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Highly variable recurrence of tsunamis in the
7,400 years before the 2004 Indian Ocean
tsunami
Charles M. Rubin1,2, Benjamin P. Horton1,2,3, Kerry Sieh1,2, Jessica E. Pilarczyk4, Patrick Daly1, Nazli Ismail5

& Andrew C. Parnell6

The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the

scientific community off-guard. Subsequent research in the Indian Ocean basin has identified

prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain.

Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami

deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11

prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average

time period between tsunamis is about 450 years with intervals ranging from a long, dormant

period of over 2,000 years, to multiple tsunamis within the span of a century. Although there

is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high,

these variable recurrence intervals suggest that long dormant periods may follow Sunda

megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.
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P
rojections of fatalities due to catastrophic earthquakes and
tsunamis will likely exceed 2 million lives in the twenty-first
century1. Advances in geodesy and seismology have

contributed to our understanding of rupture patterns of large
earthquakes, but the devastation caused by the 2011 Tohoku-oki
and the 2004 Indian Ocean tsunamis make it clear that estimates
of earthquake size and tsunami potential are woefully inadequate.
The repeat times of such giant tsunamis can occur centuries
to millennia apart2–5 and are not fully captured in historical
and instrumental records2,3. A more refined understanding of
the long-term variations in timing and recurrence of giant
tsunamis is essential for producing realistic vulnerability
assessments for coastal communities.

The great Sumatra–Andaman earthquake triggered a tsunami
that devastated south and southeast Asia5,6. At the time, there was
no known historic precedent for the 1,500 km rupture of the Sunda
megathrust5, with slip exceeding over 20m (refs 6,7). In the decade
since the Indian Ocean tsunami, the search for prehistoric estimates
of earthquake recurrence and tsunami potential remains elusive.
Most reconstructions of past tsunami inundation are based on
identifying anomalous beds of sand in low-energy environments,
such as salt and freshwater marshes, coastal lakes or swales8,9.
Prehistoric tsunamis have been identified using such geological
records from northern Sumatra10–12, Thailand13–17, Andaman
Islands18, Sri Lanka19, Eastern India20 and the Maldives21, but the
timeline of their reconstructions is limited or fragmentary,
hindered by preservation problems, reworking and a lack of
accommodation space22.

We identify coastal caves as a new depositional environment
for reconstructing tsunami records and present a 5,000 year
record of continuous tsunami deposits from a coastal cave in
Sumatra, Indonesia (Fig. 1), which shows the irregular recurrence
of 11 tsunamis between 7,400 and 2,900 years BP. The
sedimentary record in the cave shows that ruptures of the Sunda
megathrust vary between large (which generated the 2004 Indian
Ocean tsunami) and smaller slip failures. The chronology of
events suggests the recurrence of multiple smaller tsunamis
within relatively short time periods, interrupted by long periods
of strain accumulation followed by giant tsunamis. The data
demonstrates that the 2004 tsunami was just the latest in a
sequence of devastating tsunamis stretching back to at least the
early Holocene and suggests a high likelihood for future tsunamis
in the Indian Ocean. The sediments preserved in the costal
cave provide a unique opportunity to refine our understanding
of the behaviour of the Sunda megathrust, as well as study in
detail the sedimentology and hydrological characteristics of
tsunami deposits.

Results
Geologic setting. The coastal cave site is located along the
northwestern coast of Aceh Province near the village of Lhong,
35 km south of Banda Aceh (Fig. 2). This segment of the Sunda
megathrust (Fig. 1) slipped as much as 20m during the 2004
rupture6,7 and produced nearly 1m of subsidence. The 2004
tsunami inundated the cave and removed vegetation off the very
steep limestone cliff to a height of B24m above mean tidal level
(MTL) which was over 10m above the top of the cave entrance
(Fig. 2). The cave entrance is 100m back from the swash zone with
a rock sill at its entrance that sits 1m above mean tidal level
(Fig. 2). The cave extends nearly 120m into the cliff. We excavated
six trenches at the rear of the cave (Fig. 2) and found sedimentary
sequences up to 2m thick above a limestone basement.

2004 tsunami deposit. The 2004 tsunami deposited a sand bed in
all trenches, which was 20–43 cm thick. The 2004 tsunami sand

bed is laterally continuous, well-sorted, composed of fine to
very fine grained sand. In the trench nearest the cave entrance
(Trench 6), the 2004 tsunami sand bed has three pulses of
coarse material followed by subsequent fining upwards sequences
(Fig. 3; Supplementary Fig. 1; Supplementary Tables 1 and 2).
Basal rip-up clasts, lenticular laminations and fragments of
weathered cave chalk are common in the 2004 sand bed in all
trenches. The 2004 sand bed contains abundant, pristine
foraminifera, mostly of benthic subtidal origin23, but with a
notable planktonic offshore presence. Organic debris, transported
into the cave by the tsunami and guano from the insect-feeding
bats (Microchiroptera) that inhabit the cave, littered the surface of
the 2004 tsunami deposit. The basal contact of the 2004 deposit is
an erosional unconformity.

Prehistoric tsunami deposits. Beneath the 2004 tsunami deposit,
we found an additional 11 sand beds (A–K) that we interpret as
tsunami deposits (Fig. 4). The 11 sand beds consist of
well-sorted, normally graded, very fine sand to silt with a sharp
basal contact. There is no evidence of unconformities in the
stratigraphic sequences from the trench-wall exposures
(Supplementary Figs 1 and 2). Sand beds G–J have thin deposits
(2–7 cm), whereas sand bed F has the thickest deposit (23 cm).
Some of the sand beds have a rip-up clast-rich lower portion
and a lenticular-laminated upper portion. The rip-up clasts are
very similar to the deposits that underlie them. Large detrital
weathered fragments of cave chalk are preserved in the sand beds.
Foraminifera are abundant, in particular in sand beds I–K (Fig. 5;
Supplementary Tables 3 and 4). The provenance of the
foraminifera ranges from intertidal to subtidal to offshore23.
A large percentage of the foraminiferal assemblage in each sand
bed is pristine (Fig. 5).
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Figure 1 | Tectonic setting and ruptures of major earthquakes along the

Sunda megathrust. The pink patch is the estimated rupture area of the

2004 Indian Ocean earthquake6. The red patch is the estimated rupture

area of the 2005 Nias–Simeulue earthquake60. Orange and green patches

show the area of the 1881 and 1907 earthquakes. Yellow circles show the

location of the 2002, 2008 and 2010 eathquakes. Solid lines depict primary

faults generalized from Singh et al.
61. Pivot line shows location of uplift and

subsidence of the seafloor during the 2004 earthquake5. Relative plate

motion is from Prawirodirdjo and Bock62.
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Intercalated beds. Organic-rich beds are found between the 11
sand beds (A–K), reflecting slow sediment accumulation during
intervals between tsunamis. The organic beds are commonly
finely laminated and range in thickness from o1mm to 9 cm
(Fig. 4; Supplementary Figs 1 and 2). The intercalated beds
consist of sands, reworked by periodic drips of water through
the cave ceiling during periods of high precipitation and
insect burrowing. The organics were likely produced by the same
processes that produce organic debris on the surface of the 2004
tsunami and have been broken down by post-depositional

processes. Foraminifera are absent or in low abundances with a
fragmented and abraded assemblage of intertidal to subtidal
to offshore species (Fig. 5), further suggesting the intercalated
beds are reworked from the tsunami sand beds A–K. In
many intercalated beds, we found small, pristine and fragile
chalk florets.

