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   Dear editor,

Deep  reinforcement  learning  (DRL),  combining  the  perception
capability of deep learning (DL) and the decision-making capability
of reinforcement learning (RL) [1], has been widely investigated for
autonomous  driving  decision-making  tasks.  In  this  letter,  we  would
like  to  discuss  the  impact  of  different  types  of  state  input  on  the
performance of DRL-based lane change decision-making.

Note that the state representation is critical for the performance of
DRL,  especially  for  the  autonomous  driving  task  with  multi-sensor
data.  Many  previous  works  [2],  [3]  have  targeted  RL  models  with
vector-based  state  representations,  which  lack  the  generalization
ability  for  different  road structures.  On the one hand,  road and lane
line  information  is  an  important  constraint  on  vehicle  behaviors.
Further  research  is  needed  on  how  these  constraints  can  be  better
represented  in  DRL  algorithms.  On  the  other  hand,  for  the  case  of
many  surrounding  vehicles,  it  is  necessary  to  find  the  interacting
vehicles  that  have  a  more  significant  impact  on  the  autonomous
vehicle’s  decision  to  make  a  safe  and  effective  decision  behavior.
Therefore,  for  the  highway  lane-changing  task,  we  propose  an
appropriate state representation with dual inputs combining the local
bird’s-eye  view  (BEV)  image  with  vector  input  and  further
implementing  a  combination  of  attention  mechanisms  and  the  DRL
algorithm  to  enhance  the  performance  of  lane  change  decisions.
Among  the  attention  mechanisms,  self-attention  [4]  is  widely  used.
This letter employs different self-attention models for the BEV image
and vector inputs to consider the key interacting vehicles with greater
weights in the decision process. Note that the key interacting vehicles
that  have  a  considerable  influence  on  self-driving  cars’ decision-
making are identified with the self-attention mechanism. Fig. 1 gives
some example BEV images and visualizes the results of feeding them
into the trained attention module.

Related  work: The  application  of  deep  reinforcement  learning
methods  to  lane-changing  scenarios  has  been  widely  studied.  Most
existing  works  have  used  vectors  [2]  or  grids  [3]  as  forms  of  state
representations,  covering  information  such  as  surrounding  vehicle
positions and speeds that are critical for lane-changing decisions but
do  not  explicitly  consider  spatial  location  relationships  and
interactions between vehicles. The attention mechanism can discover
inter-dependencies  among  a  variable  number  of  inputs  and  is
applicable to autonomous driving decision-making problems.

The  self-attention  mechanism  [4]–[6]  computes  the  response  at  a
position  in  the  sequence  in  a  self-supervised  manner.  In  [7],  self-
attention is extended to the more general class of non-local filtering
operations that are applicable to image inputs.  There are also works
combining  self-attention  mechanisms  with  DRL  methods  for

autonomous  driving.  In  [8],  an  ego  attention  mechanism  for  vector
inputs is developed to capture ego-to-vehicle dependencies. In [9], a
multi-head attention model  is  introduced for  trajectory prediction in
autonomous  driving.  Unfortunately,  there  is  no  work  to  analyze  the
different types of state representations with the attention mechanism.
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RL formulation for highway lane change decision-making: The
process  of  lane  change  decision-making  can  be  formulated  as  a
Markov  decision  process  (MDP).  An MDP is  a  5-tuple  of  the  form

,  where  is  the  state  space,  the  action  space, P
the  state  transition  model  for  each
action, R the  reward  function 

,  and  the  discount  factor.  Also, , ,  and  are  the
state, action and reward at time t respectively. The transition model P
and  reward R are  affected  by  the  specific  behavior a.  The  goal  of
RL is to learn an optimal policy  that maximizes the expected
γ-discounted  cumulative  reward  (also  known  as  return) 

. The state, action space, and reward function
are defined as follows.

● Vector-based state input: For the highway lane change problem,
the  agent  necessitates  information  about  the  ego  and  surrounding
vehicles to make a decision. The related vector includes the location,
heading, and velocity of vehicles. We use a 6-dimensional vector to
characterize the information about vehicles:
 

st = (si)i∈[0,N], si =
[
xi yi vx

i vy
i cosψi sinψi

]
(1)

si

cos sin

where N is  the  number  of  visible  vehicles.  The  elements  in 
represent  the  vehicle’s  lateral  location  in  the  road,  the  longitudinal
location, the lateral velocity of the vehicle, the longitudinal velocity,
and the  and  values of the heading error between the vehicle
and the lane orientation, respectively. The remaining states are filled
with zeros when fewer than N vehicles are visible.

