory of Recursive Functions and Effective Computability.

McGraw-Hill.

[Srba, 2002] Srba, J. (2002). Roadmap of infinite results. Bulletin of the European Association

for Theoretical Computer Science (Columns: Concurrency), 78:163-175. Updated online

version: http://www.brics.dk/~srba/roadmap.

[Srba, 2003a] Srba, J. (2003a). Completeness results for undecidable bisimilarity problems. In

Proc. of INFINITY’03, pages 9–22.

[Srba, 2003b] Srba, J. (2003b). Undecidability of weak bisimilarity for PA-processes. In Proc.

of DLT’02, volume 2450 of LNCS, pages 197-208. Springer-Verlag.

[van Glabbeek, 1993] van Glabbeek, R.J. (1993). The linear time – branching time spectrum II

(the semantics of sequential systems with silent moves). In Proc. of CONCUR ’93, volume

715 of LNCS, pages 66–81. Springer-Verlag.

[van Glabbeek, 2001] van Glabbeek, R.J. (2001). The linear time - branching time spectrum I:

The semantics of concrete, sequential processes. In Handbook of Process Algebra, chapter 1,

pages 3–99. Elsevier Science.

[van Glabbeek and Weijland, 1996] van Glabbeek, R.J. and Weijland, W.P. (1996). Branching

time and abstraction in bisimulation semantics. Journal of the ACM, 43(3):555–600.