Four mud beds appear between sand beds B–H with thicknesses
up to 25 cm (Figs 4 and 5; Supplementary Figs 1 and 2). The
upper contact of the mud beds is sharp and locally eroded,
consistent with the presence of rip-up clasts within the overlying
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tsunami sand beds. In two mud beds foraminifera are present in
low abundances, dominated by , intertidal assemblages (Fig. 5;
Supplementary Tables 3 and 4). However, foraminifera are absent
in the other two mud beds, suggesting deposition by freshwater

ponding in the cave. Pristine cave chalk is found in some mud
beds, further supporting deposition in low-energy conditions.

Chronological constraints. We obtained accelerator mass
spectrometry (AMS) radiocarbon ages on pieces of detrital
charcoal and whole molluscs from within, below and above the
sand beds (Fig. 6; Table 1). We interpret the two bracketing dates
as maximum and minimum ages for the timing of sand bed
deposition. Fragments of charcoal from an organic-rich bed at the
base of the sedimentary sequence yield a maximum age of 7,672–
7,588 years BP for sand bed A. Charcoal from a mud bed (5,583–
5,331 years BP) is the maximum age for sand F. A pristine
mollusc shell within the sand bed F provide an age of 5,258–4,552
years BP. Charcoal yield ages of 3,362–3,246 years BP and 3,363–
3,245 years BP for sand beds G and H, respectively. Multiple
charcoal dates from sand beds I, J and K provide age ranges of
3,366–3,221 years BP, 3,464–3,068 years BP and 2,975–2,772
years BP, respectively.

Discussion
Coastal caves have not previously yielded prehistoric records of
tsunamis. Indeed, the cave’s sheltered location and absence
of human activity suggest that these sand beds represent the
best-preserved and most complete tsunami history for the Indian
Ocean between 7,400 and 2,900 years BP. The cave’s interior
protects the tsunami deposits from erosion. The rock sill near the
cave entrance (Fig. 2) mitigated the erosional impact of tsunamis
that are found at elevations beneath the sill. However, deposits
above the rock sill are vulnerable to scouring from subsequent
events. The cave’s location also disfavours sand bed deposition or
re-working by intense storms12,14. Exposure to tropical cyclones
is limited due to the lack of Coriolis force near the equator24,25.
In addition, the track of any tropical cyclones that originate in
Indian Ocean will move towards India, Bangladesh or Myanmar
without producing a storm surge in Sumatra14,26. Although
tropical cyclones do strike eastern Thailand, they dissipate after
crossing the Malay Peninsula and Sumatra before moving
offshore along Sumatra’s west coast (for example, tropical
storm Vamei in 2001 (refs 27,28)).

The stratigraphic and microfossil data of the 11 prehistoric
sand beds (A–K) resemble the 2004 tsunami as well as tsunami
deposits described elsewhere. Rip-up clasts at the base of
sand beds and sharp basal contacts suggest erosion occurred at
the beginning of the tsunami inundation as the surge
entered the cave. Normally graded sand beds indicate settling
from suspension following tsunami inundation in the cave9,29.
The normal grading suggests that each bed resulted from a single
(rather than multiple) instance of the cave filling with water and
draining. The foraminifera assemblage of the sand beds were
dominated by intertidal to subtidal to offshore species.
Marine foraminifera often dominate tsunami deposits because
of the landward transport and deposition of scoured marine
sediment23,30. The taphonomic (or surface) condition of indivi-
dual foraminifera distinguishes the tsunami sand beds and the
intercalated beds (Fig. 5). The foraminifera of the tsunami sand
beds is predominantly pristine suggesting the foraminifera were
entrained from a protected subtidal substrate31,32.

We have also identified cave chalk weathering as a new
indicator of tsunami inundation. Large fragments of weathered
cave chalk are preserved in the sand beds. These fragments most
likely fell from the cave ceiling and were weathered due to
abrasion by tsunami transport. In contrast, we found pristine and
fragile chalk florets in the organic and mud beds.

Holocene relative sea-level reconstructions from the Indo-Pacific
region are characterized by a mid-Holocene sea-level high stand of
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a few decimetres to several metres33,34, but the presence or absence
of such a highstand may be controlled by local tectonic processes35.
A record of buried soils from the northwestern coast of Aceh
Province suggest that relative sea-level rose during the early and
mid-Holocene from � 5m at B7,900 years BP to � 1.6m at
B5,700 years BP12. Relative sea-level was below present until at
least 3,800 years BP. In the late Holocene, relative sea-level
stabilized within 0.4m of modern sea-level12,22,33. This gradual
long-term relative sea-level rise without a mid-Holocene highstand

created a time-window for tsunami deposits and intercalated beds
to aggrade without a significant interruption in sedimentation36

(Fig. 7).
The cave probably contained stratigraphic evidence of recent

historic tsunamis from 2,900 years BP to the 2004 Indian Ocean
tsunami that have been identified elsewhere in the region10,14, but
these were most likely removed by subsequent tsunamis
inundating the cave as indicated by the erosional unconformity
beneath the 2004 deposit (Figs 4 and 7; Supplementary Fig. 1).
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The missing stratigraphic record coincides with the continued
aggradation of the nearby coastal plain12. Stratigraphical records
of late Holocene tsunamis are generally restricted to environ-
ments with sufficient accommodation space, such as intervening
coastal swales between ridges10,14, estuaries and ponds where
overwash deposits are protected from erosion by rapid growth of
vegetation or deposition of sediment36.

Independent evidence for tsunami inundation in the cave
comes from stratigraphy of nearby coastal lowlands12,37. Three
coseismic subsidence events and seven tsunamis between B7,500
and 3,800 years BP are documented in the stratigraphy of the
west coast of northern Sumatra12. During this time interval,
the cave sequence preserves an identical number of tsunamis
(that is, sand beds A–G; Fig. 6 and Table 1). Offshore of Sumatra,
Patton et al.38 identified 11 deep-sea turbidites along the
Andaman–Aceh slip patch between B6,500 and 2,700 years
BP. Although the number of events is the same, the timing of the
events is different. The deep-sea turbidite record does not capture
the tightly clustered tsunamis (sand beds G–J) and the large gap
in time between tsunamis F and G. The discrepancies suggest that
ruptures along the Sunda megathrust do not always trigger both
tsunami deposits and turbidites.

Since the 2004 tsunami, considerable evidence for prehistoric
tsunamis has been obtained from sites around the Indian
Ocean13–16,18,20,21,39–43. However, studies with time spans
comparable to the cave are restricted to Sri Lanka19 and the
Maldives21. In southern Sri Lanka, Jackson et al.19, identified
seven tsunami sand beds between B6,700 and 2,400 year BP.
Klostermann et al.21 identified three tsunami sand beds between
B5,600 and B2,900 years BP in the Maldives. However, these
far-field records do not capture the tightly clustered tsunamis
(sand beds G–J) and have events that span the large gap in time
between tsunami sand beds F and G. The far-field seismic sources
for these tsunamis are uncertain. For example, slip along the
megathrust near the Andaman–Nicobar Islands are potential
seismic sources for tsunamis in Sri Lanka and the Maldives44.
In addition, the faults along the southern coast of Pakistan
are potential seismic sources for tsunamis in the Maldives44.
The immediate proximity of the cave to the Sunda megathrust
provides a more reliable indicator of tsunamis generated by
ruptures of the megathrust than far-field records.