●  Image-based  state  input:  In  addition  to  the  direct  vector-based
state representation,  an alternative is  to formulate the state in image
form.  Although  vector-based  states  inform  the  position  of  each
vehicle in the road, it is not very intuitive to capture the relationship
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Fig. 1. Examples of image-based state representation and the visualization of
the  trained  attention  block  with  images  as  inputs.  The  top  row  shows  the
original image-based state; The middle row presents the output of softmax in
the  block,  corresponding  to  the  intermediate  result  of  attention;  The  bottom
row  gives  the  output  of  the  image  state  through  the  whole  non-local  block,
representing the result of the entire attention module. We reshape the outputs
to the same size as the inputs.
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between the road structure and vehicles. In contrast, the BEV image-
based state representation can directly take the vehicles together with
the  road  structure  as  the  input  and  obtain  all  vehicles’ location  and
heading  information  from  a  local  BEV  space.  In  addition,  the
combination  of  image-based  states  and  convolutional  neural
networks  (CNNs)  can  also  help  extract  the  position  relationship
between different vehicles. However, the image-based state does not
easily  represent  the  velocity  information  of  the  vehicles  explicitly.
Examples of BEV image-based state inputs are shown in the top row
of Fig. 1. We represent the ego vehicle, the surrounding vehicles, and
the  road  structure  as  a  single-channel  gray-scale  image  to
characterize  the  position  of  the  ego  vehicle  (the  dark  square  in  the
image) and the surrounding vehicles (the light squares in the image)
in the road. The position of the ego vehicle in the image is fixed.

●  Action  space:  The  discrete  action  space  is  set  as  the  output  of
DRL  agents  for  the  lane  change  task,  including  both  lateral  and
longitudinal commands of the ego vehicle, i.e., {no operation, change
lanes  to  the  left,  change  lanes  to  the  right,  acceleration,  and
deceleration}. At a certain time step, only one lateral or longitudinal
action  command  will  be  given  to  the  ego  vehicle.  Therefore,  the
agent  needs  to  execute  a  series  of  actions  coherently  to  produce  a
specific behavior. For example, when required to accelerate from the
left  to overtake the vehicle ahead,  the agent needs to output  the left
lane change command in the current  time step and then provide the
acceleration actions in several subsequent time steps.

rc = 0 (if no collision) or−1.0 (if collision happens)

rv = 0.2 · (vt − vmin)/ (vmax− vmin)
vt

vmax = 30 vmin = 20
r = rv+ rc [0,1]

● Reward  function:  The  design  of  the  reward  function  requires  a
combination  of  safety  and  efficiency.  To  improve  the  safety  of  the
policies  learned  by  agents,  we  apply  a  penalty  when  a  collision
occurs, i.e., 
is  given  to  the  agent  at  each  time  step.  In  order  to  improve  the
efficiency,  it  is  expected  that  ego  speed  should  be  fast,  therefore,  a
reward  is  offered  at  each  time
step,  where  is  the  velocity  of  the  ego  vehicle  at  time  step t,

 m/s,  m/s. Thus, the total reward for each time
step is , which we clip it to .

Vπ (s) Qπ (s,a)
Model-free DRL: To evaluate a particular policy π, the state value

function  and state-action value function  are formally
defined as
 

Vπ (s) = Eπ
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Qπ (s,a) = Eπ
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k=0
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Q (s,a;ϕ)

V (s;θ,α) A (s,a;θ,β)

Q (s,a;ϕ) = Q (s,a;θ,α,β) = V (s;θ,α)+
A (s,a;θ,β)

For  the  continuous  state  space,  we  typically  rely  on  function
approximation  techniques  for  the  generalization  over  the  input
domain. In this letter, we utilize dueling double DQN (D3QN). DQN
(deep  Q-network)  [10]  incorporates  Q-learning  [11]  with  a  deep
neural  network  to  fit  the  action-value  function,  denoted  by

,  where ϕ is  the weights  in  the Q network.  Dueling DQN
[12]  further  divides  the  Q  network  into  a  value  function  part

 and  an  advantage  function  part ,  where θ is
the part of the Q network common to V and A, and α and β are their
respective parameters. Then, the final state-action value function can
be  re-expressed  as 

. The loss function of the neural network training can be
defined as
 

Li (ϕi) = Es∼π

[
1
2

(yi−Q (s,a;ϕi))2
]

(4)

yi = Es′∼E
[
r+γQT (s′,argmaxa′Q (s′,a′;ϕi) ;ϕT
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where  is
the  target  value  of  the i-th  iteration  in  double  DQN  [13],  and

, called the target network, is a copy of . E is
the  environment.  Note  that  the  target  network  is  updated  less
frequently  than  to  improve  the  convergence  of  training.
The above loss function for the gradient of the weights yields 

∇ϕi Li (ϕi) = Es′∼E
[
(r+γQT

(
s′,argmax

a′
Q
(
s′,a′;ϕi

)
;ϕT

i

)
−Q (s,a;ϕi))∇ϕi Q (s,a;ϕi)

]
. (5)

Stochastic  gradient  descent  is  usually  employed  to  optimize  the
loss function rather than directly calculating the expectation value in
(5).

Attention-based  DRL  framework: For  different  forms  of  state
representations,  we  adopt  different  self-attention  mechanisms  to
extract  state  features.  The  overall  framework  of  the  proposed
attention-based  D3QN  framework  combining  the  BEV  image  and
vector states is depicted in Fig. 2.
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Fig. 2. The  proposed  attention-based  DRL framework  for  highway  lane
change decision-making.
 