The chronology from accelerator mass spectrometry (AMS)
radiocarbon ages from the sand beds of the coastal cave and the
stratigraphy of the nearby coastal lowlands12,37, combined within a
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Bayesian framework (Fig. 6; Methods section), provides the
chronology of tsunamis between 7,400 and 2,900 years BP
(Table 1). The chronology suggests an average recurrence interval

of 456 years between 7,400 and 2,900 years BP with a large
uncertainty (95% C.I. 1–2,210) (Fig. 6; Supplementary Table 7). A
similar average recurrence interval (600–900 years) was estimated
from the nearby coastal lowlands of northwestern Aceh Province
between 7,400 and 3,800 years BP12. The tsunami record from Sri
Lanka19 suggested an average recurrence interval of B360 years
between 6,600 and 4,200 year BP.

The tsunami record from the cave, however, indicates a dramatic
variation in recurrence interval. Between 7,400 and 5,500 years BP,
the recurrence interval for tsunamis A to F was 681 years (95% C.I.
11–2,222) (Fig. 6). But after 5,500 years BP, the coastal cave has an
age gap of 2,164 years (95% C.I. 1,997–2,247) between tsunamis
F and G. Four tightly clustered tsunamis (G–J) occurred between
3,400 and 3,300 years BP with an average recurrence interval of 16
years (95% C.I. 0–55). The most recent tsunami (K) recorded in the
coastal cave occurred at 2,900 years BP, with a recurrence interval
of 426 years (95% C.I. 357–505). Although the time span of the
northern Simeulue coral microatoll record is limited to the last
millennium, it shows a similar large variation of recurrence
intervals from 56 years to B550 years39.

There is a correlation between the thickness of tsunami sand
beds and recurrence intervals in the cave (Fig. 6). The thinner sand
beds (G–J) have the smallest recurrence intervals and were
preceded by the largest age gap between tsunamis (Suppleme-
ntary Fig. 4). The thickest sand bed (F) preceded the large age gap,
with a thickness similar to the 2004 tsunami sand bed. Although
variations of offshore sediment availability or lateral shoreline
changes might play a role in the thickness of tsunami beds45, we
suggest that the thickness of the sand beds may reflect the size of
slip along the megathrust. It is possible that sand bed F was
deposited by a giant tsunami produced by a large slip that was
followed by a very long dormant, interseimic period with
substantial strain accumulation. Subsequently, partial, smaller slip
failures occurred in rapid succession between 3,400 and 3,300 years
BP, producing sand beds G–J. The very long dormant period
suggests that the Sunda megathrust is capable of accumulating large
slip deficits between earthquakes. Such a high slip rupture would
produce a substantially larger earthquake than the 2004 event.

The dramatic variation in tsunami recurrence intervals suggests a
continuum of recurrence behaviour from large slip ruptures (2004
tsunami and sand bed F), earthquake super cycles or doublet
earthquake2,4,11,39 to smaller slip failures (for example, sand beds
G–J) similar to the October 2010 Mentawai tsunamigenic
earthquake (Fig. 1). Variations in recurrence may result from
temporal changes in coupling or locking depth, or very long-term
slow non-tsunamigenic slip events46,47. If thickness of the tsunami
deposit (Fig. 6) reflects slip and the size of the slip patch, the
thickness of the 2004 tsunami deposit implies a long dormant period
until the next large slip event. Slow non-tsunamigenic slip events
might predominate during such long periods of quiescence and
precede clustering smaller slip failures along the megathrust. The
remarkable variability of recurrence suggests that regional hazard
mitigation plans should be based upon the high likelihood of future
destructive tsunami demonstrated by the cave record and other
paleotsunami sites, rather than estimates of recurrence intervals.

Methods
Field methods and data collection. The evidence for prehistoric tsunamis is
derived principally from stratigraphic relations found in six trench-wall exposures
and other smaller pits in the cave. The stratigraphy is visually striking, because of a
strong contrast in colour between alternating beds of sand, mud and laminated
organic sand (Supplementary Figs 1 and 2).

We identified and described stratigraphic units in Trench 1 and the trench walls
were mapped from high-resolution photos of the vertical surfaces. The alternating
beds of sand, clay and laminated organic sand allow stratigraphic correlation of
individual beds within the trench-wall exposure (Supplementary Figs 1 and 2). We
divided the stratigraphy into 12 units, from Unit 1, which is the oldest and deepest,
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resting on the limestone bedrock of the cave, through Unit 12, which is the
youngest unit that underlies the 2004 Indian Ocean tsunami sand bed (Fig. 5).
Column samples were taken across each stratigraphic interface, providing samples
for grain size, microfossil and chronology.

Topographic data were based on a total station survey in 2011 and 2012 (Fig. 2).
Excavation of six trenches within the cave interior was conducted in 2011 and
2012. We made measurements of sedimentology and stratigraphy in the field.

Tsunami sand beds. We use several lines of stratigraphic evidence that point to a
tsunami origin for sand beds A–K that includes stratigraphic relations, lithology,
degree of sorting, internal structures, such as fining upwards beds, rip-up clasts of
mud, sharpness of stratigraphic contacts, uniformity in bed thickness and lateral
continuity of beds8,48–50. In addition, we use secondary features such as
liquefaction, bedding-plane faults (décollements) and normal faults that are
perhaps triggered by seismic shaking8.

We analysed foraminiferal assemblages (Fig. 5; Supplementary Tables 3 and 4)
from most units to confirm marine inundation and indicate the provenance of the
overwash sands32. In addition, we used foraminiferal test taphonomy51 to reveal
depositional and post-depositional environmental conditions (Supplementary
Fig. 3; Supplementary Tables 3 and 4). The foraminiferal analyses help
constrain sediment provenance and help identify tsunami sands in a variety of
environmental settings.

We used the taphonomy of cave chalk as a new indicator of the environment
of deposition. The cave chalk found in the sedimentary units most likely fell from
the cave ceiling due to weathering. The chalk occurs in two forms: (1) small, fragile,
pristine florets; and (2) large detrital rounded fragments that do not have a
delicate floret structure (Supplementary Fig. 3). Since the florets do not show
evidence of water transport (for example, rounding), we suggest that the delicate
florets are limited to sand beds not deposited by tsunamis. In contrast, the rounded
chalk fragments are only found in sand beds that were produced by a tsunami. We
believe the rounding of the fragments is due to abrasion by the tsunami waves.

Grain size and thickness data allows comparison of the 2004 tsunami sediments
with the prehistoric sand beds (Figs 5 and 6; Supplementary Table 1). Further, the
general fining upwards trends in many tsunami beds suggests deposition by
tsunami waves (Fig. 5; Supplementary Table 1). Following an initial high water
flow, a decreased flow velocity often causes sand beds to deposit in graded,
fining upwards sequences9,52. For example, along the Aceh coastline, the
2004 tsunami sand bed records distinct fining upwards sequences of sand
deposition52, similar to the 2004 tsunami sand bed preserved in the coastal

cave. Samples for foraminifera, cave chalk and grain size analyses are from
Trenches 1 and 4 (Fig. 5; Supplementary Tables 1, 2, 3 and 4).

Radiocarbon dating. We collected detrital charcoal fragments from seven
stratigraphic units (Units 1, 5, 8, 9, 10 and 11), and two intact gastropods from
Unit 6. The radiocarbon ages constrain ages of tsunamis; calibrated radiocarbon
ages helped constrain the timing of tsunamis. Detrital charcoal and gastropods
were collected from units for radiocarbon dating and were analysed by GNS, Rafter
Radiocarbon Laboratory, New Zealand (Table 1).

We calibrated radiocarbon ages with Calib rev. 6.0.0 (ref. 53). The calibrated age
ranges appear with 95.4% HDR (B2 standard deviations), where years ‘before
present’ (BP) is years before A.D. 1950 (Table 1). Also, we corrected the ages of the
gastropod shells for the marine reservoir effect using a DR value of 15±119
(ref. 54) to account for the fact that Indian Ocean waters show substantial 14C
depletion due to upwelling.

To further constrain chronology, we analysed the organic guano beds derived
from insect-feeding bats that occupy the coastal cave. We sampled six organic-rich
beds along thin stratigraphic horizons (3–6mm). Although the radiocarbon
analyses indicate the dark sand beds are broadly mid-late Holocene in age, three
radiocarbon dates are not consistent with stratigraphic position. We suggest that
the discrepancies of the bulk guano dates are due to: (1) bulk samples containing an
unknown mixture of organic material of variable age, and representing an average
age of the sample; and (2) groundwater percolating along cracks in the limestone
cave, and introducing exogenous, old carbon into the organic beds.

Bayesian age-depth model. We apply a Bayesian age-depth model to 19
radiocarbon dates from the coastal cave and the nearby coastal lowlands12.
The radiocarbon dates either directly date a tsunami or provide maximum or
minimum age limits for a tsunamis (Fig. 6; Table 1) (Supplementary Tables 6
and 7). Our Bayesian modelling approach provides control over the model fitting
process and flexibility in the modelling assumptions. The code is available at
https://github.com/andrewcparnell/tsunamis.

We use the following notation to build our model. yi is the calendar age of
tsunami i, where i runs from 1 to 11. These are the parameters we are most
interested in estimating. Together, we write these values as y. xij is the direct
radiocarbon date j of tsunami i, where j¼ 1,y,ni with ni the number of direct dates
for tsunami i. These values have associated fixed 1-sigma errors sij. Note, that for
some tsunamis there are no direct dates, in which case ni¼ 0. Thus, while we have
13 direct dates in total, five tsunamis are without direct dates. Together, we write

Table 1 | Radiocarbon analyses of charcoal and shells.

Sand

layer

No. Unit Material

dated

Laboratory

code

14C age

(1r error)

d
13C Calibrated

(95.4% HDR)

Age of event

(years BP)

Notes

K 1 11 Charcoal MnL-12-4D-1 2,822±20 � 25.47 2,862–2,975 2,815–2,916 Age of K

2 11 Wood MnL-12-1D-5 2,725±20 � 26.22 2,772–2,859 Age of K

J 3 10.1 Charcoal MnL-12-1A-3 2,965±20 � 26.71 3,068–3,236 3,270–3,341 Age of J

4 10.1 Charcoal MnL-12-4A-1 3,065±20 � 25.38 3,219–3,356 Age of J

5 10.1 Charcoal MnL-12-1C-2ii 3,093±21 � 25.85 3,260–3,370 Age of J

6 10.1 Charcoal MnL-12-1C-2i 3,210±21 � 25.89 3,383–3,464 Age of J

7 10 Charcoal MnL-12-1C-1 3,217±21 � 28.06 3,269–3,396 Age of J

I 8 9 Charcoal MnL-12-4C-2 3,085±21 � 26.24 3,252–3,366 3,278–3,346 Age of I

9 9 Charcoal MnL-12-1C-3 3,069±20 � 26.95 3,221–3,358 Age of I

H 10 8.2 Charcoal MnL-12-4A-2 3,078±21 � 28.45 3,245–3,363 3,287–3,353 Age of H

G 11 8 Charcoal MnL-12-4C-4 3,077±20 � 26.17 3,246–3,362 3,304–3,363 Age of G

UBS* Wood SM 11 13A 182 3,540±30 � 29.74 3,717–3,902 Maximum age of G

F 12 6 Gastropod MnL-12-4-5 4,666±43 � 9.75 4,552–5,258 5,357–5,575 Age of F

13 6 Bivalve MnL-12-4-12 4,638±43 �9.38 4,513–5,231 Age of F

14 5.4 Charcoal MnL-12-1D-4 4,742±23 � 26.78 5,331–5,583 Maximum age of F and

minimum age of E

E 5,480–5,770

D MBS* Wood PU 07 04 265 5,090±40 � 28.30 5,743–5,917 5,578–5,866 Maximum age of D and

minimum age of C

C 5,857–6,680

B LBS* Wood PU 07 03 426 6,060±40 � 25.80 6,791–7,142 6,083–6,915 Maximum age of B and

minimum age of A

A 15 1.1 Charcoal MnL-12-1C-5 6,788±26 7,588–7,672 7,324–7,529 Maximum age of A

LBS* Wood SM 11 13 490 6,560±35 7,424–7,558 Maximum age of A

LBS, lower buried soil; MBS, middle buried soil; UBS, upper buried soil.

Samples are listed in stratigraphic order. Calibrated age ranges (year BP) at 95.4% HDR, using Calib rev. 6.0.0 (ref. 53) and a DR value of 15±119 for the marine reservoir effect54. Analytical uncertainties

are 1s and reflect the total uncertainty in the measurement. The age of event combines the AMS radiocarbon ages from the sand beds of the coastal cave and the stratigraphy of the nearby coastal

lowlands12,37, within a Bayesian framework. The 5–95% confidence limits are shown.

*UBS; MBS; LBS; dates from stratigraphic sequences in Kelsey et al.
12
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these values as x. y�i are the calendar ages of limiting dates lying between tsunamis
i and iþ 1. They are nuisance parameters. Together, we write these values as y� . x�ij
is a limiting radiocarbon date j lying between tsunamis i and iþ 1. These values
have associated fixed 1-sigma errors s�ij . Here j ¼ 1; . . . ; n�i , where n�i represents
the number of limiting dates for tsunami i. As above, some of these are 0. Together,
we write these values as x� . gi are the calendar age shifts of the limiting dates which
provide a maximum age of tsunami i. They are nuisance parameters which we
write together as g. x��ij is a limiting radiocarbon date j for tsunami i, providing
evidence of a maximum age. These values have associated fixed 1-sigma errors s��ij .
Here j ¼ 1; . . . ; n��i ; where n��i represents the number of limiting dates for
tsunami i. Again, some of the n��i values are 0, as we have only three such dates.
Together we write these values as x�� . Note that the calibrated value of a
radiocarbon age x��ij is yiþ gi, that is, the calendar age of the tsunami plus a shift
indicating how much older the radiocarbon date is beyond that of the tsunami
itself. r(y) is the IntCal13 calibration curve which has the probability distribution
r(y)BN(m(y),t2(y)).We assume that both m() and t2() are known functions.