First,  the  dual  inputs,  including  vector-based  states  and  image-
based  states,  are  fed  into  their  respective  encoders:  a  multilayer
perceptron (MLP) for vectors and a CNN for images. Next,  the two
encoder  outputs  are  inputted  into  the  corresponding  attention
modules,  and the  attention  results  of  the  two parts  are  concatenated
together as a full feature. Subsequently, this feature goes through the
dueling-structured  MLP  network  to  output  the  final  Q  value.  Note
that  the  overall  architecture  is  jointly  optimized  by  the  D3QN
algorithm.

For  the  vector-based  state  input,  the  used  attention  model  is  the
ego-attention  [8].  This  attention  mechanism  is  a  variant  of  the
traditional  social  attention  [14]  mechanisms,  in  which  only  the  ego
state has query encoding. The architecture of an ego-attention head is
represented  in Fig. 3(a).  This  architecture  can  satisfy  the
requirements  of  variable  sizes  with  permutation  invariance,  even
when  using  a  set  of  characteristic  representations.  It  also  naturally
accounts for the interaction between the ego vehicle and surrounding
vehicles.

For  the  image-based  state  input,  the  used  attention  model  is  the
non-local  block  [7].  In  some  computer  vision  tasks,  CNNs  increase
the  receptive  field  of  perception  by  stacking  multiple  convolutional
modules.  Convolution  operators  are  all  local  operations  in  feature
space. The way to capture a larger range of information in an image
by  repeated  stacking  has  some  shortcomings:  inefficiency  in
capturing  a  large  range  of  information,  need  for  careful  design  of
modules and gradients, and local operations are harder to implement
when  information  needs  to  be  passed  between  relatively  distant
locations. Compared with the traditional convolutional operation, the
non-local  block  directly  captures  large  range  dependencies  by
computing the interaction between any two positions without limiting
to  adjacent  points,  which  is  equivalent  to  constructing  a
convolutional kernel as large as the size of the feature map and thus
can sustain more information. In addition, the non-local block can be
used as a component that can be easily combined with other network
structures. The model structure is shown in the left panel in Fig. 3(b).

Experiments and analysis: For two different forms of state inputs,
vector  and image,  we conduct  different  experiments  to  compare  the
effectiveness  of  the  algorithms  with  the  help  of  the  open-source
HighwayEnv  environment  (https://github.com/eleurent/highway-
env). These experiments include vector input, vector input with ego-
attention,  image  input,  image  input  with  non-local  block,  and  dual
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input  (vector  input  with  ego-attention  combined  with  image  input
with non-local block). Ten test episodes are conducted for each of the
different experimental settings, with each test going through 50 time
steps. The results are presented in Table 1. The average lane change
times in the table indicate the average number of lane change actions
taken by the ego vehicle in these ten test runs. The average return is
the average cumulative reward of the feedback from the environment
in  10  runs.  The  average  step  is  the  average  of  the  time  steps
experienced  in  10  runs  (if  the  ego  vehicle  crashes  during  one  test
episode,  the  test  will  be  terminated,  then  the  test  steps  will  be  less
than  50  time  steps),  and  the  lane  change  success  rate  indicates  the
rate of successful lane changes, i.e., without collision in 10 runs.

As can be  seen from the  results  in Table 1,  dual  inputs  combined
with different attention mechanisms achieve the best results in all the
evaluation metrics. For BEV images, the relationships between scene
elements such as the lane with vehicles and the ego with vehicles can
be  captured.  For  vector  inputs,  more  accurate  spatially  distant
interactions  between  the  ego  and  surrounding  vehicles  can  be
captured. The results prove that the dual input combining the vector
with  images  is  a  better  state  representation  for  the  decision-making
task. In addition, comparing the odd rows of the table with the even
rows,  we  can  see  that  using  the  attention  mechanism  can  further
improve the performances of the original state input. This shows the
effectiveness of the proposed method, and the attention mechanisms
have a positive effect on different forms of state input.

In  addition,  we  visualize  the  trained  non-local  block,  and  the
results  are  given  in Fig. 1.  From  the  results,  we  can  see  that  the
regions  with  the  presence  of  surrounding  vehicles  have  higher
weights, showing that the agent has greater attention to these regions.
The  interesting  result  is  that,  after  the  attention  module,  the  agent
only  pays  attention  to  vehicles  close  to  and  in  front  of  itself  and
ignores the vehicles behind it (see the image in the bottom right-hand
corner of Fig. 1). Coincidentally, the ego speed is usually higher than
the surrounding vehicles, and the vehicles in the rear have very little
effect on the ego vehicle.
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Fig. 3. The utilized attention mechanisms for vector and image inputs.
 

 

Table 1.  Test Results. The Data is Averaged Over 10 Runs

Input types Average lane change times ↓ Average return ↑ Average step ↑ Lane change safety ↑

Vector 22.4 38.07 40.3 0.5

Vector with attention 12.8 45.35 48.8 0.9

Image 16.6 37.99 41.2 0.5

Image with attention 11.6 40.47 43.0 0.7

Vector with attention + Image with attention 8.1 46.63 49.0 0.9
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