Our overall goal is to find the posterior distribution:

p y;y�;g x;x�;x��; rjð Þ /
Y

n

i¼1

Y

ni

j¼1

p xij yij
� �

�
Y

n
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j¼1

p x�ij y
�
i

�

�

� �

�
Y

n
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p x��ij yi; gij
� �
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where

xij yi � N m yið Þ;s2ij þ t2 yið Þ
� ��

�

� ð2Þ

x�ij y
�
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x��ij yi; gi � N m yi þ gið Þ; s��ij

� �2
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� ��

�

�

�

ð4Þ

are the likelihood terms. The prior distribution p(y) is set to enforce the
ordering of the dates:

p yð Þ y14y�14y24y�24 . . . 4y11
� �

; ð5Þ

where I is an indicator function. The prior distribution on the excesses gi is the
only informative prior in the model. We use:

gi � Ga 1; 0:005ð Þ; ð6Þ

which corresponds to a gamma distribution with a mean of 200 and a s.d. of 200.
While this distribution is diffuse, it is informative for the maximum ages. The
distribution corresponds to a 95% probability that the maximum ages are no more
than 600 years older than the tsunami they are aiming to represent.

Our model is fitted with Markov chain Monte Carlo using Metropolis-Hastings
steps for all parameters since ordering the tsunami dates was complicated by their
prior distribution55. The model is sensitive to starting values of the parameters due
to the ordering constraint, so we simulate suitable values by calibrating dates
individually, and sampling from these distributions with an extra restriction on the
ordering. We run the model with multiple different starting values, and check
convergence using trace plots and the Geweke convergence diagnostic55. The final
model run created 1 million iterations, removing 100,000 for a burn-in period and
then keeping only every 450th iteration.

2004 tsunami sand bed. The 2004 tsunami sand bed ranges from about 20 to
43 cm in thickness in trench-wall exposures (Fig. 3; Supplementary Figs 1 and 2). It
is a light grey, normally graded fine to very fine sand (mean¼ 2.7F; %
sand¼ 91.9%), with abundant laminations, some of which can be traced more than
a metre.

In Trench 6, the 2004 tsunami sand bed records three distinct beds (Fig. 3),
delineated by three pulses of coarse material followed by subsequent fining
upwards sequences (Fig. 3; Supplementary Table 1). We interpret each combined
coarse pulse and fining upwards sequence as individual tsunami waves. The first
coarse pulse at the base of the 2004 sand (41–42 cm) is marked by an influx of fine
to medium sand (mean¼ 2.1F; % sand¼ 94.1%), which fines upwards until 34 cm
(mean¼ 2.7F; % sand¼ 90.6%). The second coarse pulse occurs from 31–33 cm
(mean¼ 2.3F; % sand¼ 95.6%) and fines slightly up to 24 cm (mean¼ 2.7F; %
sand¼ 92.5%). The final coarse pulse is located between 22 and 24 cm
(mean¼ 2.5F; % sand¼ 96.3%), and fines upwards to a very fine sand
(mean¼ 3.7F; % sand¼ 74.0%) at the top of the sequence (0–1 cm).

Rip-up clasts, consisting of organic-rich granules, wood and shells are common,
especially in the lower part of the 2004 deposit. Abundant (2,500–3,246 individuals
per 1 cm3) foraminifera that are predominantly pristine (41–52%) and sourced
from subtidal (52–58%), intertidal (33–38%) and offshore (for example, planktic)
(8–14%) environments are present, as are weathered fragments of cave chalk
(Fig. 5, Supplementary Fig. 3; Supplementary Table 4). The 2004 sand has the
highest diversity foraminiferal assemblage, with Pararotalia sp., Amphistegina sp.
and Calcarina sp. dominating. A sharp and erosional contact marks the boundary
between the 2004 tsunami sand and the underlying Unit 11. The erosional removal
of pre-2004 sediment is variably preserved in trenches and on the cave walls as
alternating remnants of sand and organic-rich sand.

Unit 1 sand bed A. The lowest stratigraphic unit (Unit 1) above the limestone cave
floor is an irregular, laminated, dark, organic layer. Overlying the Unit 1 organic
layer is fine sand (Unit 1.1; mean¼ 3.0F; % sand¼ 77.4%) that does not contain
foraminifera or cave chalk. Unit 1.2 is discontinuous marine-influenced clay
(grain size data not available) that pinches out toward the corner of Trench 1. The
clay bed contains relatively low numbers of foraminifera (20 individuals per 1 cm3).
The species assemblage is dominated by intertidal (71%) and subtidal (29%)
species, with a paucity of planktic and deeper-dwelling benthic foraminifera. The
taphonomic assemblage is dominated by abraded (52%) and fragmented (48%)
individuals, with no pristine individuals present (Fig. 5; Supplementary Table 1).
Unit 1.2 is devoid of cave chalk.

Unit 1.2 is overlain by a 5.4 cm thick fine sand (Unit 1.3; mean¼ 2.9F;
% sand¼ 74.9%) with sparse laminations and abundant rip-up clasts derived from
the underlying clay. The lower stratigraphic contact between Unit 1.3 and the
underlying clay is sharp (B2mm), along an erosional and irregular surface. On the
basis of the abundance of rip-up clasts, we interpret Unit 1.3 as the oldest tsunami
bed, labelled Sand Bed A. Unit 1.3 sand contains a low number of foraminifera
(21–62 individuals per 1 cm3) consisting predominantly of subtidal (38–58%) and
intertidal (41–62%) species. The assemblage is dominated by the subtidal species
Epinoides sp., Cibicides lobatulus and Pararotalia spp., with a near absence of
planktics. Individual foraminifera were both abraded (68–77%) and fragmented
(14–30%), with only 2–9% in pristine condition (Fig. 5; Supplementary Table 3).
Overlying Unit 1.3 (sand bed A) is a laminated, dark, organic layer (Unit 1.4;
mean¼ 2.3F; % sand¼ 85.0%); the contact between the units is gradational over a
few centimetres.

Angular fragments of detrital charcoal from Unit 1.1 yielded a calibrated age
range of 7,650–7,510 cal. years BP (Table 1), which we interpret as the maximum
age of Sand Bed A or Unit 1.3.

Unit 2 sand bed B. Units 2.0 and 2.1 consist of a dark, red to brown sand with
laminations of varying thickness. The grain size is fine sand (Units 2 and 2.1:
mean¼ 2.6F; % sand¼ 85.1%). The units contain abundant delicate (pristine) cave
chalk florets (Fig. 5; Supplementary Fig. 3) that suggest a non-tsunami source for
the sand. These units have moderate abundances of foraminifera (68–94 indivi-
duals per 1 cm3), and are dominated by intertidal species (55–66%), which are
mostly abraded (49–58%) and fragmented (31–34%) (Fig. 5; Supplementary
Tables 3 and 4), and probably reworked from Sand Bed A (Unit 1.3).

Overlying Unit 2.1 is a B6 cm thick fining upwards, fine to very fine sand
(Unit 2.2; mean¼ 3.5F; % sand¼ 75.2%; Supplementary Fig. 1; Supplementary
Table 1). Along the base of Unit 2.2, pebble-sized clay rip-up clasts are abundant.
Locally, Unit 2.2 grades into a thin, discontinuous dark sand. Unit 2.2 contains
weathered cave chalk and moderate abundances of foraminifera (76–89 individuals
per 1 cm3) from subtidal (41–47%) and intertidal (51–59%) environments
(Fig. 5; Supplementary Tables 3 and 4). Unlike the underlying Unit 2.1
foraminiferal-bearing sediments, species within Unit 2.2 (Fig. 5) include the
deeper-dwelling Lagena sp., and Operculina ammonoides. The rip-up clasts, normal
grading and the presence of subtidal foraminifera and weathered cave chalk in Unit
2.2 imply deposition by a tsunami (sand Bed B). However, the foraminiferal
assemblage of sand bed B, unlike most other candidate tsunami sand beds in the
cave sequence, is mostly fragmented (47–55%), and contains only minor
abundances of pristine individuals (9–12%). The contact between Unit 2.2 and the
overlying Unit 3 clay is sharp (B2mm), but irregular.

Unit 3 sand bed C. The base of Unit 3 consists of a 3.6 cm thick marine-influenced
clayey mud (mean¼ 4.2F; % clay¼ 11.9; % silt¼ 34.7). Although in low
abundance (32–55 individuals per 1 cm3), the presence of foraminifera from
intertidal (46–51%) and subtidal (49–54%) environments, many of which were
pristine (43–45%), implies deposition in a quiet intertidal environment. Cave chalk
at the bottom of Unit 3 is absent, but present as pristine florets at the top. Overying
Unit 3 is a 9.2 cm thick, slightly normal graded, fine sand (Unit 3.1: mean¼ 2.0
F; % sand¼ 87.5%) which grades into a massive to faintly laminated fine sand over
a few centimetres (Unit 3.2; mean¼ 2.5F; % sand¼ 85.9%) (Fig. 5; Supplementary
Table 1). The base of Unit 3.1 contains abundant pebble-sized angular rip-up clasts
from underlying mud (mean¼ 4.2F; % sand¼ 53.3%). Scouring of Unit 3
clayey mud before deposition of Unit 3.1 is clear in several places in Trench 1. The
sand of Units 3.1 and 3.2 contains weathered cave chalk and abundant (146–412
individuals per 1 cm3) foraminifera that are predominantly pristine (32–41%) and
from subtidal (46–61%), intertidal (37–45%) and planktic (2–9%) environments
(Fig. 5; Supplementary Table 3). Dominant species include Elphidium craticulatum,
Cibicides lobatulus and Epinoides repandus. The abundance of rip-up clasts,
graded bedding, subtidal foraminifera and weathered cave chalk suggests a
tsunami origin for Units 3.1 and 3.2, labelled Sand Bed C. Overlying Unit 3.2 is
a laminated fine organic-rich sand (Unit 4: mean¼ 2.3F; % sand¼ 90.2%) that
is devoid of foraminifera and cave chalk, and has a sharp (B2mm) but irregular
contact.

Unit 4 sand bed D. The base of Unit 4 consists of a 4-cm thick, laminated,
organic-rich sand. The laminations are clear but discontinuous, and vary from
black to dark red-brown. Thickness also varies markedly, from o1–12 cm. The
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sand lacks foraminifera and cave chalk. Overlying Unit 4 is a 3-cm thick, fine sand
(Unit 4.1; mean¼ 2.5F; % sand¼ 86.8%; Fig. 5, Supplementary Table 1). The
stratigraphic contact between Unit 4.1 fine sand and the underlying Unit 4 is
sharp (a few mm), along an irregular surface. Unit 4.1 contains a low number of
foraminifera (19 individuals per 1 cm3). Many of the tests are abraded (78%)
and fragmented (22%), and no pristine individuals were found. Where present,
foraminifera were of intertidal (83%; Ammonia convexa, Ammonia parkinsoniana)
or subtidal (17%; Pararotalia sp.) origin (Fig. 5; Supplementary Table 4). No cave
chalk was observed in Unit 4.1. On the basis of the presence of fine sand, with a
basal erosional contact and subtidal foraminifera in Unit 4.1, we infer a speculative
tsunami, labelled Sand Bed D (Supplementary Fig. 1). Overlying Unit 4.1 is a clayey
mud (Unit 5) with a sharp (B2mm), but irregular contact.

Unit 5 sand bed E. Unit 5 consists of an extensive non-marine clayey mud. The
clayey mud is 11 cm thick, but varies in thickness from 4 to 15 cm. The massive clay
contains pristine cave chalk, but no foraminifera and was likely deposited by
ponding water in the cave resulting from periods of increased precipitation.
The upper contact of the clay is smooth and displays only minor, local evidence
of erosion. Overlying the clayey mud is a massive 3-cm thick, very fine sand
(Unit 5.1; mean¼ 3.4F; % sand¼ 72.9%), that has a low foraminiferal assemblage
(35–42 individuals per 1 cm3; Fig. 5, Supplementary Tables 1 and 3). The
foraminifera are highly abraded (63–66%), and predominantly from an intertidal
(Ammonia parkinsoniana and Elphidium advenum) environment (56–62%). Unit
5.1 is devoid of cave chalk. On the basis of the presence of massive sand and marine
foraminifera, we speculate that Unit 5.1 (labelled Sand Bed E) represents deposition
as a result of a tsunami. The absence of rip-up clasts from the underlying clay
suggests that the flow of the water in the cave was too weak to erode the underlying
clay. In addition, it is hard to explain how the massive sand could have been
deposited from other processes so far back into the cave. Overlying Unit 5.1 is a
3-cm thick, laminated, very fine sand that varies from black, guano-rich lamina to
reddish brown, inorganic lamina (Unit 5.2: mean¼ 4.0F; % sand¼ 58.3%). Along
other trench wall exposures, a thin, massive, fine sand (Unit 5.3: no grain size
data available) overlies Unit 5.1. The fine sand lacks rip-up clasts, and contains
fragments of pristine cave chalk and a very low number (2 individuals per 1 cm3) of
abraded (100%) foraminifera, representing reworking of older units. The contact
between Unit 5.1 (sand bed E) and the overlying units is irregular. Overlying the
thin organic-rich fine sand (Unit 5.2) are the thickest non-marine clayey mud beds
exposed in the cave sedimentary sequence (Units 5.4 and 5.5; no grain size data
available) (Supplementary Figs 1 and 2). Their combined thickness ranges up to
about 25 cm. The clayey mud is differentiated into two separate units based
upon their colour: the upper part of the clayey mud (that is, Unit 5.3) is darker
(more organic) than the lower part of the clay (Unit 5.4). Both units are devoid of
foraminifera and were likely deposited by the same processes that formed Unit 5.
The units lack cave chalk.

Fragments of detrital charcoal from the overlying Unit 5.4 clayey mud yielded a
calibrated age range of 5,583–5,331 years BP, which we interpret as the minimum
age of sand bed E.

Further evidence from secondary folding of Units 5.1 and 5.2 and the
truncation of these units along the top of Unit 5.3 clayey mud suggests local
ground shaking (Supplementary Fig. 2c). On the basis of the intact stratigraphic
continuity of Units 5.3 and 5.4, ground shaking must have occurred before the
deposition of Unit 5.3.

Unit 6 sand bed F. Overlying the clayey mud units is a 23-cm thick sequence
of two sand beds (Unit 6) with rip-up clasts and subtidal and planktic
foraminifera. Together, Unit 6 sand beds are the thickest in Trenches 1 and 4
(Fig. 6b; Supplementary Figs 1 and 2; Supplementary Table 5). Thicknesses
range up to 30 cm in Trench 1 to about 20 cm in Trench 4. The lower sand of
Unit 6 is a massive, fine sand (mean¼ 2.9F; % sand¼ 78.9%) with abundant
pebble- and cobble-sized rip-up clasts from underlying Units 5.4 and 5.5
(Supplementary Figs 1 and 2; Supplementary Tables 1 and 2). The massive sand
grades into a laminated fine sand (mean¼ 2.7F; % sand¼ 87.3%). The contact
between Unit 6 and the underlying clayey mud (Unit 5.5) is sharp and erosional,
over a few centimetres. Unit 6 contains subtidal (43–68%), intertidal (18–53%)
and planktic (4–14%) foraminifera (198–296 individuals per 1 cm3) (Fig. 5;
Supplementary Tables 3 and 4), with Elphidium advenum, Calcarina spp. and
Operculina ammonoides dominating the assemblage. While the Unit 6 lower
sand contains weathered fragments of cave chalk, the upper sand is devoid of them.
The abundance of rip-up clasts, graded bedding, subtidal foraminifera and
weathered cave chalk suggests a tsunami origin for Unit 6, labelled sand bed F.
Similarly to other sand units that represent tsunami deposits, including the 2004
tsunami deposit, the majority of foraminifera are generally pristine (41–69%).
Overlying Unit 6 (Supplementary Figs 1 and 2; sand bed F) is a o2.0-cm thick,
black, organic sand that grades into a heterogeneous, laminated, grey sand (Unit 7).
The contact between Unit 6 and the overlying Unit 7 is sharp (a few millimetres)
and irregular.

Two pristine gastropod shells from Unit 6 yielded a calibrated ages range of
5,231–4,515 years BP and 5,258–4,552 years BP, which we interpret as the age of
Sand Bed F.

Unit 7 sand bed G. Underlying Unit 7.1 or Sand Bed G is a 1.5-cm thick, black,
organic, fine sand (Unit 7: mean¼ 2.6F; % sand¼ 89.4%) with discontinuous
laminations. Its thickness varies from a few millimetres to about 5 cm. The contact
between Unit 7 and the overlying Unit 7.1 is sharp (B2mm) along an erosional
surface. Unit 7.1 consists of irregularly laminated fine sand (mean¼ 3.0F; %
sand¼ 79.8%) that ranges from 1 to 4 cm in thickness. Unit 7.1 fines upwards from
fine sand at the base (mean¼ 2.6F; % sand¼ 85.1%) to very fine sand at the
top (mean¼ 3.6F; % sand¼ 72.8%; Supplementary Fig. 2; Supplementary
Tables 1 and 2). Unit 7.1 contains weathered cave chalk and foraminifera
(93–105 individuals per 1 cm3) that are dominantly pristine (65–82%) and subtidal
(71–77%; Supplementary Fig. 2; Supplementary Table 4). Pararotalia sp. and
Cibicides spp. dominate the foraminiferal assemblage. In places, the fine sand
laminations are defined by heavy minerals. The normal grading, the presence of
subtidal foraminifera and weathered cave chalk imply deposition by a tsunami
(Fig. 5 sand bed G). Sand bed G (Unit 7.1) is overlain by a thin clayey mud
(Unit 7.2: mean¼ 4.5F; % clay¼ 14.7; % silt¼ 34.6) that is laterally discontinuous.
Unit 7.2 is devoid of both foraminifera and cave chalk fragments. The contact is
gradational over a few millimetres.

Unit 8 sand bed H. Overlying the clayey mud (Unit 7.2) is a B4.5-cm thick,
massive sand that upwardly fines from fine sand at the base (Unit 8; mean¼ 2.3
F; % sand¼ 82.3%) to very fine sand at the top (mean¼ 3.8F; % sand¼ 71.7%;
Supplementary Fig. 2; Supplementary Tables 1 and 2). Weathered fragments of
cave chalk that are up to several centimetre in diameter are present in Unit 8 sand.
Unit 8 contains moderate abundances (55–62 individuals per 1 cm3) of
foraminifera that are almost exclusively from subtidal environments (98–100%),
39–44% of which are pristine (Fig. 5; Supplementary Tables 3 and 4). Dominant
species include the deeper-dwelling Lagena sp., Operculina ammonoides and
Pararotalia stellata.

The abundance of graded bedding, subtidal foraminifera and weathered cave
chalk suggests a tsunami origin for Unit 8, labelled sand bed H (Supplementary
Figs 1 and 2). Overlying Unit 8 or Sand bed H is a thin, clayey mud bed (Unit 8.1:
mean¼ 4.6F; % sand¼ 53.5%) that is only exposed in Trench 4. The contact
between Unit 8.1 and the underlying sand bed H (Unit 8.1) is irregular, but sharp
over a few millimetres.

Unit 8.2 consists of massive to laminated, very fine sand (mean¼ 3.2F; %
sand¼ 82.9%). Unit 8.2 is devoid of foraminifera and cave chalk. Unit 8.3 consists
of thin, black and grey to dark brown, organic, sandy-mud (mean¼ 5.7F; %
sand¼ 19.8%), about 2 cm thick. The dark organic sandy-mud contains pristine
cave chalk fragments and a low number (20 individuals per 1 cm3) of foraminifera
that are generally abraded (96%), and sourced from intertidal (55%) and subtidal
(45%) environments. The contact between Unit 8.2 and the overlying Unit 9 sand
is sharp and irregular.

Further evidence from a secondary high-angle, normal fault that disrupts Units
1 through 7 (Supplementary Fig. 1e), suggest that faulting occurred before
deposition of Units 8 or sand bed H.

Fragments of detrital charcoal from Unit 11 yielded a calibrated age range of
3,362–3,246 years BP, which we interpret as the age of sand bed H.

Unit 9 sand bed I. Unit 9, consists of a light tan, massive, fine sand
(mean¼ 2.3F; % sand¼ 86.3%), up to 3 cm thick, with weathered detrital
fragments of cave chalk, particularly in the upper half of the unit (Supplementary
Fig. 2; Supplementary Table 4). Angular fragments of detrital charcoal are also
common. Faint laminations are present, in particular at the base of the unit. Unit 9
does, however, locally fill small scours cut into the underlying Unit 8.3 sandy-mud.
This indicates minor erosion prior to deposition. Foraminifera are abundant
(256 individuals per 1 cm3), and are predominantly subtidal (58%) species
(Pararotalia stellata, Epinoides repandus and Cibicides refulgens); B44% of the
foraminiferal assemblage is pristine (Fig. 5; Supplementary Tables 3 and 4). The
presence of fine sand, subtidal foraminifera and weathered cave chalk imply
deposition by a tsunami, labelled sand bed I (Fig. 5 band bed I). Unit 9 sand
(band bed I) is overlain by a black, organic bed only a few millimetre thick
(Unit 9.1: no grain size data), with a sharp contact. A low-abundance assemblage
(4 individuals per 1 cm3) consisting of abraded (82%), intertidal (54%), and
subtidal (46%) foraminifera and fragments of pristine cave chalk is present in this
unit, and were derived from underlying band bed I (Unit 9). Fragments of detrital
charcoal from Unit 9 yielded two calibrated age ranges of 3,358–3,221 years BP and
3,366–3,252 years BP, which we interpret as the age of sand Bed I. In addition,
fragments of detrital charcoal from the top of Unit 9 sand yielded a calibrated
age range of 3,363–3,245 years BP, which we interpret as the maximum age of
Sand Bed I.

Further evidence from truncation of Units 8.1, 8.2 and 8.3 suggests a
bedding-parallel fault along the top of Unit 8 (Supplementary Fig. 1c). Secondary
folding of these units above this bedding-parallel fault implies that displacement
occurred after deposition of Unit 8.3 but before deposition of Unit 9 (sand bed I).

Unit 10 sand bed J. Unit 10 is a thin, very fine sand with red-brown
laminations (mean¼ 3.2F; % sand¼ 75.6%). Unit 10 contains a low abundance
(nine individuals per 1 cm3) and weathered (76% fragmented and 24% abraded)
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foraminiferal assemblage (86% intertidal species), with pristine cave chalk
fragments. This unit represents accumulation of bat guano and remobilized sand
from the underlying Unit 9 sand. Overlying the red, very fine sand of Unit 10,
along a sharp contact, is a thin (2 cm thick), massive fine sand (Unit 10.1;
mean¼ 2.8F; % sand¼ 85.9%; Supplementary Figs 1 and 2; Supplementary
Tables 1 and 2), with abundant pebble-sized fragments of weathered cave chalk.
Unit 10.1 sand contains abundant (190 individuals per 1 cm3) foraminifera that are
predominantly pristine (53%) and from subtidal (51%) and intertidal (45%)
environments, with only a small percentage of planktic species present
(4%; Supplementary Fig. 2; Supplementary Tables 3 and 4). Dominant species
include Ammonia parkinsoniana, Elphidium craticulatum and Heterolepa sp.
The contact with the underlying Unit 10 is sharp. On the basis of the presence
of very fine well-sorted sand and subtidal foraminifera, we infer that Unit 10.1
(Fig. 5; labelled sand bed J) represents deposition as a result of a tsunami. Overlying
Unit 10.1 (sand bed J) is a black to dark brown, massive, organic, fine sand
(Unit 10.2; mean¼ 2.5F; % sand¼ 87.8%). Unit 11 has been eroded away from
most of the other trench exposures. Unit 10.2 is thin, black to dark brown, massive,
organic, fine sand, about 1.5 cm thick, that represents bat guano accumulation and
sand remobilization derived from Unit 10.1.

Fragments of detrital charcoal from Unit 10.1 yielded four calibrated ages:
3,464–3,383 years BP, 3,370–3,260 years BP, 3,356–3,219 years BP, 3,236–3,068
years BP. These calibrated ages represent the age of sand bed J. In addition,
fragments of detrital charcoal from Unit 10 yielded a calibrated age range of
3,396–3,269 years BP, which we interpret as the maximum age of sand bed J.

Unit 11 sand bed K. Unit 11 is an 8.4-cm thick sequence that fines upwards from a
medium sand (Unit 11; mean¼ 1.9F; % sand¼ 95.5%) at the base to a fine
sand (mean¼ 2.4F; % sand¼ 94.3%) with numerous laminations at the top
(Supplementary Figs 1 and 2; Supplementary Tables 1 and 2). The unit contains
abundant rip-up clasts that are derived from the underlying Unit 10.2. The
uppermost laminated, very fine sand is nearly absent in other excavations due to
erosion, but it is preserved in most of the Trench 1 exposures (Supplementary
Fig. 1). Weathered fragments of cave chalk are abundant and range in size up to
3 cm. Unit 11 also abounds in foraminifera (1,976–2,485 individuals per cm3),
and 49–55% of the foraminifera are pristine. Subtidal (48–61%) species are
dominant (Pararotalia sp., Asterorotalia sp. and Epinoides repandus) with planktic
foraminifera present, but in smaller amounts (9–14%; Fig. 5, Supplementary
Tables 3 and 4). On the basis of the normal grading, abundant rip-up clasts and
subtidal foraminifera, we suggest that this sand layer represents a tsunami deposit
(Fig. 4; labelled sand bed K). Sand bed K (Unit 11) is separated from the overlying
black to grey, thin, laminated, fine sand (Unit 12: no grain size data available) by an
erosional unconformity. Unit 12 is a massive, fine sandy pebble breccia with an
irregular black, organic sand cap. Clasts range up to about 10 cm in length and are
commonly angular.

Fragments of detrital charcoal from Unit 11 yielded two calibrated age ranges
of 2,859–2,772 years BP and 2,975–2,862 years BP. We interpret these as the age
of sand bed K.

Grain size analysis. We analysed grain size at 1 cm resolution with a Malvern MS
3000 laser particle size analyzer (measuring grain sizes up to 1,800 mm). Before
analysis, we removed organics and carbonate with 30% hydrogen peroxide and
10% hydrochloric acid, respectively. We subsequently let the samples disaggregate
in a sodium hexametaphosphate solution for 24 h.

We calculated grain size values with the Wentworth-Phi scale56, using the
average of three runs. Grain size descriptions for each sampled interval follow those
defined by Blott and Pye57, and include a mean (average grain size), mode
(dominant grain size), s.d. (degree of sorting) and percentage of clay, silt and sand.
We show the depths of coarse pulses and fining upwards sequences in Fig. 5.

Foraminiferal and cave chalk analysis. We examined 42 samples from
Units 1–12 for foraminiferal taxa (Supplementary Table 8) and taphonomy
(surface condition of foraminiferal tests). Foraminiferal taxonomy constrains
provenance through ecology, and taphonomy can determine residence time and
transport history. For foraminifera and cave chalk analysis, we subsampled 5 cm3

samples from each layer, wet-sieved them at 463mm, dried at 25 �C and examined
them under a binocular microscope. Sieved samples were dry split to obtain counts
of B300 foraminifera per sample58. For each sample, the total number of
foraminifera present in 5 cm3 (total concentration) was calculated, as was the
percentage of each species present (abundance). Foraminiferal taxonomy followed
Loeblich and Tappan59. Foraminifera were further categorized according to the
taphonomic (surface) condition of the tests as defined by Pilarczyk and
Reinhardt51, where pristine individuals are those that are taphonomically
unaltered; abraded individuals are those that are edge rounded and corroded; and
fragmented individuals are those that are broken with angular edges
(Supplementary Fig. 3). In each sample, we documented the presence or absence of
cave chalk. Where present, we categorized the surface condition of individual cave
chalk fragments as either pristine or weathered. Pristine fragments are small, fragile
and have a delicate floret structure; weathered fragments are larger and more
rounded, with no floret structure.

Data availability. Data and modelling codes that have contributed from the
reported results are available from the corresponding author at request.
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